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Abstra
t

Fluid �ow around blu� bodies have been thoroughly investigated in the past few de
ades

due to their high engineering importan
e. This phenomenon plays an important role for

example in o�shore risers, high slender buildings, 
himney sta
ks, heat ex
hangers, et
.

The vorti
es shedding from the blu� body superimpose a periodi
 load on the stru
ture,

whi
h 
an 
ause high-amplitude os
illations. This e�e
t is referred to as vortex-indu
ed

vibrations (VIV).

In this PhD dissertation the vortex-indu
ed vibration of a 
ir
ular 
ylinder is inves-

tigated by means of two-dimensional CFD 
omputations at low Reynolds numbers. The

governing equations of the �uid and solid motions are solved using an in-house 
ode based

on the �nite di�eren
e method. Some details of the CFD approa
h are provided in Chapter

2. After the independen
e studies, a step-by-step validation is 
arried out to 
ompare the


urrently obtained results against the literature data (see Chapter 3). Good agreement

was found for all test 
ases.

In Chapter 4 two-degree-of-freedom vortex-indu
ed vibrations are investigated at dif-

ferent nondimensional natural frequen
y values K. It was found that plotting the data

set belonging to di�erent K values against U∗
St makes 
omparison easier than using the

Reynolds number as an independent parameter. Here U∗
is the redu
ed velo
ity and St

is the Strouhal number for a stationary 
ylinder. For the dimensionless natural frequen
y

values between K ∼= 12.3 and 34.7, the root-mean-square (rms) values of the streamwise

vibration 
omponent and �uid for
e 
oe�
ient x0′ and Cx′
display lo
al peak values at

U∗
St

∼= 0.47. In addition, at around U∗
St = 0.5 Cx′

approa
hes zero, at the same point

where the phase di�eren
e of the streamwise �uid for
e relative to the x 
omponent of

the motion 
hanges abruptly from 0◦ to 180◦. The pressure 
omponent of the streamwise

�uid for
e 
oe�
ient seems to be responsible for the sudden 
hange.

The results from the two-degree-of-freedom VIV 
omputations at distin
t K values

reveal also that the non-dimensional natural frequen
y in�uen
es signi�
antly the 
ylinder

path. For the values of K < 36.6 only distorted �gure-eight motions are found. However,

in the range of K ∼= 36.6�43.7 orbital traje
tories (i.e. the raindrop-shaped paths) o

ur

in a thin U∗
St domain, whi
h extends with K. For orbital paths two high-intensity peaks

are observed in the frequen
y spe
tra of the x vibration 
omponent. Due to the multi-

frequen
y vibration, the raindrop-shaped traje
tory is asymmetri
. P+S vortex stru
tures

are identi�ed for these paths, whi
h 
on�rms the asymmetri
al nature of the orbit. The

time-mean values of the transverse �uid for
e jump abruptly between two solutions. The

pre- and post-jump analysis reveals that these solutions are mirror images of ea
h other.

In Chapter 5 single-degree-of-freedom VIV 
omputations are 
arried out, where the


ylinder is allowed to move only streamwise with the free stream. The investigations

at various Reynolds numbers (Re = 100, 180 and 250), and di�erent mass ratio values

(m∗ = 2, 5, 10 and 20) show that streamwise-only vortex-indu
ed vibrations are possible

at low Reynolds numbers. A single ex
itation region is identi�ed, whi
h 
orresponds to

the se
ond response bran
h reported in the literature for moderately high Re. The dimen-

sionless vibration amplitude x̂0 plotted against U∗
for one parti
ular 
ombination of Re

and m∗
in
reases up to its peak value, then it de
reases. The non-dimensional vibration

frequen
y f ∗

x behaves oppositely. Although the peak value of x̂0 appears to be independent
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t iv

ofm∗
, varying the Reynolds number the maximum vibration amplitude shows a signi�
ant

in
rease. It was also shown that the magnitude of the streamwise �uid for
e 
oe�
ient

approa
hes zero at the point, where the vibration frequen
y 
oin
ides with the 
ylinder's

natural frequen
y. Sin
e the amplitude of 
ylinder os
illation is non-zero at this point, the

streamwise �uid for
e has strongly non-harmoni
 nature. Unlike the phase angle between

Cx and x0, whi
h is restri
ted to the values of 0◦ and 180◦, the phase di�eren
e of the

transverse �uid for
e relative to the 
ylinder displa
ement in
reases gradually with U∗
.

This e�e
t is attributed to the swit
h in the timing of vortex shedding.

Finally, in Chapter 6 transverse-only vortex-indu
ed vibrations are investigated at

the Reynolds number and mass ratio values of Re = 300 and m∗ = 10, respe
tively, for
di�erent stru
tural damping ratios between ζ = 0% and 5%. Up until now, resear
hers

have reported an upper bran
h only at high Reynolds numbers and low m∗ζ values.

However, in this study we have observed three-bran
h behavior (initial, upper and lower

bran
hes) at Re = 300 for ζ ≤ 1%. The upper bran
h is bounded by two gradual phase


hanges: at the boundary adja
ent to the initial bran
h, the time-averaged phase di�eren
e

of the vortex for
e, and at that to the lower bran
h, the time-averaged phase di�eren
e

of the transverse �uid for
e relative to the 
ylinder displa
ement 
hanges between 0◦ and
180◦. Unbounded variations and phase slips are observed in the time-dependent phase

di�eren
es, whi
h explains the gradual 
hanges in their time-mean values. In the upper

bran
h 2P

O

and P+S modes, while in the initial and lower bran
hes 2S vortex stru
tures

are identi�ed. The se
ond harmoni
 frequen
y 
omponent plays an important role in the

spe
tra of transverse �uid for
e, whi
h is 
losely related to the observed P+S vortex

stru
ture. In
reasing the stru
tural damping over ζ = 1%, only initial and lower bran
hes

are found.
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Kivonat

A tompa testek körüli áramlási folyamatok vizsgálatával � a téma nagy mérnöki fontos-

sága miatt � számos tanulmány foglalkozik. A jelenség fontos szerepet játszik például a

szélterhelésnek kitett kar
sú épületeknél, a vízfelszín alatti vezetékeknél vagy a h®
seré-

l®knél. Ismeretes, hogy a tompa testekr®l leváló örvények periódikus terhelést jelentenek a

szerkezetre nézve, amelynek következtében a test nagyamplitúdójú rezg®mozgásba jöhet.

E jelenséget angol nyelven �vortex-indu
ed vibration�-nek nevezik.

A jelen PhD disszertá
ió egy párhuzamos áramlásba helyezett, szabadrezgésre képes

(rugalmasan felfüggesztett) körhenger körüli áramlási folyamatok kétdimenziós numeri-

kus áramlástani vizsgálatával foglalkozik. A folyadékáramlást és a henger mozgását leíró

egyenleteket egy a tanszéken kifejlesztett számítógépes programkód segítségével oldom

meg, amely a véges di�eren
iák módszerét alkalmazza. A számítási eljárás részleteit a 2.

fejezetben ismertetem. Ezt követ®en függetlenségi vizsgálatokat végzek, majd az eredmé-

nyeket összehasonlítom az irodalomban rendelkezésre álló adatokkal (lásd 3. fejezet).

A dolgozat 4. fejezetében az örvényleválás által gerjesztett kétszabadságfokú rezg®moz-

gásokat vizsgálom különböz® K dimenziótlan sajátfrekven
iák esetén. Azt tapasztaltam,

hogy az U∗
St paramétert használva független változóként � ahol U∗

a redukált sebesség és

St a Strouhal-szám �, a különböz® K értékek esetén számított görbék egy viszonylag sz¶k

tartományba hozhatók, amely nagymértékben javította az adatsorok összehasonlíthatósá-

gát. A hosszirányú rezgéskomponens és er®tényez® rms értéke (x0′ és Cx′
) az U∗

St

∼= 0,47
értéknél lokális maximumot mutat, illetve Cx′

az U∗
St

∼= 0,5 helyen zérushoz tart. A Cx

és x0 id®függvényeinek segítségével kimutattam, hogy U∗
St < 0,5 esetén a két jel fázisban

van. Az U∗
St

∼= 0,5 elérésekor x0 és Cx hirtelen ellenfázisba kerül, amely az U∗
St > 0,5

tartományban fennáll. A számításokból arra következtettem, hogy Cx′
zérussá válását,

illetve az x0 és Cx közti hirtelen fázisugrást a hosszirányú er®tényez® nyomásból származó

komponense okozza.

Számítási eredményeim azt mutatják, hogy a dimenziótlan sajátfrekven
ia növelése

jelent®s hatással van a henger pályagörbéjére. Megállapítottam, hogy míg K < 36,6 ese-

tén a henger minden esetben torzított nyol
as alakú görbét ír le, addig a K ∼= 36,6�43,7
intervallumon belül, keskeny U∗

St tartományban es®
sepp alakú orbitális mozgásgörbe

is jelentkezik. Bebizonyítottam, hogy K értékének növelésével az orbitális pálya U∗
St

tartománya kiszélesedik. Tapasztalataim alapján elmondható, hogy az es®
sepp alakú pá-

lyagörbe aszimmetrikus viselkedést mutat, amelyet az x irányú rezgéskomponens frekven-


iaspektrumában megjelen® két jelent®s intenzitású frekven
ia
sú
s okozza. A pályagörbe

aszimmetrikus voltát alátámasztja, hogy a henger mögött P+S típusú örvényszerkezet

jelenik meg. A felhajtóer®-tényez® Cy id®átlaga (abszolút értékben) nagymértékben meg-

n® orbitális hengermozgás esetén; továbbá Cy két megoldás között ugrásszer¶en változik.

A határ
iklusokat [(Cx, Cy) vagy (x0, y0)℄ egy ugrás két oldalán ábrázolva azt tapasztal-

tam, hogy a görbék egymásnak tükörképei. Ebb®l az következik, hogy Cy két megoldása

szimmetrikus.

Az 5. fejezetben egyszabadságfokú hosszirányú szabadrezgés numerikus vizsgálatá-

val foglalkozok különböz® Reynolds-számok (Re = 100, 180 és 250) és tömegarányok

(m∗ = 2, 5, 10 és 20) esetén. Számítási eredményeim azt mutatják, hogy a hosszirányú

szabadrezgés létrejötte lehetséges kis Reynolds-számok esetén. Egyágú rezgésképet azo-
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nosítottam, amely megfelel a szakirodalomban a közepesen nagy Re esetén bemutatott

második ággal, mivel minden egyes paraméterkombiná
iónál (Re, U∗, m∗
) alternáló ör-

vényleválást �gyeltem meg. Az x̂0 dimenziótlan rezgési amplitúdó a redukált sebesség

függvényében, 
sú
sértékének eléréséig növekv®-, majd azt követ®en 
sökken® tenden
iát

mutat. Ezzel szemben az f ∗

x dimenziótlan rezgési frekven
ia ellentétes viselkedést mutat:

f ∗

x változásában, kezdetben 
sökken®, a minimum érték elérése utána pedig növekv® jelleg

�gyelhet® meg. Az utóbbi két megállapítás minden vizsgált Re és m∗
érték esetén igaznak

bizonyult. Számítások segítségével bebizonyítottam, hogy x̂0 
sú
sértéke független a tö-

megaránytól, azonban a Reynolds-szám változására érzékeny: Re növelésével x̂0 maximális

értéke növekv® tenden
iát mutat. Megállapítottam, hogy a hosszirányú er®tényez® ampli-

túdója zérushoz tart ott, ahol a rezgési frekven
iája megegyezik a henger sajátfrekven
iá-

jával. A rezgési amplitúdó nemzérus ebben a pontban, amely meg�gyelés megmagyarázza

a Cx frekven
iaspektrumában a magasabb rend¶ (második) felharmonikus megjelenését.

Számítási eredményeim továbbá azt mutatják, hogy a Cx és x0 közti fázisszög Φx = 0◦-ról
180◦-ra ugrásszer¶en változik abban a pontban, ahol a rezgési frekven
ia közel azonos a

rendszer sajátfrekven
iájával. Ezzel szemben a Cy és x0 közti fázisszög monoton növeke-

dést mutat, amely az örvényleválás id®zítésének eltolódásával van szoros összefüggésben.

Végezetül, a dolgozat 6. fejezetében a keresztirányú rezg®mozgásból származó eredmé-

nyeimet ismertetem. Kimutattam, hogy az eddig kizárólag nagy Reynolds-számú áram-

lások, illetve kis tömeg¶ és 
sillapítási tényez®j¶ rezg®rendszerek esetén azonosított há-

romágú rezgéskép (az alap-, fels®- és alsóág együttese) kis Reynolds-számok és 
sillapítási

tényez®k (Re = 300 és ζ ≤ 1%) esetén is megjelenik. A fels®ágat két fokozatos fázisváltozás

határolja: az alapággal szomszédos határon az örvényer®nek-, valamint az alsóággal szom-

szédos határvonalon a keresztirányú er®tényez®nek a henger elmozdulásához viszonyított

id®átlagolt fázisszöge változik 0◦ és 180◦ között. A fokozatos változást az id®ben változó fá-

zisszögekben észlelt határ nélküli növekedések és fázis
súszások okozzák. A fels®ágon 2P

O

és P+S, valamint az alap és alsóágakon 2S típusú örvényszerkezetet találtam. A rezgési

frekven
ia második felharmonikusa jelent®s szerepet játszik a keresztirányú er®tényez®

frekven
iaspektrumában, amely összefüggésbe hozható a P+S örvényszerkezet megjele-

nésével. A dimenziótlan 
sillapítási tényez®t ζ = 1% felett változtatva kétágú rezgéskép

jelenik meg; ebben a tartományban a fels®ág elt¶nik a rezgésképb®l.
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Re
ommendation of the supervisor

This dissertation deals with an area of �ow-indu
ed vibration (FIV). When a blu� body

is pla
ed in a uniform stream, vorti
es are shed periodi
ally from the body. This periodi


vortex shedding indu
es periodi
 for
es on the body that 
an lead to large amplitude

vibrations, espe
ially when the vortex shedding frequen
y is near to the eigenfrequen
y

of the system and the stru
tural damping is small. This led to the 
ollapse of the Ta
oma

Narrows Bridge and to the shutdown of the Monju fast-breeder nu
lear power plant in

Japan. FIV-related problems 
an o

ur with tall, slender buildings or bridges in the wind

or in underwater stru
tures, or 
an 
ause noisy operation of heat ex
hangers. This is the

ba
kground of Dániel Dorogi's resear
h.

Some of the resear
h questions of his dissertation are as follows. (1) What are the ef-

fe
ts of the dimensionless natural frequen
y of an elasti
ally-supported system on 
ylinder

vibration for two-degree-of-freedom (2DoF) 
ylinder vibration? (2) How does the asym-

metri
 vortex stru
ture in�uen
e the 
ylinder path? (3) Can streamwise-only (1DoF)

vortex-indu
ed vibration (VIV) o

ur at low Reynolds numbers? (4) What are the e�e
ts

of Reynolds number and mass ratio on the 
ylinder response? (5) Can three-bran
h 
ylin-

der response o

ur for transverse-only (1DoF) VIV at low Reynolds numbers? (6) What

is the e�e
t of stru
tural damping on the 
ylinder response for transverse-only VIV?

These resear
h questions are the fo
us of the very 
areful literature survey and system-

ati
 numeri
al investigations 
arried out by Dániel. He extended the 
ode I had developed

for for
ed 
ylinder vibration. He paid spe
ial attention to 
arrying out independen
e

studies to determine the optimal 
omputational parameters, and to validating his results

against data available in the literature. He has 
arried out a great deal of systemati



omputations in order to address his resear
h questions. I �nd this dissertation to be well-

stru
tured, logi
ally built and 
arefully written. It 
learly presents the questions, answers

them dire
tly, and dis
usses his �ndings using results from the literature. High-quality

�gures help the reader to 
omprehend data that 
an be quite 
omplex. The dis
ussion of

the e�e
t of di�erent parameters on the �ow, the 
ylinder response and for
e 
oe�
ients

is well done and is based on mathemati
al and physi
al reasoning.

Dániel has worked hard throughout his studies on writing up his results for publi
ation.

At this point, three journal arti
les based upon his dissertation topi
 have been published,

two of whi
h were published in prestigious international journals (both ranked in the

top 10% of all journals related to the �eld and assessed in the S
imago system (D1

journals)). In addition, he has presented his work and published 
onferen
e papers in

several 
onferen
es, in
luding spe
ialized 
onferen
es abroad. He has re
ently submitted

two more manus
ripts to D1 journals that are under review at present.

Dániel's skills and attributes serve him well in a
ademia. He is hard-working, pre
ise,

and keeps himself up to date, regularly monitoring the newest results related to his �eld.

He is 
apable of setting goals for himself and identifying gaps in the resear
h. He is a

professional MATLAB user and is pro�
ient in developing 
odes in FORTRAN. He takes

his tea
hing duties seriously; he is a dedi
ated tea
her with a talent for explanation and

his presentation skills are well above average. He has been involved in joint resear
h (even

internationally) and has worked within several proje
ts, as well. This dissertation is proof

that Dániel Dorogi is a talented resear
her who is 
apable of 
arrying out high level re-

sear
h independently.

Miskol
, April 20, 2020

László Baranyi

Professor
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Nomen
lature

Roman Symbols

b stru
tural damping [kg s−1
℄

CA added mass 
oe�
ient [�℄

Cx streamwise �uid for
e 
oe�
ient, 2F̃x/(ρU
2
∞
d) [�℄

Cxp pressure streamwise �uid for
e 
oe�
ient [�℄

Cxv vis
ous streamwise �uid for
e 
oe�
ient [�℄

Cy transverse �uid for
e 
oe�
ient, 2F̃y/(ρU
2
∞
d) [�℄

Cyp pressure transverse �uid for
e 
oe�
ient [�℄

Cyv vis
ous transverse �uid for
e 
oe�
ient [�℄

CV vortex for
e 
oe�
ient, 2F̃V /(ρU
2
∞
d) [�℄

D dilation, non-dimensionalized by U∞/d

d 
ylinder diameter, length s
ale [m℄

F̃p potential added mass for
e per unit length of the 
ylinder [N m−1
℄

F̃x streamwise �uid for
e per unit length of the 
ylinder [N m−1
℄

F̃y transverse �uid for
e per unit length of the 
ylinder [N m−1
℄

F̃V vortex for
e per unit length of the 
ylinder [N m−1
℄

fN 
ylinder's natural frequen
y in va
uum, 1/(2π)
√
k/m [s−1

℄

fN,a 
ylinder's natural frequen
y in still �uid, 1/(2π)
√
k/(m+mA) [s

−1
℄

fv vortex shedding frequen
y for a stationary 
ylinder [s−1
℄

f ∗

x , f
∗

y vibration frequen
ies in x and y dire
tions, non-dimensionalized by U∞/d

f ∗

Cy
frequen
y of transverse �uid for
e, non-dimensionalized by U∞/d

f ∗

CV
frequen
y of vortex for
e, non-dimensionalized by U∞/d

K nondimensional natural frequen
y, fNd
2/ν [�℄

k spring 
onstant [kg s−2
℄

m 
ylinder mass per unit length [kg m−1
℄

mA added mass of �uid per unit length of the 
ylinder, CAρd
2π/4 [kg m−1

℄

m∗
mass ratio, m∗ = 4m/(d2πρ) [�℄
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NOMENCLATURE xii

p pressure, non-dimensionalized by ρU2
∞

R radius, non-dimensionalized by d

Re Reynolds number, U∞d/ν [�℄

St dimensionless vortex shedding frequen
y for a stationary 
ylinder, Strouhal

number, fvd/U∞ [�℄

t time, non-dimensionalized by d/U∞

U∗
redu
ed velo
ity based on the 
ylinder's natural frequen
y in va
uum,

U∞/(fNd) [�℄

U∗

A redu
ed velo
ity based on the 
ylinder's natural frequen
y in still �uid,

U∞/(fN,ad) [�℄

U∞ free stream velo
ity, velo
ity s
ale [m s−1
℄

u, v velo
ity 
omponents in x and y dire
tions, non-dimensionalized by U∞

x, y Cartesian 
oordinates, non-dimensionalized by d

x0, y0 
ylinder displa
ements in x and y dire
tions, non-dimensionalized by d

Greek Symbols

ζ stru
tural damping ratio, b/(2
√
km) [�℄

ν kinemati
 vis
osity of the �uid [m2 s−1
℄

ξmax, ηmax number of grid points in peripheral and radial dire
tion, respe
tively [�℄

ρ �uid density [kg m−3
℄

Φx phase di�eren
e of Cx relative to the displa
ement [�℄

Φy phase di�eren
e of Cy relative to the displa
ement [�℄

ΦV phase di�eren
e of CV relative to the displa
ement [�℄

ϕxp phase di�eren
e of Cxp relative to the displa
ement [�℄

ϕxv phase di�eren
e of Cxv relative to the displa
ement [�℄

Subs
ripts and supers
ripts

max peak value

n 
omponent in the dire
tion normal to the 
ylinder surfa
e

pot potential �ow

x streamwise

y transverse

1, 2 on the 
ylinder surfa
e, at the outer boundary of the domain, respe
tively

0 
ylinder response

Abbreviations

C refers to the 
oales
en
e of the positive and negative vorti
es in the 
ylinder

wake
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NOMENCLATURE xiii

CFD Computational Fluid Dynami
s

DoF Degree of Freedom

PSD Power Spe
tral Density

P refers to vortex pair shedding from the 
ylinder in ea
h motion 
y
le

S refers to single vortex shedding from the 
ylinder in ea
h motion 
y
le

VIV Vortex-Indu
ed Vibration
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Chapter 1

Introdu
tion

In this 
hapter, �rst a sele
tive literature review is given, whi
h links dire
tly to the

present dissertation (Se
tion 1.1). Sin
e there are numerous experimental and 
omputa-

tional studies in the �eld of �ow around an os
illating 
ylinder, a 
omprehensive review

is not possible due to the spa
e limits. My aim is to 
reate the body of knowledge, whi
h

is essential for the 
orre
t understanding of the present obje
tives and the dis
ussion of

the results. The literature survey 
overs

(a) the �uid �ow around a stationary 
ir
ular 
ylinder (Se
tion 1.1.1);

(b) the �ow around a 
ylinder undergoing for
ed/
ontrolled os
illations (Se
tion 1.1.2);

(
) the most important results 
on
erning the single-degree-of-freedom vortex-indu
ed

vibrations (VIV), where the body is restri
ted to move only in transverse

1

or stream-

wise

2

dire
tion (Se
tions 1.1.3 and 1.1.4) and

(d) some results on two-degree-of-freedom VIV, where the 
ylinder is allowed to move

in the two dire
tions (Se
tion 1.1.5).

From the literature review I address resear
h questions, whi
h determine the obje
tives

of this PhD dissertation. The resear
h questions with the obje
tives are presented in

Se
tion 1.2.

1.1 Literature review

Fluid �ow around a 
ir
ular 
ylinder exposed to wind or wave is widely investigated

due to its pra
ti
al importan
e. It plays a signi�
ant role for example in o�shore risers,


himney sta
ks, towers, bridge piles and heat ex
hangers. The periodi
 vortex shedding

from the body 
an indu
e high amplitude os
illations, whi
h 
an 
ause serious damage to

the stru
ture. This phenomenon played an important role in the 
ollapse of the Ta
oma

Narrows Bridge in 1940. Damage to the thermometer 
ases at the Monju fast-breeder

nu
lear power plant in 1995 leading to a major shutdown of the entire fa
ility was also due

to periodi
 vortex shedding (Nishihara et al. [1℄). However, me
hani
al energy transferred

between the �uid and the moving body 
an also be bene�
ial. Possibilities of energy

harvesting have been studied for example by Bernitsas et al. [2, 3℄ and Mehmood et al.

[4℄.

1

Dire
tion perpendi
ular to the free stream. The phrase 
ross-�ow is also used with the same meaning.

2

Dire
tion parallel with the free stream. The phrase inline is also used with the same meaning.
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1.1.1 Flow around a stationary 
ir
ular 
ylinder

The origin of this resear
h �eld 
an be dated ba
k to the late 19th 
entury, to the experi-

ments of Vin
en
 Strouhal. His study published in 1878 [5℄ was the �rst pioneering study

in whi
h the vortex shedding frequen
y fv measured in the wake of a 
ir
ular 
ylinder

was presented. The non-dimensional vortex shedding frequen
y, the well-known Strouhal

number whi
h was named after him, is de�ned as

St =
fvd

U∞

, (1.1)

where d is the 
ylinder diameter, and U∞ is the free stream velo
ity. Sin
e then, several

studies fo
used on des
ribing the Strouhal number as fun
tion of the Reynolds number

Re =
U∞d

ν
, (1.2)

where ν is the kinemati
 vis
osity of the �uid. Rayleigh [6, 7℄ suggested to express St(Re)
in terms of a Taylor's expansion as:

St = A +
B

Re

+
C

Re

2 + . . . . (1.3)

Roshko [8℄ plotted fvd
2/ν as fun
tion of the Reynolds number and �tted a linear 
urve

on the measured data points:

fvd
2

ν
= B + ARe, (1.4)

where A and B are the 
oe�
ients of the linear least-square �t. Taking into a

ount

that fvd
2/ν 3

is the produ
t of the Strouhal and Reynolds numbers, fvd
2/ν = StRe, the

following formula 
an be written:

St = A +
B

Re

. (1.5)

Note that this expression is the trun
ated form of the Taylor's expansion suggested

by [6℄ and [7℄ [see Eq. (1.3)℄. Tritton [9℄ applying a quadrati
 least-square �t obtained the

following formula:

St = ARe +B +
C

Re

, (1.6)

where A,B and C are the 
oe�
ients of the least-square �t. Williamson [10℄ 
arried

out experiments at the low-Reynolds number domain (49 < Re < 250), and 
omputed

the 
oe�
ient values arise in Eqs. (1.5) and (1.6). Note that 
urve-�tting was applied

on the data points obtained in the range of 49 < Re < 180, be
ause St(Re) showed a

dis
ontinuity at around Re = 180. Williamson [10℄ found that the error-of-�t

4

for Eq.

(1.5) is 0.0021 (when A = 0.2175 and B = −5.1064), while for Eq. (1.6) it is only 0.0005

(using A = 1.6 × 10−4, B = 0.1816 and C = −3.3265). For this reason, the three-term

�t suggested by Tritton [9℄ was found to be more a

urate than the two-term expression

proposed by Roshko [8℄.

Williamson and Brown [11℄ based on the e�e
tive wake width obtained the expression

as follows:

3

Nowadays, this parameter is referred to as the Roshko number Ro = fvd
2/ν.

4

�The absolute value of the error averaged over all the data points.� (see [10℄, p. 1075).
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St = A +
B√
Re

+
C

Re

. (1.7)

Using the data published in [10℄ they obtained A = 0.285, B = −1.3897 and C = 1.8061

oe�
ients. The error-of-�t for this estimation is 0.0002, whi
h is less than the values using

Eqs. (1.5) and (1.6). Henderson [12℄ 
arried out Dire
t Numeri
al Simulations (DNS) in

an extended Reynolds number range of Re = 47�1000. Williamson and Brown [11℄ tested

Eq. (1.7) on the DNS results at high Re, where the �ow is three-dimensional. They found

that the error-of-�t is 0.0005 (when A = 0.2731, B = −1.1129 and C = 0.4821), whi
h is


omparable to that obtained in the domain of 49 < Re < 180.
Kovásznay [13℄ 
arried out time-resolved measurements using the hot-wire anemom-

etry. The Reynolds number was varied from zero (
orresponding to �uid at rest) up to

Re

∼= 104. His early experimental results showed that the onset of vortex shedding (where

the Kármán vortex street started to develop) o

urs at Re

∼= 40. This value agrees well
with the Computational Fluid Dynami
s (CFD) results of Thompson and Le Gal [14℄

(Re

∼= 47), and Baranyi and Lewis [15℄ (Re

∼= 47.2). Kovásznay [13℄ showed also that the

periodi
 vortex shedding remains stable below Re

∼= 160. This Reynolds number value

ompares well with Re

∼= 180, where Williamson [10℄ observed a three-dimensional �ow

stru
ture, whi
h resulted in a dis
ontinuity in the St(Re) 
urve. Barkley and Henderson

[16℄ using linear stability analysis found that the �ow is fully two-dimensional (2D) up

to Re

∼= 188.5. They identi�ed three-dimensional instabilities at Re

∼= 188.5 and 259,
whi
h Williamson [10℄ named as Mode A and Mode B. Thus, the appli
ation of a 2D


omputational 
ode above Re = 188.5 is not justi�ed for a stationary 
ylinder. This is

the reason why 2D 
omputations (for a stationary 
ylinder) are 
arried out only at low

Reynolds numbers (mainly below Re = 200).
Posdzie
h and Grundmann [17℄ using 2D 
omputations investigated the low-Re regime.

They analyzed the e�e
ts of grid resolution and the extension of the 
omputational domain

on the time-mean and root-mean-square values of the aerodynami
 for
e 
oe�
ients (lift

and drag), and on the Strouhal number. In addition, they 
reated di�erent empiri
al

formulæ des
ribing the relationship between the Strouhal and Reynolds numbers. Their

most a

urate formula 
an be written as follows:

St = A+BRe

C . (1.8)

Using A = 0.2844, B = −0.8706 and C = −0.4304 the error-of-�t is 0.00038. Note that

this expression will be applied in later se
tions.

The experimental studies mentioned above are frequently applied for the validation

of the CFD results. Ye et al. [18℄ and Lai and Peskin [19℄ used the immersed boundary

method to solve the governing equations of the �uid �ow. Baranyi and Shirakashi [20℄

applied the �nite di�eren
e method, and 
ompared the Strouhal number and the time-

mean values of the drag 
oe�
ient against experimental data. Lima E Silva et al. [21℄


ombined the �nite di�eren
e method with the virtual boundary method, and 
omputed

the �ow around a 
ir
ular 
ylinder. Bolló [22℄ 
arried out systemati
 
omputations in the

range of Re < 200 using the �nite volume method. She applied the Strouhal number, and

the time-mean and root-mean-square values of lift and drag 
oe�
ients for 
omparisons.

Another important dire
tion of resear
h in this �eld is the investigation of aerodynami


for
es a
ting on the 
ylinder. For results in this area see Norberg [23℄ and Sumer and

Fredsoe [24℄.

1.1.2 For
ed 
ylinder vibrations

As mentioned in Se
tion 1.1.1, two-dimensional 
omputations of the �ow around a sta-

tionary 
ylinder are limited to the Reynolds number range of Re < 188.5, due to the
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o

urren
e of the Mode A instability [16℄. For vibrating 
ylinders, however, the experi-

ments by Bearman and Obasaju [25℄ and Koide et al. [26℄, and the numeri
al simulations

by Pon
et [27℄ showed that the syn
hronization between vortex shedding and 
ylinder

motion enhan
es the two-dimensionality of the �ow 
ompared to the 
ase of a stationary


ylinder. The upper limit of the two-dimensionality region has not yet been determined

be
ause of the large number of in�uen
ing parameters.

As mentioned earlier, the vorti
es shedding from the 
ylinder mean periodi
 load on the

stru
ture. In the 
ase when the vortex shedding frequen
y is 
lose to the natural frequen
y

of the system fN , high amplitude vibration 
an o

ur. This phenomenon is always referred

to as lo
k-in or syn
hronization. The terminology vortex-indu
ed vibration (VIV)

5

is often

used referring to os
illations 
aused by the vortex shedding. VIV is widely modeled using

the for
ed/
ontrolled os
illation approa
h, where the 
ylinder is os
illated me
hani
ally.

This approa
h is a simplifying model, and is often 
hosen be
ause no equations are needed

to be solved for the 
ylinder motion.

A large number of papers deal with for
ed os
illation in one-degree-of-freedom (1DoF)


ylinder motion, where the body is restri
ted to move only in transverse dire
tion.

Williamson and Roshko [28℄ 
arried out for
ed vibration experiments in the range of

Re = 300�1000. They 
reated a so-
alled wake mode map (known as the Williamson-

Roshko map), where they organized the di�erent vortex stru
tures in the amplitude-

wavelength plane. It 
an be seen from their results that a 2P vortex stru
ture (two pairs

of vorti
es are shed from the 
ylinder in ea
h motion 
y
le) plays an important role in

the fundamental lo
k-in domain for high Reynolds numbers (Re > 300). In addition,

Williamson and Roshko [28℄ identi�ed a P+S asymmetri
 mode (a vortex pair and a

single vortex) only at very high vibration amplitudes (ŷ0 = 1�2, where ŷ0 is os
illation

amplitude nondimensionalized by the 
ylinder diameter). They found that de
reasing the

Reynolds number below Re = 300, the 2P mode in the fundamental syn
hronization range

is repla
ed by the P+S vortex stru
ture. The for
ed vibration CFD results of Meneghini

and Bearman [29℄ and Bla
kburn and Henderson [30℄ 
on�rmed this �nding: they did not

observe the 2P mode of vortex shedding but they found the P+S vortex stru
ture. Leon-

tini et al. [31℄ 
arried out systemati
 for
ed vibration 
omputations at Re ≤ 300. Similar

to the experiments of Williamson and Roshko [28℄, Leontini et al. [31℄ investigated the

e�e
ts of for
ing frequen
y and amplitude, and 
reated wake mode maps at Re = 100 and
300. At Re = 100 the P+S mode o

urred only at very high vibration amplitudes (over

ŷ0 = 0.9) and, however, at Re = 300 they did identify the P+S vortex stru
ture around

ŷ0 = 0.55, and near the fundamental lo
k-in domain.

Bla
kburn and Henderson [30℄ de�ned the me
hani
al energy transfer between the

�uid and the transversely os
illating 
ylinder as

E =

∫ T

0

Cy ẏ0dt, (1.9)

where t is the dimensionless time, ẏ0 is the non-dimensional velo
ity of the 
ylinder, Cy

is the transverse �uid for
e 
oe�
ient, and T is the period of 
ylinder os
illation. In 
ase

E > 0, energy is transferred from the �uid to the 
ylinder, whi
h is always the 
ase

for self-ex
ited motions. In this sense, E is useful to lo
alize the domains, where vortex-

indu
ed vibrations are possible to o

ur. Baranyi and Daró
zy [32℄ investigated the e�e
ts

of vibration amplitude and frequen
y, and Reynolds number on the me
hani
al energy

transfer. They found E > 0 values near the boundary of the fundamental lo
k-in domain,

when the dimensionless os
illation amplitude was below ŷ0 = 0.6.
Nishihara et al. [1℄ showed that the failure of the thermometer 
ases at the Monju

nu
lear power plant was 
aused by vibrations streamwise with the free stream. Despite,

resear
hes on �uid �ow around a 
ir
ular 
ylinder for
ed to os
illate only in streamwise

5

For synonyms of the term �vortex-indu
ed vibration�, �self-ex
ited motion� or �free vibration� is


ommonly used.
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dire
tion are mu
h s
ar
e than investigations 
on
erning a transversely os
illated 
ylinder.

The investigations 
arried out by Al-Mdallal et al. [33℄ and Mureithi et al. [34℄ are the most

well-known studies in this �eld. Tanida et al. [35℄ 
arried out experiments in the range of

40 ≤ Re ≤ 150 at the dimensionless os
illation amplitude value of x̂0 = 0.14. They showed
that the phase di�eren
e of streamwise �uid for
e relative to the 
ylinder displa
ement

is negative, yielding negative me
hani
al energy transfer [E < 0, de�ned similarly to Eq.

(1.9)℄. The re
ent CFD studies by Konstantinidis and Bouris [36℄ (x̂0 = 0.1,Re = 150) and
Kim and Choi [37℄ (x̂0 = 0.05,Re = 100) showed similar features to Tanida et al. [35℄'s

experimental results: E was negative in all the 
omputation points. Contrary to E > 0,
negative me
hani
al energy transfer indi
ates that self-ex
ited vibration of the 
ylinder in

streamwise dire
tion is not feasible in the low-Reynolds number range. Nevertheless, the

question arises whether streamwise-only vortex-indu
ed vibration of a 
ir
ular 
ylinder


an o

ur for low Reynolds numbers (maybe at lower os
illation amplitudes).

In reality, the 
ylinder os
illates always in two dire
tions at the same time (streamwise

and transverse), whi
h leads to two-degree-of-freedom 
ylinder motion. Two types of 
ylin-

der paths are observed in the free vibration experiments: (a) when the frequen
y of 
ylinder

os
illation in streamwise dire
tion is double that in transverse dire
tion (f ∗

x = 2f ∗

y ), yield-

ing a �gure-eight type path

6

[38�41℄, and (b) when the vibration frequen
ies in the two

dire
tions are identi
al (f ∗

x = f ∗

y ), whi
h results in orbital paths [42�44℄. The experimen-

tal or numeri
al studies for for
ed �gure-eight 
ylinder motions in
lude Jeon and Gharib

[45℄, Baranyi [46℄, and Peppa et al. [47℄. Baranyi [46℄ found that the orientation of the

path strongly in�uen
es the for
e 
oe�
ients and the me
hani
al energy transfer. When

the 
ylinder orbit is anti
lo
kwise on the upper loop of �gure-eight, E > 0 over the large

part of the parameter domain, in 
ontrast with the 
lo
kwise orbit where E is mainly

negative. There is relatively little resear
h 
arried out for �ow around a 
ir
ular 
ylinder

following orbital paths [48, 49℄. Baranyi [50℄ showed results of numeri
al simulation of

low-Reynolds number �ow (Re = 120�180) past a 
ir
ular 
ylinder following an ellipti
al

path. He systemati
ally 
hanged the transverse os
illation amplitude while keeping the

in-line amplitude 
onstant. When plotting the results against transverse os
illation ampli-

tude, jumps have been found in the time-mean and root-mean-square values of the for
e


oe�
ients, and in the me
hani
al energy transfer between the �uid and 
ylinder.

1.1.3 Transverse vortex-indu
ed vibrations

Another approa
h to the investigation of vortex-indu
ed vibrations (VIV) involves an

elasti
ally supported 
ylinder model, where the 
ylinder os
illates due to the �u
tuating

transverse and streamwise �uid for
es a
ting on the body. A large number of studies have

dealt with this model, in
luding Bishop and Hassan [51℄, Bearman [52, 53℄, Sarpkaya [54,

55℄, Williamson and Govardhan [39℄, and Blevins [56℄.

Although in reality the 
ylinder is allowed to move in two degrees of freedom (both

streamwise with and transverse to the main stream), transverse-only vibration is often

used to model VIV. Feng [57℄, Brika and Laneville [58℄ and Khalak and Williamson [59℄

showed that the 
ylinder response (amplitude and frequen
y values) highly depends on

the mass-damping parameter m∗ζ . Here m∗
is the mass ratio (
ylinder mass divided by

the mass of the displa
ed �uid) and ζ is the stru
tural damping ratio:

m∗ =
4m

ρd2π
, ζ =

b

2
√
km

, (1.10a, b)

where m is the mass per unit length of the 
ylinder, ρ is the �uid density, and b and k are

the stru
tural damping and spring 
onstant values, respe
tively. The os
illation amplitude

shows higher values at distin
t region, whi
h domains are usually referred to as �response

6

For synonym of the term ��gure-eight path�, �Lissajous 
urve� is 
ommonly used.
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bran
hes� [39℄ for transverse-only VIV. Feng [57℄ and Brika and Laneville [58℄ investigated

high-m∗ζ 
ases. Plotting the amplitude of 
ylinder os
illation against redu
ed velo
ity

U∗

A =
U∞

fN,ad
, (1.12)

where fN,a is the natural frequen
y of the 
ylinder in sill �uid, they found two response

bran
hes, namely the initial and lower bran
hes, where the initial bran
h was asso
iated

with the peak os
illation amplitude. In addition, Brika and Laneville [58℄ showed that the

transition between the initial and lower bran
hes is hystereti
, due to the abrupt 
hange

in the vortex stru
ture. Using the notations introdu
ed by Williamson and Roshko [28℄,

Brika and Laneville [58℄ observed a 2S mode (two single vorti
es are shed from the 
ylinder

in ea
h motion 
y
le) in the initial bran
h, while a 2P mode in the lower bran
h.

Khalak and Williamson [59℄ identi�ed three response bran
hes (initial, upper and

lower bran
hes) for very low mass-damping values, where the peak vibration amplitude

was asso
iated with the upper bran
h. They found hysteresis in the initial↔upper bran
h

transition range, where the vortex stru
ture swit
hes from 2S to 2P mode. The transition

between the upper and lower bran
hes is found to be intermittent, sin
e the wake mode

does not show 
hanges (2P mode is observed both in the upper and lower bran
hes).

Govardhan and Williamson [60℄ investigated also low mass-damping 
ases using experi-

mental te
hniques. Following Lighthill [61℄, Govardhan and Williamson [60℄ de
omposed

the transverse �uid for
e into the vortex for
e and potential added mass for
e 
ompo-

nents. The phase di�eren
es for transverse �uid for
e and vortex for
e relative to the


ylinder displa
ement Φy and ΦV were 
al
ulated using the Hilbert transform of the 
or-

responding signals. They showed that ΦV jumps between approximately 0◦ and 180◦ in the
initial↔upper bran
h transition range, where the vortex stru
ture swit
hes from 2S to 2P

mode. In this range the 
ylinder displa
ement remained in-phase with the transverse �uid

for
e. However, in the transition domain between the upper and lower bran
hes (where

no signi�
ant 
hanges were identi�ed in the wake mode) Φy was found to jump from 0◦

to 180◦, and the vortex for
e remained out-of-phase with the 
ylinder displa
ement.

Klamo et al. [62℄ investigated the e�e
ts of stru
tural damping ratio and Reynolds

number on the 
ylinder response. They showed that in
reasing ζ , the high-amplitude

three-bran
h response swit
hes to two-bran
h response, where the os
illation amplitude is

signi�
antly lower. Soti et al. [63℄ 
arried out a systemati
 experimental study for di�erent

ζ values. In addition to the 
ylinder response, they analyzed the power transfer between

the os
illating 
ylinder and the surrounding �uid. They identi�ed three-bran
h response

for a wide damping ratio range; they showed the o

urren
e of the upper bran
h even at

low os
illation amplitudes (down to ŷ0 = 0.2). Bernitsas et al. [2℄ and Lee and Bernitsas

[64℄ investigated the possibilities of energy harvesting from vortex-indu
ed vibrations.

Bernitsas et al. [2℄ based on harmoni
 approximations derived an analyti
al formula for

the 
al
ulation of power transfer. Their expression shows that zero me
hani
al power is

transferred from the �uid to the 
ylinder when Φy (or ΦV ) equals to 0◦ or 180◦, i.e. for
undamped vibrations. Their formula reveals also that in
reasing the stru
tural damping

ratio the power transfer 
an be in
reased, whi
h �nding agrees well with the experimental

results of [63℄.

Klamo et al. [62℄ and Govardhan and Williamson [65℄ showed that the Reynolds num-

ber in�uen
es the 
ylinder response signi�
antly. Most of the experiments are 
arried

out in the Reynolds number range of Re = O(103-104). However, numeri
al simulations,

due to the high 
omputational time demand are usually 
arried out in the low-Reynolds

number range [Re = O(102)℄. Another issue 
an be the three-dimensionality of the �ow

stru
ture (see details in Se
tions 1.1.1 and 1.1.2).

The 
omputational results available in the literature show that os
illation amplitudes

for low Reynolds numbers are signi�
antly lower (maximum y0′ ∼= 0.55, see Navrose and
Mittal [66℄) 
ompared to high-Re experiments (
an ex
eed y0′ ∼= 0.8, see Govardhan
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and Williamson [60℄). Anagnostopoulos and Bearman [67℄ obtained similar 
hara
teristi
s

using measurement te
hniques in the range of Re = 90�150. Leontini et al. [68℄ using

CFD simulations found two-bran
h 
ylinder response at the parameter 
ombination of

Re = 200, m∗ = 10 and ζ = 1%. The vortex stru
tures are markedly di�erent from those

observed at high Reynolds numbers: 2S and C(2S) wake modes were found in the initial

and lower bran
hes, respe
tively. Here C refers to the 
oales
en
e of the positive and

negative vorti
es in the 
ylinder wake. Navrose and Mittal [66℄ 
arried out numeri
al sim-

ulations at Re = 100 and ζ = 0% using di�erent mass ratios in the range of m∗ = 30�150.
They found a thin redu
ed velo
ity range in the middle of the lower bran
h, where the

os
illation amplitude was very low and the vibration frequen
y did not syn
hronize with

the 
ylinder's natural frequen
y. They also showed that the width of this low-amplitude

domain extends with m∗
.

In reality the Reynolds number and the redu
ed velo
ity are not independent parame-

ters. Assuming that the natural frequen
y of the 
ylinder is 
onstant, the following linear

relationship exists between Re and U∗
:

Re = KU∗. (1.13)

Here U∗ = U∞/(fNd) is the redu
ed velo
ity, where fN is the 
ylinder's natural frequen
y

is va
uum, and K = fNd
2/ν is the dimensionless natural frequen
y. Willden and Graham

[69℄ investigated the e�e
t of mass ratio between m∗ = 1 and 50 using K = 20. They iden-
ti�ed primary, se
ondary and tertiary responses. The primary response o

urred around

lo
k-in, where the os
illation amplitude rea
hed its maximum value. In the se
ondary re-

sponse (found only for m∗ > 5) the non-dimensional vortex shedding frequen
y was 
lose

to the dimensionless vortex shedding frequen
y for a stationary 
ylinder, and the os
il-

lation frequen
y approa
hed the natural frequen
y of the body. In the tertiary response

(identi�ed only for m∗ < 10) nearly 
onstant vibration amplitude 
ould be maintained.

Bahmani and Akbari [70℄ investigated numeri
ally the separate e�e
ts of mass and stru
-

tural damping ratios for K = 17.9. They found that in
reasing m∗
or ζ has almost the

same e�e
t: both the os
illation amplitude and the lo
k-in domain size de
rease.

The numeri
al studies investigating vortex-indu
ed vibrations at low Reynolds num-

bers have not reported an upper bran
h even for undamped systems [66, 68℄. However,

Evangelinos and Karniadakis [71℄ showed that the P+S vortex pattern may also be asso-


iated with the upper bran
h, whi
h is rarely identi�ed in VIV 
ases. Singh and Mittal

[72℄ investigated two-degrees-of-freedom vortex-indu
ed vibrations numeri
ally and found

P+S vortex pattern above Re = 300. As mentioned in Se
tion 1.1.2, Leontini et al. [31℄

using transverse-only for
ed vibrations showed that the P+S vortex stru
ture appears

near the fundamental lo
k-in domain.

1.1.4 Streamwise vortex-indu
ed vibrations

Besides self-ex
ited motions transverse to the main �ow, the �u
tuating �uid for
es 
an

indu
e vibrations along the dire
tion of the free stream, i.e. in the streamwise (or inline)

dire
tion. In the literature streamwise-only VIV re
eived less attention, most likely be-


ause the lower amplitudes of 
ylinder os
illation. In the early review paper about vortex

shedding and its appli
ations, King [73℄ dis
ussed some relevant results on streamwise-only

vortex-indu
ed vibrations. He showed that the maximum vibration amplitude (a peak-to-

peak value) is about 0.2 times of the 
ylinder diameter. This value is very low 
ompared

to the transverse-only VIV 
ases, where the peak os
illation amplitude 
an easily be ten

times higher.

For streamwise-only VIV 
ases the regions within whi
h the vibration amplitude shows

higher values are often referred to as �instability regions� [73℄ or �ex
itation regions� [74℄.

Note that, the terminology �response bran
h� is also used, but its physi
al meaning is

di�erent from that used in transverse-only free vibrations (see Se
tion 1.1.3). The early
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experimental study 
arried out by King [73℄ and Aguirre [75℄ revealed that two ex
itation

regions exist in streamwise VIV. The �rst bran
h o

urs below the redu
ed velo
ity value

of U∗

A
∼= 2.5, whi
h is asso
iated with a symmetri
al shedding of vorti
es simultaneously

from both sides of the 
ylinder. The se
ond bran
h o

urs at U∗

A > 2.5, and is asso
iated

with an alternating vortex shedding mode, whi
h type of wake mode Williamson and

Roshko [28℄ denoted as 2S mode. These 
hara
teristi
s of self-ex
ited in-line vibrations

was 
on�rmed by further experimental studies [76�78℄. The value of U∗

A
∼= 2.5 
orresponds

approximately to the point, where the natural frequen
y of the system 
oin
ides with

the double of the vortex shedding frequen
y from a stationary 
ylinder; fN,a
∼= 2fv or

U∗−1
A

∼= 2St (assuming St = 0.2). Sin
e the Strouhal number [de�ned by Eq. (1.1)℄ is the

fun
tion of the Reynolds number, espe
ially in the low-Re regime, U∗

A
∼= 2.5 should be

repla
ed as U∗

A = 1/(2St).
The e�e
ts of mass ratio m∗

and stru
tural damping 
oe�
ient ζ on the streamwise

response has not yet been thoroughly investigated. Aguirre [75℄ 
on
luded from his exper-

iments that mass and damping a�e
ted the 
ylinder response in di�erent ways. He noted

that the mass ratio did not a�e
t the normalized os
illation amplitude and the sti�ness

of the me
hani
al system did in�uen
e the normalized response frequen
y. Okajima et

al. [76℄ in their experiments investigated the e�e
t of �redu
ed mass-damping�, whi
h is

proportional to the mass-damping parameter m∗ζ used in many transverse VIV 
ases

[57�59℄. Okajima et al. [76℄ found that as they in
reased the redu
ed mass-damping, the

vibration amplitude in both ex
itation regions de
reased. Note that this e�e
t was due

to the in
reasing value of stru
tural damping, be
ause the mass ratio was �xed in their

study.

The above mentioned studies 
arried out experiments at moderately high Reynolds

numbers, i.e. above Re = 103. Tanida et al. [35℄, Konstantinidis and Bouris [36℄ and

Kim and Choi [37℄ found that vortex-indu
ed streamwise vibrations of a 
ir
ular 
ylinder

may not o

ur at low Reynolds numbers (see further dis
ussion in Se
tion 1.1.2). They

obtained their results using the for
ed vibration model, and they 
onsidered 
onstant

os
illation amplitudes above x̂0 = 0.05. However, self-ex
ited streamwise vibration of a


ir
ular 
ylinder is plausible but at lower os
illation amplitudes; at x̂0 < 0.05. The resear
h
question whether inline VIV is possible to o

ur at low Reynolds numbers has not yet

been addressed. To the best knowledge of the author, the study 
arried out by Bourguet

and Lo Ja
ono [79℄ is the solely one, where the streamwise vortex-indu
ed vibration of a

rotating 
ylinder is investigated at Re = 100. The os
illation amplitude for a non-rotating


ylinder is negligible 
ompared to 
ases when the body was rotating.

1.1.5 Two-degree-of-freedom VIV

In most engineering appli
ations the 
ylinder is allowed to move in two degrees of freedom

(2DoF), both streamwise with and transverse to the main stream. In general, mass ratios

(m∗

x andm∗

y) and natural frequen
ies (fNx and fNy) are di�erent in the two dire
tions. Moe

and Wu [80℄ investigated 2DoF vortex-indu
ed vibrations at m∗

x/m
∗

y = 2 and fNx/fNy =
2.18. The vortex shedding was found to syn
hronize with the 
ylinder motion in a wide

range of redu
ed velo
ity U∗ = U∞/(fNyd). However, response bran
hes observed for

transverse-only vibrations, were not found. Sarpkaya [54℄ 
arried out investigations for

fNx/fNy = 1−2 andm∗

x 6= m∗

y. He showed that the os
illation amplitudes for fNx/fNy = 1
in
reased by 19% 
ompared to those obtained for transverse-only VIV. Sarpkaya [54℄ found

no eviden
e for distin
t 
ylinder response bran
hes. In the experiments of Dahl et al. [81℄

fNx/fNy = 1 − 1.9 was 
onsidered, where the mass ratios di�ered in ea
h dire
tions.

They showed that the maximum vibration amplitude shifted to higher redu
ed velo
ity

values when the natural frequen
y ratio was in
reased. At fNx/fNy = 1.9 two amplitude

peaks were observed, whi
h was in agreement with the results of [54℄. Dahl et al. [82℄


arried out both experimental and numeri
al studies in the range of fNx/fNy = 1 − 2
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with m∗

x 6= m∗

y. They showed that when in
reasing the natural frequen
y ratio, the third

harmoni
 frequen
y 
omponent of transverse �uid for
e be
omes signi�
ant. Considering

m∗

x = m∗

y, Bao et al. [83℄ and Wang et al. [84℄ investigated numeri
ally the e�e
t of natural

frequen
y ratio at Re = 150 and 500, respe
tively. Both studies reported the o

urren
e of

the third harmoni
 frequen
y 
omponent in the frequen
y spe
tra of transverse �uid for
e.

Jauvtis and Williamson [85℄ analyzed the e�e
t of mass ratio at the limiting 
ase of fNx =
fNy = fN and m∗

x = m∗

y = m∗
. They found that the streamwise vibration 
omponent has

only a tiny e�e
t on the transverse os
illation 
omponent in the medium mass ratio range

6 < m∗ < 25. In 
ontrast, for m∗ < 6 the existen
e of a high-amplitude super-upper

bran
h was reported, where the 2T type of vortex stru
ture (two triple vorti
es are shed

from the 
ylinder) was observed. The third harmoni
 
omponent of transverse �uid for
e

was also found, whi
h the authors attributed to the 2T mode of vortex shedding. San
his

[86℄ 
arried out experiments in the range of fNx/fNy < 1. He found that the response

amplitudes were quite similar to those at fNx = fNy.

As dis
ussed in Se
tion 1.1.3, the CFD 
omputations are mainly 
arried out at low

Reynolds numbers. Similarly to the transverse-only VIV studies, two di�erent types of


omputations 
an be found in the literature: (1) when the Reynolds number and the

redu
ed velo
ity are varied independently and (2) when Re is varied linearly with U∗
.

Singh and Mittal [72℄ 
arried out two sets of 
omputations: (1) at Re = 100 and varying

U∗
and (2) at U∗ = 4.92 and varying Re. They showed that the initial↔lower bran
h

transition range is hystereti
, whi
h is 
onsistent with the �ndings of Brika and Laneville

[58℄. Hysteresis jump was also found at the upper boundary of the lower bran
h, whi
h

was 
on�rmed by the experiments of Klamo et al. [62℄. Singh and Mittal [72℄ also found

that varying the redu
ed velo
ity at Re = 100, 2S wakes were identi�ed for low os
illation

amplitudes and C(2S) for relatively high os
illation amplitudes. This observation agrees

well with the transverse-only VIV results by Leontini et al. [68℄. Singh and Mittal [72℄

showed that varying the Reynolds number above Re = 300, P+S vortex stru
ture was

observed (a vortex pair and a single vortex are shed from the 
ylinder in ea
h vibration

period), whi
h is very rare in VIV.

Assuming that the natural frequen
y of the system is 
onstant, the Reynolds number


hanges linearly with the redu
ed velo
ity [see Eq. (1.13)℄. In the following numeri
al

studies 2DoF VIV was investigated, where the natural frequen
ies in streamwise and

transverse dire
tions were 
hosen to be identi
al (fNx = fNy = fN ) and 
onstant. Prasanth
et al. [87, 88℄ investigated the e�e
ts of numeri
al blo
kage ratio B = d/H (the ratio of the


ylinder diameter and the height of the 
omputational domain H) at K = 16.6. Similarly

to the �ndings of [72℄, Prasanth and Mittal [88℄ observed hysteresis loops at the lower and

upper boundaries of the lo
k-in domain. They showed that the width of the hysteresis

loop at the lower boundary of the syn
hronization range redu
es as the blo
kage ratio is

de
reased. The hysteresis loop 
ompletely disappeared at B = 2.5%. Prasanth and Mittal

[88℄ 
omputed the phase angle Φy between the transverse �uid for
e and the transverse

vibration 
omponent. An abrupt phase jump (between Φy = 0◦ and 180◦) was observed
at Re = 110. De
omposing the transverse �uid for
e into pressure and vis
ous parts, their

results showed that the jump in Φy was 
aused by the pressure transverse for
e, sin
e

the vis
ous part remained in-phase with the transverse vibration 
omponent in the entire

Re range. Mittal and Singh [89℄ 
arried out 
omputations for a very low non-dimensional

natural frequen
y value (K = 3.1875) and found that VIV o

urred as low as Re = 20,
whi
h is in the steady state regime for a stationary 
ylinder. They showed that the vortex

shedding frequen
y and the natural frequen
y of the system are relatively far from ea
h

other for low mass ratios (m∗ = 4.73). In
reasing the mass ratio up to m∗ = 50, the
frequen
y values moved 
loser to ea
h other. This phenomenon was 
on�rmed by the

experimental data of Williamson and Govardhan [39℄.

For two-degree-of-freedom free vibration 
ases the path of the 
ylinder is another area

of interest. The numeri
al studies of Mittal and Kumar [38℄ and Bao et al. [83℄ and the
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experimental studies of Sarpkaya [55℄, Williamson and Govardhan [39℄, Dahl et al. [41,

81, 82℄, Blevins and Coughran [40℄, and Srinil et al. [90℄ showed that an isolated 
ylinder

pla
ed into a uniform stream usually follows a �gure-eight path, where the os
illation

frequen
y in streamwise dire
tion is double that in transverse dire
tion (f ∗

x = 2f ∗

y ). In

addition to the �gure-eight orbits, there are some appli
ations where the 
ylinder follows

orbital motion, where f ∗

x = f ∗

y . Kang et al. [91℄ investigated experimentally the e�e
ts

of aspe
t ratio L/d (where L is the length of the 
ylinder), and natural frequen
y ratio

fNx/fNy on the moving traje
tory. Orbital motions su
h as D-shaped, egg-shaped or

raindrop-shaped paths were found for L/d = 24 by varying fNx/fNy. The e�e
t of natural

frequen
y ratio was less signi�
ant for L/d = 6; only �gure-eight paths were identi�ed.

Kheirkhah et al. [42℄, Oviedo-Tolentino et al. [92℄ and Marble et al. [93℄ investigated

the VIV of a rigid pivoted 
ylinder, where the os
illation amplitude varied linearly along

the 
ylinder span. An ellipti
al path was observed in a wide redu
ed velo
ity range. Tu

et al. [43℄ and Gsell et al. [44℄ investigated numeri
ally the two-dimensional �ow around

an isolated 
ir
ular 
ylinder pla
ed in a planar shear �ow. They found that in
reasing

the shear parameter (the ratio of the dimensionless in�ow velo
ity gradient and the free

stream velo
ity at the 
ylinder 
enter) swit
hed the path of the 
ylinder from �gure-eight

to ellipti
al motion. Prasanth and Mittal [94℄ 
arried out systemati
 
omputations for

two 
ir
ular 
ylinders (with identi
al diameters) in tandem and staggered arrangements.

For the staggered arrangement the downstream 
ylinder showed orbital motion in a wide

range of redu
ed velo
ity. These studies show that orbital motion truly o

urs in several

engineering appli
ations. However, to the best knowledge of the author, the o

urren
e

of orbital motion has not been spe
i�ed for a single isolated 
ylinder pla
ed into uniform

free stream 
onsidering low Reynolds numbers.

1.2 Obje
tives and layout of the 
urrent dissertation

In this PhD dissertation in
ompressible Newtonian 
onstant property �uid �ow around

a 
ir
ular 
ylinder undergoing vortex-indu
ed vibrations is investigated by means of two-

dimensional CFD 
omputations. The dissertation is organized as follows:

• In Chapter 2, �rst the dimensional and non-dimensional forms of the partial di�er-

ential equations governing the �uid and solid motions are written. After that, the

boundary and initial 
onditions, and the numeri
al solution methodology are given

in detail.

• In order to �nd the best 
ompromise between a

ura
y and 
omputational time,

independen
e studies are 
arried out. Afterwards, the 
urrently obtained results are

validated against the data in literature for di�erent vortex-indu
ed vibration 
ases.

The results of these investigations are shown in Chapter 3.

• Based on the literature review (see Se
tion 1.1), di�erent resear
h questions 
an

be addressed, whi
h determine the obje
tives of this dissertation. I try to answer

these questions in Chapters 4, 5 and 6. The resear
h questions and the obje
tives

are detailed in the following points.

Obje
tive I

In experimental studies the independent e�e
ts of the Reynolds number Re and the re-

du
ed velo
ity U∗
are hard to investigate, sin
e both parameters depend on the free stream

velo
ity. When the natural frequen
y of the 
ylinder fN is 
onstant (whi
h mostly hap-

pens in the measurements), a linear relationship 
an be written between Re and U∗
as

Re = KU∗
, where K = fNd

2/ν is the dimensionless natural frequen
y. Although there
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1.2. OBJECTIVES AND LAYOUT OF THE CURRENT DISSERTATION 13

are some studies in the literature in whi
h the Reynolds number varied linearly with

the redu
ed velo
ity [69, 70, 87�89℄, these investigations are limited to low dimensionless

natural frequen
y values (K < 20 for transverse-only VIV and K < 16.6 for 2DoF free

vibrations). The �rst resear
h question addressed in this dissertation is as follows:

What are the e�e
ts of the dimensionless natural

frequen
y K on the 
ylinder response and aerodynami


for
e 
oe�
ients?

In order to answer this question, systemati
 
omputations are 
arried out at di�erent

dimensionless natural frequen
y values between K = 12 and 35. The Reynolds number

is varied in the range of 60 ≤ Re ≤ 250 (
orresponding to the variation of K), while the

mass and damping ratio values are �xed at m∗ = 10 and ζ = 0%, respe
tively. The results

of these investigations are shown in Chapter 4, Se
tion 4.1.

Obje
tive II

Singh and Mittal [72℄ 
arried out 
omputations at the �xed redu
ed velo
ity of U∗ = 4.92
in the Reynolds number range 50 ≤ Re ≤ 500. They showed that below Re = 300
the traditional 2S and C(2S) vortex stru
tures o

ur. However, varying the Reynolds

number over Re = 300, the asymmetri
al P+S wake mode 
an be observed, whi
h is rarely

identi�ed in vortex-indu
ed vibration 
ases. About this the following resear
h questions

are addressed:

Does P+S wake mode o

ur at high dimensionless

natural frequen
y values? What is the e�e
t of this

asymmetri
al mode on the 
ylinder path?

These questions are aimed to be answered in Chapter 4, Se
tion 4.2. For these aims

systemati
 
omputations are 
arried out at �xed mass and damping ratio values of m∗ =
10 and ζ = 0%. The dimensionless natural frequen
y is 
hosen to be in the domain of

K = 34�44, and the Reynolds number is 
hanged from Re = 60 to 250 (
orresponding to

the variation of K).

Obje
tive III

There are several studies available in the literature investigating the streamwise-only

vortex-indu
ed vibration of a 
ir
ular 
ylinder at moderately high Reynolds numbers,

Re > 103 [73�78℄. However, the for
ed vibration studies revealed that self-ex
ited stream-

wise vibration of a 
ir
ular 
ylinder is not feasible at low Reynolds numbers [35�37℄. In

this part of the resear
h proje
t the following question is addressed:

Is it possible for streamwise-only VIV to o

ur in the

low-Re domain? What are the e�e
ts of m∗
and Re on the


ylinder response?

In order to answer these questions, systemati
 
omputations are 
arried out, where

the 
ylinder is restri
ted to move only streamwise with the free stream. Two sets of


omputations are performed: (a) at the mass ratio values of m∗ = 2, 5, 10 and 20, and


onstant Reynolds number of 180, and (b) di�erent Reynolds numbers between Re = 100
and 250 and �xed mass ratio value of 10. In both 
omputation sets the redu
ed velo
ity

is varied between U∗ = 1.5 and 3.5, while the stru
tural damping ratio is �xed at zero

(ζ = 0%). The results of these investigations are presented in Chapter 5.
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Obje
tive IV

It was mentioned in Se
tion 1.1.3 that the 
ylinder responses for high and low Reynolds

numbers, 
onsidering transverse-only vortex-indu
ed vibrations, show very di�erent 
har-

a
teristi
s. For high Re, depending on the 
ombined mass-damping parameter m∗ζ , two
and three-bran
h responses 
an o

ur. In 
ontrast, in the low-Reynolds number domain,

irrespe
tive of the m∗ζ value, only two-bran
h response has been identi�ed; a separate

upper bran
h has not yet been reported.

However, there are some results available in the literature, whi
h suggest that the upper

bran
h 
an o

ur at low Reynolds numbers. Evangelinos and Karniadakis [71℄ 
on
luded

from their 2D and 3D 
omputations that the upper bran
h may be asso
iated with the

asymmetri
al P+S mode (see Se
tion 1.1.3). Leontini et al. [31℄ using transverse-only

for
ed vibration 
omputations showed that the P+S vortex stru
ture appears at Re = 300
in a thin range near the fundamental lo
k-in domain (see Se
tion 1.1.2). Singh and Mittal

[72℄ 
arried out 2DoF VIV 
omputations, and they found this asymmetri
al wake mode

for Re > 300 (see Se
tion 1.1.5). For this reason the following resear
h questions are

addressed:

Does the upper bran
h (i.e. the three-bran
h 
ylinder

response) o

ur at the Reynolds number of 300? What is

the e�e
t of stru
tural damping on the 
ylinder response?

In order the answer these resear
h questions, 
omputations are performed at the

Reynolds number and mass ratio values of Re = 300 and m∗ = 10, respe
tively. Damping

ratio between ζ = 0% and 5% is 
onsidered, that is, the 
ombined mass-damping param-

eter is 
hosen to be in the range of m∗ζ = 0 and 0.5. The redu
ed velo
ity based on the

natural frequen
y of the 
ylinder in va
uum is varied from U∗ = 2.5 to 7.5. The results

of this analysis are shown in Chapter 6.
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Chapter 2

Methodology

In this dissertation �uid �ow around a 
ir
ular 
ylinder undergoing vortex-indu
ed vibra-

tions is analyzed at low Reynolds numbers using a two-dimensional Computational Fluid

Dynami
s (CFD) approa
h. The outline of this 
hapter is as follows. In Se
tions 2.1 and

2.2 the dimensional and dimensionless forms of the governing equations of �uid and solid

motions are introdu
ed. In Se
tion 2.3 the applied boundary 
onditions are given and,

�nally, in Se
tion 2.4 the numeri
al solution methodology is presented.

2.1 Dimensional forms of the governing equations

The partial di�erential equations governing the Newtonian in
ompressible 
onstant prop-

erty �uid �ow around an os
illating 
ir
ular 
ylinder are the two 
omponents of the

Navier-Stokes equations (written in the non-inertial frame of referen
e atta
hed to the

moving body) and the 
ontinuity equation, whi
h in dimensional forms are written as

follows:

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −1

ρ

∂p̃

∂x̃
+ ν

(
∂2ũ

∂x̃2
+

∂2ũ

∂ỹ2

)
− ¨̃x0, (2.1)

∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
= −1

ρ

∂p̃

∂ỹ
+ ν

(
∂2ṽ

∂x̃2
+

∂2ṽ

∂ỹ2

)
− ¨̃y0, (2.2)

D̃ =
∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (2.3)

In these equations tilde (.̃ . .) refers to dimensional quantities, i.e., t̃ is time, ũ and ṽ
are the velo
ity 
omponents along x̃ (streamwise) and ỹ (transverse) Cartesian dire
tions,

respe
tively, p̃ is hydrodynami
 pressure that involves 
omponents due to �uid motion and

gravitational for
e (see details for example in [95℄), ρ and ν are the density and kinemati


vis
osity of the �uid and D̃ is dilation. In Eqs. (2.1) and (2.2)

¨̃x0 and
¨̃y0 are the a

eleration


omponents of the 
ylinder in streamwise and transverse dire
tions, respe
tively.

Figure 2.1 shows the layout of the elasti
ally supported 
ir
ular 
ylinder, where the

body with diameter of d and mass per unit length of m is elasti
ally 
onstrained in both

streamwise and transverse dire
tions. This vibration system is pla
ed into a uniform �ow


hara
terized by the free stream velo
ity U∞. Vorti
es shedding from the 
ylinder means

a periodi
 load on the stru
ture that 
an 
ause the vibration of the body; in this 
ase

in two degrees of freedom (2DoF). The possibility of high-amplitude os
illation strongly

depends on the natural frequen
y of the system, whi
h in va
uum is de�ned as

fN =
1

2π

√
k

m
, (2.4)
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2.2. NON-DIMENSIONAL GOVERNING EQUATIONS 16

Figure 2.1: Layout of the elasti
ally supported 
ylinder

where k is the spring sti�ness, whi
h is identi
al in x̃ and ỹ dire
tions (see Fig. 2.1);

thus, the natural frequen
ies are also equal in the streamwise and transverse dire
tions.

However, in experimental studies 
ylinder natural frequen
y is measured in still �uid,

whi
h 
an be expressed as

fN,a =
1

2π

√
k

m+mA

. (2.5)

In this equation mA = CAρ
d2π
4

is the added mass per unit length of the body, where CA

is the added mass 
oe�
ient. Blevins [56℄ showed analyti
ally using the potential �ow

theory that CA = 1 for a 
ir
ular 
ylinder.

In order to 
ompute the two a

eleration 
omponents in Eqs. (2.1) and (2.2), Newton's

se
ond laws of motion written for the dynami
 system shown in Fig. 2.1 are applied:

m¨̃x0 + b ˙̃x0 + kx̃0 = F̃x, (2.6)

m¨̃y0 + b ˙̃y0 + kỹ0 = F̃y, (2.7)

where x̃0 and
˙̃x0 are the streamwise 
ylinder displa
ement and velo
ity, and ỹ0 and ˙̃y0 are

the same quantities in transverse dire
tion. In these equations overdot indi
ates derivative

with respe
t to dimensional time. In Eqs. (2.6) and (2.7) b is stru
tural damping and F̃x

and F̃y are the �uid for
e 
omponents per unit length of the 
ylinder in x̃ and ỹ dire
tions.

2.2 Non-dimensional governing equations

In this study the governing equations are solved in dimensionless forms. The non-

dimensional Navier-Stokes and 
ontinuity equations are read as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ẍ0, (2.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ÿ0, (2.9)

D =
∂u

∂x
+

∂v

∂y
= 0, (2.10)

where x = x̃/d and y = ỹ/d are the dimensionless Cartesian 
oordinates, u = ũ/U∞ and

v = ṽ/U∞ are the non-dimensional velo
ity 
omponents in streamwise and transverse

Last updated: April 20, 2020



2.3. BOUNDARY AND INITIAL CONDITIONS 17

dire
tions, respe
tively, t = t̃U∞/d is the dimensionless time, p = p̃/(ρU2
∞
) is the non-

dimensional pressure and ẍ0 = ¨̃x0d/U
2
∞
and ÿ0 = ¨̃y0d/U

2
∞
are the dimensionless streamwise

and transverse a

eleration 
omponents of the 
ylinder. In Eq. (2.10) D = D̃d/U∞ is the

dimensionless dilation and Re = U∞d/ν is the Reynolds number. Note that, here overdot

refers to derivative with respe
t to dimensionless time.

Theoreti
ally the instantaneous velo
ity and pressure �elds 
an be obtained by solving

Eqs. (2.8)�(2.10). However, as seen in Eq. (2.10), the 
ontinuity equation does not expli
-

itly involve time, whi
h 
an 
ause numeri
al instabilities. In order to redu
e the 
ompu-

tational errors, based on the methodology developed by Harlow and Wel
h [96℄, the �uid

pressure is obtained by solving a separate Poisson equation, whi
h in non-dimensional

form 
an be written as follows:

∇2p =
∂2p

∂x2
+

∂2p

∂y2
= 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
− ∂D

∂t
. (2.11)

Although dilation is zero for in
ompressible �uids [see Eq. (2.10)℄, ∂D/∂t is retained in

Eq. (2.11) to avoid 
omputational instabilities [96℄.

Non-dimensionalizing the 
ylinder equations of motion [see Eqs. (2.6) and (2.7)℄, the

following dimensionless equations are obtained:

ẍ0 +
4πζ

U∗
ẋ0 +

(
2π

U∗

)2

x0 =
2Cx

πm∗
, (2.12)

ÿ0 +
4πζ

U∗

ẏ0 +

(
2π

U∗

)2

y0 =
2Cy

πm∗

, (2.13)

where x0 = x̃0/d and ẋ0 = ˙̃x0/U∞ are the dimensionless streamwise 
ylinder displa
ement

and velo
ity 
omponents, and y0 = ỹ0/d and ẏ0 = ˙̃y0/U∞ are the same quantities in

transverse dire
tion. In these equations U∗ = U∞/(fNd) is the redu
ed velo
ity, ζ =

b/(2
√
km) is the stru
tural damping ratio, and m∗ = 4m/(ρd2π) is the mass ratio. In

Eqs. (2.12) and 2.13) Cx and Cy are the streamwise and transverse �uid for
e 
oe�
ients,

respe
tively, whi
h are 
omputed from the pressure and shear stress distributions on the


ylinder surfa
e. Therefore Cx and Cy 
an be divided into two parts:

F̃x
ρ

2
U2
∞
d
= Cx = Cxp + Cxv,

F̃y
ρ

2
U2
∞
d
= Cy = Cyp + Cyv, (2.14a, b)

where subs
ripts p and v refer to pressure and vis
ous parts, respe
tively.

2.3 Boundary and initial 
onditions

In the left-hand side of Fig. 2.2 the physi
al domain is shown, where R1 is the dimensionless

radius of the 
ylinder and R2 represents the outer surfa
e of the physi
al domain. On

the 
ylinder surfa
e (R = R1) no-slip boundary 
onditions are applied to the velo
ity


omponents u and v and Neumann-type boundary 
ondition is used for pressure p:

u = 0, v = 0, (2.16a, b)

∂p

∂n
=

1

Re

∇2vn − ẍ0n − ÿ0n. (2.17)
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Figure 2.2: The physi
al and 
omputational domains

where subs
ript n refers to the outer normal of the 
ir
ular 
ylinder. In the outer surfa
e

of the physi
al domain (R = R2) potential �ow (�pot�) is assumed, so that

u = upot − ẋ0, v = vpot − ẏ0, (2.18a, b)

and

∂p

∂n
=

(
∂p

∂n

)

pot

∼= 0. (2.19)

Posdzie
h and Grundmann [17℄ and Baranyi [50℄ showed that this simpli�
ation 
auses

only small distortions in the velo
ity �elds. At t = 0 
ylinder is assumed to be at rest,

that is

x0(t = 0) = y0(t = 0) = 0, and ẋ0(t = 0) = ẏ0(t = 0) = 0. (2.20a, b)

Potential �ow is assumed around the 
ylinder at t = 0, hen
e the for
e 
oe�
ients are

Cx(t = 0) = Cy(t = 0) = 0, whi
h 
ombined with Eqs. (2.12, 2.13) and (2.20) yields zero

initial 
ylinder a

eleration ẍ0(t = 0) = ÿ0(t = 0) = 0.
In order to satisfy boundary 
onditions des
ribed by Eqs. (2.16)-(2.19) a

urately,

boundary �tted 
oordinates are used. For this reason, applying linear mapping fun
tions

[50℄ the physi
al domain shown in the left-hand side of Fig. 2.2 is transformed into a

re
tangular 
omputational domain (see on the right in Fig. 2.2). Due to the properties

of the mapping fun
tions, the 
omputational grid on the physi
al domain is very �ne in

the vi
inity of the 
ylinder and 
oarse in the far �eld, but the grid is equidistant in the


omputational domain.

2.4 Numeri
al solution

The transformed governing equations with the mapped boundary 
onditions are solved

using an in-house CFD 
ode based on �nite di�eren
e method [50℄. The spa
e derivatives

are approximated using fourth order a

urate s
hemes, ex
ept for 
onve
tive terms, whi
h

are dis
retized using the third order modi�ed upwind di�eren
e s
hemes [97℄. The equa-

tions of �uid and solid motions are integrated in time expli
itly using the �rst order Euler

and fourth order Runge-Kutta methods, respe
tively. The linear system obtained from

the dis
retization of the pressure Poisson equation is solved iteratively using the su

es-

sive over-relaxation (SOR) method, while the 
ontinuity equation is satis�ed at ea
h time

step.

At ea
h time step, integrating shear stress and pressure around the surfa
e of the


ylinder, �uid for
e 
oe�
ients Cx and Cy 
an be obtained. Substituting the 
al
ulated

for
e 
omponents into 
ylinder equations of motion and integrating them numeri
ally,
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ylinder displa
ement, velo
ity and a

eleration 
omponents 
an be 
omputed. At the

next time step the a

eleration 
omponents are updated, and the two 
omponents of the

Navier-Stokes equations are integrated numeri
ally to obtain the new velo
ity �elds. Using

the previously 
omputed u and v values the Poisson equation is solved for pressure, where

the 
ontinuity equation is satis�ed.
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Chapter 3

Veri�
ation and validation

The numeri
al approa
h detailed in Chapter 2 has been employed previously in several

studies on �ow around a stationary 
ylinder [15℄ and �ow around a 
ylinder undergoing

for
ed vibrations [32, 46, 50℄. However, the in-house 
ode has not yet been used to inves-

tigate vortex-indu
ed vibration of a 
ir
ular 
ylinder, hen
e 
areful validation is required

before 
arrying out the systemati
 
omputations. In Se
tion 3.1 the results of indepen-

den
e studies used to determine the optimal 
ombination of 
omputational parameters

are shown. Afterwards, a step-by-step validation is presented, where the 
urrently ob-

tained results are 
ompared against those available in the literature. First, single-degree-

of-freedom VIV are investigated, where the 
ylinder is allowed to os
illate only in trans-

verse or streamwise dire
tion (see the results in Se
tions 3.2 and 3.3, respe
tively). Then,


omparisons are shown for 2DoF VIV 
ases, where the natural frequen
ies are equal or

di�erent in x and y dire
tions. These results are presented in Se
tion 3.4.

3.1 Independen
e studies

The three parameters, whi
h 
hara
terize the 
omputational setup are the radius ratio

R2/R1, grid resolution ξmax × ηmax (number of grid points in the peripheral and radial

dire
tions, respe
tively), and the dimensionless time step ∆t. In order to �nd the optimal


ombination of these parameters, whi
h is the best 
ompromise between high a

ura
y and


omputational 
ost, independen
e studies are needed. In these investigations 2DoF VIV is


onsidered where Reynolds number, redu
ed velo
ity, mass ratio and stru
tural damping

ratio values are �xed at Re = 205, U∗ = 4.8029, m∗ = 10 and ζ = 0%, respe
tively. Note

that this is a spe
ial parameter 
ombination where the so-
alled raindrop-shaped 
ylinder

path is identi�ed (see details in Chapter 4 and also in [J3℄). The root-mean-square (rms)

values of streamwise and transverse 
ylinder displa
ements x0′ and y0′, the rms values of

�uid for
e 
oe�
ients in the same dire
tions Cx′
and Cy′ and the time-mean values of

streamwise �uid for
e 
oe�
ient Cx are presented.

First, the e�e
t of radius ratio is analyzed, where the number of grid points on the


ylinder surfa
e is set to ξmax = 360, and the dimensionless time step value is 
hosen

to be ∆t = 0.0005. Radius ratio values of R2/R1 = 120, 160 and 200 are 
onsidered.

In order to 
reate an equidistant grid on the 
omputational domain, the number of grid

points in the radial dire
tion (belonging to the investigated R2/R1 values) are 
hosen to

be ηmax = 274, 291 and 304. The results are shown in Table 3.1. The relative di�eren
e

between y0′, Cx′
and Cx values obtained from R2/R1 = 120 and those from R2/R1 = 200

is less than 0.35%. On the other hand the relative di�eren
e between x0′ for R2/R1 = 120
and 200 is 1.03%, and between Cy′ for the same radius ratio values is 1.5%. However,


omparing the results obtained from R2/R1 = 160 and 200 the relative di�eren
e values

are under 0.4%. For this reason, the radius ratio value of R2/R1 = 160 is 
hosen for further


omputations.
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Table 3.1: E�e
t of radius ratio on the 
omputational results for Re = 205 and U∗ = 4.8029

R2/R1 x0′ y0′ Cx′ Cy′ Cx

120 0.02535 0.4098 0.5179 0.3390 2.0487

160 0.02519 0.4105 0.5192 0.3404 2.0449

200 0.02509 0.4108 0.5197 0.3441 2.0416

A grid dependen
e study is 
arried out to investigate the e�e
t of ξmax (the number

of grid points on the 
ylinder surfa
e) on the 
ylinder response and aerodynami
 for
e


oe�
ients. ξmax = 300, 360 and 420 are investigated. To make the mesh equidistant on

the 
omputational domain the number of points in radial dire
tion is in
reased with ξmax;

ηmax = 242, 291 and 339 are used. In Table 3.2 the results of the grid dependen
e study

are shown. It 
an be seen that ξmax has only a minimal e�e
t on y0′ , Cx′
and Cx. The

relative di�eren
e between the values obtained from the two 
oarsest grids (ξmax = 300
and 360) and those from ξmax = 420 is less than 0.18%. However, grid resolution has a

higher impa
t on x0′ and Cy′ . The relative di�eren
e between x0′ and Cy′ for ξmax = 300
and ξmax = 420 is approximately 1%. In
reasing the grid resolution up to ξmax = 360,
the relative di�eren
e de
reases to 0.3% for both x0′ and Cy′. Consequently, ξmax = 360
seems to be adequate for further systemati
 
omputations.

Table 3.2: Results of the grid dependen
e study for Re = 205 and U∗ = 4.8029

ξmax x0′ y0′ Cx′ Cy′ Cx

300 0.02531 0.4102 0.5188 0.3380 2.0475

360 0.02519 0.4105 0.5192 0.3404 2.0449

420 0.02508 0.4107 0.5193 0.3414 2.0439

Finally, the e�e
t of dimensionless time step is analyzed, while the radius ratio and

the grid resolution are �xed at R2/R1 = 160 and 360 × 291, respe
tively. During these

investigations time step values of 0.001 (∆t1), 0.0005 (∆t2) and 0.00025 (∆t3) are 
onsid-
ered. The results are shown in Table 3.3. The relative di�eren
es between x0′ and Cy′ for

∆t1 and for ∆t3 are 1.27% and 1.29%, respe
tively, while the di�eren
e for y0′, Cx′
and

Cx is under 0.32%. The relative di�eren
es between all the investigated values (x0′ , y0′,
Cx′

, Cy′ and Cx) for ∆t2 and ∆t3 do not ex
eed 0.35%. Hen
e, ∆t2 = 0.0005 is 
hosen for

further 
omputations.

Table 3.3: E�e
ts of dimensionless time step on the 
omputational results for Re = 205 and

U∗ = 4.8029

∆t x0′ y0′ Cx′ Cy′ Cx

0.001 0.02545 0.4103 0.5197 0.3433 2.0428

0.0005 0.02519 0.4105 0.5192 0.3404 2.0449

0.00025 0.02513 0.4116 0.5190 0.3392 2.0461

3.2 Validation for transverse-only VIV

Using R2/R1 = 160, ξmax×ηmax = 360×291 and ∆t = 0.0005 step-by-step validations are


arried out. In this se
tion 
omparisons are shown for one-degree-of-freedom (1DoF) VIV,

where the 
ylinder is allowed to move only in transverse dire
tion; the streamwise displa
e-

ment, velo
ity and a

eleration 
omponents are set to zero, x0(t) = ẋ0(t) = ẍ0(t) = 0.
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Leontini et al. [68℄ 
arried out 
omputations at �xed Reynolds number, mass and

stru
tural damping ratio values of Re = 200, m∗ = 10 and ζ = 1%, respe
tively. Figure

3.1a shows the dimensionless os
illation amplitude ŷ0 and in Fig. 3.1b the amplitude of

transverse �uid for
e 
oe�
ient Ĉy is plotted against redu
ed velo
ity. Note that in these

notations the hat symbol ( ˆ. . .) refers to the amplitude of the 
orresponding signal. As

seen in the �gures the 
urrent results show good agreement with those presented in [68℄.
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ŷ0
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U ∗

Ĉy

Figure 3.1: Dimensionless amplitude of 
ylinder os
illation (a) and the amplitude of transverse

�uid for
e 
oe�
ient (b) against redu
ed velo
ity for Re = 200, m∗ = 10 and ζ = 1%; 
omparison

of the 
urrent results ( ) against those of Leontini et al. [68℄ ( )
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ŷ0

(a)

0.1

0.12

0.14

0.16

0.18

0.2

f ∗

y

(b)

4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

U ∗

Cy′

(c)

4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

U ∗

Cx′

(d)

Figure 3.2: Validations for transverse-only VIV: rms values of dimensionless 
ylinder displa
e-

ment (a), dimensionless vibration frequen
y (b), and rms values of transverse (
) and streamwise

�uid for
e 
oe�
ients (d) against the redu
ed velo
ity for Re = 100, m∗ = 70 and ζ = 0. ,

Navrose and Mittal [66℄; , present study
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Larger dis
repan
ies 
an be observed between U∗ ∼= 4.2 and 4.8 and in the vi
inity of

U∗ = 6.2. These lo
ations 
orrespond to the boundaries of the syn
hronization domain

where the results are very sensitive to the 
hange in redu
ed velo
ity.

Navrose and Mittal [66℄ investigated also transverse-only VIV where the e�e
ts of

redu
ed velo
ity was studied at di�erent mass ratio values ranging from m∗ = 10 to 150
at Re = 100 and ζ = 0%. At high mass ratios they found a desyn
hronized range in the

middle of the lo
k-in domain, where the os
illation amplitude was very low. In Figs. 3.2a

and 3.2b the dimensionless os
illation amplitude and frequen
y ŷ0 and f ∗

y , and in Figs. 3.2


and 3.2d the rms values of transverse and streamwise �uid for
e 
oe�
ients Cx′
and Cy′

are plotted against U∗
for m∗ = 70. It 
an be seen that the agreement between our results

and those obtained by Navrose and Mittal [66℄ is ex
ellent even in the desyn
hronized

regime (6.5 < U∗ ≤ 7).

3.3 Validation for streamwise-only VIV

Streamwise vortex-indu
ed vibrations 
an also be investigated using the in-house 
ode

detailed in Chapter 2. In this 
ase 
ylinder motion is obtained by solving Eq. (2.12);

transverse displa
ement, velo
ity and the a

eleration 
omponents are kept at zero [y0(t) =
ẏ0(t) = ÿ0(t) = 0℄. Bourguet and Lo Ja
ono [79℄ 
arried out systemati
 
omputations for

streamwise VIV of a rotating 
ylinder at Re = 100, m∗ = 40/π and ζ = 0%. In Figs. 3.3a

and 3.3b the dimensionless os
illation amplitude and frequen
y x̂0 and f ∗

x , and in Figs.

3.3
 and 3.3d the amplitudes of streamwise and transverse �uid for
e 
oe�
ients Ĉx and

Ĉy are 
ompared against those presented in [79℄ for a non-rotating 
ylinder. It 
an be seen

that 
urrent results 
ompare very well with those in [79℄.

     0
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Figure 3.3: Dimensionless os
illation amplitude (a), non-dimensional vibration frequen
y (b),

and root-mean square values of streamwise (
) and transverse �uid for
es (d) against the redu
ed

velo
ity for Re = 100, m∗ = 40/π and ζ = 0. , Bourguet and Lo Ja
ono [79℄; , present study
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3.4 Validation for two-degree-of-freedom VIV

Prasanth and Mittal [88℄ and He and Zhang [98℄ 
arried out 
omputations for 2DoF

vortex-indu
ed vibrations where the natural frequen
ies were identi
al in streamwise and

transverse dire
tions, fNx = fNy = fN , and it was kept at a 
onstant value, whi
h

was 
hosen to agree with the vortex shedding frequen
y for a stationary 
ylinder at the

Reynolds number Re = 100. In this 
ase the relationship between Re and U∗
is Re = KU∗

,

where K = fNd
2/ν = 16.6 is the dimensionless natural frequen
y. The mass ratio was

�xed at m∗ = 10, and the stru
tural damping 
oe�
ient was set to zero. In Figs. 3.4a and

3.4b y0′ and x0′ , while in Figs. 3.4
 and 3.4d Cx′
and Cy′ are shown against the Reynolds

number. Similar to the validation 
ases presented in Se
tion 3.2 the 
urrent results and

those obtained by [88℄ and [98℄ are in a good agreement ex
ept for the lower and higher

thresholds of the �ow syn
hronization (in the vi
inity of Re = 90 and 130).
In the systemati
 
omputations 
arried out by Bao et al. [83℄ the natural frequen
ies

in streamwise and transverse dire
tions (fNx and fNy) were di�erent. They investigated

�ows at Re = 150, m∗ = 8/π and ζ = 0%. The natural frequen
y ratio FR = fNx/fNy was

in the range of FR = 1�2. In Figs. 3.5a and 3.5b the streamwise and transverse os
illation

amplitudes, and in Figs. 3.5
 and 3.5d the time-mean and rms values of stremawise �uid

for
e 
oe�
ients are shown against the redu
ed velo
ity U∗ = U∞/(fNyd) for FR = 2. It

an be seen that the 
urrently obtained results 
ompare well with those of [83℄.
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Figure 3.4: Two-degree-of-freedom VIV results ( ): transverse os
illation amplitude (a), and rms

values of streamwise 
ylinder displa
ement (b), transverse �uid for
e (
) and stremawise �uid

for
e 
oe�
ients (d) against the Reynolds number 
ompared to [88℄ ( ) and [98℄ ( )

Last updated: April 20, 2020



3.5. CONCLUSIONS 25

0

0.2

0.4

0.6

0.8

1

ŷ0
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Figure 3.5: Results for 
ylinder vibrating freely in two degrees of freedom ( ): transverse (a)

and streamwise os
illation amplitudes (b), and time-mean (
) and root-mean-square (d) values

of streamwise �uid for
e 
oe�
ient against the redu
ed velo
ity 
ompared to [83℄ ( )

3.5 Con
lusions

In this se
tion, �rst, independen
e studies are 
arried out to �nd the optimal 
ombination

of the 
omputational parameters. These investigations resulted in R2/R1 = 160, ξmax ×
ηmax = 360× 291 and ∆t = 0.0005. Using these set of parameters validations are 
arried

out with as
ending 
omplexity. The 
omparisons of our results against those presented in

Leontini et al. [68℄, Navrose and Mittal [66℄, Bourguet and Lo Ja
ono [79℄, Prasanth and

Mittal [88℄, He and Zhang [98℄ and Bao et al. [83℄ show very good agreements. Additional


omparisons for stationary and os
illating 
ylinders in whi
h good agreement was found

are presented in Dorogi and Baranyi [J1, J3℄.
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Chapter 4

Two-degree-of-freedom vortex-indu
ed

vibrations

In this 
hapter two-degree-of-freedom vortex-indu
ed vibrations are investigated at 
on-

stant mass and damping ratio values ofm∗ = 10 and ζ = 0%, respe
tively, in the Reynolds

number range of Re = 60�250. As dis
ussed in Se
tions 1.1.3 and 1.1.5, in the experimental

studies the Reynolds number and the redu
ed velo
ity are not independent parameters.

When the natural frequen
y of 
ylinder fN is 
onstant, Re and U∗
are in linear rela-

tionship, Re = KU∗
, where K = fNd

2/ν is the dimensionless natural frequen
y of the

system. The literature review revealed that earlier investigations had been limited to low

dimensionless natural frequen
y values; for two-degree-of-freedom vortex-indu
ed vibra-

tions only K ≤ 16.6 
ases were analyzed [87�89℄. Hen
e, one 
an ask the question as

follows (see also in Se
tion 1.2):

What are the e�e
ts of the dimensionless natural frequen
y K on the


ylinder response and aerodynami
 for
e 
oe�
ients?

In order to answer this question, systemati
 
omputations are 
arried out at four di�er-

ent K values ranging between approximately K = 12.3 and 34.7. The results of these


omputations are dis
ussed in Se
tion 4.1.

Singh and Mittal [72℄ investigated 2DoF VIV at �xed redu
ed velo
ity value of U∗ =
4.92 and varying Re. They showed that for Re < 300 the 
lassi
 2S and C(2S) vortex

stru
tures o

ur, while for Re > 300 they identi�ed the asymmetri
al P+S wake mode.

One 
an ask the following questions (see also in Se
tion 1.2):

Does P+S wake mode o

ur at high dimensionless natural frequen
y

values? What is the e�e
t of this asymmetri
al mode on the 
ylinder

path?

This gave me the motivation to 
arry out further systemati
 
omputations for dimension-

less natural frequen
y values between K ∼= 34.7 and 43.7. The results of this analysis are
given in Se
tion 4.2 in detail.

Sin
e the dimensionless natural frequen
y values used in the 
omputations mentioned

below are 
al
ulated based on assumptions (see details in [J1, J3℄), these values are not

whole numbers. The exa
t and the rounded K values, and the 
orresponding markers

used in the �gures in Se
tions 4.1 and 4.2 are summarized in Table 4.1. For the sake of

simpli
ity, in further dis
ussions the rounded K values will be used.

4.1 Dimensionless natural frequen
y e�e
ts at K=12�

35

In this se
tion systemati
 
omputations are 
arried out for di�erent dimensionless natural

frequen
y values ranging from K ∼= 12.3 to 34.7 (see Table 4.1). The mass and the
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Table 4.1: Dimensionless natural frequen
y values used in this 
hapter.

Se
tion K = fNd
2/ν K (rounded) Marker

4.1

12.3440 12.3

16.6000 16.6

25.4920 25.5

34.7400 34.7

4.2

34.7400 34.7

36.5854 36.6

37.6016 37.6

38.6179 38.6

40.6504 40.7

42.6829 42.7

43.6992 43.7

stru
tural damping ratio values are �xed at m∗ = 10 and ζ = 0%, respe
tively, while the

Reynolds number is varied in the domain of Re = 60�250.
Figure 4.1a shows the root-mean-square values of the transverse 
ylinder displa
ement

y0′ and in Fig. 4.1b the variations of the dimensionless transverse vibration frequen
y f ∗

y ,

the Strouhal number St and the re
ipro
al values of the redu
ed velo
ity U∗−1
are shown

against the Reynolds number for K ∼= 25.5. It 
an be seen that, the 
ylinder response

shows two-bran
h behavior, whi
h is typi
al for low Reynolds numbers. Below Re

∼= 110 y0′
is very low, and the transverse vibration frequen
y is 
lose the Strouhal number, f ∗

y
∼= St.

Between Re

∼= 110 and 130 an initial bran
h is found, where the transverse vibration

amplitude in
reases intensively. In this range the frequen
y of 
ylinder vibration lo
ks

neither to St nor to U∗−1
. Beyond the initial bran
h up to Re

∼= 165, the lower bran
h

is identi�ed where the os
illation frequen
y syn
hronizes with the natural frequen
y of

the system, i.e. f ∗

y
∼= U∗−1

, resulting in high os
illation amplitudes. Above Re = 165 the

os
illation amplitude be
omes small again and f ∗

y lo
ks in to St, as was observed in the

very low amplitude range at Re < 110.
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y0′

(a)
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Re

 

 
(b) f∗y

St
U∗−1

Figure 4.1: The root-mean-square values of the dimensionless transverse 
ylinder displa
ement

(a), and the dimensionless transverse vibration frequen
y, the Strouhal number [17℄, and the

re
ipro
al values of the redu
ed velo
ity for K ∼= 25.5 against the Reynolds number

In Fig. 4.2a the y0′ values obtained for di�erent dimensionless natural frequen
ies

ranging between K ∼= 12.3 and 34.7 are shown against the Reynolds number. It 
an be
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seen that the Reynolds number range where �ow syn
hronization is identi�ed strongly

depends on K, therefore the 
omparison of the data is di�
ult. Khalak and Williamson

[59℄ showed that the 
ylinder responses for di�erent 
ombined mass-damping parameters

m∗ζ plotted against the �true� redu
ed velo
ity 1/f ∗

y (instead of redu
ed velo
ity U∗
)


an 
ollapse into a single 
urve. Sin
e ζ = 0% in this set of 
omputations, the mass-

damping parameter is zero in all the 
ases investigated in this dissertation. Singh and

Mittal [72℄ used U∗
St as an independent variable for the 
ases where either Re or U∗

was

kept 
onstant:

U∗

St =
U∞

fNd

fv
U∞d

=
fv
fN

. (4.1)

As 
an be seen, U∗
St is the ratio of the vortex shedding frequen
y for a stationary 
ylinder

and the natural frequen
y of the os
illating body. To the best knowledge of the author,

U∗
St as an independent parameter has not previously been applied for 
onstant natural

frequen
y 
ases.

In Fig. 4.2b the rms values of transverse 
ylinder displa
ement is plotted against U∗
St.

This �gure shows that the 
urves belonging to di�erent K values 
an be represented in the

same range, i.e., using U∗
St as an independent parameter is advantageous. It 
an be seen

in Fig. 4.2b that the y0′ 
urves shift upwards when the dimensionless natural frequen
y

is in
reased. A larger di�eren
e in y0′ values is found between K ∼= 12.3 and 16.6 than

between K ∼= 25.5 and 34.7. It 
an also be observed that the lower bran
h is signi�
antly

wider for lowerK values. Previous resear
hers (e.g. [88℄) reported that in the initial bran
h

the �ow is quasi-periodi
, whi
h is the same what I found in this dissertation. My results

show also that the width of the initial bran
h also depends on K. For K ∼= 12.3 and 16.6
y0′ jumps abruptly between the very low amplitude range and the lower bran
hes, while

for K ∼= 25.5 and 34.7 the transverse os
illation amplitude shows a gradual 
hange.
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Figure 4.2: Root-mean-square values of dimensionless transverse 
ylinder displa
ement against

Re (a) and U∗
St (b) for K ∼= 12.3 ( ), 16.6 ( ), 25.5 ( ) and 34.7 ( )

In Figs. 4.3a and 4.3b the rms values of streamwise displa
ement x0′ and streamwise

�uid for
e 
oe�
ient Cx′
are shown against U∗

St. As expe
ted, the amplitude of 
ylin-

der os
illation in streamwise dire
tion is signi�
antly lower than that in the transverse

dire
tion. Similar 
hara
teristi
s are observed, as were seen for y0′ in Fig. 4.2: the 
urves

belonging to in
reasing K shift to higher values for both x0′ and Cx′
. It is very important

to see that the rms values of streamwise 
ylinder displa
ement show a lo
al peak value at

around U∗
St

∼= 0.47, whi
h in
reases with the dimensionless natural frequen
y (see Fig.

4.3a). As 
an be seen in Fig. 4.3b, the rms of streamwise �uid for
e displays a similar
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Figure 4.3: Root-mean-square values of dimensionless streamwise 
ylinder displa
ement (a) and

streamwise �uid for
e (b) against U∗
St for K ∼= 12.3 ( ), 16.6 ( ), 25.5 ( ) and 34.7 ( )

feature to that of x0′ , but Cx′
varies in a broader range (the peak value of Cx′

is 0.52, while
that of x0′ is only 0.0066 for K ∼= 34.7). That is, the details of Cx′


lose to U∗
St = 0.47

are hard to see.

For the aim of better illustration, the domain 0.4 < U∗
St ≤ 0.6 is shown at higher

resolution in the inset 
hart of Figs. 4.3a and 4.3b. Note that x0′ and Cx′
do not display

lo
al peaks for K ∼= 12.3; thus, 
urves 
orresponding to this parti
ular dimensionless

natural frequen
y value are not shown in the inset plots. It 
an be seen in the inset �gures

that x0′ in
reases 
ontinuously until it rea
hes its lo
al peak value at around U∗
St = 0.47

(see Fig. 4.3a). As expe
ted, with de
reasing K the peak value de
reases, and almost

disappears at K = 16.6. In addition to the peak, a lo
al minimum point is identi�ed in

Cx′
at U∗

St

∼= 0.5, where Cx′ → 0 (see Fig. 4.3b). Beyond the lo
al minimum point Cx′

starts to in
rease with the slope of the 
urve in
reasing with K.

In order to explore the signi�
an
e of the lo
al maximum values of x0′ and Cx′
and

the lo
al minimum values of Cx′
, the range 0.4 < U∗

St ≤ 0.6 is further investigated.

The relative waveforms of streamwise 
ylinder displa
ement and �uid for
e x∗

0 and C∗

x are

de�ned as

x∗

0(t) =
x0(t)− x0

x̂0
, (4.2)

C∗

x(t) =
Cx(t)− Cx

Ĉx

, (4.3)

where x0 and Cx are the time-mean values of streamwise displa
ement and �uid for
e


oe�
ient, respe
tively, and x̂0 and Ĉx are the amplitude values of x0 and Cx. Figure 4.4
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shows the time histories of x∗

0 and C∗

x at di�erent U∗
St values. It 
an be seen that the

point of U∗
St

∼= 0.5 separates two di�erent regions. Below U∗
St

∼= 0.5 the displa
ement

and the �uid for
e 
oe�
ient along the dire
tion of the free stream are in-phase signals,

while above the point of approximately U∗
St = 0.5 x∗

0 is out-of-phase with C∗

x.

570 575 580

−1

0

1

x∗

0

C ∗

x

t

(a)

570 575 580
t

(b)

570 575 580
t

(c)

570 575 580
t

(d)

Figure 4.4: The relative waveforms of streamwise 
ylinder displa
ement (x∗0, blue dashed lines)

and streamwise �uid for
e (C∗

x, red solid lines) at U∗
St = 0.467 (a), 0.492 (b), 0.498 (
) and

0.536 (d) for K ∼= 34.7

Let us assume that the streamwise 
ylinder displa
ement and the �uid for
e 
oe�
ient

are sinusoidal fun
tions of time:

x0(t) = x̂0 sin(2πf
∗

xt), (4.4)

Cx(t) = Ĉx sin(2πf
∗

xt+ Φx), (4.5)

where f ∗

x is the frequen
y of 
ylinder vibration in streamwise dire
tion, and Φx is the

instantaneous phase di�eren
e of streamwise �uid for
e relative to the 
ylinder displa
e-

ment in the 
orresponding dire
tion (hereafter the streamwise phase). Note that the mean


omponents of these signals are omitted, be
ause they do not a�e
t the dynami
s. The

time-dependent streamwise phase (Φx) is obtained using the Hilbert transformation, how-

ever, in this se
tion only its time-averaged value Φx is shown. The 
al
ulation methodology

of the time-varying phase is shown in Appendix A.2.2 in detail. In Fig. 4.5 the Φx val-

ues are shown against U∗
St for the dimensionless natural frequen
ies ranging between

0.4 0.45 0.5 0.55 0.6
0

60

120

180

U ∗St

Φx

Figure 4.5: Time-averaged phase di�eren
e of streamwise �uid for
e relative to the streamwise


ylinder displa
ement against U∗
St for K ∼= 16.6 ( ), 25.5 ( ) and 34.7 ( )
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Figure 4.6: Root-mean-square values of pressure streamwise �uid for
e (a) and vis
ous streamwise

�uid for
e (b) against U∗
St for K ∼= 16.6 ( ), 25.5 ( ) and 34.7 ( )

K ∼= 16.6 and 34.7. The irregular 
hange in the phase di�eren
e 
an be 
learly observed

in this �gure: for U∗
St < 0.5 Φx

∼= 0◦, and at the 
riti
al value of U∗
St

∼= 0.5 the time-

averaged streamwise phase swit
hes from Φx
∼= 0◦ to 180◦. This approximately 180◦ jump


an be seen for all K values above K ∼= 12.3.
The total streamwise �uid for
e 
oe�
ient is 
omposed of two parts: one is due to

pressure Cxp (pressure streamwise �uid for
e) and the other part is originated from fri
-

tion on the 
ylinder wall Cxv (vis
ous streamwise �uid for
e), as stated by Eq. (2.14). As


an be seen in Fig. 4.6, the rms values of the pressure and vis
ous streamwise �uid for
e


oe�
ients Cxp′ and Cxv′ in the range 0.4 < U∗
St ≤ 0.65 show di�erent behaviors. Al-

though both quantities have maximum and minimum values in this domain, the variation

of Cxp′ is similar to Cx′
(see the inset plot in Fig. 4.3b), while the 
hange in Cxv′ is similar

to the 
hara
teristi
s of x0′ (see the inset plot in Fig. 4.3a).

In Figs. 4.7a and 4.7b the time-averaged phase di�eren
es of Cxp and Cxv relative

to the streamwise 
ylinder displa
ement ϕxp and ϕxv are shown as fun
tions of U∗
St for

K ∼= 16.6�34.7. It 
an be seen that, ϕxv and ϕxp show di�erent trends in the vi
inity of

U∗
St = 0.5. In the range of 0.4 < U∗

St ≤ 0.5 there is a ϕxv
∼= 35◦ phase shift between
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Figure 4.7: Time-averaged phase di�eren
e values ϕxp (a) and ϕxv (b) for K ∼= 16.6 ( ), 25.5
( ) and 34.7 ( )

Last updated: April 20, 2020



4.1. DIMENSIONLESS NATURAL FREQUENCY EFFECTS AT K=12�35 32

Cxv and x0. After this period ϕxv 
hanges gradually until it rea
hes approximately 180◦

(see Fig. 4.7b). In 
ontrast, Cxp and x0 are approximately in phase between U∗
St = 0.4

and 0.5, while in the vi
inity of U∗
St = 0.5 the time-averaged phase di�eren
e 
hanges

abruptly to ϕxp
∼= 180◦ (see Fig. 4.7a).

The tenden
ies of ϕxp and Φx are very similar (see Figs. 4.7a and 4.5), therefore pres-

sure distribution around the 
ylinder surfa
e in�uen
es the �ow stru
ture more strongly

than shear stress does. This behavior is similar to that observed by Prasanth and Mittal

[88℄ for K = 16.6, who found an abrupt jump in the phase between the transverse �uid

for
e and displa
ement from 0◦ to 180◦ (between Re = 110 and 115). De
omposing the

transverse �uid for
e into 
omponents due to pressure and shear stress they showed that

the pressure 
omponent is responsible for the jump, sin
e the vis
ous 
omponent remains

in-phase with the displa
ement.

In Fig. 4.8 the limit 
y
le 
urves (time histories of vis
ous streamwise for
e versus those

of pressure streamwise for
e) are shown in the vi
inity of U∗
St = 0.5 for K ∼= 25.5. It


an be seen that below U∗
St

∼= 0.499 the orientation of the 
urves is 
lo
kwise, indi
ated

by �lled arrows (see Fig. 4.8). At U∗
St ≥ 0.499 the orientation swit
hes abruptly to


ounter
lo
kwise (shown by lined arrows in Fig. 4.8), whi
h means that pressure and

vis
ous streamwise for
e 
omponents be
ome nearly antiphase. This substantial 
hange is

mainly 
aused by Cxp, sin
e ϕxv in
reases gradually in this regime (Fig. 4.7b), in 
ontrast

to ϕxp, whi
h jumps abruptly between ϕxv = 0◦ and 180◦ at around U∗
St = 0.5 (Fig.

4.7a). The amplitudes of signals Cxp and Cxv (
losely related to Cxp′ and Cxv′) are almost

identi
al in the vi
inity of U∗
St = 0.5. These two features (antiphase and equal signal

amplitudes) nearly 
an
el ea
h other out, resulting in an approximately zero value of Cx′

(shown in Fig. 4.3b).
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Figure 4.8: Limit 
y
le 
urves (Cxv, Cxp) in the vi
inity of U∗
St = 0.5 for K ∼= 25.5

The results of the CFD 
omputations show also that the vibration frequen
y of the


ylinder in streamwise dire
tion is double that in transverse dire
tion, whi
h leads to

�gure-eight 
ylinder motion (see Se
tion 1.1.2). In Fig. 4.9 the paths of the 
ylinder are

shown at di�erent U∗
St values for K ∼= 34.7. Similar to the features observed in the

(Cxv, Cxp) limit 
y
le 
urves, the orientation of the motion traje
tory swit
hes near the

point of U∗
St = 0.5. It 
an be seen that below U∗

St

∼= 0.5 the orbit is 
lo
kwise in the

upper loop of the 
ylinder path, while in the domain of U∗
St > 0.5 the orientation of the


ylinder traje
tory is 
ounter
lo
kwise.
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Figure 4.9: Cylinder paths at U∗
St

∼= 0.455 (a), 0.480 (b), 0.483 (
) and 0.505 (d) for K ∼= 34.7

4.2 O

urren
e of orbital 
ylinder motion for high di-

mensionless natural frequen
ies

As mentioned earlier, in this se
tion systemati
 
omputations are 
arried out to explore

whether P+S vortex stru
ture o

urs at higher dimensionless natural frequen
ies. To

a

omplish this aim, di�erent K values are 
onsidered in the range of K ∼= 34.7�43.7 (see
Table 4.1). The Reynolds number is varied in the domain of Re = 60�250, and the mass

and stru
tural damping ratio values are �xed at m∗ = 10 and ζ = 0%, respe
tively.

4.2.1 Cylinder response and vortex stru
tures

In Figs. 4.10a and 4.10b x0′ and y0′ are shown against U
∗
St for three di�erent dimensionless

natural frequen
y values. It 
an be seen in Fig. 4.10a that for K ∼= 40.7 x0′ shows a steep

in
rease (up to x0′ = 0.023) in the approximate range of 0.92 < U∗
St ≤ 0.97, and then

jumps abruptly to lower values (x0′ = 0.005). For the data sets for K ∼= 16.6 and 34.7 this
phenomenon is not observed, whi
h suggests that only larger K values result in a steep

in
rease in the streamwise os
illation amplitude. In 
ontrast, y0′ behaves di�erently, as
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Figure 4.10: Root-mean-square values of streamwise (a) and transverse (b) 
ylinder displa
e-

ments against U∗
St for K ∼= 16.6 ( ), 34.7 ( ) and 40.7 ( )
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only a small jump is found at around U∗
St = 0.97 for K = 40.7 (Fig. 4.10b).

In order to investigate what happens in the range where x0′ steeply in
reases, �rst the

paths of the 
ylinder are analyzed. In Fig. 4.11 the ratios of streamwise and transverse

os
illation frequen
ies to the natural frequen
y of the system in va
uum fx/fN and fy/fN
are shown against U∗

St for K ∼= 40.7. Figure 4.12 shows the 
ylinder traje
tories (see the
top row of the �gure), the FFT spe
tra of streamwise and transverse vibration 
omponents

(middle row), and the instantaneous vorti
ity 
ontours (bottom row) at di�erent U∗
St

values for K ∼= 40.7. The blue and the red 
urves 
orrespond to the FFT spe
tra of

streamwise and transverse os
illation 
omponents, respe
tively. Note that Power Spe
tral

Density (PSD, also referred to as intensity) in Fig. 4.12 is shown in a logarithmi
 s
ale.

It 
an be seen in Fig. 4.11 that 
onditions fy/fN ∼= 1 and fx/fN ∼= 2 satisfy when

U∗
St < 0.92 and U∗

St > 0.97 (where x0′ is su�
iently low), resulting in distorted �gure-

eight motion (see Figs. 4.12a and 4.12d). This 
ylinder path o

urs most often in vortex-

indu
ed vibrations, as seen for example in Mittal and Kumar [38℄, Williamson and Govard-

han [39℄, Blevins and Coughran [40℄ and Dahl et al. [41℄. Although, the most dominant

frequen
y peaks of transverse and streamwise 
omponents are identi�ed at f/fN ∼= 1 and
2, respe
tively (Figs. 4.12a and 4.12d), they show additional (but less signi�
ant) peaks.

Note that f/fN = i is usually referred to as the ith harmoni
 frequen
y 
omponents.

In this dissertation the os
illation frequen
y ratio shown in Fig. 4.11 is de�ned with the

highest-intensity frequen
y peaks in the spe
tra. It 
an also be seen in Figs. 4.12a and

4.12d that the frequen
y peaks for the two os
illation 
omponents do not overlap. For

example, the fourth and the third harmoni
 
omponents are identi�ed in the spe
tra of

x0 and y0, respe
tively, but the f/fN = 3 in streamwise vibration 
omponent and the

f/fN = 4 in transverse 
omponent are not found. Using the notations introdu
ed by

Williamson and Roshko [28℄, at the 
orresponding U∗
St values where distorted �gure-

eight motions are found, 2S and C(2S) vortex stru
tures are seem to develop. For both

vortex 
on�gurations two single vorti
es are shed from the 
ylinder, but for the C(2S)

wake mode the positive and the negative vorti
es are in 
oales
en
e.

As 
an be seen in Fig. 4.11, in the range of 0.92 < U∗
St ≤ 0.97 (where x0′ in
reases

steeply) both streamwise and transverse vibration frequen
ies lo
k into the natural fre-

quen
y of the system, i.e. fx = fy ∼= fN . Kheirkhah et al. [42℄ found similar 
hara
teristi
s

for the �ow around a pivoted 
ylinder, and attributed this e�e
t to an orbital type of 
ylin-

der motion. Kang et al. [91℄, investigating the e�e
t of streamwise to transverse natural

frequen
y ratio at di�erent aspe
t ratios, also found orbital traje
tories that they named

raindrop-shaped motion. In Figs. 4.12b and 4.12
 the raindrop-shaped motions and the
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Figure 4.11: Ratios of streamwise and transverse vibration frequen
ies to the natural frequen
y

of the system for K ∼= 40.7
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Figure 4.12: Paths of the 
ylinder (upper row), frequen
y spe
tra of streamwise (blue 
urves)

and transverse (red 
urves) 
ylinder displa
ements (middle row), and vortex stru
tures (bottom

row) at U∗
St = 0.9280 (a), 0.9441 (b), 0.9708 (
) and 0.9757 (d) for K ∼= 40.7. Ea
h vortex


ontours are re
orded at random phases of the 
ylinder os
illation


orresponding frequen
y spe
tra and vortex stru
tures are shown. In 
ontrast to those

observed for distorted �gure-eight paths, the high-intensity frequen
y peaks for the two

os
illation 
omponents overlap. It 
an be seen that for streamwise 
ylinder displa
ement

the �rst and the se
ond harmoni
 frequen
y 
omponents play signi�
ant role, and in

the spe
tra of transverse displa
ement only the �rst harmoni
 
omponent is identi�ed as

high-intensity frequen
y peak. The Power Spe
tral Density of the rest of the frequen
y


omponents is negligible. Due to the fa
t that two dominant frequen
y peaks are found

for x0 (f/fN = 1 and 2), the path of the 
ylinder is asymmetri
 (see Figs. 4.12b and

4.12
). The asymmetri
 behavior of the raindrop-shaped motion is 
on�rmed by the vor-

tex 
on�gurations; P+S wake modes are identi�ed in these 
ases (see Figs. 4.12b and

4.12
). Therefore, I 
an answer the resear
h question I put up at the beginning of Se
tion

4.2; P+S vortex stru
ture 
an o

ur at higher natural frequen
y values.

To 
on
lude the previous �ndings, it seems likely that the high jump in x0′ and the

sudden 
hange in y0′ o

urring at around U∗
St = 0.97 for K ∼= 40.7 (see Fig. 4.10) appear

to a

ount for the abrupt 
hanges in the 
ylinder path (from raindrop-shaped to distorted

�gure-eight motion) and the swit
h in the vortex stru
ture (between P+S and 2S modes).

Brika and Laneville [58℄ investigated experimentally high mass-damping 
ases in the

high-Reynolds number range. They showed that the 
ylinder response is hystereti
 in the

domain where the vortex stru
ture 
hanges. Singh and Mittal [72℄ and Prasanth and Mittal

[88℄ observed a similar phenomenon for low Reynolds numbers using a numeri
al approa
h.

As was shown previously, the vortex stru
ture 
hanges abruptly at the boundary where

the motion traje
tory swit
hes (at around U∗
St = 0.97 for K ∼= 40.7), whi
h suggests the

o

urren
e of a hysteresis loop. In order to investigate whether this hysteresis loop exists
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in the vi
inity of U∗
St

∼= 0.97 for K ∼= 40.7, di�erent types of 
omputations are 
arried

out:

(a) Dire
t 
omputations, where the 
ylinder is initially at rest, and it impulsively

starts to os
illate at the beginning of the 
omputation. The Reynolds number is

�xed during the 
omputation.

(b) In
reasing-Re 
omputations. First, a dire
t step is 
arried out at a given 
ombi-

nation of Re, U∗, m∗
and ζ . The velo
ity and the pressure �elds obtained at the end

of the dire
t step are used as initial 
onditions in the next step, where the Reynolds

number and the redu
ed velo
ity are in
reased by ∆Re and ∆U∗ = ∆Re/K, respe
-

tively. As suggested by [58℄, the redu
ed velo
ity in
rement is set to ∆U∗ = 0.02.
This pro
ess is repeated until the required number of steps are 
ompleted;

(
) De
reasing-Re 
omputations. This approa
h is very similar to the previous one,

but the Reynolds number and the redu
ed velo
ity are de
reased a

ordingly.

In Fig. 4.13a x0′ obtained from the in
reasing Re and the de
reasing Re 
omputations

and those from the dire
t 
omputations are plotted against U∗
St. In Figs. 4.13b-4.13e the


ylinder paths are shown at di�erent U∗
St values, where I and D (in the top-left 
orner)

refer to in
reasing or de
reasing Reynolds numbers (and redu
ed velo
ities), respe
tively.

It 
an be observed that di�erent solutions 
an be obtained when Re is in
reased or de-


reased. As seen, raindrop-shaped motion develops for in
reasing Re (see Fig. 4.13
), and
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Figure 4.13: Root-mean-square values of streamwise 
ylinder displa
ement obtained from the

dire
t 
omputations ( ), the in
reasing Re 
omputations ( ), and the de
reasing Re 
ompu-

tations ( ) against U∗
St for K ∼= 40.7 (a), and the 
ylinder paths for in
reasing and de
reasing

Re 
ases at U∗
St

∼= 0.9661 (b), 0.9802 (
 and d) and 1.0129 (e). Here I and D refer to in
reasing

and de
easing Re (and U∗
) values, respe
tively

Last updated: April 20, 2020



4.2. OCCURRENCE OF ORBITAL CYLINDER MOTION FOR HIGH DIMENSIONLESS

NATURAL FREQUENCIES 37

distorted �gure-eight paths are found for de
reasing Re 
ases (see Fig. 4.13d) in the range

of 0.97 < U∗
St ≤ 1.01. Below U∗

St = 0.97 raindrop-shaped paths are found and above

U∗
St = 1.01 distorted �gure-eight motions are observed for both in
reasing and de
reasing

Reynolds number 
ases (see Figs. 4.13b and 4.13e).

In Fig. 4.14 the vortex stru
tures are shown at the same U∗
St values, where the motion

traje
tories were analyzed in Fig. 4.13. Wake modes 
orresponding to in
reasing Reynolds

numbers are shown in the top row, while the de
reasing Re 
ases are shown in the bottom

row. As in the �gure, within the hysteresis domain (between U∗
St = 0.97 and 1.01) P+S

wake modes are observed for in
reasing Re 
omputations and 2S vortex stru
tures are

found for de
reasing Re 
ases (see Fig. 4.14b). Outside of the hysteresis range the same

vortex stru
tures are obtained by either in
reasing or de
reasing the Reynolds number

(see Fig. 4.14a and 4.14
).

P+SI P+SI C(2S)I

P+SD

(a)

C(2S)D

(b)

C(2S)D

(c)

Figure 4.14: Vorti
ity 
ontours in 
ase of in
reasing and de
reasing Re and U∗
at U∗

St

∼= 0.9661
(a), 0.9802 (b) and 1.0129 (
) for K ∼= 40.7. Ea
h vortex 
ontours are re
orded at random phases

of the 
ylinder os
illation

Systemati
 
omputations are 
arried out to investigate the e�e
ts of dimensionless nat-

ural frequen
y on the 
ylinder path. In Fig. 4.15 x0′ is plotted against U∗
St for di�erent

K values ranging from K ∼= 34.7 to 43.7. Values at around 0.007 are for the distorted-

�gure-eight paths, while higher x0′ values indi
ate raindrop-shaped motion. It 
an be seen

that K ∼= 36.6 is the lowest dimensionless natural frequen
y value where both raindrop-

shaped and distorted �gure-eight motions 
an o

ur. Varying K between K ∼= 36.6 and

43.7, raindrop-shaped motion o

urs over a narrow U∗
St domain that widens with in
reas-

ing the dimensionless natural frequen
y. It is also shown in Fig. 4.15 that the x0′ 
urves

shift upwards and the lo
ation of the jump whi
h separates the raindrop-shaped and the

distorted-�gure-eight motion ranges de
reases with the dimensionless natural frequen
y.

4.2.2 Analysis of �uid for
e 
oe�
ients

In order to show additional di�eren
es between the e�e
ts 
aused by the P+S and the 2S

vortex stru
tures, the frequen
y spe
tra of transverse and streamwise �uid for
e 
oe�-


ients are investigated. Figure 4.16 shows the frequen
y spe
tra of Cy and Cx at the same

U∗
St values where the 
ylinder paths and the vortex stru
tures were previously analyzed

(see Fig. 4.12). The blue and the red 
urves stand for the FFT spe
tra of transverse and

streamwise �uid for
es, respe
tively. It 
an be seen that both for
e 
oe�
ients 
ontain

two signi�
ant frequen
y peaks at the U∗
St values where 2S vortex stru
tures are found

(see Figs. 4.16a and 4.16d). In the FFT of transverse �uid for
e the �rst and the third

harmoni
 frequen
y 
omponents are found, and in streamwise �uid for
e the se
ond and
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Figure 4.15: Root-mean-square values of streamwise 
ylinder displa
ement against U∗
St for

K ∼= 34.7 ( ), 36.6 ( ), 37.6 ( ), 38.6 ( ), 40.7 ( ), 42.7 ( ) and 43.7 ( )

the fourth harmoni
 
omponents are identi�ed with high PSD values. Prasanth and Mit-

tal [88℄ found a jump in the phase di�eren
e between Cy and y0 in the lower bran
h.

They showed that in the vi
inity of the swit
h f/fN ∼= 3 was mu
h more signi�
ant in

the spe
trum of transverse �uid for
e than the frequen
y 
omponent 
oin
iding with the

transverse vibration frequen
y. The experimental data of Dahl et al. [41, 82℄ also showed

this dual resonan
e e�e
t. In addition, they found that f/fN ∼= 3 in the spe
tra of Cy in-

�uen
ed the �rst harmoni
 
omponent. It 
an also be seen in Figs. 4.16a and 4.16d (where

distorted �gure-eight motions are identi�ed) that the frequen
y peaks in the spe
tra of

transverse and streamwise �uid for
e 
oe�
ients do not overlap. This �nding is the same

what I showed earlier for the Fast Fourier spe
tra of the vibration 
omponents in Figs.

4.12a and 4.12d.
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Figure 4.16: Frequen
y spe
tra of transverse and streamwise �uid for
e (red and blue 
urves) at

U∗
St = 0.9154 (a), 0.9441 (b), 0.9708 (
) and 0.9757 (d) for K = 40.7

Figures 4.16b and 4.16
 show the FFT spe
tra of Cy and Cx at the U
∗
St values where

P+S asymmetri
 wake modes are identi�ed. It 
an be seen that the lo
ation of the high-

intensity frequen
y peaks of transverse and streamwise �uid for
e 
omponents overlap. In


ontrast to those observed during the spe
tral analyses of the vibration 
omponents (see

Figs. 4.12b and 4.12
), f/fN ∼= 1, 2, 3 and 4 o

ur with remarkable PSD values in the

spe
tra of both transverse and streamwise �uid for
es.

Baranyi [46℄ investigated the e�e
t of for
ing frequen
y in 
ase of �gure-eight 
ylinder

motion. Post-pro
essing the data in [46℄, we found that in 
ase of 2S vortex stru
tures the

FFT spe
tra of Cy and Cx did not overlap (similar to Figs. 4.16a and 4.16d), while the

frequen
y peaks of transverse and streamwise �uid for
es 
ollapsed where P+S wake mode
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was observed (as in Figs. 4.16b and 4.16
). Therefore, the 
urrent results for free vibration

and those obtained using the data of Baranyi [46℄ for for
ed 
ylinder motion are in good

qualitative agreement. Good qualitative agreement is also found with the 
omputations of

Bao et al. [83℄, who observed P+S wake mode at only one parameter 
ombination, and

where the frequen
y spe
tra of Cy and Cx showed similarities to those seen in Figs. 4.16b

and 4.16
.

Figure 4.17a shows the time-mean values of transverse �uid for
e 
oe�
ient Cy against

U∗
St for K ∼= 37.6, 40.7 and 43.7. The results show similar features for all of the inves-

tigated K values, so only three 
urves are presented here to avoid 
onfusion. It 
an be

seen that Cy is negligible in the range where distorted �gure-eight motion is found. As

was shown earlier, P+S vortex stru
ture is observed for orbital 
ylinder traje
tories (see

Figs. 4.12b and 4.12
). Sin
e this wake mode means an asymmetri
 load on the stru
ture,

|Cy| > 0 in raindrop-shaped motion 
ases, whi
h is seen in Fig. 4.17a. Bla
kburn and

Henderson [30℄ and Baranyi [46℄, using the for
ed vibration models, found also that Cy is

non-zero for 
ases where the P+S asymmetri
 vortex stru
tures are found.

0.92 0.94 0.96 0.98 1
−0.2

−0.1

0

0.1

0.2

U ∗St

Cy

(a)

1.2 1.8 2.4 3

−0.6

−0.3

0

0.3

0.6

Cy

Cx

(b)

0 0.05 0.1 0.15

−0.6

−0.3

0

0.3

0.6

y0

x0

(c)

Figure 4.17: Time mean values of transverse �uid for
e against U∗
St for K ∼= 37.6 ( ), 40.7

( ) and 43.7 ( ) (a), and (Cx, Cy) (b) and (x0, y0) (
) limit 
y
le 
urves in pre- and post-jump


ases (red thi
k 
urve: U∗
St = 0.930; blue thin 
urve: U∗

St = 0.931) for K ∼= 43.7

In the raindrop-shaped-motion domain two state 
urves exist, and the solution jumps

abruptly between them. In Fig. 4.17b (Cx, Cy) limit 
y
le 
urves are shown before and

after a jump. The 
urves appear to be mirror images of ea
h other, whi
h is due to a

symmetry breaking bifur
ation [99℄. In a nonlinear system there are two attra
tors, ea
h

with a basin of attra
tion [99℄. If the set of parameters (e.g. Re, U∗, m∗
, et
.) is 
lose to

the boundary separating the basins of attra
tion then a tiny 
hange 
an lead to an abrupt

jump (see Fig. 4.17a). In Fig. 4.17
 the paths of the 
ylinder are shown in the pre- and

post-jump 
ases. It 
an be seen that these 
urves are also appear to be mirror images of

ea
h other.

Figures 4.18a and 4.18b show the rms values of streamwise and transverse �uid for
e


oe�
ients Cx′
and Cy′ against U∗

St for K ∼= 37.6, 40.7 and 43.7. The results show

similar features for all of the investigated dimensionless natural frequen
y values, so only

three 
urves are presented here to avoid 
onfusion. Both Cx′
and Cy′ show jumps at the

upper boundary separating raindrop-shaped and distorted �gure-eight motion domains,

as 
an also be seen in x0′ (see Fig. 4.15). It 
an be observed that Cx′

urves belonging

to in
reasing K values shift to higher values in both the raindrop-shaped and �gure-

eight motion domains. In 
ontrast, by in
reasing K the Cy′ 
urves shift upwards in the

raindrop-shaped and downwards in the �gure-eight motion domains.
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Figure 4.18: Root-mean-square values of stremawise (a) and transverse (b) �uid for
es against

U∗
St for K ∼= 37.6 ( ), 40.7 ( ) and 43.7 ( )

4.3 New s
ienti�
 
ontributions

Contribution I

Systemati
 
omputations are 
arried out for two-degree-of-freedom vortex-indu
ed vi-

brations at di�erent non-dimensional natural frequen
y values from K = 12.3 to 34.7,
and 
onstant mass and stru
tural damping ratios of m∗ = 10 and ζ = 0%, respe
tively

(Re = 60− 250). I found that

(a) Plotting the data set belonging to di�erent K values against U∗
St makes the 
om-

parison easier than using Re as an independent parameter;

(b) Lo
al peak values are found in the rms of streamwise 
ylinder displa
ement x0′ , and

streamwise �uid for
e 
oe�
ient Cx′
at around U∗

St = 0.47. The lo
al maximum

values in x0′ and Cx′
are found to in
rease with K;

(
) Cx′
approa
hes zero in the vi
inity of U∗

St = 0.5, at the same lo
ation, where the

phase di�eren
e of Cx relative to x0 
hanges suddenly from 0◦ to 180◦;

(d) While the phase angle between the pressure streamwise �uid for
e Cxp and the


ylinder displa
ement suddenly shifts from 0◦ to 180◦ at U∗
St

∼= 0.5, the phase

di�eren
e of the vis
ous streamwise �uid for
e Cxv relative to the 
ylinder motion

is initially at ∼ 35◦, whi
h in
reases slowly to 180◦. These �ndings indi
ate that the
pressure 
omponent of the streamwise �uid for
e is responsible for the abrupt phase


hange between Cx and x0. Due to the sudden 
hange in the phase angle between

Cxp and x0, the limit 
y
le 
urves (Cxv, Cxp) swit
h from 
lo
kwise to anti
lo
kwise

orientation at U∗
St

∼= 0.5;

(e) The orientation of the 
ylinder path 
hanges from 
lo
kwise to 
ounter
lo
kwise

orbit (in the upper loop of the �gure-eight) at around U∗
St = 0.5.

Related publi
ations: Dorogi and Baranyi [J1℄

Contribution II

Using two-degrees-of-freedom VIV 
omputations at di�erent non-dimensional natural fre-

quen
y values in the range of K = 34.7−43.7, and 
onstant mass and stru
tural damping
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ratio values of m∗ = 10 and ζ = 0%. I found that K highly in�uen
es the path of

the 
ylinder. For dimensionless natural frequen
y values below K ∼= 36.6 only distorted

�gure-eight motions are observed. Between the values of K ∼= 36.6 and 43.7, besides
�gure-eight paths, orbital 
ylinder traje
tories (i.e. raindrop-shaped orbits) are identi�ed

in a thin U∗
St domain (e.g. in 0.92 < U∗

St < 0.97 for K ∼= 40.7), whi
h widens with

K. In the range where raindrop-shaped motions are found, the rms values of the stream-

wise vibration 
omponent x0′ is signi�
antly higher (
an ex
eed x0′ = 0.023) 
ompared

to the distorted �gure-eight path domains (around x0′ = 0.005). I showed that as the

non-dimensional natural frequen
y in
reases, the x0′ 
urves shift upwards.

The frequen
y spe
tra of the streamwise vibration 
omponent for raindrop-shaped

orbits 
ontain two high-intensity frequen
y peaks 
orresponding to f ∗

y and 2f ∗

y , where

f ∗

y is the transverse os
illation frequen
y of the 
ylinder. Due to the multi-frequen
y

vibration, the raindrop-shaped paths are asymmetri
. I found P+S asymmetri
al vortex

stru
tures in the wake of the 
ylinder for raindrop-shaped motions, while 2S or C(2S)

modes for distorted �gure-eight motion 
ases. Here P and S refer to vortex pairs and

single vorti
es shedding form the body, respe
tively, and C refers to the 
oales
en
e of the

positive and negative vorti
es.

I identi�ed abrupt 
hanges in the rms values of streamwise and transverse vibration


omponents and �uid for
e 
oe�
ients (x0′ , y0′, Cx′, Cy′), whi
h 
orresponds to the point,

where (1) the 
ylinder path swit
hes from raindrop-shaped to distorted �gure-eight, and

(2) the wake mode 
hanges from P+S to 2S. I found a hysteresis loop 
lose the boundary,

where the vortex stru
ture and the 
ylinder orbit swit
h. I showed that in
reasing the U∗

(together with Re) in the range of 0.97 < U∗ ≤ 1.01, orbital traje
tories and P+S modes

are formed. However, de
reasing U∗
(and Re) in the same domain, distorted �gure-eight

paths and 2S modes o

ur.

I found that the time-mean values of the transverse �uid for
e 
oe�
ient Cy is ap-

proximately zero for distorted �gure-eight paths, while for raindrop-shaped traje
tories∣∣Cy

∣∣ > 0. Due to the nonlinearity of the �uid �ow, Cy jumps abruptly between two so-

lutions. Plotting the (Cx, Cy) and (x0, y0) limit 
y
les in the pre- and post-jump 
ases, I

found that these 
urves are mirror images of ea
h other; hen
e the two solutions of Cy

are symmetri
.

Related publi
ations: Dorogi and Baranyi [J3℄, Dorogi and Baranyi [C7℄ and Dorogi

and Baranyi [C8℄
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Chapter 5

Analyses of streamwise vortex-indu
ed

vibrations

As was mentioned in Se
tion 1.1.2, the experimental �ndings of Tanida et al. [35℄, and the


omputational results of Konstantinidis and Bouris [36℄ and Kim and Choi [37℄ indi
ate

that streamwise-only vortex-indu
ed vibrations are not feasible at low Reynolds numbers.

However, Bourguet and Lo Ja
ono [79℄ investigated self-ex
ited streamwise vibration

of a rotating 
ylinder at Re = 100. Their results obtained for the non-rotating 
ase show

a single-peak response, but the maximum os
illation amplitude is only 0.2% of the 
ylin-

der diameter.

1

In addition, the 
omputational results from the 2DoF VIV 
omputations

presented in Chapter 4 and published in [J1℄, indi
ate that the root-mean-square val-

ues of streamwise vibration 
omponent x0′ display a lo
al maximum value at around

U∗
St = 0.47. Sin
e the transverse os
illation amplitude is negligible in this domain, we

suspe
t that the peak value in x0′ is resulted only by the streamwise vibration 
omponent.

For this reason, the following resear
h questions is addressed:

Is it possible for streamwise-only VIV to o

ur in the low-Re

domain? What are the e�e
ts of m∗
and Re on the 
ylinder

response?

In order to answer these questions two sets of 
omputations are 
arried out. First,


omputations are performed at the mass ratio values m∗ = 2, 5, 10 and 20, while keep-

ing the Reynolds number 
onstant at Re = 180. The results of these investigations are

presented in Se
tion 5.1. A model based on harmoni
 assumptions is used to explain the

phenomenon observed in the numeri
al results. Se
ond, 
omputations are 
arried out at

di�erent Reynolds numbers (Re = 100, 180, 200 and 250), while keeping mass ratio 
on-

stant at m∗ = 10, whi
h results are dis
ussed in Se
tion 5.2. In both sets of 
omputations

the redu
ed velo
ity is varied between U∗ = 1.5 and 3.5, while the stru
tural damping

ratio is �xed at zero.

5.1 The e�e
t of mass ratio

In this se
tion streamwise-only vortex-indu
ed vibrations are investigated at di�erent mass

ratio values of m∗ = 2, 5, 10 and 20. The Reynolds number and the stru
tural damping

ratio values are �xed at Re = 180 and ζ = 0%, respe
tively, while the redu
ed velo
ity is

varied between U∗ = 1.5 and 3.5.
Figure 5.1 shows the dimensionless os
illation amplitude x̂0 (see Figs. 5.1a and 5.1
),

and the non-dimensional vibration frequen
y f ∗

x (Figs. 5.1b and 5.1d) against the redu
ed

1

Note that the results obtained by Bourguet and Lo Ja
ono [79℄ have been previously used for

validation purposes; good agreement was found (see the results in Se
tion 3.3).
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velo
ity for di�erent m∗
values. It 
an be seen that the 
ylinder response displays a single

ex
itation region with a peak os
illation amplitude of approximately 1.1% of the 
ylinder

diameter for all mass ratios investigated. As 
an be observed, x̂0 in
reases gradually up

its peak value, and than it de
reases monotoni
ally. Although the maximum vibration

amplitude seems to be independent of the mass ratio, the U∗
value where the maximum

in x̂0 is identi�ed in
reases with m∗
. The root-mean-square values of streamwise 
ylinder

displa
ement x0′ obtained from the 2DoF VIV 
omputations show similar trends in the

range of 0.4 < U∗
St < 0.6 (see Se
tion 4.1); a lo
al peak value is observed in x0′ at around

U∗
St = 0.47. In that 
ase the lo
al maximum value in
reased, be
ause the Reynolds

numbers 
orresponding to the peak x0′ values in
reased.

The dimensionless vibration frequen
y (see Figs. 5.1b and 5.1d) shows an opposite

behavior: f ∗

x de
reases to its minimum point, whi
h o

urs approximately at the same

U∗
value where the peak amplitude is observed. Beyond the minimum point, f ∗

x in
reases

asymptoti
ally to a value 
orresponding to the double of the Strouhal number for a sta-

tionary 
ylinder [2St ∼= 0.383 at Re = 180 using Eq. (1.8) obtained by [17℄℄. In other words,
in the ex
itation region the dimensionless vibration frequen
y of the 
ylinder is always

lower than the double of the Strouhal number, i.e. f ∗

x < 2St. This �nding is 
onsistent

with the for
ed vibration results obtained by Nishihara et al. [1℄ and Konstantinidis and

Liang [100℄, who showed that streamwise-only VIV due to alternating vortex shedding


an o

ur only for f ∗

x < 2St.
It 
an also be observed in Fig. 5.1 that as we in
rease the mass ratio, the width of

the ex
itation region diminishes, i.e. the rate of 
hange of x̂0 and f ∗

x be
omes faster. In

parti
ular, for m∗ = 20, the os
illation amplitude and frequen
y show sudden 
hanges at

U∗ = 2.614, at the same point where the peak response is observed (see Figs. 5.1
 and

5.1d).
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Figure 5.1: Dimensionless os
illation amplitude (a and 
) and frequen
y (b and d) against

redu
ed velo
ity for di�erent mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,
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Aguirre [75℄, Okajima et al. [76℄ and Cagney and Balabani [77℄ investigated exper-

imentally streamwise-only vortex-indu
ed vibrations. Their results at moderately high

Reynolds numbers reveal that two ex
itation regions (bran
hes) o

ur. The �rst bran
h

is asso
iated with a symmetri
al mode of vortex shedding, while in the se
ond bran
h an

alternating vortex shedding mode

2

is observed. Figure 5.2 shows the vorti
ity 
ontours

at the 
orresponding 
ombinations of m∗
and U∗

, where the peak responses (maximum

os
illation amplitude and minimum vibration frequen
y) o

ur. It 
an be seen that, irre-

spe
tive of m∗
, only alternating modes of vortex shedding are found. This suggest that

the single ex
itation region shown in Fig. 5.1 
orresponds to the se
ond bran
h. The

experimental results at moderately high Re show also that symmetri
al mode of vortex

shedding develops only for x̂0 > 0.1 
ases. The peak os
illation amplitude for Re = 180
is only 0.011, whi
h is not su�
iently high for the symmetri
al vortex shedding mode.

Consequently, the absen
e of the �rst bran
h at Re = 180 is expe
ted.

In Fig. 5.3 the amplitude of streamwise �uid for
e 
oe�
ient Ĉx is plotted against

U∗
for di�erent m∗

values. As 
an be seen, Ĉx follows similar trends for all mass ratios.

Initially, Ĉx in
reases gradually with U∗
rea
hing a peak level near the point where peak

amplitudes of 
ylinder os
illation o

ur (see Fig. 5.1a and Fig. 5.1
). Despite the peak

(a) (b) (c)

Figure 5.2: Vorti
ity 
ontours (red: positive, blue: negative) at the peak amplitude points

(m∗, U∗) = (2, 2.17) (a) (10, 2.55) (b) and (20, 2.614) (
) for Re = 180. Ea
h vortex 
ontours are

re
orded at random phases of the 
ylinder os
illation
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Figure 5.3: Amplitude of streamwise �uid for
e 
oe�
ient against redu
ed velo
ity for di�erent

mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,

2

Similar to the Kármán vortex street. Using the notations introdu
ed by Williamson and Roshko [28℄,

alternating vortex shedding mode is referred to as 2S mode. However, in terms of streamwise-only VIV,

the terminology alternating mode of vortex shedding is more preferred than the 2S mode.

Last updated: April 20, 2020



5.1. THE EFFECT OF MASS RATIO 45

vibration amplitude is only x̂0 = 0.011, the maximum Ĉx is around 0.106, whi
h is roughly
three times higher than the value obtained for a stationary 
ylinder. After the maximum

point, a steep de
rease of Ĉx within a narrow range of U∗
is observed at the end of whi
h

it approa
hes zero; Ĉx → 0 at U∗ ∼= 2.625. Note that the results obtained from the two-

degree-of-freedom VIV 
omputations, presented in Se
tion 4.1 show a somewhat similar

e�e
t; as seen in Fig. 4.3, Cx′ → 0 at around U∗
St = 0.5. It is also seen in Fig. 5.3 that

beyond the point where Ĉx → 0 the amplitude of the streamwise �uid for
e 
oe�
ient

in
reases gradually. Similar to the tenden
ies observed in the non-dimensional os
illation

amplitude and frequen
y (see Fig. 5.1), Ĉx found to jump at U∗ = 2.614 for m∗ = 20,


losely after the redu
ed velo
ity value where the peak value in Ĉx is identi�ed (see Fig.

5.3b).

In order to investigate the phenomenon Ĉx → 0 more in depth, a model based on

harmoni
 assumptions (often 
alled harmoni
 os
illator model) is used. Let us assume

that the 
ylinder displa
ement and the streamwise �uid for
e 
oe�
ient are sinusoidal

fun
tions of time:

x0(t) = x̂0 sin 2πf
∗

xt, (5.1)

Cx(t) = Ĉx sin(2πf
∗

xt+ Φx), (5.2)

where Φx is the phase di�eren
e of streamwise �uid for
e relative to the 
ylinder displa
e-

ment (i.e. the streamwise phase). Similar to Eqs. (4.4) and (4.5), the mean 
omponents of

x0(t) and Cx(t) are omitted, be
ause they do not a�e
t the dynami
s. The di�erentiation

of x0(t) with respe
t to time result in the following formulæ for the time-varying velo
ity

ẋ0(t) and a

eleration ẍ0(t) of the 
ylinder:

ẋ0(t) = 2πf ∗

x x̂0 cos 2πf
∗

xt, (5.3)

ẍ0(t) = −4π2f ∗2
x x̂0 sin 2πf

∗

xt. (5.4)

Substituting Eqs. (5.1)-(5.4) into the 
ylinder equation of motion [Eq. (2.12)℄, the

following equation is obtained:

− 4π2f ∗2
x x̂0 sin(2πf

∗

xt) +
8π2f ∗

x x̂0ζ

U∗

cos(2πf ∗

xt) +
4π2x̂0

U∗2
sin(2πf ∗

xt)

=
2Ĉx

πm∗
[sin(2πf ∗

xt) cosΦx + cos(2πf ∗

xt) sinΦx] .

(5.5)

Equating the sine and 
osine terms in this equation the following expressions 
an be

obtained:

cosΦx =
2π3m∗x̂0

ĈxU∗2
(1− f ∗2

x U∗2), (5.6)

sinΦx =
4π3m∗ζx̂0

ĈxU∗

f ∗

x . (5.7)

Adding the squares of Eqs. (5.6) and (5.7), and expressing the amplitude of streamwise

�uid for
e 
oe�
ient the following formula is resulted in:

Ĉx =
2π3m∗x̂0

U∗2

√
(1− f ∗2

x U∗2)2 + 4ζ2f ∗2
x U∗2. (5.8)
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Substituting zero stru
tural damping ratio ζ = 0% into Eq. (5.8), it 
an be seen that

Ĉx = 0 at the point where the frequen
y of 
ylinder vibration 
oin
ides with the natural

frequen
y of the system in va
uum, i.e. at f ∗

xU
∗ = 1. Table 5.1 shows f ∗

x and f ∗

xU
∗
at

di�erent redu
ed velo
ity values for m∗ = 10. It 
an be observed that f ∗

xU
∗
is very 
lose

to unity at U∗ = 2.625, at the same point where the amplitude of streamwise �uid for
e


oe�
ient approa
hes zero (see Fig. 5.3).

Table 5.1: The f∗

x and f∗

xU
∗
for di�erent redu
ed velo
ity values 
lose to the point where Ĉx → 0

for m∗ = 10 and Re = 180

U∗

2.618 2.62 2.625 2.63 2.635

f ∗

x 0.3805 0.3806 0.3807 0.3808 0.3809

f ∗

xU
∗

0.9961 0.9972 0.9993 1.0015 1.0037

Besides, Eq. (5.7) shows that for ζ = 0% sinΦx = 0, therefore Eq. (5.6) 
an results in

only Φx = 0◦ and 180◦ values; hen
e the 
ylinder displa
ement 
an be only in-phase or out-

of-phase with the streamwise �uid for
e 
oe�
ient. In Fig. 5.4 Φx
3

is plotted against the

redu
ed velo
ity for di�erent m∗
values. This �gure seems to 
on�rm the above mentioned


riteria, Φx jumps between approximately 0◦ and 180◦ at around U∗ = 2.625 for all mass

ratio values.
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0
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U ∗

Φx

Figure 5.4: Phase di�eren
e of streamwise �uid for
e relative to 
ylinder displa
ement against

the redu
ed velo
ity for m∗ = 2 ( ), 5 ( ), 10 ( ) and 20 ( ) at Re = 180

It is very important to see in Fig. 5.1 that the dimensionless os
illation amplitude

shows a non-zero value at the point where Ĉx rea
hes zero. The question arises how 
an

the unsteady streamwise �uid for
e with approximately zero �u
tuation result in �nite

amplitude of 
ylinder os
illation. Figure 5.5 shows the relative waveforms of the 
ylinder

displa
ement x∗

0 and streamwise �uid for
e C∗

x [de�ned by Eqs. (4.2) and (4.3)℄, and the

frequen
y spe
tra of Cx at di�erent U∗
values for m∗ = 2. It 
an be seen that, while x∗

0
is harmoni
, the streamwise �uid for
e shows a strongly non-harmoni
 behavior in the

vi
inity of the point where Ĉx → 0. As seen in the Fast Fourier spe
tra of Cx, a frequen
y


omponent with the double of the 
ylinder's vibration frequen
y 2f ∗

x (i.e. the se
ond

harmoni
 
omponent) appears. It 
an be observed that the intensity of 2f ∗

x in
reases with

3

The 
omputation methodology of Φx is shown in Appendix A.2.1.
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Figure 5.5: The relative waveforms (top plots) of streamwise 
ylinder displa
ement (x∗0, blue
dashed lines) and streamwise �uid for
e (C∗

x, red solid lines), and the frequen
y spe
tra of stream-

wise �uid for
e (bottom plots) for U∗ = 2.61 (a), 2.62 (b), 2.63 (
) and 2.64 (d) at m∗ = 2 and

Re = 180

the redu
ed velo
ity towards the point of f ∗

xU
∗ = 1. At the point where the vibration

frequen
y is the 
losest to the natural frequen
y of the system, at U∗ = 2.63, the 2f ∗

x

peak is the most dominant in the spe
tra, the intensity of the f ∗

x frequen
y 
omponent

is very low. This result indi
ates that, vortex-indu
ed vibrations at around f ∗

xU
∗ = 1 is

highly nonlinear, and the me
hani
al energy is transferred from the �uid to the 
ylinder

a
ross di�erent harmoni
 
omponents.

Figure 5.6 shows the amplitude of transverse �uid for
e Ĉy against U∗
for di�erent

mass ratio values between m∗ = 2 and 20. As 
an be seen, Ĉy displays 
omparable

tenden
ies at all m∗
values, similarly to Ĉx (see Fig. 5.3). At the beginning, Ĉy in
reases

monotoni
ally up to its peak value, whi
h is followed by a rapid de
rease. Beyond the

minimum point Ĉy in
reases gradually. It 
an be seen that in
reasing the mass ratio, the

maximum and minimum points of Ĉy shift towards in
reasing U∗
values. In 
ontrast to

the �ndings 
on
erning the amplitude of streamwise �uid for
e 
oe�
ient, the maximum

and minimum Ĉy values are only 6% higher and 5% lower, respe
tively, than the value
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Figure 5.6: Amplitude of transverse �uid for
e 
oe�
ient against redu
ed velo
ity for di�erent

mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,
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obtained for a stationary 
ylinder. Note that, the minimum point observed for m∗ = 20 is
an ex
eption, it is only 3% lower than the 
orresponding value for a stationary 
ylinder.

Sin
e the body os
illates only streamwise with the free stream, there is no inertial for
e

in the transverse dire
tion, whi
h 
ould result in larger 
hanges in Ĉy. For this reason,

the variations of Ĉy 
an only be 
aused by the 
hanges in the vortex dynami
s. As 
an

be seen in Fig. 5.2 no signi�
ant 
hange 
an be observed in the vortex shedding, so that,

a small variation in Ĉy is expe
ted.

Similarly to the time history of Cx, let us assume that the transverse �uid for
e


oe�
ient 
an be represented as a harmoni
 fun
tion of time:

Cy(t) = Ĉy sin(πf
∗

xt+ Φy), (5.9)

where Φy is the phase di�eren
e of transverse �uid for
e relative to the 
ylinder dis-

pla
ement. Note that the frequen
y of Cy is f ∗

x/2, hen
e the phase di�eren
e value is

meaningful in the range of 0◦ ≤ Φy ≤ 180◦. In Fig. 5.7 Φy is shown against the redu
ed

velo
ity for di�erent m∗
values. Unlike Φx whi
h is restri
ted to the values of 0◦ and 180◦

for ζ = 0% [Eqs. (5.6) and (5.7)℄, Φy shows a smooth variation between approximately

20◦ to 110◦. It was shown earlier that as the mass ratio is in
reased the width of the

ex
itation range de
reases (see Fig. 5.1), 
onsequently, the rate of 
hange for Φy in
reases

(Fig. 5.7). Moreover, at U∗ = 2.614 for m∗ = 20 Φy jumps abruptly from Φy = 56.5◦ to
93.4◦.
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Figure 5.7: Phase di�eren
e of transverse �uid for
e relative to the 
ylinder displa
ement for

m∗ = 2 ( ), 5 ( ), 10 ( ) and 20 ( ) at Re = 180

Konstantinidis et al. [101℄ investigated the �ow around a stationary 
ylinder pla
ed into

a free stream upon whi
h a periodi
 velo
ity os
illation (perturbation) is superimposed.

They measured the unsteady transverse velo
ity 
omponent, and 
al
ulated the phase

di�eren
e of this velo
ity 
omponent with respe
t to the in-�ow velo
ity. Note that this

phase angle value is similar to the Φy applied in this study. Konstantinidis et al. [101℄ found

that in
reasing the frequen
y of velo
ity perturbation the phase di�eren
e value in
reases.

They attributed this e�e
t to the shift in the timing of vortex shedding

4

. Sin
e the 
ase

investigated in [101℄ is kinemati
ally equivalent with the streamwise-only vortex-indu
ed

vibration of a 
ir
ular 
ylinder analyzed in the 
hapter, the gradual in
rease observed in

Φy (Fig. 5.7) may be attributed also to the shift in the timing of vortex shedding.

Konstantinidis et al. [101℄ 
al
ulated also the vortex strength Γ based on the velo
ity

�elds obtained using the Digital Parti
le Image Velo
imetry te
hnique. They showed that

4

�... the phase at whi
h a vortex pin
hes o� from the 
ylinder with respe
t to the in�ow velo
ity

os
illation� (see [101℄, p. 48.)

Last updated: April 20, 2020



5.1. THE EFFECT OF MASS RATIO 49

Γ in
reases up to the point (time instant), where a vortex is shed from the 
ylinder. At

this instant Γ shows a sudden drop. In terms of transverse �uid for
e (obtained from the

present CFD simulations), in
reasing vortex strength means in
reasing Cy, whi
h rea
hes

its maximum (or minimum) value at the same point where Γ is at its maximum, i.e. at

the time instant where a vortex (negative or positive) is shed from the body. In other

words, the time instant of vortex shedding 
an be determined from the time history of the

transverse �uid for
e. Negative or positive vorti
es are shed from the body at the points,

where Cy rea
hes its maximum or minimum, respe
tively.

Figure 5.8 shows the vorti
ity distributions at the time instants 
orresponding to the

positive extreme point (top row) and the zero 
ross-over point (middle row) of the 
ylinder

displa
ement at di�erent U∗
values form∗ = 5. The relative waveforms of the displa
ement

and the transverse �uid for
e 
oe�
ient x∗

0 and C∗

y
5

are shown in the bottom row. It 
an be

seen in Fig. 5.8a that at U∗ = 2.35 the time 
orresponding to the peak values observed in

x∗

0 and C∗

y are very 
lose to ea
h other. This �nding indi
ates that the (negative) vortex

is shed from the 
ylinder 
lose to the point at whi
h the body approa
hes its positive

extreme position. As 
an be seen in Fig. 5.7, the phase di�eren
e value is Φy = 40.6◦ at
U∗ = 2.35. However, in
reasing the redu
ed velo
ity, Φy shows a signi�
ant in
rease; at

U∗ = 2.6 the phase di�eren
e rea
hes Φy
∼= 96◦. This remarkable in
rease is related to the

shift in the timing of vortex shedding. It 
an be observed in Fig. 5.8b that the instants

where the negative vortex is shed from the 
ylinder and that where the 
ylinder attains

300.2 301.8 303.5

−1

0 

1 

t

x∗

0

C∗

y

(a)

320.8 322.4 324.1
t

(b)

341.3 343.0 344.6
t

(c)

Figure 5.8: Vorti
ity 
ontours at di�erent time instants (top and middle rows), and the relative

waveforms of the 
ylinder displa
ement (blue dashed line) and the transverse �uid for
e (red

solid line) for U∗ = 2.35 (a), 2.6 (b) and 2.7 (
) at m∗ = 5 and Re = 180. The vortex stru
tures

in the top and middle rows are re
orded at the time instant values at whi
h the 
ylinder is at its

positive extreme point and zero-
ross over point

5

The relative waveform of the transverse �uid for
e is de�ned as C∗

y
= [Cy −Cy]/Ĉy, similarly to x∗

0

and C∗

x
[see Eqs. (4.2) and (4.3)℄
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its positive extreme position are far from ea
h other: C∗

y (t) < 0 at the point where x∗

0(t)
is at its maximum. As 
an also be seen, beyond U∗ = 2.6 there is no signi�
ant 
hange

in Φy, for example at U∗ = 2.7 the phase di�eren
e value of Φ = 99.2◦ is obtained. This
implies a slight shift in the timing of vortex shedding.

5.2 The e�e
t of Reynolds number

In this se
tion the streamwise-only VIV of a 
ir
ular 
ylinder is investigated at di�erent

Reynolds numbers (Re = 100, 180 and 250), and 
onstant mass and stru
tural damping

ratio values (m∗ = 10 and ζ = 0%, respe
tively). Similar to the 
omputations 
arried out

earlier and present in Se
tion 5.1, the redu
ed velo
ity is varied between U∗ = 1.5 and

3.5.
Figure 5.9a shows the non-dimensional os
illation amplitude x̂0 against the redu
ed

velo
ity for di�erent Re values. It 
an be seen the x̂0 
urves show similar trends; in
reasing

the redu
ed velo
ity at a 
ertain Reynolds number, x̂0 in
reases 
ontinuously up to its

peak value, and then it shows a de
reasing e�e
t. As seen, the amplitude 
urves shift

upwards with Re. Table 5.2 shows the peak values in x̂0, Ĉx and Ĉy, and the minimum

values in f ∗

x and Ĉy at the three Reynolds numbers for m∗ = 10. It is observed that

in
reasing the Re from 100 to 180 the peak vibration amplitude shows a �vefold in
rease,

and the maximum x̂0 at Re = 250 is more than the double of the value obtained for

Re = 180. As 
an also be seen, when the Reynolds number is in
reased, the rate of 
hange

for the amplitude of 
ylinder os
illation in
reases. Similar to high mass ratio 
ases for

Re = 180, x̂0 displays a sudden drop dire
tly after the point 
orresponding to the peak


ylinder response for Re = 250.
Figure 5.9a reveals also that the U∗

value where the peak vibration amplitude o

urs

de
reases with Re. For example the maximum x̂0 is observed at U∗ = 2.469 for Re = 250,
whi
h redu
ed velo
ity value is very 
lose to the point of 1/(2St) = 2.457. Sin
e the

Strouhal number in
reases in the domain of 100 ≤ Re ≤ 250 [see Eq. (1.8) [17℄℄, the point

orresponding to 1/(2St) de
reases; hen
e the U∗

value where the peak x̂0 o

urs has to

de
rease with the Reynolds number.

Figure 5.9b shows the dimensionless vibration frequen
y of the 
ylinder as fun
tion

of the redu
ed velo
ity for di�erent Reynolds numbers. It 
an be seen that the f ∗

x 
urves

display similar 
hara
teristi
s for all Re 
ases. At one parti
ular Reynolds number f ∗

x

de
reases to its minimum point, whi
h o

urs approximately at the same redu
ed velo
-
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Figure 5.9: Dimensionless os
illation amplitude (a) and frequen
y (b) against the redu
ed ve-

lo
ity for Re = 100 ( ), 180 ( ) and 250 ( ) at m∗ = 10
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Table 5.2: The maximum values in x̂0, Ĉx and Ĉy, and the minimum values in f∗

x and Ĉy for

di�erent Reynolds numbers at m∗ = 10

Re St

x̂0 f ∗

x Ĉx Ĉy

Max Min Max Min Max

100 0.1644 0.00215 0.3273 0.0109 0.3151 0.3234

180 0.1913 0.01080 0.3722 0.1057 0.5724 0.6363

250 0.2035 0.02340 0.3856 0.2279 0.7642 0.8701

ity value, where the maximum x̂0 is observed. Beyond the minimum point f ∗

x in
reases

asymptoti
ally to a value 
orresponding to the double of the Strouhal number. Sin
e St

depends highly on Re in the low-Reynolds number domain, the asymptote shifts towards

higher frequen
y values. It is also 
learly seen in Fig. 5.9b that f ∗

x shifts upwards with

Re. Although this phenomenon is partially 
aused by the strong dependen
e of St on

Re, the 
orrelation is not expli
it, be
ause the di�eren
e between the minimum f ∗

x and

2St is strongly in�uen
ed by the peak os
illation amplitude, whi
h depends also on the

Reynolds number. As 
an be seen in Fig. 5.9, the higher peak os
illation amplitude (or

the Reynolds number), the higher the di�eren
e between 2St and the minimum vibration

frequen
y value. For example the minimum f ∗

x is only 0.47% lower than the double of the

Strouhal number for Re = 100, while for Re = 250 f ∗

x is 5.27% lower than 2St (see Table
5.2).

In Fig. 5.10a the amplitude of streamwise �uid for
e 
oe�
ient is shown against the re-

du
ed velo
ity for di�erent Re values. Similarly to the os
illation amplitude and frequen
y


urves (see Fig. 5.9), the Ĉx data sets 
orresponding to di�erent Reynolds numbers show

similar tenden
ies. It 
an be seen that in
reasing the redu
ed velo
ity at one parti
ular

Reynolds number, at the beginning, Ĉx in
reases gradually rea
hing a peak level, whi
h

point approximately 
oin
ides with the point of peak 
ylinder response. It was shown

earlier that the U∗
value, where the maximum in x̂0 and the minimum in f ∗

x is identi�ed

de
reases with Re. Hen
e, the point where the maximum Ĉx is found also tends to lower

redu
ed velo
ity values, when the Reynolds number is in
reased. As seen in Table 5.2, the

peak Ĉx value in
reases intensively with Re, and, as already mentioned, these values are

signi�
antly larger than those obtained for a stationary 
ylinder (see the relevant dis
us-
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Figure 5.10: Amplitude of streamwise (a) and transverse �uid for
e (b) against redu
ed velo
ity

for Re = 100 ( ), 180 ( ) and 250 ( ) at m∗ = 10
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sion in Se
tion 5.1). After the maximum point Ĉx found to de
rease to a value of zero.

Similar to the di�erent mass ratio 
ases presented in Se
tion 5.1, the lo
ation of Ĉx → 0

oin
ides with the point where f ∗

x = U∗−1
. It 
an be seen that in
reasing the Reynolds

number, the U∗
value where Ĉx tends to zero de
reases, whi
h may also be attributable to

the fa
t that St = St(Re). As also seen, when Re in
reases, the interval within whi
h Ĉx

diminishes is narrowing. In addition, Ĉx shows a high jump between the redu
ed velo
ity

values of U∗ = 2.469 and 2.47 for Re = 250. Beyond the minimum point, Ĉx in
reases

gradually for all Reynolds numbers investigated.

Figure 5.10b shows the amplitude of transverse �uid for
e 
oe�
ient against the re-

du
ed velo
ity for di�erent Re values and 
onstant m∗ = 10. It 
an be seen that the

trends in Ĉy is very similar to that in Ĉx (see Fig. 5.10a). As 
an be seen, when the

redu
ed velo
ity is varied, at a 
ertain Reynolds number, Ĉy gradually in
reases up to

its peak point, then it de
reases to its minimum value within a domain whi
h narrows

with Re. It 
an be observed that Ĉy displays a sudden drop for Re = 250 at the same

point where x̂0, f
∗

x and Ĉx jump (see Figs. 5.9 and 5.10a). After the minimum point Ĉy

in
reases monotoni
ally. It was mentioned earlier in Se
tion 5.1 that the maximum and

minimum values in Ĉy are only slightly higher and lower than the 
orresponding value

for a stationary 
ylinder. This �nding holds true for ea
h Reynolds numbers 
onsidered

in this analysis. The maximum values in Ĉy are 2.06% and 10.6% higher than the values

obtained for a stationary 
ylinder for Re = 100 and 250, respe
tively, while the minimum

values of Ĉy for the same Reynolds numbers are 0.5% and 2.8% lower than those for a

non-os
illating 
ylinder. As mentioned earlier in Se
tion 5.1, the slight 
hanges in Ĉy is


aused only by vortex dynami
s. Figure 5.11 shows the vorti
ity 
ontours at di�erent

Reynolds numbers 
orresponding to the point of peak 
ylinder response. As seen, despite

the signi�
ant in
rement in the os
illation amplitude, there is no remarkable 
hange in

the vortex stru
ture; alternating modes of vortex shedding are observed at ea
h Re values.

For this reason, the small variations in the amplitude of transverse �uid for
e 
oe�
ient

are expe
ted, whi
h is 
onsistent with the results presented in Fig. 5.10b.

Figures 5.12a and 5.12b show the variations of Φx and Φy, respe
tively, against the

redu
ed velo
ity for di�erent Re. As shown earlier, Φx is restri
ted to the values of 0◦ and
180◦, and the jump between these two values o

urs at the point where the amplitude

of streamwise �uid for
e tends to zero [see Eqs. (5.6) and (5.7)℄. It 
an be observed in

Fig. 5.10a that the U∗
value where Ĉx → 0 de
reases with the Reynolds number, whi
h

explains why the point where Φx jumps between approximately 0◦ and 180◦ shifts to lower
redu
ed velo
ities. Instead of abrupt 
hanges, the phase di�eren
e of transverse �uid for
e

relative to the 
ylinder displa
ement, i.e. Φy, in
reases gradually from approximately 20◦

to 120◦ (see Fig. 5.12b). Note that the data set obtained for Re = 250 is an ex
eption,

(a) (b) (c)

Figure 5.11: Vorti
ity 
ontours for (Re, U∗) = (100, 2.9) (a), (180, 2.55) (b) and (250, 2.469) (
)
at m∗ = 10. Ea
h snapshots are re
orded at random phases of the 
ylinder os
illation
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Figure 5.12: Phase di�eren
es of streamwise (a) and transverse (b) �uid for
e 
oe�
ients relative

to the 
ylinder displa
ement against the redu
ed velo
ity for Re = 100 ( ), 180 ( ) and 250
( ) at m∗ = 10

Φy displays a sudden 
hange at U∗ = 2.469, similar to the quantities investigated earlier

(x̂0, f
∗

x , Ĉy and Ĉy). It was shown in detail in Se
tion 5.1 that the gradual in
rease in Φy

relates to the shift in the timing of vortex shedding.

5.3 New s
ienti�
 results

Contribution III

Using two-dimensional CFD 
omputations I showed that streamwise-only vortex-indu
ed

vibrations are possible at low Reynolds numbers. A single ex
itation region is observed

for all Reynolds number and mass ratio 
ombinations investigated (Re = 100, 180 and

250, and m∗ = 2, 5, 10 and 20). The dimensionless os
illation amplitude x̂0 in
reases up

to its peak value, beyond whi
h it gradually de
reases. The nondimensional frequen
y

of 
ylinder vibration f ∗

x behaves oppositely: it de
reases to its minimum value, then it

monotoni
ally in
reases. I showed that the dimensionless vibration frequen
y is always

lower than the double of the Strouhal number for a stationary 
ylinder. This �nding is


onsistent with the for
ed vibration results available in the literature.

The peak value in x̂0 and the minimum value in f ∗

x are identi�ed approximately at

the same U∗
value. These maximum and minimum values appear to be independent of

the mass ratio. In
reasing the Reynolds number, the peak x̂0 value in
reases intensively;

for the Reynolds number values of Re = 100, 180 and 250 the peak vibration amplitudes

are approximately 0.22%, 1.1% and 2.3% of the 
ylinder diameter, respe
tively. I showed

also that the single ex
itation region identi�ed in this study 
orresponds to the se
ond

response bran
h found at moderately high-Re experiments, be
ause alternating modes of

vortex shedding are observed in ea
h 
ases.

Related publi
ations: Konstantinidis et al. [J5℄, Dorogi et al. [C12℄ and Dorogi et al.

[C11℄

Contribution IV

Assuming that the 
ylinder displa
ement x0 and the streamwise �uid for
e 
oe�
ient Cx

are sinusoidal fun
tions of time I derived the following formula for the amplitude of Cx:
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Ĉx =
2π3m∗x̂0

U∗2

√
(1− f ∗2

x U∗2)2 + 4ζ2f ∗2
x U∗2, (5.8)

where m∗
and ζ are the mass ratio and damping ratio values, respe
tively, x̂0 and f ∗

x

are the dimensionless os
illation amplitude and frequen
y values, and U∗
is the redu
ed

velo
ity. Substituting ζ = 0%, it 
an be seen that Ĉx = 0 at the point, where the vibration
frequen
y 
oin
ides with the 
ylinder's natural frequen
y, i.e. at f ∗

xU
∗ = 1. I 
on�rmed this

�nding using CFD simulations for m∗ = 2, 5, 10 and 20 at Re = 180. The 
omputations

revealed that Ĉx → 0 at U∗ ∼= 2.625. Sin
e x̂0 is non-zero, the streamwise �uid for
e


oe�
ient has strongly non-harmoni
 nature in the vi
inity of U∗ = 2.625. I showed the

o

urren
e of a frequen
y 
omponent double the frequen
y of 
ylinder vibration (i.e. the

se
ond harmoni
 
omponent) just before the point of Ĉx → 0. At the redu
ed velo
ity

value, where the vibration frequen
y is the 
losest to the natural frequen
y of the 
ylinder,

the intensity of the se
ond harmoni
 
omponent is the highest.

The harmoni
 os
illator model show that the phase di�eren
e of Cx relative to x0

has to swit
h suddenly between 0◦ and 180◦, whi
h I 
on�rmed using the CFD data.

Besides, I 
al
ulated the phase lag of the transverse �uid for
e with respe
t to the 
ylinder

displa
ement Φy. Instead of abrupt jumps, I showed that Φy displays gradual in
rease from

approximately 20◦ to 110◦. This gradual in
rease 
an be attributed to shift in the timing

of vortex shedding, whi
h was 
on�rmed using the instantaneous vorti
ity 
ontours.

Related publi
ations: Konstantinidis et al. [J5℄, Dorogi et al. [C12℄ and Dorogi et al.

[C11℄
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Chapter 6

Transverse vortex-indu
ed vibrations:

identi�
ation of the upper bran
h for

Re = 300

In this 
hapter, similar to the 
omputations 
arried out in Chapter 5, single-degree-of-

freedom vortex-indu
ed vibrations are investigated, but here the 
ylinder is restri
ted

to os
illate only transverse to the main stream. Although there are several studies in the

literature dealing with transverse-only vortex-indu
ed vibrations, there are still some open

questions whi
h are worth to deal with.

As was pointed out in Chapter 1, vortex-indu
ed vibrations show very di�erent trends

at high and low Reynolds numbers. For high-Re 
ases, and very low mass and damping

values, three-bran
h 
ylinder response o

urs; initial, upper and lower bran
hes are found

[59, 60, 62, 63, 102℄. Feng [57℄ and Khalak and Williamson [59℄ showed that the mass-

damping parameter a�e
ts the 
ylinder response signi�
antly; at high m∗ζ values the

upper bran
h does not appear, a two-bran
h response is identi�ed. In 
ontrast, in the low-

Reynolds number domain, independently of the m∗ζ only two-bran
h 
ylinder response is

identi�ed; an upper bran
h has not yet been observed [38, 66, 70, 72, 89℄.

However, there are some relevant �ndings available in the literature, whi
h may refer

to the possible existen
e of the upper bran
h in the low-Reynolds number domain. These

�ndings are listed as follows:

(a) Khalak and Williamson [59℄ found 2P wake mode in the upper bran
h. However,

Evangelinos and Karniadakis [71℄ reported using two and three-dimensional 
ompu-

tations that the P+S vortex pattern may also be asso
iated with the upper bran
h;

(b) Leontini et al. [31℄ 
arried out transverse-only for
ed vibration 
omputations at

several Reynolds numbers. At Re = 300, 
lose to the fundamental lo
k-in domain

they identi�ed the P+S vortex stru
ture with positive me
hani
al energy transfer,

meaning that the energy is transferred from the �uid to the 
ylinder.

(
) Singh and Mittal [72℄ investigated two degrees of freedom vortex-indu
ed vibrations

at 
onstant U∗ = 4.92. They showed the o

urren
e of the P+S wake mode above

Re = 300;

(d) The results from the 2DoF VIV 
omputations presented in Chapter 4, and published

in [J3℄, show that the P+S vortex shedding mode develops at high dimensionless

natural frequen
y values, near the Reynolds number of 300.

These �ndings motivated us to address the following resear
h questions (see also Se
-

tion 1.2):
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Does the upper bran
h (i.e. the three-bran
h 
ylinder

response) o

ur at the Reynolds number of 300? What is the

e�e
t of stru
tural damping on the 
ylinder response?

In order to answer these questions, 
omputations are 
arried out at the Reynolds

number and mass ratio values of Re = 300 and m∗ = 10, respe
tively. The stru
tural

damping ratio is 
onsidered between ζ = 0% and 5%, hen
e the 
ombined mass-damping

parameter is 
hosen to be in the range of m∗ζ = 0 and 0.5. The redu
ed velo
ity based

on the 
ylinder's natural frequen
y in va
uum is varied from U∗ = 2.5 to 7.5.

6.1 The three-bran
h response

Figure 6.1a shows the rms values of the non-dimensional 
ylinder displa
ement y0′, and
in Fig. 6.1b the vibration frequen
y normalized by the 
ylinder's natural frequen
y in

va
uum fy/fN is plotted against U∗
for ζ = 0%. The dashed line in Fig. 6.1b represents

fv/fN , where fv is the vortex shedding frequen
y for a stationary 
ylinder. It 
an be seen

that the 
ylinder response obtained is very similar to the three-bran
h response presented

in many studies but only for high Reynolds numbers. In the following, the individual

bran
hes will be des
ribed in detail.

As 
an be seen, in the range of 2.5 ≤ U∗ ≤ 3.5 the os
illation amplitude is very low and

the vibration frequen
y is 
lose to the vortex shedding frequen
y for a stationary 
ylinder

(fy ∼= fv). From U∗ = 3.5 to 4 an initial bran
h is identi�ed, where fy/fN represents

an approximately 
onstant value of fy/fN ∼= 0.95, and y0′ in
reases intensively. Between
U∗ = 4 and 5.9 lo
k-in or syn
hronization is observed, where the vibration frequen
y lo
ks
approximately to the natural frequen
y of the system (see Fig. 6.1b). The entire lo
k-in

domain 
an be divided into two subdomains. Relatively high os
illation amplitudes are

observed in the range of 4 < U∗ ≤ 4.89 (see Fig. 6.1a), where the vibration frequen
y is

slightly lower than the 
ylinder's natural frequen
y (fy/fN < 1, Fig. 6.1b). This redu
ed
velo
ity domain appears to 
orrespond to the upper bran
h. In order to 
on�rm this

suggestion, 
areful analysis is needed, whi
h is presented in Se
tion 6.2. At the higher

boundary of the suggested upper bran
h y0′ drops abruptly by 7%, and fy passes through
fN . Govardhan and Williamson [60℄ identi�ed a similar phenomenon at the boundary

separating the upper and the lower bran
hes for Re

∼= 103�104. Between U∗ = 4.89 and

5.9 the lower bran
h is observed, where fy is slightly higher than fN (see Fig. 6.1b), and y0′

3 4 5 6 7
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0.4

U ∗

y0′

(a)

3 4 5 6 7

0.5

0.7
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1.3

1.5

U ∗

fy/fN

(b)

fv/fN →

Figure 6.1: Root-mean square values of transverse 
ylinder displa
ement (a) and the vibration

frequen
y normalized by the natural frequen
y of the system in va
uum (b) against the redu
ed

velo
ity for ζ = 0%
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rea
hes intermediate values (Fig. 6.1a). The redu
ed velo
ity range above U∗ = 5.9 is out
of the lo
k-in domain: the os
illation amplitude is very low (y0′ ∼= 0.1), and the vibration

frequen
y is 
lose again to the vortex shedding frequen
y for a stationary 
ylinder.

Govardhan and Williamson [60℄, based on the methodology introdu
ed by Lighthill [61℄

applied the following de
omposition on the time-dependent transverse �uid for
e F̃y(t):

F̃y(t̃) = F̃V (t̃) + F̃p(t̃). (6.1)

In this formula F̃V and F̃p are the instantaneous vortex and potential added mass

for
es, respe
tively, per unit length of the 
ylinder. The potential added mass for
e is

de�ned as follows [60℄:

F̃p(t̃) = −CAmd
¨̃y0(t̃), (6.2)

where CA is the potential added mass 
oe�
ient, whi
h equals to unity for a 
ir
ular


ylinder [56℄, md = ρd2π
4

is the displa
ed �uid mass per unit length of the 
ylinder, and

¨̃y0
is the dimensional 
ylinder a

eleration. Rearranging and normalizing Eq. (6.1) by

1
2
ρU2

∞
d

the following expression 
an be obtained for the instantaneous vortex for
e 
oe�
ient:

CV (t) = Cy(t) +
π

2
ÿ0(t), (6.3)

where ÿ0 =
d

U2
∞

¨̃y0 is the non-dimensional 
ylinder a

eleration.

Figures 6.2a and 6.2b show the rms values of transverse �uid for
e and vortex for
e


oe�
ients Cy′ and CV ′
, respe
tively, against U∗

for ζ = 0%. It 
an be seen that for very

low 
ylinder displa
ements, i.e. in the domains of 2.5 ≤ U∗ ≤ 3.45 and 5.9 < U∗ ≤ 7.5,
Cy′ and CV ′

are approximately identi
al and near the value obtained for a stationary


ylinder (Cy′
∼= CV ′ ∼ 0.5, see Norberg [23℄). Govardhan and Williamson [60℄ found

Cy′
∼= CV ′

∼= 0.1 in the very low os
illation amplitude range (in U∗ < 4 and U∗ > 10.5
in their study), whi
h is 
lose to CV ′

∼= 0.05, the value identi�ed for a non-os
illating


ylinder at Re ∼ 103 [23℄. In this sense, the 
urrently obtained CFD results for Re = 300
and the experimental �ndings of [60℄ for high Reynolds numbers show good qualitative

agreement.

In
reasing the redu
ed velo
ity in the initial bran
h, Cy′ in
reases gradually, and

rea
hes its peak value at the beginning of the suggested upper bran
h (at U∗ = 4, see
Fig. 6.2a). Between U∗ = 4 and 4.89 Cy′ drops dramati
ally, moreover at U∗ = 4.36 (in

3 4 5 6 7
0

0.2
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0.6

0.8

1

1.2

U ∗
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Figure 6.2: Root-mean square values of transverse �uid for
e (a) and vortex for
e (b) against

the redu
ed velo
ity for ζ = 0%
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the middle of the proposed upper bran
h) it su�ers a sudden 
hange from Cy′
∼= 0.71

to approximately 0.25. It is also seen in Fig. 6.2a that at U∗ = 4.89 Cy′ shows another

but mu
h smaller jump, above whi
h it in
reases. The experimental results of Govardhan

and Williamson [60℄ and the trends in the 
urrent 
omputational results are very similar.

However, abrupt 
hange in Cy′ in the middle of the upper bran
h has not been identi�ed

in the high-Reynolds number domain; this jump may 
orrespond to other important �ow

phenomena.

The rms values of vortex for
e 
oe�
ient (see Fig. 6.2b) found to de
rease in the initial

bran
h until it rea
hes its minimum value. The lo
ations of the extreme values in Cy′ and

CV ′
are near to ea
h other. In the proposed upper bran
h CV ′

in
reases strongly, and

at U∗ = 4.36 it 
hanges suddenly between CV ′
∼= 0.53 and 1.02. Similarly again to the

tenden
ies observed in Cy′, at U
∗ = 4.89 the rms of vortex for
e 
oe�
ient shows another

but mu
h smaller jump. The peak value in CV ′
is observed at the beginning of the lower

bran
h, whi
h �nding qualitatively agrees well with that of [60℄.

6.2 Phase dynami
s for undamped vibrations

The results presented earlier suggest that the upper bran
h exists at the Reynolds number

of 300. In order to 
on�rm this suggestion, 
areful analyses are required. Let us assume

again that the motion of the 
ylinder and the aerodynami
 for
e 
oe�
ients a
ting on the

body are sinusoidal fun
tions of time:

y0(t) = ŷ0 sin 2πf
∗

y t, (6.4)

Cy(t) = Ĉy sin(2πf
∗

y t+ Φy), (6.5)

CV (t) = ĈV sin(2πf ∗

y t + ΦV ), (6.6)

where Ĉy and ĈV are the amplitude of the transverse �uid for
e and vortex for
e 
oe�-


ients, and ŷ0 and f ∗

y are the non-dimensional os
illation amplitude and frequen
y values.

In these expressions Φy and ΦV are the phase di�eren
es for transverse �uid for
e and

vortex for
e, respe
tively, relative to the 
ylinder displa
ement. For the sake of simpli
ity,

Φy and ΦV will be referred to as transverse and vortex phases, respe
tively.

In Chapter 5 the harmoni
 os
illator model is given in detail for a 
ir
ular 
ylinder

free to vibrate only in streamwise dire
tion. Sin
e the approa
hes used for transverse-only

and streamwise-only vortex-indu
ed vibrations are very similar to ea
h other, only little

detail is provided in this 
hapter. For further details the reader is referred to Chapter 5,

Se
tion 5.1.

Substituting Eqs. (6.4) and (6.5) into the 
ylinder equation of motion [Eq. (2.13)℄,

and equating the 
oe�
ients of sine and 
osine terms, the following expressions 
an be

obtained:

cosΦy = 2π3 m∗ŷ0

ĈyU∗2
(1− f ∗2

y U∗2), (6.7)

sinΦy = 4π3m
∗ζŷ0

ĈyU∗

f ∗

y . (6.8)

It 
an be seen in Eq. (6.7) that cosΦy 
hanges from positive to negative at the point

where the vibration frequen
y passes through the natural frequen
y of the system in

va
uum, i.e. at f ∗

yU
∗ = 1. In addition, Eq. (6.8) shows that for zero stru
tural damping,

sinΦy = 0, therefore, the 
ylinder motion 
an only be in-phase (Φy = 0◦) or out-of-phase
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(Φy = 180◦) with the transverse �uid for
e. Hen
e, as the system goes through f ∗

yU
∗ = 1

for ζ = 0◦, the transverse phase has to jump from 0◦ to 180◦.
Introdu
ing Cy(t) = CV (t) − π

2
ÿ0(t) [based on Eq. 6.3℄ and the harmoni
 approxima-

tions [Eqs. (6.4) and (6.6)℄ into Eq. (2.13), and equating the 
oe�
ients of the sine and


osine fun
tions, the following formulæ are obtained:

cosΦV = 2π3 (m
∗ + CA)ŷ0

ĈV U∗2
A

(1− f ∗2
y U∗2

A ), (6.9)

sinΦV = 4π3

√
m∗(m∗ + CA)ζŷ0

ĈVU
∗

A

f ∗

y , (6.10)

where U∗

A is the redu
ed velo
ity based on the 
ylinder's natural frequen
y in still �uid

fN,a. Similarly to Eq. (6.7), Eq. (6.9) shows that cosΦV 
hanges from positive to negative

as the system passes through f ∗

yU
∗

A = 1. Sin
e for undamped vibrations the vortex phase

is restri
ted to the values of ΦV = 0◦ and 180◦, the vortex phase has to jump between

these two values (0◦ and 180◦) at the point 
orresponding to f ∗

yU
∗

A = 1.
Govardhan and Williamson [60℄ at high Reynolds numbers and low mass and damping

values found that ΦV and Φy jump at di�erent redu
ed velo
ity values. The U∗
domain

whi
h is en
losed between the two phase jumps (in ΦV at its beginning and in Φy at its

upper boundary) 
orresponds to upper bran
h. In other words, to 
on�rm that the range

of 4 < U∗ ≤ 4.89, where relatively high os
illation amplitudes are found (see Fig. 6.1),

represents the upper bran
h, Φy and ΦV should be investigated.

The time-dependent transverse and vortex phases (Φy and ΦV ) are 
al
ulated using

the analyti
al signal approa
h based on Hilbert transform, whi
h is shown in detail in

Appendix A.2.2. In the �gures the time-dependent phase di�eren
es are mostly plotted in

radian as unwrapped signals. However, their time-average values (Φy and ΦV ) are shown

in degrees, and are 
al
ulated via time-averaging Φy and ΦV wrapped in the interval of

[−π/2, 3π/2] (see also Appendix A.2.2).

Figure 6.3 shows Φy (on the left-hand side) and ΦV (right) for di�erent redu
ed velo
ity

values in the very low amplitude range (see Figs. 6.3a and 6.3b), and in the initial bran
h

(Fig. 6.3
). It 
an be seen that in the domain of 2.5 ≤ U∗ ≤ 3.45 the transverse and vortex

phases are approximately 
onstant, only small os
illations are observed near U∗ = 3.45
(Fig. 6.3b). In the initial bran
h (3.45 < U∗ ≤ 4) Φy shows intermediate os
illations,

but its time-mean value is roughly zero (Fig. 6.3
). However, in the same range ΦV shows

unbounded de
rease, whi
h 
orresponds to the loss of syn
hronization between the 
ylinder

motion and the vortex for
e 
oe�
ient [103, 104℄. In Pikovsky et al. [103℄ this phenomenon

is interpreted by analyzing the relationship between motion and for
ing frequen
ies.

In Fig. 6.4 di�eren
es of vibration frequen
y relative to the frequen
y of transverse

�uid for
e and vortex for
e 
oe�
ients, i.e. f ∗

y −f ∗

Cy
and f ∗

y −f ∗

CV
, respe
tively, are shown

against U∗
in the initial, proposed upper and lower bran
hes. These quantities are 
alled

detuning. It 
an be seen that in the initial bran
h f ∗

y > f ∗

CV
, whi
h explains why the

time-dependent vortex phase de
reases in this domain [103℄. In addition, the di�eren
e

between the two frequen
y values is relatively large in the range of 3.45 < U∗ ≤ 4, whi
h

auses the roughly uniform drop in the vortex phase (see Fig. 6.3
). It is also shown in

Fig. 6.4 that f ∗

y − f ∗

Cy

∼= 0 in the initial bran
h, whi
h implies the roughly 
onstant value

of transverse phase.

Based on Fig. 6.1, the upper bran
h is expe
ted to appear in the domain of 4 < U∗ ≤
4.89. Figures 6.5a and 6.5b show the times histories of transverse and vortex phases at

U∗ = 4.2 and 4.28, respe
tively. In 
ontrast to the trends observed in the initial bran
h, in

the range of 4 < U∗ ≤ 4.28 f ∗

y is lower than f ∗

CV
(see Fig. 6.4), whi
h leads to in
reasing

ΦV (Fig. 6.5). Besides, |f ∗

y − f ∗

CV
| is signi�
antly lower in this domain 
ompared to that
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Figure 6.3: Time-dependent phase di�eren
es of transverse �uid for
e (left) and vortex for
e

(right) relative to 
ylinder displa
ement at the redu
ed velo
ity values of U∗ = 3 (a), 3.36 (b)

and 4 (
) for ζ = 0%

in the initial bran
h; thus, one 
an expe
t remarkable 
hanges in the dynami
s of vortex

phase. As shown in Fig. 6.5, instead of unbounded 
hanges, ΦV 
onsists of time intervals,

so 
alled epo
hs [103℄, where the vortex phase is approximately 
onstant. It 
an be seen

that the time interval of an epo
h extends with the redu
ed velo
ity. Two neighboring

epo
hs are separated by so-
alled phase slips, where the vortex phase shows rapid 
hange

[103℄. In addition, Figs. 6.5a and 6.5b show approximately 
onstant Φy values, whi
h

is expe
ted be
ause |f ∗

y − f ∗

Cy
| ∼= 0 between U∗ = 4 and 4.28 (Fig. 6.4). Note that in

this 
ontext, the phrase approximately 
onstant refers to that the phase di�eren
e varies

around a 
onstant value (in this 
ase, around zero).

Figure 6.6 shows the time histories of vortex phase wrapped between −π/2 and 3π/2
at the same redu
ed velo
ity values where the time-dependent phase di�eren
es were

investigated in Figs. 6.3
 and 6.5. Pikovsky et al. [103℄ showed that the 
hange of phase

di�eren
e via a phase slip (see Fig. 6.5) 
annot be arbitrary, it is always the whole number

multiples of π. This �nding is expli
itly shown in Figs. 6.6b and 6.6
.

It is also very important to see that at an epo
h, the wrapped vortex phase varies

periodi
ally around π (see Figs. 6.6a and 6.6b), and Φy represents an almost 
onstant zero

value (Fig. 6.5). For this reason, the 
onditions of the existen
e of the upper bran
h (ΦV =
π and Φy = 0) in 4 < U∗ ≤ 4.28 seem to be satis�ed. However, in-between two epo
hs (i.e.

in phase slips) the vortex phase deviates marginally from π, whi
h 
auses dis
repan
ies in

its time-mean value. As shown earlier, time lengths of the epo
hs in
rease with U∗
, that

is, the deviation in ΦV from its theoreti
ally expe
ted value (ΦV = 180◦) de
reases with
the redu
ed velo
ity. Similar issues appear in the initial bran
h (see Fig. 6.6a), where the

high spikes o

urring in the wrapped phase angle in�uen
e ΦV signi�
antly. In further

time-averaged phase di�eren
e plots it is ne
essary to distinguish between syn
hronous

and non-syn
hronous 
ases. By non-syn
hronous 
ases I mean that at the 
orresponding

U∗
values unbounded 
hanges or phase slips are identi�ed. These points will be indi
ated

by empty symbols.
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against the redu
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hes for ζ = 0%. Here f∗

y , f
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Cy
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CV
are the frequen
ies of 
ylinder os
illation,

transverse �uid for
e and vortex for
e, respe
tively
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Figure 6.5: Time-dependent phase di�eren
es Φy (left) ΦV (right) at U∗ = 4.2 (a) and 4.28 (b)

in the upper bran
h for ζ = 0%

Figure 6.7 shows the time histories of transverse and vortex phases in the range of

4.28 < U∗ ≤ 4.89. As 
an be seen in Fig. 6.4, the frequen
ies of vortex for
e and transverse

�uid for
e are equal to the vibration frequen
y of the 
ylinder between U∗ = 4.28 and

4.7. Consequently, approximately 
onstant Φy and ΦV values are expe
ted in this domain.

Figures 6.7a-6.7
 
orroborate these expe
tations: neither unbounded 
hange nor phase

slips are identi�ed in Φy and ΦV . It is also seen in these �gures that the time-mean values

of ΦV and Φy approximately equal to π and 0, respe
tively, whi
h are 
onsistent with the

experimental results for the upper bran
h. This �nding further strengthens my previous

eviden
e 
on
erning the existen
e of the upper bran
h at Re = 300.
It 
an also be seen in Figs. 6.7a-6.7
 that the �u
tuations in transverse and vortex

phases are ampli�ed when U∗
is in
reased. As seen, in the range of 4.28 < U∗ ≤ 4.35,

both Φy and ΦV show small periodi
 os
illations (Fig. 6.7a). Varying the redu
ed velo
ity

from U∗ = 4.35 to 4.48, Φy os
illates randomly with very high rms values. The random

os
illations are also observed in the time history of ΦV , but its �u
tuation is signi�
antly

lower. In the domain of 4.48 < U∗ ≤ 4.7 the transverse and the vortex phases return ba
k

to periodi
, but the very high �u
tuations in Φy are still observed (see Fig. 6.7
).
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Figure 6.6: Time-dependent vortex phase at U∗ = 4 (a), 4.2 (b) and 4.28 (
) for ζ = 0%. Here,

phase di�eren
e is wrapped in [−π/2; 3π/2]
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Figure 6.7: Time-dependent phase di�eren
es Φy (left) ΦV (right) at U∗ = 4.35 (a), 4.4 (b), 4.65
(
) and 4.89 (d) in the upper bran
h for ζ = 0%
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In
reasing the redu
ed velo
ity in the range of 4.7 < U∗ ≤ 4.89, I found that the

detuning f ∗

y − f ∗

Cy
drops to approximately −0.2 (Fig. 6.4), whi
h 
auses an unbounded

in
rease in the transverse phase (Fig. 6.7d). It is very interesting to note that the absolute

value of this detuning is very 
lose to the Strouhal number at Re = 300, i.e. f ∗

y − f ∗

Cy

∼=
−St. Besides, the vibration frequen
y is also near St in the aforementioned U∗

range

(f ∗

y
∼= St, see Fig. 6.1b). Combining these two �ndings the detuning value of −0.2 
an

only be a
hieved when the frequen
y of the transverse �uid for
e, more pre
isely, the

most dominant frequen
y 
omponent in the spe
tra of Cy, is double the Strouhal number,

f ∗

Cy

∼= 2St ∼= 2f ∗

y . Moreover, the unreasonably high �u
tuations in Φy appear to be 
aused

by the o

urren
e of higher order harmoni
s for Cy. These e�e
ts are further investigated

in Se
tion 6.4.

Figure 6.8 shows Φy and ΦV in the range of 4.89 < U∗ ≤ 5.9, whi
h domain 
orresponds

to the lower bran
h, be
ause Φy
∼= ΦV

∼= 180◦ [60, 63℄. It 
an be seen that the rms values

of transverse and vortex phases de
rease with the redu
ed velo
ity.

Figure 6.9 shows the time-mean values of transverse and vortex phases Φy and ΦV ,

respe
tively, in degrees where �lled and empty symbols indi
ate syn
hronous and non-
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Figure 6.8: Time-dependent phase di�eren
es Φy (left) ΦV (right) at U∗ = 4.9 (a) and 5.5 (b)

in the lower bran
h for ζ = 0%
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Figure 6.9: Time-mean transverse and vortex phase values against U∗
for ζ = 0%. Here syn-


hronous and non-syn
hronous 
ases are denoted by �lled and empty symbols, respe
tively
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syn
hronous 
ases. Although the phase di�eren
es show gradual variations between 0◦

and 180◦, the transitions in ΦV and Φy are observed in di�erent U∗
ranges, whi
h is

the distin
tive feature of three-bran
h response. However, experimental studies at high

Reynolds numbers and low mass and damping values reported abrupt phase 
hanges in

the initial↔upper and upper↔lower bran
h transition domains. As dis
ussed earlier, the

reason behind the gradual and not abrupt variations in ΦV and Φy is the unbounded


hanges and phase slips found in the time-dependent transverse and vortex phases.

To 
on
lude, the initial bran
h is observed in the range of 3.45 < U∗ ≤ 4, the upper
bran
h between U∗ = 4 and 4.89, and the lower bran
h in the domain of 4.89 < U∗ ≤ 5.9.
The most important observations related to the dynami
s of Φy and ΦV at the di�erent

response bran
hes are summarized in Table 6.1.

Table 6.1: Summary of phase dynami
s in the three response bran
hes

Bran
h U∗
domain Φ Φv

� [2.5, 3.45] low periodi
 os
. low periodi
 os
.

Initial ]3.45, 4.0] intermediate os
. unbounded de
rease

Upper

]4.0, 4.28] low random os
. phase slips

]4.28, 4.35] low periodi
 os
. low periodi
 os
.

]4.35, 4.48] high random os
. low random os
.

]4.48, 4.7] high periodi
 os
. low periodi
 os
.

]4.7, 4.89] unbounded in
rease low periodi
 os
.

Lower ]4.89, 5.9] low periodi
 os
. low periodi
 os
.

6.3 Analyses for non-zero stru
tural damping

As mentioned at the beginning of Chapter 6, the se
ond important aim of this 
hapter is

to investigate the e�e
t of stru
tural damping ratio on the 
ylinder response. Figure 6.10

shows y0′ and fy/fN as fun
tions of the redu
ed velo
ity for di�erent stru
tural damping

ratio values between ζ = 0% and 5%. It 
an be seen that the results obtained harmonize
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Figure 6.10: Root-mean square values of transverse 
ylinder displa
ement (a) and vibration

frequen
y normalized by the natural frequen
y in va
uum (b) against the redu
ed velo
ity for

ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5% ( )
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with the expe
tations: the os
illation amplitude de
reases with the damping ratio. As 
an

be observed in Fig. 6.10a, the stru
tural damping 
auses signi�
ant 
hanges in the 
ylinder

response. The obtained y0′ and fy/fN 
urves for ζ ≤ 1% are very similar to ea
h other,

they seem to form three-bran
h response. For these ζ values and low redu
ed velo
ities

(below approximately U∗ = 3.5), the os
illation amplitude is very low. Between U∗ ∼= 3.5
and 4 the initial bran
h is identi�ed, where y0′ in
reases intensively. At U

∗ ∼= 4, regardless
of ζ , the os
illation amplitude shows a sudden upward jump, whi
h 
orresponds to the

boundary separating the initial and upper bran
hes. However, the U∗
value where the


ylinder response swit
hes between the upper and lower bran
hes shows to de
rease with

the stru
tural damping ratio. Klamo et al. [62℄ found a somewhat di�erent feature, in their

study the upper↔lower bran
h transition range remained independent of the stru
tural

damping. Soti et al. [63℄ investigated a wider ζ range. They showed that when damping

was in
reased the boundary between the upper and lower bran
hes shifted to lower U∗

values. This �nding is very similar to my results at Re = 300 (see Fig. 6.10).

Figure 6.11 shows the time-dependent transverse and vortex phases in the initial

bran
h (Fig. 6.11a), upper bran
h (Fig. 6.11b and Fig. 6.11
) and lower bran
h (Fig.

6.11d) for ζ = 0.5%. It 
an be seen in Fig. 6.11a that ΦV shows an unbounded de
rease in

the initial bran
h, similar to that observed for undamped vibrations. At the beginning of

the upper bran
h phase slips are found in the vortex phase (Fig. 6.11b), but interestingly,

ΦV remains approximately 
onstant, be
ause the detuning f ∗

y − f ∗

CV
is zero in this range.

In
reasing the redu
ed velo
ity in the further part of the upper bran
h, the results show

similar features to those reported for ζ = 0%. However, at the end of the upper bran
h

no unbounded in
rease was identi�ed in the transverse phase, whi
h is in 
ontrast to the

results presented for undamped vibrations (see Fig. 6.7d). Figure 6.11
 shows Φy and

ΦV just before the jump to the lower bran
h, and here approximately 
onstant transverse
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Figure 6.11: Time histories of phase di�eren
es Φy (left) ΦV (right) at redu
ed velo
ity values

of U∗ = 3.8 (a), 4.25 (b), 4.68 (
) and 4.8 (d) for ζ = 0.5%
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phase is shown. The possible reason behind this phenomenon is that the role of the se
ond

harmoni
 frequen
y 
omponent 
hanges with the stru
tural damping ratio. This e�e
t will

be further investigated in Se
tion 6.4.

It 
an also be seen in Fig. 6.10 that 
ylinder responses for ζ = 3% and 5% are very

di�erent from those observed in ζ = 0�1%. For these high-damping 
ases, without any

sudden 
hanges, y0′ and fy/fN show smooth variations, with no upper bran
h o

urring,

only initial and lower bran
hes are identi�ed. Feng [57℄, Khalak and Williamson [59℄,

Klamo et al. [62℄ and Soti et al. [63℄ also found that in
reasing the damping ratio (or

the 
ombined mass-damping parameter) 
an lead to the transition from three-bran
h

to two-bran
h response. Sin
e the 
ondition of fy/fN ∼= 1 does not satisfy, no 
lassi


lo
k-in domains are found for high stru
tural damping values. This is in 
ontrast to the

phenomenon observed for ζ ≤ 1%. Although Prasanth et al. [105℄ investigated the e�e
t

of mass ratio, they 
arried out CFD 
omputations for ζ = 0.1% and 10%. For ζ = 10%
they observed a similar phenomena; fy/fN in
reased almost linearly with U∗

.

In order to show expli
itly that the upper bran
h does not o

ur for ζ = 3% and

5%, the time-averaged transverse and vortex phases are analyzed. As already dis
ussed

in Se
tion 6.2, theoreti
ally, the upper bran
h is 
hara
terized by abrupt phase jumps at

its lower and higher boundaries. Although for zero damping ratio, the phase di�eren
e

values of 0◦ and 180◦ are the only theoreti
ally possible values [as shown by Eqs. (6.8)

and (6.10)℄, for ζ > 0% Φy and ΦV are allowed to vary between 0◦ and 180◦. Figures
6.12a and 6.12b show Φy and ΦV against the redu
ed velo
ity for di�erent damping ratio

values. Similar to the notations employed in Fig. 6.9, �lled and empty symbols refer to

syn
hronous and non-syn
hronous 
ases. It 
an be seen in Fig. 6.12 that for relatively

high 
ylinder displa
ements, time-averaged phase di�eren
es, espe
ially Φy, do depend

on stru
tural damping. Similar to undamped vibrations, ΦV in
reases gradually at the

initial↔upper bran
h transition range, while Φy transitions at the boundary separating

the upper and lower bran
hes.

It is also seen in Fig. 6.12 that the 
hange of ΦV through the initial↔upper bran
h

transition range is a weak fun
tion of damping ratio. For instan
e, for ζ = 0.1% ΦV


hanges by 175.08◦, and for ζ = 1% by 159.77◦. However, the in
rement observed in Φy

depends strongly on ζ ; for ζ = 0.1% Φy jumps roughly by ∆Φy
∼= 158.1◦ and for ζ = 1%

only by ∆Φy
∼= 43.4◦. Moreover, in high stru
tural damping 
ases (at ζ = 3% or 5%)

jumps in Φ disappear, resulting in an almost 
ontinuous in
rease of the time-averaged
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Figure 6.12: Time-mean values of transverse (a) and vortex phases (b) against redu
ed velo
ity

for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5% ( ). Filled and empty

symbols refer to syn
hronous and non-syn
hronous 
ases, respe
tively.
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phase angles. This �nding 
ompares qualitatively well with the experimental results of

Soti et al. [63℄.

The lower limits of the upper and lower bran
hes U∗

UB and U∗

LB and the widths of

the upper bran
h ∆U∗ = U∗

UB − U∗

LB are summarized in Table 6.2. It 
an be seen that

similarly to experimental results obtained at high Reynolds numbers [62, 63℄, the bran
h-

ing behavior is strongly in�uen
ed by the damping ratio. As we in
rease ζ , the width

of the upper bran
h diminishes, and for ζ = 3% and 5% it 
ompletely disappears, only

the initial and lower bran
hes remain. In other words, for low-damping 
ases (ζ ≤ 1%)

a three-bran
h response is identi�ed, and for high-damping 
ases (at ζ = 3% and 5%)

a two-bran
h response is found. Klamo et al. [62℄ and Soti et al. [63℄ found a similar

phenomenon in their experimental studies.

Table 6.2: E�e
t of damping ratio on 
ylinder response. Here U∗

UB and U∗

LB are the redu
ed

velo
ity values where 
ylinder response shift to upper and lower bran
hes, respe
tively.

ζ U∗

UB U∗

LB ∆U∗

0% 4.00 4.89 0.88

0.1% 4.03 4.84 0.80

0.5% 4.06 4.69 0.63

1% 4.30 4.61 0.31

3% − 4.68 −
5% − 4.66 −

6.4 Analysis of hydrodynami
 features

In Se
tion 6.2 the harmoni
 os
illation model, applied to 
on�rm the existen
e of the

upper bran
h is shown. Rearranging Eq. (6.8), the following expression is obtained:

Ĉy sinΦy = 4π3
f ∗

y ŷ0

U∗

m∗ζ. (6.11)

This formula shows that Ĉy sinΦy (responsible for the me
hani
al energy transfer)

varies linearly with f ∗

y ŷ0/U
∗
, where the proportionality fa
tor is proportional to the mass-

damping parameter m∗ζ . Figure 6.13 shows Ĉy sinΦy against 4π3f ∗

y ŷ0/U
∗
for di�erent

damping values between ζ = 0% and 5% and 
onstant m∗ = 10. Empty and �lled symbols

refer to data points belonging to the upper and lower bran
hes, respe
tively. Dashed lines

represent the results from the harmoni
 os
illator model [des
ribed by Eq. (6.11)℄, and

the numbers (belonging to the dashed lines) show stru
tural damping ratio values. It 
an

be seen in Fig. 6.13 that harmoni
 approximation seems to be very a

urate in the lower

bran
h and at the beginning of the upper bran
h. However, at the remaining part of the

upper bran
h the results are very far from the harmoni
 solutions, whi
h suggests that

in these domains the transverse �uid for
e is not harmoni
 fun
tion of time. The results

presented earlier are 
onsistent with this proposal. For undamped vibrations I found

very high detuning values (around f ∗

y − f ∗

Cy
= −0.2) in the range of 4.7 < U∗ ≤ 4.89,

whi
h may refer to that the most remarkable frequen
y in the spe
tra of Cy equals to

the double of the vibration frequen
y. Besides, in the domain of 4.36 < U∗ ≤ 4.7 the

time-dependent transverse phase shows unreasonably high �u
tuations, whi
h may also

indi
ate the o

urren
e of higher order harmoni
s in the spe
tra of transverse �uid for
e.

In order to 
on�rm the non-harmoni
 nature of Cy (in some ranges), time histories and

frequen
y spe
tra of 
ylinder displa
ement and transverse �uid for
e are further analyzed.
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Figure 6.13: Ĉy sinΦ against 4π3f∗ŷ0/U
∗
in the upper bran
h (empty symbols) and in the lower

bran
h (�lled symbols) for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5%
( ). The dashed lines represent solutions obtained from the harmoni
 os
illator model given

by Eq. (6.11)

The analyses are 
arried out �rst for undamped 
ylinder vibrations, and than for non-zero

damping ratio values.

6.4.1 Undamped 
ylinder vibration

Figure 6.14 shows the time histories of non-dimensional 
ylinder displa
ement (left-hand

side of the �gure) and transverse �uid for
e (middle) at di�erent U∗
values in the initial

(see Fig. 6.14a), upper (Figs. 6.14b-6.14e), and lower bran
hes (Fig. 6.14f) for ζ = 0%.

Frequen
y spe
tra of the signals (displa
ement and transverse �uid for
e) normalized by

the 
ylinder's natural frequen
y in va
uum obtained using Fast Fourier Transform (FFT)

are shown in the right plots of the �gures. Here PSD denotes Power Spe
tral Density, and

verti
al axis has logarithmi
 s
ale.

It 
an be seen in Fig. 6.14a that the signals show quasi-periodi
 nature in the initial

bran
h (3.45 < U∗ ≤ 4); y0 and Cy 
ontain multiple frequen
y 
omponents. This is the

reason why the time-dependent transverse phase shows random �u
tuations in the same

redu
ed velo
ity range (see Fig. 6.3
). At U∗ = 4 high jumps are observed in y0′ and fy/fN
(Fig. 6.1), at the lo
ation where the 
ylinder response shifts from the initial to the upper

bran
h. The high 
ylinder displa
ement in the upper bran
h 
an observed in Fig. 6.14b.

This �gure shows also that in the domain of 4 < U∗ ≤ 4.28, the 
ylinder motion and the

transverse �uid for
e are quasi-periodi
 signals. These e�e
ts are expe
ted, be
ause in this

range the time-dependent transverse phase shows random variation (see Fig. 6.5). Due to

the quasi-periodi
 behavior, the frequen
y spe
tra of y0 and Cy 
ontain multiple frequen
y


omponents from whi
h f/fN ∼= 1 and 3 have the highest PSD values. Note that f/fN ∼= i
frequen
y peak is usually referred to as the ith harmoni
 frequen
y 
omponent. Between

the redu
ed velo
ity values of U∗ = 4.29 and 4.35 the time-dependent phase di�eren
es

show periodi
 variations (see Fig. 6.7a), whi
h refers to periodi
 
ylinder vibrations. It


an be seen in Fig. 6.14
 that both y0 and Cy are periodi
 signals; transverse �uid for
e


ontains relevant frequen
y 
omponents at f/fN ∼= 1 (highest intensity) and 3 (relatively

low intensity), while in the spe
trum of 
ylinder displa
ement only f/fN ∼= 1 is identi�ed.
In
reasing the redu
ed velo
ity from U∗ = 4.36 to 4.48, slightly above the jumps found

in Cy′ and CV ′
(see Fig. 6.2), the transverse �uid for
e and the 
ylinder displa
ement

be
ome quasi-periodi
 again (Fig. 6.14d). These signals show similar behaviors to the

time-dependent phases, in the same U∗
domain random os
illations have been found in
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Figure 6.14: Time histories (left and middle) and Fourier spe
tra (right) of 
ylinder displa
ement

and transverse �uid for
e at U∗ = 4 (a), 4.2 (b), 4.3 (
), 4.4 (d), 4.6 (e) and 5.5 (f) for ζ = 0. In
the FFT spe
tra red and blue 
olors indi
ate the frequen
y spe
tra of transverse �uid for
e and


ylinder displa
ement, respe
tively.
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Φy and ΦV . Besides, in the frequen
y spe
tra of Cy the �rst, the se
ond and the third

harmoni
 
omponents are identi�ed as high-intensity peaks. Varying the redu
ed velo
ity

in the range of 4.48 < U∗ ≤ 4.89, Cy is found to be periodi
 again and the f/fN ∼= 2
frequen
y 
omponent is found to play very signi�
ant role in its spe
tra (see Fig. 6.14e).

This �nding, whi
h we expe
ted, explains why the 
omputational results do not agree with

the harmoni
 solutions represented by Eq. (6.11) at some parts of the upper bran
h (see

Fig. 6.13), and implies why the transverse phase shows unreasonably high �u
tuations

between U∗ = 4.36 and 4.7 (Fig. 6.7
).

Many studies have been dealing with the frequen
y 
omponents o

urring in the

spe
tra of transverse �uid for
e. Without aiming to give an exhaustive list, Jauvtis and

Williamson [85℄, Dahl et al. [81℄, Dahl et al. [82℄, Dahl et al. [41℄, Wang et al. [84℄ have

dis
ussed the relevan
e of the �rst and the third harmoni
 
omponents in Cy for two-

degree-of-freedom vortex-indu
ed vibrations. However, the se
ond harmoni
 
omponent

is not so typi
al in VIV. Bao et al. [83℄ investigated also two degrees of freedom VIV and

they identi�ed the f/fN ∼= 2 frequen
y peak in the spe
tra of Cy. In Chapter 4 I showed

that the se
ond harmoni
 frequen
y 
omponent has a fundamental e�e
t on the path

of the 
ylinder; asymmetri
 raindrop-shaped 
ylinder paths o

ur in these 
ases. These

results have been published in Dorogi and Baranyi [J3℄.

In the lower bran
h (from U∗ = 4.9 to 5.9) both y0 and Cy are periodi
 signals. As

seen in Fig. 6.14f, the se
ond harmoni
 
omponent 
ompletely disappears, only f/fN ∼= 1
and 3 peaks remain (see Fig. 6.14f). Sin
e the intensity of f/fN ∼= 3 is mu
h lower than

the PSD of the �rst harmoni
 
omponent, the f/fN ∼= 3 peak in�uen
es the vibration

very slightly. This is why the data points 
orresponding to the lower bran
h �t very well

on the model results based on the harmoni
 approximations (see Fig. 6.13).

As 
an be seen in Fig. 6.4, high detuning value of f ∗

y − f ∗

Cy

∼= −0.2 o

urs in the range

of 4.7 < U∗ < 4.89 for zero stru
tural damping ratio, whi
h value agrees approximately

with the Strouhal number at Re = 300. Sin
e the vibration frequen
y in this range is also


lose to the Strouhal number, this detuning value 
an only be rea
hed when the se
ond

harmoni
 frequen
y 
omponent is the most dominant in the spe
tra of Cy. Although I

showed that f/fN ∼= 2 o

urs in the upper bran
h, it was not 
on�rmed whether it is

the most relevant harmoni
 in the domain of 4.7 < U∗ ≤ 4.89. Figure 6.15 shows the

frequen
y spe
tra of transverse �uid for
e at di�erent U∗
values, where Power Spe
tral

Density normalized by the maximum PSD in the spe
tra PSD

norm

= PSD/PSD

max

is

plotted against f/fN . Note that verti
al axis is s
aled linearly. It 
an be seen that at

U∗ = 4.5 (see Fig. 6.15a) f/fN ∼= 1 is the most intensive peak, while the normalized PSD

at f/fN ∼= 2 is low. As expe
ted, in the range of 4.7 < U∗ ≤ 4.89 the roles of the �rst

and se
ond harmoni
 
omponents are swit
hed; f/fN ∼= 2 is the most dominant, while

the normalized PSD of f/fN ∼= 1 is relatively low (see Figs. 6.15b and 6.15
). However,

swit
hing to the lower bran
h 
auses a dramati
 
hange in the FFT of Cy. As shown in

Fig. 6.15d, the se
ond harmoni
 
omponent 
ompletely disappears and the �rst and third

harmoni
 
omponents remain in the spe
tra (f/fN ∼= 1 is the most relevant 
omponent).

Singh and Mittal [72℄, Prasanth and Mittal [88℄ and Bahmani and Akbari [70℄ found

that the formation of vorti
es shedding from the body is very sensitive to the value of the

redu
ed velo
ity. Figure 6.16 shows the vortex stru
tures at the same U∗
values where the

time histories and the FFT spe
tra of the 
ylinder displa
ement and transverse �uid for
e

were previously analyzed (see Fig. 6.14). As shown in Fig. 6.14a, y0 and Cy are quasi-

periodi
 signals in the initial bran
h, that is, the vortex stru
tures at the 
orresponding

redu
ed velo
ity values 
hange dynami
ally with time (see Fig. 6.16a).

Shifting to the upper bran
h, in the range of 4 < U∗ ≤ 4.28 the 
ylinder motion and

the �uid for
e 
oe�
ients are still quasi-periodi
 signals, that is, the vortex stru
ture is

also highly time-dependent in this domain (see Fig. 6.16b). It was found that the time

histories of y0 and Cy are periodi
 between U∗ = 4.29 and 4.35, and the FFT spe
tra

of Cy 
ontain relevant frequen
y peaks at f/fN = 1 and 3 (Fig. 6.14
). It 
an be seen

Last updated: April 20, 2020



6.4. ANALYSIS OF HYDRODYNAMIC FEATURES 71

in Fig. 6.16
 that in the 
orresponding range 2P

O

wake mode seems to develop, whi
h

means that two pairs of vorti
es are shed from the 
ylinder in ea
h motion period, but the

se
ondary vortex in ea
h pair is mu
h weaker than the primary vortex [106℄. Morse and

Williamson [106℄ found that when the vortex pair is moving downstream from the 
ylinder,

the se
ondary vortex de
ays, whi
h is also seen in Fig. 6.16
. Khalak and Williamson [107℄

and Khalak and Williamson [59℄ identi�ed 2P vortex shedding mode in the upper bran
h,

where the strengths of the primary and the se
ondary vortex are approximately identi
al.

It has to be noted that 2P

O

vortex stru
ture has not been found for su
h low Reynolds

number 
ases.

At the 
losing part of the upper bran
h (4.35 < U∗ ≤ 4.89), the f/fN ∼= 2 peak was

found to o

ur, whi
h strongly in�uen
es the vortex stru
ture. Although the stru
ture

of vorti
es 
hanges in time between U∗ = 4.35 and 4.48, due to the modulations in

the aerodynami
 for
e 
oe�
ients, the wake modes are very similar to the P+S vortex

shedding mode (Fig. 6.16d). Here P+S denotes that a pair of vorti
es and a single vortex

are shed from the 
ylinder. In the domain of 4.48 < U∗ ≤ 4.89 (still belongs to the upper

bran
h) the time tra
es of y0 and Cy return ba
k to periodi
. In this range the se
ond

harmoni
 frequen
y 
omponent plays an important role in Cy (see Fig. 6.15), whi
h seems

to make the vortex stru
ture asymmetri
: stable P+S modes are found in the domain of

4.48 < U∗ ≤ 4.89 (see Fig. 6.16e). Su
h e�e
t of f/fN ∼= 2 on the vortex shedding was

shown earlier in Chapter 4.

As shown in Figs. 6.14 and 6.15, in the lower bran
h the f/fN ∼= 2 frequen
y peak

0 1 2 3 4
0

0.5

1

f/fN

P
S
D

n
or
m

(a)

0 1 2 3 4
f/fN

(b)

0 1 2 3 4
f/fN

(c)

0 1 2 3 4
f/fN

(d)

Figure 6.15: Frequen
y spe
tra of transverse �uid for
e at U∗ = 4.5 (a), 4.8 (b), 4.89 (
) and

4.9 (d) for ζ = 0%

(a) (b) (c)

(d) (e) (f)

Figure 6.16: Vortex stru
tures (red: positive vorti
ity, blue: negative) at U∗ = 4 (a), 4.2 (b), 4.3
(
), 4.4 (d), 4.6 (e) and 5.5 (f) for ζ = 0. Ea
h vortex 
ontours are re
orded at random phases

of the 
ylinder os
illation
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ompletely disappears from the spe
tra of Cy. For this reason the vortex stru
ture be
omes

symmetri
; 2S wake modes (two single vorti
es) are found in this domain (4.89 < U∗ ≤ 5.9,
see Fig. 6.16f).

6.4.2 Damped 
ylinder vibrations

It was shown in Se
tion 6.3 that in
reasing the stru
tural damping leads to the transition

from three-bran
h to two-bran
h response. While initial, upper and lower bran
hes are

found for ζ ≤ 1% at Re = 300, only initial and lower bran
hes are observed for ζ = 3%
and 5%. It 
an be seen in Fig. 6.11
 that no unbounded in
rease appears in the transverse

phase at the boundary separating the upper and lower bran
hes for ζ = 0.5%. This �nding

is in 
ontrast to what I found for undamped vibrations (see Fig. 6.7d).

It was 
on�rmed in Se
tion 6.4.1 that the unbounded in
rease of the transverse phase

is 
aused by the fa
t that the se
ond harmoni
 frequen
y 
omponent is the most dominant

in the spe
trum of Cy. For this reason, the la
k of unbounded variation in Φy for ζ = 0.5%
suggests that the intensity of f/fN ∼= 2 is not the highest in the upper↔lower bran
h

transition range. Figure 6.17 shows the normalized spe
tra of transverse �uid for
e at

di�erent redu
ed velo
ity values in the upper bran
h for ζ = 0.5%. This �gure 
orroborates

the former assumption; the role of f/fN ∼= 2 in
reases with U∗
but at the boundary

between the upper and lower bran
hes (at U∗ = 4.688, see Fig. 6.17d) the �rst harmoni



omponent dominates all over the spe
tra, and f/fN ∼= 2 o

urs only with low intensity.

The additional �ndings related to e.g. the vortex formation downstream from the 
ylinder

hold true in the range of ζ ≤ 1%, where three-bran
h responses are found.
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0.5

1

f/fN

P
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0 1 2 3 4
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Figure 6.17: Frequen
y spe
tra of transverse �uid for
e at U∗ = 4.5 (a), 4.56 (b), 4.6 (
) and

4.688 (d)

As mentioned earlier, in
reasing the stru
tural damping ratio over ζ = 1%, only the

initial and lower bran
hes are found, the upper bran
h disappears from the response. The

question arises what the di�eren
e is between three and two-bran
h responses in terms

of frequen
y spe
tra and vortex stru
tures. Figure 6.18 shows the frequen
y spe
tra of


ylinder displa
ement and transverse �uid for
e (top row), and vortex 
ontours (bottom

row) at di�erent redu
ed velo
ity values for ζ = 3%. As 
an be seen in Fig. 6.18a, the FFT

spe
tra of the transverse �uid for
e and 
ylinder displa
ement for U∗ = 4.2 
ontains several
frequen
y 
omponents, that is, y0 and Cy are quasi-periodi
 signals. Due to the same

reason, the vortex stru
ture is highly time dependent at this point, but very similar to the

regular 2S vortex shedding mode. The above mentioned �ow and vibration 
hara
teristi
s

between the redu
ed velo
ity values of U∗ = 4 and 4.66 are similar to those of the

initial bran
h in the ζ ≤ 1% domain. In
reasing redu
ed velo
ity up to U∗ = 4.68, the

ylinder response rea
hes the lower bran
h where both y0 and Cy return ba
k to periodi
.

In 
ontrast to the results reported in the low-damping domain, the vibration frequen
y

does not lo
k exa
tly to the natural frequen
y of the system in va
uum (see also Fig.

6.10). Figures 6.18b and 6.18
 show the spe
tra of y0 and Cy in the range where the
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os
illation amplitude is relatively high. As seen, the �rst and the third harmoni
 frequen
y


omponents 
an be found in the spe
tra of Cy. Sin
e the peak of f/fN ∼= 2 is not present

in the spe
tra, 2S vortex stru
tures are found in these 
omputational points.

0 2 4
10

−5

10
0

10
5

10
10

f/fN

PSD

(a)

0 2 4
f/fN

(b)

0 2 4
f/fN

(c)

Figure 6.18: Frequen
y spe
tra of 
ylinder displa
ement (blue 
urves) and transverse �uid for
e

(red 
urves), and the vorti
ity 
ontours at U∗ = 4.2 (a), 4.68 (b) and 5.4 (
) for ζ = 3%. Ea
h

snapshots are re
orded at random phases of the 
ylinder os
illation

6.5 New s
ienti�
 
ontributions

Contribution V

Up until now an upper bran
h (i.e. a three-bran
h 
ylinder response) has been reported

only for high-Reynolds number �ows (Re = 103�104). Using two-dimensional CFD simu-

lations I showed that the 
ylinder response (os
illation amplitude and frequen
y) plotted

against the redu
ed velo
ity U∗
displays a three-bran
h behavior at the Reynolds number

of Re = 300, and mass and stru
tural damping ratio values of m∗ = 10 and ζ = 0%, re-

spe
tively. The initial bran
h takes pla
e in the range of 3.45 < U∗ ≤ 4, the upper bran
h
is observed between U∗ = 4 and 4.89, and the lower bran
h o

urs in the domain of

4.89 < U∗ ≤ 5.9. I found that the time-averaged phase di�eren
es of the vortex for
e and

the transverse �uid for
e relative to the 
ylinder displa
ement show gradual variations be-

tween approximately 0◦ and 180◦ at the upper and lower boundaries of the upper bran
h,

respe
tively. I observed unbounded variations and phase slips in the time-dependent phase

angle values, whi
h explains the gradual 
hanges in their time-mean values.

I found that in
reasing the stru
tural damping ratio leads to the transition from three-

bran
h to two-bran
h response. This �nding is 
omparable to the experimental results

(available in the literature) at high Reynolds numbers. In the domain of ζ ≤ 1% the

upper bran
h is found to o

ur whose redu
ed velo
ity range ∆U∗

UB de
reases with the

damping ratio (e.g. ∆U∗

UB = 0.88 for ζ = 0%, while ∆U∗

UB = 0.31 for ζ = 1%). For

ζ = 3% and 5%, the upper bran
h 
ompletely disappears from the response, only the

initial and lower bran
hes remain.

Related publi
ations: Dorogi and Baranyi [J4℄, Dorogi and Baranyi [C10℄ and Dorogi

and Baranyi [C9℄
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Contribution VI

I showed that the phase di�eren
e of the transverse �uid for
e relative to the 
ylinder

displa
ement (i.e. the transverse phase) in
reases roughly uniformly with time at the end

of the upper bran
h (4.7 < U∗ ≤ 4.89) for Re = 300, m∗ = 10 and ζ = 0%. This e�e
t is


aused by the large detuning value between the frequen
ies of 
ylinder vibration f ∗

y and

transverse �uid for
e f ∗

Cy
; f ∗

y −f ∗

Cy

∼= −0.2, whi
h in absolute value is 
lose to the Strouhal

number St at Re = 300. Sin
e f ∗

y
∼= St between U∗ = 4.7 and 4.89, the detuning value

f ∗

y − f ∗

Cy

∼= −St 
an only be a
hieved when f ∗

Cy
= 2f ∗

y
∼= 2St. The frequen
y spe
tra of

the transverse �uid for
e 
on�rms the non-harmoni
 nature of the transverse �uid for
e.

I found that the se
ond harmoni
 frequen
y 
omponent is the most intensive peak in the

range of 4.7 < U∗ ≤ 4.89 for ζ = 0%.

In
reasing the stru
tural damping ratio value up to ζ = 0.5%, I showed that the

detuning value is zero f ∗

y − f ∗

Cy
= 0 in the entire redu
ed velo
ity domain, hen
e the

time-dependent transverse phase no longer shows unbounded in
rease at the higher end

of the upper bran
h. This e�e
t implies that the role of the se
ond harmoni
 frequen
y


omponent de
reases with the stru
tural damping ratio. The spe
tral analyses of the

transverse �uid for
e showed that the intensity of the se
ond harmoni
 
omponent was

negligible.

The 
urrently obtained CFD data belonging to various stru
tural damping ratio values

(between ζ = 0% and 5%) have been 
ompared to the results using the harmoni
 os
illator

model. I showed that the 
omputational and the harmoni
 model results 
ompare very

well at the beginning of the upper bran
h and in the lower bran
h. However, at the end

of the upper bran
h the CFD data and and the harmoni
 model results are far from ea
h

other. This �nding 
on�rms my previous statement 
on
erning the non-harmoni
 nature

of the transverse �uid for
e at the end of the upper bran
h.

Related publi
ations: Dorogi and Baranyi [J4℄, Dorogi and Baranyi [C10℄ and Dorogi

and Baranyi [C9℄
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Chapter 7

Possible future works

In this PhD dissertation various types of vortex-indu
ed vibrations are investigated, in-


luding the single-degree-of-freedommotions, where the 
ylinder is allowed to move only in

streamwise or transverse dire
tions, and two-degree-of-freedom vibration 
ases. Although

several analyses have been performed in the dissertation, there are still a lot of unanswered

questions, whi
h 
an lead to further investigations. These topi
s related dire
tly to my

resear
hes are summarized in the following points:

• In Chapter 4 
omputational results have been presented for the 
ases, when the nat-

ural frequen
ies in streamwise and transverse dire
tions fNx and fNy are identi
al.

The question arises what the e�e
t of the natural frequen
y ratio FR = fNx/fNy

is on the 
ylinder response. Preliminary results are available in this topi
 [J2℄ (in-

di
ating that FR highly in�uen
es the 
ylinder path), but additional 
omputations

are required.

• As dis
ussed in Chapter 5, a single ex
itation region o

urs for streamwise-only

vortex-indu
ed vibrations in the low-Reynolds number domain. However, at moder-

ately high Reynolds numbers two response bran
hes have been identi�ed. In order

to investigate how the response swit
hes between one-bran
h and two-bran
h re-

sponses, three-dimensional 
omputations are needed. This 
an be 
arried out using

either 
ommer
ial softwares (e.g. ANSYS FLuent or ANSYS CFX) or open-sour
e

CFD 
odes (e.g. OpenFOAM, Nektar++ or Nek5000).

• It was shown that a separate upper bran
h o

urs at the Reynolds number of 300
(see Chapter 6). However, at lower Re values (e.g. at Re = 100) two response

bran
hes (i.e. the initial and lower bran
hes) have been reported in the literature. I

aim to perform CFD 
omputations at di�erent Reynolds numbers ranging between

Re = 50 − 300 to �nd the 
riti
al Reynolds number value Rec, above whi
h three-

bran
h response o

urs, but at Re < Rec only the initial and lower bran
hes 
an be

identi�ed.

During the literature review I realized that vortex-indu
ed vibrations of a 
ir
ular


ylinder pla
ed into an os
illatory �ow re
eived less attention. However, it appears in many

engineering �elds, for example the wave motions are 
ommonly modeled with os
illatory

�ows. To my best knowledge, very few paper examine this problem numeri
ally. For this

reason, systemati
 CFD 
omputations are planned in this �eld in the near future.
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Appendix A

Evaluation of CFD data

The data sets obtained from the CFD 
omputations (e.g. the 
ylinder displa
ement or

the aerodynami
 for
e 
oe�
ients) are mostly time-varying signals, whi
h in
lude a few

million elements. For this reason, the proper evaluation of these data sets are required.

The evaluation pro
ess 
overs the 
al
ulation of the time-mean and root-mean-square

values, the frequen
ies of the signals (see Appendix A.1) and the phase di�eren
es (or

phase angles) between two distin
t signals (Appendix A.2).

A.1 Statisti
al properties of periodi
 signals

Figure A.1a shows the time history of the dimensionless transverse 
ylinder displa
ement.

In this test 
ase the 
ylinder is allowed to move only in the transverse dire
tion, and the

following parameter 
ombination is used: Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.9. It

an be seen in Fig. A.1a that the body is initially at rest, 
orresponding to the initial


onditions [see Eq. (2.20)℄. In the approximate non-dimensional time interval of 0 < t <
150 the amplitude of 
ylinder vibration in
reases, beyond the transitional domain the body

os
illates with a 
onstant amplitude value. In order to get the most a

urate statisti
al

parameters [the root-mean-square (rms), the time-mean and the frequen
y values℄, the

transitional part of the signal has to be omitted. In this study the statisti
al quantities

are 
al
ulated based on the last Nc periods of 
ylinder os
illation, whi
h takes pla
e in

the time domain of tstart < t < tfinish. The root-mean-square and the time-mean values

are de�ned as follows:
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−0.6

−0.3
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Nc periods of cylinder oscillation
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f ∗

← f ∗

y

(b)

Figure A.1: The time history (a) and the frequen
y spe
tra of the 
ylinder displa
ement for

Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.9
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y0′ =

√√√√ 1

n− 1

n∑

i=1

(y0,i − y0)
2, (A.1)

y0 =
1

n

n∑

i=1

y0,i. (A.2)

Here n = (tfinish − tstart)/∆t, where ∆t is the dimensionless time step and y0,i is the ith

element of the data set.

The Fast Fourier Transform (FFT) algorithm is used to represent the signal (e.g.

displa
ement(s) or for
e 
oe�
ient(s)) in the frequen
y domain. Figure A.1b shows the

frequen
y spe
trum of the 
ylinder displa
ement, i.e. the Power Spe
tral Density PSD

against the non-dimensional frequen
y f ∗
. In this test 
ase the verti
al axes are shown

in a logarithmi
 s
ale. However, in Chapters 5 and 6 the normalized spe
trum of the

signal is also used, whi
h means that the Power Spe
tral Density is normalized by the

maximum PSD value in the spe
trum. In these 
ases the verti
al axis is s
aled linearly.

The frequen
y of the signal (f ∗

y for y0) is 
onsidered to be the frequen
y value belonging

to the highest intensity peak in the spe
tra, whi
h is denoted by a red dashed line in

Fig. A.1b. Note that although the 
al
ulation of these statisti
al parameters are shown

here for the 
ylinder displa
ement, the methodologies are valid for other quantities, for

example for x0, Cx, Cy, CV , et
..

A.2 Determination of phase di�eren
e

In this study the phase di�eren
e (or phase angle) of a for
e 
oe�
ient (in either stream-

wise or transverse dire
tion) relative to the 
ylinder displa
ement in the 
orresponding

dire
tion is frequently 
omputed. In this se
tion two distin
t methods are shown to obtain

this phase di�eren
e value.

A.2.1 Harmoni
 signals

In 
ase the �uid for
e 
oe�
ient and the 
ylinder displa
ement are periodi
 signals, the

phase di�eren
e value 
an be easily 
al
ulated. This 
ondition satis�es in streamwise-only

vortex-indu
ed vibrations (see the results in Chapter 5) for all the investigated 
ases; thus

the method is introdu
ed via the 
omputation of phase di�eren
e between streamwise �uid

for
e 
oe�
ient Cx(t) and streamwise 
ylinder displa
ement x0(t).
Let us assume that the streamwise �uid for
e 
oe�
ient 
an be represented as:

Cx(t) ∼=
N∑

i=1

C i
x cos(2πif

∗

xt + Φ
i
x), (A.3)

where C i
x is the magnitude of the ith harmoni
 
omponent of the streamwise �uid for
e


oe�
ent, f ∗

x is the dimensionless vibration frequen
y and Φ
i
x is the phase di�eren
e of

the ith harmoni
 
omponent relative to the 
ylinder displa
ement. Multiplying Cx(t) by
sin 2πf ∗

xt, and integrating it over one period of 
ylinder os
illation T = 1/f ∗

x , the following

simple expression 
an be obtained:

I1 =

∫ T

0

Cx(t) sin 2πf
∗

xtdt =

∫ T

0

[
N∑

i=1

C i
x cos(2πif

∗

xt+ Φ
i
x)

]
sin 2πf ∗

xtdt =

= −1

2
f ∗−1
x C1

x sinΦ
1
x.

(A.4)
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Although Φ
1
x is an unknown quantity, I1 
an be 
al
ulated by integrating∫ T

0
Cx(t) sin 2πf

∗

xtdt numeri
ally using the trapezoidal rule or some other numeri
al

quadrature. Besides, multiplying Cx(t) by cos 2πf ∗

xt and integrating the expression over

one os
illation 
y
le, the following formula 
an be obtained:

I2 =

∫ T

0

Cx(t) cos 2πf
∗

xtdt =

∫ T

0

[
N∑

i=1

C i
x cos(2πif

∗

xt+ Φ
i
x)

]
cos 2πf ∗

xtdt =

=
1

2
f ∗−1
x C1

x cosΦ
1
x.

(A.5)

Similarly to Eq. (A.4), I2 
an be solved numeri
ally. Dividing Eq. (A.4) by Eq. (A.5), the

following formula 
an be obtained for the phase di�eren
e value:

Φx = Φ
1
x = tan−1

(
−I1
I2

)
. (A.6)

A.2.2 Appli
ation of Hilbert transform

In 
ase Eq. (A.3) does not hold true, the 
al
ulation methodology of the phase di�eren
e,

detailed in Appendix A.2.1 is not appli
able. In these 
ases the analyti
al signal approa
h

based on Hilbert transform 
an be used [103, 104℄. This methodology is applied in Chapter

4 to 
ompute the phase di�eren
e between the streamwise �uid for
e and the streamwise


ylinder displa
ement, and in Chapter 6 to obtain the phase di�eren
e of the transverse

�uid for
e and vortex for
e relative to the transverse 
ylinder displa
ement.

In order to introdu
e this approa
h, let us 
onsider a vortex-indu
ed vibration problem,

where the 
ylinder is restri
ted to os
illate only in transverse dire
tion. The analyti
al

signal of the 
ylinder displa
ement y0(t) 
an be expressed as [104℄:

y0a(t) = y0(t) + iy0h(t) = Ay0(t)e
iΦy0

(t), (A.7)

where i is the imaginary unit, y0h(t) is the Hilbert transform of y0(t), and Ay0(t) is the
time-dependent amplitude of the signal and Φy0(t) is the time-varying phase of the 
ylinder

Φy0

y0

y0h

Cyh

Cy

ΦCy

Re

Im

y0a

Cya

Figure A.2: The arrangement of the analyti
al signals y0a and Cya at an arbitrary time instant.

Here Im and Re denote the imaginary and the real axes, respe
tively
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displa
ement:

Ay0(t) =
√

y0(t)2 + y0h(t)2, Φy0(t) = tan−1

[
y0h(t)

y0(t)

]
. (A.8a, b)

Figure A.2 shows the analyti
al signals of the 
ylinder displa
ement and the transverse

�uid for
e y0a and Cya on the 
omplex number plane at an arbitrary time instant. Similarly

to Φy0, the time-varying phase of the transverse �uid for
e 
an be determined as

ΦCy
(t) = tan−1

[
Cyh(t)

Cy(t)

]
, (A.10)

where Cyh(t) is the Hilbert transform of the transverse �uid for
e 
oe�
ient. As 
an be

seen in Fig. A.2, the phase di�eren
e of the transverse �uid for
e relative to the 
ylinder

displa
ement, i.e. the transverse phase, 
an be obtained as

Φ(t) = ΦCy
(t)− Φy0(t). (A.11)

It should be noted that Pikovsky et al. [103℄ de�ned the phase di�eren
e value as the

di�eren
e of the displa
ement with respe
t to the for
e. For the sake of 
omparison, we

applied Eq. A.11 to obtain the phase angle value. The same methodology 
an be used

to obtain the vortex phase, i.e. the phase di�eren
e of the vortex for
e relative to the


ylinder displa
ement:

ΦV (t) = ΦCV
(t)− Φy0(t), (A.12)

−2

0

2
y0
Cy

−1

−0.5
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Figure A.3: Time histories of y0, Cy and CV (top row), and the time-varying unwrapped (middle

row) and wrapped (bottom row) transverse and vortex phases for transverse-only VIV. In the

top row the displa
ement and for
e 
oe�
ient 
urves are shown in blue and red, respe
tively.

The following 
omputational parameters are used: Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.2
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where ΦCV
(t) is the phase of the vortex for
e 
oe�
ient.

When the two investigated signals have the same frequen
y values (i.e. the signals

are syn
hronized), the phase di�eren
e between them is 
onstant in time. However, there

are some spe
ial 
ases, when the frequen
ies of the signals are di�erent, whi
h 
auses

in
reasing/de
reasing e�e
ts in the 
orresponding phase di�eren
e (see Chapter 6). In

terms of time-averaged phase di�eren
es, the phase angle value between 0◦ and 360◦ is

meaningful. In order to 
al
ulate an a

urate time-mean value, the phase di�eren
e signal

has to be wrapped in a 2π-long interval; in this dissertation between −π/2 and 3π/2.
Figure A.3 helps to understand the di�eren
e between unwrapped and wrapped phase

angles. Figure A.3a shows the time histories of y0 and Cy (top row), the time-varying

transverse phase Φy as an unwrapped signal (middle row), and the time history of Φy

wrapped between −π/2 and 3π/2 (bottom row). The stru
tures of Figs. A.3a and A.3b

are similar, but in Fig. A.3b the time histories of CV and ΦV are shown instead of the

Cy and Φy. It 
an be seen that, sin
e the frequen
ies of the 
ylinder displa
ement and

the transverse �uid for
e are identi
al, the unwrapped and wrapped transverse phases

show the same 
hara
teristi
s (Fig. A.3a). In 
ontrast, a small detuning

1

o

urs between

CV and y0, hen
e, the unwrapped vortex phase shows an in
reasing e�e
t (Fig. A.3b).

As mentioned earlier, to obtain the time-averaged vortex phase, ΦV has to be wrapped

between −π/2 and 3π/2, whi
h is show in the bottom row of Fig. A.3b.

1

The di�eren
e between the frequen
ies of for
e 
oe�
ient and the 
ylinder displa
ement
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