Nyomtatás

Miskolci Egyetem - Gépészmérnöki és Informatikai Kar

TANTÁRGYI TEMATIKA

Műszaki hő- és áramlástan; MSc (Nappali+Levelező)

Tantárgy neve:
Műszaki hő- és áramlástan
Tantárgy Neptun kódja:
Nappali: GEAHT001M
Levelező: GEAHT001ML
Tárgyfelelős intézet:
EVG - Energetikai és Vegyipari Gépészeti Intézet
Tantárgyelem: A
Tárgyfelelős: Dr. Baranyi László - egyetemi tanár
Közreműködő oktató(k): "Dr. Bolló Betti, egyetemi docens
Szaszák Norbert, egyetemi tanársegéd
Javasolt félév: 2 Előfeltétel:
Óraszám/hét:
Előadás (nappali): 2
Gyakorlat (nappali): 1
Előadás (levelező): 16
Számonkérés módja: kollokvium
Kreditpont: 3Munkarend: Nappali+Levelező
Tantárgy feladata és célja:
A tantárgy elsődleges feladata, hogy elmélyítse a hallgatók elméleti és alkalmazott áramlástani és hőátadási ismereteit, különös tekintettel a hővezetésre és konvekciós hőátadásra.
Tudás: Összefüggéseiben ismeri és alkalmazza a mechatronikai mérnöki szakmához kötött természettudományos és műszaki elméleti ismereteket és ok-okozati összefüggéseket. Elsajátította az elméletileg megalapozott, rendszerszemléletű gyakorlatorientált mérnöki gondolkodásmódot. Rendelkezik a mechatronikai területhez kapcsolódó gépészeti és villamos méréstechnikai, valamint matematikailag és informatikailag megalapozott méréselméleti ismeretekkel. Ismeri a szakterületéhez kapcsolódó információs és kommunikációs technológiákat. Ismeri az integrált gépészeti, elektrotechnikai és irányítástechnikai rendszerek matematikai modellezésének és számítógépes szimulációjának eszközeit és módszereit a mechatronika különböző területein. Elméleti és gyakorlati felkészültség, módszertani és gyakorlati ismeretek a gépészetet az elektronikával, elektrotechnikával és számítógépes irányítással szinergikusan integrált berendezések, folyamatok és rendszerek tervezéséhez, gyártásához, modellezéséhez, üzemeltetéséhez és irányításához. Ismeri a teljesítményelektronikai és mozgásszabályozási rendszereket, a mechatronikai berendezések energiaellátásának módszereit, eszközeit. Ismeri a járműmechatronika rendszereket, azok tervezési, fejlesztési elveit, üzemeltetési, karbantartási módszereit.
Képesség: Képes a mechatronikai területen alkalmazott anyagok laboratóriumi vizsgálatára, a vizsgálati eredmények statisztikai kiértékelésére, dokumentálására, és a kísérleti és elméleti eredmények összevetésére. Képes a mechatronikai rendszerek és folyamatok üzemeltetése során gyűjtött információk feldolgozására és rendszerezésére, különböző módon történő elemzésére, elméleti és gyakorlati következtetések levonására. Képes rendszerszemléletű, folyamatorientált, elméletileg megalapozott gondolkodásmód alapján komplex mechatronikai rendszerek globális tervezésére. Képes átfogó elméleti ismereteit a gyakorlatban is alkalmazni a gépészetet az elektronikával, az elektrotechnikával és a számítógépes irányítással szinergikusan integráló berendezések, folyamatok és rendszerek területén. Képes eredeti ötletekkel gazdagítani a szakterület tudásbázisát. Képes a mechatronikai rendszerek és folyamatok tervezésében, szervezésében és működtetésében használatos eljárások és információs technológiák elméleti modelljének kidolgozására és továbbfejlesztésére. Képes a mechatronika területén felmerülő legújabb kutatási eredmények áttekintésére és megértésére, melyeket a munkájában alkalmaz. Együttműködési képességet alakít ki a villamosmérnöki, gépészmérnöki, informatikai és élettudományi szakterületek specialistáival. Képes a kreatív problémakezelésre és az összetett feladatok rugalmas megoldására, továbbá az élethosszig tartó tanulásra és elkötelezett a sokszínűség és az értékalapúság mellett.
Attitűd: Megszerzett ismereteire alapozva integrátori szerepet tölt be a műszaki (elsősorban gépészetmérnöki, villamosmérnöki, informatikai) tudományok integrált alkalmazásában, valamint minden olyan tudományterület műszaki támogatásában, ahol az adott szakterület szakemberei mérnöki alkalmazásokat, megoldásokat igényelnek. Törekszik arra, hogy a munkáját rendszerszemléletű és folyamatorientált gondolkodásmód alapján komplex megközelítésben végezze. Törekszik a fenntarthatóság és energiahatékonyság követelményeinek érvényesítésére. Törekszik a feladatait szakmailag magas szinten önállóan vagy munkacsoportban megtervezni és végrehajtani. Törekszik az önművelésre, önfejlesztésre aktív, egyéni, autonóm tanulással. Elkötelezett a magas színvonalú, minőségi munkavégzés iránt és törekszik e szemléletet munkatársai felé is közvetíteni. Munkája és döntései során betartja a műszaki, gazdasági és jogi szabályozás, valamint a mérnöketika vonatkozó előírásait.
Autonomia és felelősség: Megszerzett tudását és tapasztalatait formális, nem formális és informális információátadási formákban megosztja szakterülete művelőivel. Értékeli beosztottjai munkáját, kritikai észrevételeinek megosztásával elősegíti szakmai fejlődésüket. Szakmai problémák megoldása során önállóan és kezdeményezően lép fel. Munkatársait és beosztottjait felelős és etikus szakmagyakorlásra neveli. Döntéseit körültekintően, más (elsősorban jogi, gazdasági, energetikai, villamosmérnöki, informatikai és orvosi) szakterületek képviselőivel konzultálva, önállóan hozza, amelyekért felelősséget vállal. Döntései során figyelemmel van a környezetvédelem, a minőségügy, a fogyasztóvédelem, a termékfelelősség, az egyenlő esélyű hozzáférés elvére és alkalmazására; a munkahelyi egészség és biztonság, a műszaki-, gazdasági- és jogi szabályozás, valamint a mérnöketika alapvető előírásaira.
Tárgy tematikus leírása:
Folyadékok tulajdonságai, felületi feszültség, kapillaritás, newtoni súrlódási törvény. Hidrosztatika, nyomásváltozás nyugvó folyadékban. Folyadékba merített sík és görbült felületre ható erő. Kontinuitás. Euler-féle mozgásegyenlet. Bernoulli egyenlet. Impulzustétel. Navier-Stokes egyenletek. Csövek és szerelvények hidraulikai veszteségei. Bevezetés a numerikus áramlástanba (CFD). Hőátadás fajtái: vezetés, konvekció, sugárzás. Egy-dimenziós stacionárius hővezetés és konvektív hőátadás egy- vagy több rétegű síkfalban és hengeres falban és gömbhéjban. Hőmérséklettől függő hővezetőképesség (síkfal, hengeres fal, gömbhéj). Energia egyenlet. Teljesen kialakult lamináris áramlás: hőátadás Couette áramlásban és csőáramlásban.
Félévközi számonkérés módja és az aláírás megszerzésének feltétele (Nappali):
Az aláírás feltétele a félév során írandó egy zárthelyi dolgozat legalább 50%-os teljesítése. A pótlás lehetőségeit a mindenkori tantárgyi követelmények tartalmazzák.
Az előadások 60%-án kötelező a részvétel, valamint a gyakorlatok maximum 30%-ról lehet hiányozni!
Félévközi számonkérés módja és az aláírás megszerzésének feltétele (Levelező):
Az aláírás feltétele a félév során írandó egy zárthelyi dolgozat legalább 50%-os teljesítése. A pótlás lehetőségeit a mindenkori tantárgyi követelmények tartalmazzák.
Az előadások 60%-án kötelező a részvétel, valamint a gyakorlatok maximum 30%-ról lehet hiányozni!
Gyakorlati jegy / kollokvium teljesítésének módja, értékelése (Nappali):
Félévközi teljesítmény vizsgajegybe történő beszámítására nincs mód. A vizsga írásbeli vagy szóbeli a létszám függvényében (10 fő alatt szóbeli, a felett írásbeli). A vizsgazárthelyi összpontszáma: 100 pont.
Osztályozás:
0-39% elégtelen;
40-54% elégséges;
55-69% közepes;
70-84% jó;
85-100% jeles
Jeles vizsgajegyet írásbeli vizsga esetén is csak szóbelivel egybekötött vizsga esetén adunk.
Gyakorlati jegy / kollokvium teljesítésének módja, értékelése (Levelező):
vizsga: írásbeli és/vagy szóbeli
Osztályozás:
0-49% elégtelen;
50-60% elégséges;
61-74% közepes;
75-84% jó;
85-100% jeles
Kötelező irodalom:
[1] Czibere Tibor: Áramlástan. Kézirat. Tankönyvkiadó, Budapest, 1985.
[2] Özisik, M.N.: Heat Transfer. 3rd Edition, McGraw-Hill, New York, 1985
[3] Baranyi László, Kalmár László: Áramlástan példatár. Kézirat. Tankönyvkiadó, Budapest, 1990, J14-1713
[4] Karaffa Ferenc: Műszaki hőtan példatár. Miskolci Egyetemi Kiadó, 1994.
[5] Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: The Finite Volume Method. John Wiley and Sons, New York,1995.;
Ajánlott irodalom:
[1] White, F.M.: Fluid Mechanics. 4th Edition, McGraw-Hill, Boston, 1999.
[2] Lajos T.: Az áramlástan alapjai. Műegyetemi Kiadó, Budapest, 1997.
[3] Bejan, A.: Heat Transfer. John Wiley and Sons, New York, 1993.
[4] Roberson, J.A. - Crowe, C.T.: Engineering Fluid Mechanics. 3rd Edition, Houghton Mifflin Company, Boston, 1985.