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Abstract

Fluid flow around bluff bodies have been thoroughly investigated in the past few decades
due to their high engineering importance. This phenomenon plays an important role for
example in offshore risers, high slender buildings, chimney stacks, heat exchangers, etc.
The vortices shedding from the bluff body superimpose a periodic load on the structure,
which can cause high-amplitude oscillations. This effect is referred to as vortex-induced
vibrations (VIV).

In this PhD dissertation the vortex-induced vibration of a circular cylinder is inves-
tigated by means of two-dimensional CFD computations at low Reynolds numbers. The
governing equations of the fluid and solid motions are solved using an in-house code based
on the finite difference method. Some details of the CFD approach are provided in Chapter
2l After the independence studies, a step-by-step validation is carried out to compare the
currently obtained results against the literature data (see Chapter Bl). Good agreement
was found for all test cases.

In Chapter M two-degree-of-freedom vortex-induced vibrations are investigated at dif-
ferent nondimensional natural frequency values K. It was found that plotting the data
set belonging to different K values against U*St makes comparison easier than using the
Reynolds number as an independent parameter. Here U* is the reduced velocity and St
is the Strouhal number for a stationary cylinder. For the dimensionless natural frequency
values between K = 12.3 and 34.7, the root-mean-square (rms) values of the streamwise
vibration component and fluid force coefficient xq and C,, display local peak values at
U*St = 0.47. In addition, at around U*St = 0.5 C,» approaches zero, at the same point
where the phase difference of the streamwise fluid force relative to the x component of
the motion changes abruptly from 0° to 180°. The pressure component of the streamwise
fluid force coefficient seems to be responsible for the sudden change.

The results from the two-degree-of-freedom VIV computations at distinct K values
reveal also that the non-dimensional natural frequency influences significantly the cylinder
path. For the values of K < 36.6 only distorted figure-eight motions are found. However,
in the range of K = 36.6-43.7 orbital trajectories (i.e. the raindrop-shaped paths) occur
in a thin U*St domain, which extends with K. For orbital paths two high-intensity peaks
are observed in the frequency spectra of the x vibration component. Due to the multi-
frequency vibration, the raindrop-shaped trajectory is asymmetric. P+S vortex structures
are identified for these paths, which confirms the asymmetrical nature of the orbit. The
time-mean values of the transverse fluid force jump abruptly between two solutions. The
pre- and post-jump analysis reveals that these solutions are mirror images of each other.

In Chapter [O single-degree-of-freedom VIV computations are carried out, where the
cylinder is allowed to move only streamwise with the free stream. The investigations
at various Reynolds numbers (Re = 100,180 and 250), and different mass ratio values
(m* = 2,5,10 and 20) show that streamwise-only vortex-induced vibrations are possible
at low Reynolds numbers. A single excitation region is identified, which corresponds to
the second response branch reported in the literature for moderately high Re. The dimen-
sionless vibration amplitude 7, plotted against U* for one particular combination of Re
and m™* increases up to its peak value, then it decreases. The non-dimensional vibration
frequency f behaves oppositely. Although the peak value of Z, appears to be independent
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Abstract iv

of m*, varying the Reynolds number the maximum vibration amplitude shows a significant
increase. It was also shown that the magnitude of the streamwise fluid force coefficient
approaches zero at the point, where the vibration frequency coincides with the cylinder’s
natural frequency. Since the amplitude of cylinder oscillation is non-zero at this point, the
streamwise fluid force has strongly non-harmonic nature. Unlike the phase angle between
C, and x(, which is restricted to the values of 0° and 180°, the phase difference of the
transverse fluid force relative to the cylinder displacement increases gradually with U*.
This effect is attributed to the switch in the timing of vortex shedding.

Finally, in Chapter [6] transverse-only vortex-induced vibrations are investigated at
the Reynolds number and mass ratio values of Re = 300 and m* = 10, respectively, for
different structural damping ratios between ¢ = 0% and 5%. Up until now, researchers
have reported an upper branch only at high Reynolds numbers and low m*( values.
However, in this study we have observed three-branch behavior (initial, upper and lower
branches) at Re = 300 for ¢ < 1%. The upper branch is bounded by two gradual phase
changes: at the boundary adjacent to the initial branch, the time-averaged phase difference
of the vortex force, and at that to the lower branch, the time-averaged phase difference
of the transverse fluid force relative to the cylinder displacement changes between 0° and
180°. Unbounded variations and phase slips are observed in the time-dependent phase
differences, which explains the gradual changes in their time-mean values. In the upper
branch 2Py and P+S modes, while in the initial and lower branches 2S vortex structures
are identified. The second harmonic frequency component plays an important role in the
spectra of transverse fluid force, which is closely related to the observed P-+S vortex
structure. Increasing the structural damping over ¢ = 1%, only initial and lower branches
are found.
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Kivonat

A tompa testek koriili dramlasi folyamatok vizsgalataval — a téma nagy mérnoki fontos-
sdga miatt — szdmos tanulméany foglalkozik. A jelenség fontos szerepet jatszik példaul a
szélterhelésnek kitett karcsu épiileteknél, a vizfelszin alatti vezetékeknél vagy a hdGcseré-
16knél. Ismeretes, hogy a tompa testekrdl levalo érvények periddikus terhelést jelentenek a
szerkezetre nézve, amelynek kovetkeztében a test nagyamplitidojia rezgémozgasba johet.
E jelenséget angol nyelven ,vortex-induced vibration™nek nevezik.

A jelen PhD disszertaci6é egy parhuzamos aramlésba helyezett, szabadrezgésre képes
(rugalmasan felfiiggesztett) korhenger koriili aramlési folyamatok kétdimenzids numeri-
kus aramlastani vizsgalataval foglalkozik. A folyadékaramlast és a henger mozgéasat leird
egyenleteket egy a tanszéken kifejlesztett szamitogépes programkod segitségével oldom
meg, amely a véges differencidk modszerét alkalmazza. A szamitasi eljaras részleteit a 2L
fejezetben ismertetem. Ezt kivetGen fiiggetlenségi vizsgalatokat végzek, majd az eredmeé-
nyeket Gsszehasonlitom az irodalomban rendelkezésre all adatokkal (lasd Bl fejezet).

A dolgozat[dl fejezetében az drvénylevalas altal gerjesztett kétszabadsagfoku rezgémoz-
gasokat vizsgalom kiilonb6z6 K dimenziotlan sajatfrekvenciak esetén. Azt tapasztaltam,
hogy az U*St paramétert hasznalva fiiggetlen valtozoként — ahol U* a redukalt sebesség és
St a Strouhal-szam —, a kiilonb6z§ K értékek esetén szamitott gérbék egy viszonylag sziik
tartoményba hozhatok, amely nagymértékben javitotta az adatsorok 6sszehasonlithatosa-
gat. A hossziranyt rezgéskomponens és ertényezé rms értéke (xy és Cy) az U*St = 0,47
értéknél lokalis maximumot mutat, illetve C,, az U*St = 0,5 helyen zérushoz tart. A C,
és x( idofiiggvényeinek segitségével kimutattam, hogy U*St < 0,5 esetén a két jel fazisban
van. Az U*St =2 0,5 elérésekor zy és C, hirtelen ellenfazisba keriil, amely az U*St > 0,5
tartomanyban fennall. A szamitasokbol arra kovetkeztettem, hogy C,/ zérussa valasat,
illetve az x( és C,, kozti hirtelen fazisugrast a hossziranyi erétényezd nyomasbol szarmazo
komponense okozza.

Szamitasi eredményeim azt mutatjak, hogy a dimenzidtlan sajatfrekvencia novelése
jelentds hatassal van a henger palyagorbéjére. Megéllapitottam, hogy mig K < 36,6 ese-
tén a henger minden esetben torzitott nyolcas alaki gorbét ir le, addig a K = 36,6-43,7
intervallumon beliil, keskeny U*St tartomanyban esGcsepp alaki orbitalis mozgasgorbe
is jelentkezik. Bebizonyitottam, hogy K értékének novelésével az orbitalis palya U*St
tartoménya kiszélesedik. Tapasztalataim alapjan elmondhato, hogy az es6csepp alaki pa-
lyagérbe aszimmetrikus viselkedést mutat, amelyet az x irdnyu rezgéskomponens frekven-
ciaspektrumaban megjelend két jelentGs intenzitasu frekvenciacsics okozza. A péalyagorbe
aszimmetrikus voltat alatamasztja, hogy a henger mogott P+S tipust orvényszerkezet
jelenik meg. A felhajtoers-tényezé C), idGatlaga (abszolut értékben) nagymértékben meg-
né orbitalis hengermozgas esetén; tovabba €, két megoldas kozott ugrasszerten valtozik.
A hatarciklusokat [(C,, Cy) vagy (xo,yo)| egy ugras két oldalan abrazolva azt tapasztal-
tam, hogy a gorbék egymdsnak tiikorképei. Ebbdl az kovetkezik, hogy C két megoldasa
szimmetrikus.

Az [l fejezetben egyszabadsagfoku hosszirdnyu szabadrezgés numerikus vizsgalata-
val foglalkozok kiilonb6z6 Reynolds-szamok (Re = 100,180 és 250) és tomegaranyok
(m* = 2,5,10 és 20) esetén. Szamitasi eredményeim azt mutatjik, hogy a hossziranyu
szabadrezgés létrejotte lehetséges kis Reynolds-szamok esetén. Egyagu rezgésképet azo-
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nositottam, amely megfelel a szakirodalomban a kdzepesen nagy Re esetén bemutatott
méasodik aggal, mivel minden egyes paraméterkombinacional (Re, U*, m*) alternald or-
vénylevalast figyeltem meg. Az Ty dimenzidtlan rezgési amplitido a redukalt sebesség
fiiggvényében, cstucsértékének eléréséig novekvs-, majd azt kdvetGen csokkend tendenciat
mutat. Ezzel szemben az f; dimenzidtlan rezgési frekvencia ellentétes viselkedést mutat:
[ valtozasaban, kezdetben csokkend, a minimum érték elérése utana pedig novekvd jelleg
figyelhetd meg. Az utobbi két megéllapitas minden vizsgélt Re és m* érték esetén igaznak
bizonyult. Szamitasok segitségével bebizonyitottam, hogy z csicsértéke fiiggetlen a t6-
megaranytol, azonban a Reynolds-szam valtozasara érzékeny: Re novelésével 2y maximalis
értéke novekvs tendenciat mutat. Megéllapitottam, hogy a hossziranyu er6tényezé ampli-
tudoja zérushoz tart ott, ahol a rezgési frekvenciaja megegyezik a henger sajatfrekvencia-
javal. A rezgési amplitiidé nemzérus ebben a pontban, amely megfigyelés megmagyarizza
a C, frekvenciaspektruméaban a magasabb rendt (mésodik) felharmonikus megjelenését.
Szamitasi eredményeim tovabba azt mutatjak, hogy a C, és xq kozti fazisszog @, = 0°-rol
180°-ra ugrasszertien valtozik abban a pontban, ahol a rezgési frekvencia kozel azonos a
rendszer sajatfrekvencidjaval. Ezzel szemben a C, és zy kozti fazisszog monoton néveke-
dést mutat, amely az 6rvénylevalas idzitésének eltolédasaval van szoros Osszefiiggésben.

Végezetiil, a dolgozat [0l fejezetében a keresztiranyu rezgémozgéasbol szairmazo eredmé-
nyeimet ismertetem. Kimutattam, hogy az eddig kizédrolag nagy Reynolds-szami aram-
lasok, illetve kis tomegt és csillapitasi tényez6jii rezgérendszerek esetén azonositott ha-
romagn rezgéskép (az alap-, felsd- és alsoag egyiittese) kis Reynolds-szamok és csillapitési
tényezsk (Re = 300 és ¢ < 1%) esetén is megjelenik. A felsGagat két fokozatos fazisvaltozas
hatarolja: az alapaggal szomszédos hatdron az 6rvényerének-, valamint az alsdéaggal szom-
szédos hatarvonalon a keresztiranyu erGtényezének a henger elmozdulasahoz viszonyitott
idGatlagolt fazisszoge valtozik 0° és 180° kozott. A fokozatos valtozast az idGben valtozo fa-
zisszogekben észlelt hatar nélkiili novekedések és faziscstuszasok okozzak. A felsGagon 2Pg
és P+S, valamint az alap és alsdéagakon 2S tipust Orvényszerkezetet talaltam. A rezgési
frekvencia masodik felharmonikusa jelentds szerepet jatszik a keresztiranyu erGtényezd
frekvenciaspektrumaban, amely Osszefiiggésbe hozhat6é a P-+S orvényszerkezet megjele-
nésével. A dimenziotlan csillapitasi tényezét ¢ = 1% felett valtoztatva kétagu rezgéskép
jelenik meg; ebben a tartoméanyban a felsGag eltlinik a rezgésképbdl.
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Nomenclature

Roman Symbols

b structural damping kg s™!]

Ca added mass coefficient [

C, streamwise fluid force coefficient, 2F, /(pU2d) [-]

Cap pressure streamwise fluid force coefficient |-

Cov viscous streamwise fluid force coefficient [

C, transverse fluid force coefficient, 2F,/(pU2.d) []

Cyp pressure transverse fluid force coefficient [

Cyo viscous transverse fluid force coefficient |-

Cy vortex force coefficient, 2Fy/(pU2d) [-]

D dilation, non-dimensionalized by U, /d

d cylinder diameter, length scale [m]

28 potential added mass force per unit length of the cylinder [N m™}]
E, streamwise fluid force per unit length of the cylinder [N m™|

E, transverse fluid force per unit length of the cylinder [N m™1|

Fy vortex force per unit length of the cylinder [N m™?]

Iy cylinder’s natural frequency in vacuum, 1/(27)/k/m [s7']

INa cylinder’s natural frequency in still fluid, 1/(27)/k/(m +ma) [s7}]
fo vortex shedding frequency for a stationary cylinder [s™!]

T Iy vibration frequencies in z and y directions, non-dimensionalized by U, /d
e, frequency of transverse fluid force, non-dimensionalized by U, /d
I&y frequency of vortex force, non-dimensionalized by U, /d

K nondimensional natural frequency, fyd?/v [

k spring constant [kg s

m cylinder mass per unit length [kg m™!|

my added mass of fluid per unit length of the cylinder, Cypd®m/4 [kg m™|
m* mass ratio, m* = 4m/(d*np) []
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NOMENCLATURE xii

Re
St

u, v
z, Y

Zo, Yo

pressure, non-dimensionalized by pU?2
radius, non-dimensionalized by d
Reynolds number, U, d/v [-]

dimensionless vortex shedding frequency for a stationary cylinder, Strouhal
number, f,d/Us [

time, non-dimensionalized by d/Us,

reduced velocity based on the cylinder’s natural frequency in vacuum,
Uso/(fnd) [-]

reduced velocity based on the cylinder’s natural frequency in still fluid,
Use/(fn.ad) [H]

free stream velocity, velocity scale [m s™1|

velocity components in z and y directions, non-dimensionalized by U,

Cartesian coordinates, non-dimensionalized by d

cylinder displacements in x and y directions, non-dimensionalized by d

Greek Symbols

¢

v

gmax ) nmaz

structural damping ratio, b/(2vkm) []

kinematic viscosity of the fluid [m? s7}]

number of grid points in peripheral and radial direction, respectively [-]
fluid density [kg m™]

phase difference of C, relative to the displacement |-

phase difference of C,, relative to the displacement |-

phase difference of Cy relative to the displacement [

phase difference of C,, relative to the displacement ||

phase difference of C,, relative to the displacement ||

Subscripts and superscripts

max peak value
n component in the direction normal to the cylinder surface
pot potential flow
x streamwise
Y transverse
1,2 on the cylinder surface, at the outer boundary of the domain, respectively
0 cylinder response
Abbreviations
C refers to the coalescence of the positive and negative vortices in the cylinder

wake
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NOMENCLATURE xiii

CFD Computational Fluid Dynamics

DoF Degree of Freedom

PSD Power Spectral Density

P refers to vortex pair shedding from the cylinder in each motion cycle
S refers to single vortex shedding from the cylinder in each motion cycle
VIV Vortex-Induced Vibration
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Chapter 1

Introduction

In this chapter, first a selective literature review is given, which links directly to the
present dissertation (Section [[T]). Since there are numerous experimental and computa-
tional studies in the field of flow around an oscillating cylinder, a comprehensive review
is not possible due to the space limits. My aim is to create the body of knowledge, which
is essential for the correct understanding of the present objectives and the discussion of
the results. The literature survey covers

(a) the fluid flow around a stationary circular cylinder (Section [LT1);
(b) the flow around a cylinder undergoing forced/controlled oscillations (Section [LT.2);

(c) the most important results concerning the single-degree-of-freedom vortex-induced
vibrations (VIV), where the body is restricted to move only in transversd] or stream-

wisdd direction (Sections I3 and [LT4) and

(d) some results on two-degree-of-freedom VIV, where the cylinder is allowed to move
in the two directions (Section [LT.5]).

From the literature review I address research questions, which determine the objectives
of this PhD dissertation. The research questions with the objectives are presented in
Section [L.2]

1.1 Literature review

Fluid flow around a circular cylinder exposed to wind or wave is widely investigated
due to its practical importance. It plays a significant role for example in offshore risers,
chimney stacks, towers, bridge piles and heat exchangers. The periodic vortex shedding
from the body can induce high amplitude oscillations, which can cause serious damage to
the structure. This phenomenon played an important role in the collapse of the Tacoma
Narrows Bridge in 1940. Damage to the thermometer cases at the Monju fast-breeder
nuclear power plant in 1995 leading to a major shutdown of the entire facility was also due
to periodic vortex shedding (Nishihara et al. [1]). However, mechanical energy transferred
between the fluid and the moving body can also be beneficial. Possibilities of energy
harvesting have been studied for example by Bernitsas et al. [2, 3] and Mehmood et al.

[4].

! Direction perpendicular to the free stream. The phrase cross-flow is also used with the same meaning.
2Direction parallel with the free stream. The phrase inline is also used with the same meaning.
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1.1. LITERATURE REVIEW 4

1.1.1 Flow around a stationary circular cylinder

The origin of this research field can be dated back to the late 19" century, to the experi-
ments of Vincenc Strouhal. His study published in 1878 [5] was the first pioneering study
in which the vortex shedding frequency f, measured in the wake of a circular cylinder
was presented. The non-dimensional vortex shedding frequency, the well-known Strouhal
number which was named after him, is defined as

_ Jud
=5 (1.1)

where d is the cylinder diameter, and Uy, is the free stream velocity. Since then, several
studies focused on describing the Strouhal number as function of the Reynolds number

d
Re = Vs : (1.2)

14

St

where v is the kinematic viscosity of the fluid. Rayleigh [6, 7] suggested to express St(Re)
in terms of a Taylor’s expansion as:

B C
St=A4+ — +— +.... 1.3
jLRe—i_RezjL (1.3)

Roshko [§] plotted f,d?/v as function of the Reynolds number and fitted a linear curve
on the measured data points:

fod?

v

— B+ ARe, (1.4)

where A and B are the coefficients of the linear least-square fit. Taking into account
that fde/VE is the product of the Strouhal and Reynolds numbers, f,d*/v = StRe, the
following formula can be written:

B
St=A+ —. 1.5
+Ra (1.5)
Note that this expression is the truncated form of the Taylor’s expansion suggested
by [6] and [7] [see Eq. (IL3])]. Tritton [9] applying a quadratic least-square fit obtained the
following formula:

C
St = ARe + B + Re’ (1.6)
where A, B and C' are the coefficients of the least-square fit. Williamson [10] carried
out experiments at the low-Reynolds number domain (49 < Re < 250), and computed
the coefficient values arise in Eqs. (LI) and (L6). Note that curve-fitting was applied
on the data points obtained in the range of 49 < Re < 180, because St(Re) showed a
discontinuity at around Re = 180. Williamson [10] found that the error-of-fitfl for BEq.
(C3) is 0.0021 (when A = 0.2175 and B = —5.1064), while for Eq. (I6) it is only 0.0005
(using A = 1.6 x 107*, B = 0.1816 and C' = —3.3265). For this reason, the three-term
fit suggested by Tritton |9] was found to be more accurate than the two-term expression
proposed by Roshko [8].
Williamson and Brown [11] based on the effective wake width obtained the expression
as follows:

3Nowadays, this parameter is referred to as the Roshko number Ro = f,d?/v.
4“The absolute value of the error averaged over all the data points.” (see [10], p. 1075).
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B n C
vVRe Re
Using the data published in [10| they obtained A = 0.285, B = —1.3897 and C' = 1.8061
coefficients. The error-of-fit for this estimation is 0.0002, which is less than the values using
Eqgs. (LX) and (I6]). Henderson [12] carried out Direct Numerical Simulations (DNS) in
an extended Reynolds number range of Re = 47-1000. Williamson and Brown [11] tested
Eq. (L7) on the DNS results at high Re, where the flow is three-dimensional. They found
that the error-of-fit is 0.0005 (when A = 0.2731, B = —1.1129 and C' = 0.4821), which is
comparable to that obtained in the domain of 49 < Re < 180.

Kovéasznay [13] carried out time-resolved measurements using the hot-wire anemom-
etry. The Reynolds number was varied from zero (corresponding to fluid at rest) up to
Re = 10%. His early experimental results showed that the onset of vortex shedding (where
the Karman vortex street started to develop) occurs at Re = 40. This value agrees well
with the Computational Fluid Dynamics (CFD) results of Thompson and Le Gal [14]
(Re = 47), and Baranyi and Lewis [15] (Re = 47.2). Kovéasznay [13]| showed also that the
periodic vortex shedding remains stable below Re = 160. This Reynolds number value
compares well with Re = 180, where Williamson [10] observed a three-dimensional flow
structure, which resulted in a discontinuity in the St(Re) curve. Barkley and Henderson
[16] using linear stability analysis found that the flow is fully two-dimensional (2D) up
to Re = 188.5. They identified three-dimensional instabilities at Re = 188.5 and 259,
which Williamson [10] named as Mode A and Mode B. Thus, the application of a 2D
computational code above Re = 188.5 is not justified for a stationary cylinder. This is
the reason why 2D computations (for a stationary cylinder) are carried out only at low
Reynolds numbers (mainly below Re = 200).

Posdziech and Grundmann [17] using 2D computations investigated the low-Re regime.
They analyzed the effects of grid resolution and the extension of the computational domain
on the time-mean and root-mean-square values of the aerodynamic force coefficients (lift
and drag), and on the Strouhal number. In addition, they created different empirical
formulze describing the relationship between the Strouhal and Reynolds numbers. Their
most accurate formula can be written as follows:

St=A+

(1.7)

St = A + BRe“. (1.8)

Using A = 0.2844, B = —0.8706 and C' = —0.4304 the error-of-fit is 0.00038. Note that
this expression will be applied in later sections.

The experimental studies mentioned above are frequently applied for the validation
of the CFD results. Ye et al. [18] and Lai and Peskin [19] used the immersed boundary
method to solve the governing equations of the fluid flow. Baranyi and Shirakashi [20)]
applied the finite difference method, and compared the Strouhal number and the time-
mean values of the drag coefficient against experimental data. Lima E Silva et al. |21]
combined the finite difference method with the virtual boundary method, and computed
the flow around a circular cylinder. Boll6 [22] carried out systematic computations in the
range of Re < 200 using the finite volume method. She applied the Strouhal number, and
the time-mean and root-mean-square values of lift and drag coefficients for comparisons.

Another important direction of research in this field is the investigation of aerodynamic
forces acting on the cylinder. For results in this area see Norberg [23] and Sumer and
Fredsoe [24].

1.1.2 Forced cylinder vibrations

As mentioned in Section [LT.I] two-dimensional computations of the flow around a sta-
tionary cylinder are limited to the Reynolds number range of Re < 188.5, due to the
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occurrence of the Mode A instability [16]. For vibrating cylinders, however, the experi-
ments by Bearman and Obasaju [25] and Koide et al. [26], and the numerical simulations
by Poncet [27] showed that the synchronization between vortex shedding and cylinder
motion enhances the two-dimensionality of the flow compared to the case of a stationary
cylinder. The upper limit of the two-dimensionality region has not yet been determined
because of the large number of influencing parameters.

As mentioned earlier, the vortices shedding from the cylinder mean periodic load on the
structure. In the case when the vortex shedding frequency is close to the natural frequency
of the system fy, high amplitude vibration can occur. This phenomenon is always referred
to as lock-in or synchronization. The terminology vortez-induced vibration (VIV)E is often
used referring to oscillations caused by the vortex shedding. VIV is widely modeled using
the forced/controlled oscillation approach, where the cylinder is oscillated mechanically.
This approach is a simplifying model, and is often chosen because no equations are needed
to be solved for the cylinder motion.

A large number of papers deal with forced oscillation in one-degree-of-freedom (1DoF)
cylinder motion, where the body is restricted to move only in transverse direction.
Williamson and Roshko [28| carried out forced vibration experiments in the range of
Re = 300-1000. They created a so-called wake mode map (known as the Williamson-
Roshko map), where they organized the different vortex structures in the amplitude-
wavelength plane. It can be seen from their results that a 2P vortex structure (two pairs
of vortices are shed from the cylinder in each motion cycle) plays an important role in
the fundamental lock-in domain for high Reynolds numbers (Re > 300). In addition,
Williamson and Roshko [28] identified a P+S asymmetric mode (a vortex pair and a
single vortex) only at very high vibration amplitudes (o = 1-2, where g, is oscillation
amplitude nondimensionalized by the cylinder diameter). They found that decreasing the
Reynolds number below Re = 300, the 2P mode in the fundamental synchronization range
is replaced by the P+S vortex structure. The forced vibration CEFD results of Meneghini
and Bearman [29] and Blackburn and Henderson [30| confirmed this finding: they did not
observe the 2P mode of vortex shedding but they found the P+S vortex structure. Leon-
tini et al. [31] carried out systematic forced vibration computations at Re < 300. Similar
to the experiments of Williamson and Roshko [28], Leontini et al. [31] investigated the
effects of forcing frequency and amplitude, and created wake mode maps at Re = 100 and
300. At Re = 100 the P+S mode occurred only at very high vibration amplitudes (over
go = 0.9) and, however, at Re = 300 they did identify the P+S vortex structure around
7o = 0.55, and near the fundamental lock-in domain.

Blackburn and Henderson [30] defined the mechanical energy transfer between the
fluid and the transversely oscillating cylinder as

T
0

where ¢ is the dimensionless time, g is the non-dimensional velocity of the cylinder, C,
is the transverse fluid force coefficient, and 7' is the period of cylinder oscillation. In case
E > 0, energy is transferred from the fluid to the cylinder, which is always the case
for self-excited motions. In this sense, E is useful to localize the domains, where vortex-
induced vibrations are possible to occur. Baranyi and Daroczy 32| investigated the effects
of vibration amplitude and frequency, and Reynolds number on the mechanical energy
transfer. They found E > 0 values near the boundary of the fundamental lock-in domain,
when the dimensionless oscillation amplitude was below g, = 0.6.

Nishihara et al. |[1] showed that the failure of the thermometer cases at the Monju
nuclear power plant was caused by vibrations streamwise with the free stream. Despite,
researches on fluid flow around a circular cylinder forced to oscillate only in streamwise

®For synonyms of the term “vortex-induced vibration”, “self-excited motion” or “free vibration” is

commonly used.
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direction are much scarce than investigations concerning a transversely oscillated cylinder.
The investigations carried out by Al-Mdallal et al. [33] and Mureithi et al. [34] are the most
well-known studies in this field. Tanida et al. [35] carried out experiments in the range of
40 < Re < 150 at the dimensionless oscillation amplitude value of £, = 0.14. They showed
that the phase difference of streamwise fluid force relative to the cylinder displacement
is negative, yielding negative mechanical energy transfer [F < 0, defined similarly to Eq.
(C3)]. The recent CFD studies by Konstantinidis and Bouris [36] (£o = 0.1, Re = 150) and
Kim and Choi [37] (2o = 0.05,Re = 100) showed similar features to Tanida et al. [35]’s
experimental results: £/ was negative in all the computation points. Contrary to £ > 0,
negative mechanical energy transfer indicates that self-excited vibration of the cylinder in
streamwise direction is not feasible in the low-Reynolds number range. Nevertheless, the
question arises whether streamwise-only vortex-induced vibration of a circular cylinder
can occur for low Reynolds numbers (maybe at lower oscillation amplitudes).

In reality, the cylinder oscillates always in two directions at the same time (streamwise
and transverse), which leads to two-degree-of-freedom cylinder motion. Two types of cylin-
der paths are observed in the free vibration experiments: (a) when the frequency of cylinder
oscillation in streamwise direction is double that in transverse direction (f; = 2f;), yield-

ing a figure-eight type pathf [38 41, and (b) when the vibration frequencies in the two
directions are identical (f; = f;), which results in orbital paths [42-44]. The experimen-
tal or numerical studies for forced figure-eight cylinder motions include Jeon and Gharib
[45], Baranyi [46], and Peppa et al. [47]. Baranyi [46] found that the orientation of the
path strongly influences the force coefficients and the mechanical energy transfer. When
the cylinder orbit is anticlockwise on the upper loop of figure-eight, £/ > 0 over the large
part of the parameter domain, in contrast with the clockwise orbit where E is mainly
negative. There is relatively little research carried out for flow around a circular cylinder
following orbital paths [48, |49]. Baranyi [50] showed results of numerical simulation of
low-Reynolds number flow (Re = 120-180) past a circular cylinder following an elliptical
path. He systematically changed the transverse oscillation amplitude while keeping the
in-line amplitude constant. When plotting the results against transverse oscillation ampli-
tude, jumps have been found in the time-mean and root-mean-square values of the force
coefficients, and in the mechanical energy transfer between the fluid and cylinder.

1.1.3 Transverse vortex-induced vibrations

Another approach to the investigation of vortex-induced vibrations (VIV) involves an
elastically supported cylinder model, where the cylinder oscillates due to the fluctuating
transverse and streamwise fluid forces acting on the body. A large number of studies have
dealt with this model, including Bishop and Hassan [51], Bearman [52, [53|, Sarpkaya [54,
55|, Williamson and Govardhan [39|, and Blevins [56].

Although in reality the cylinder is allowed to move in two degrees of freedom (both
streamwise with and transverse to the main stream), transverse-only vibration is often
used to model VIV. Feng [57], Brika and Laneville [58] and Khalak and Williamson [59]
showed that the cylinder response (amplitude and frequency values) highly depends on
the mass-damping parameter m*(. Here m* is the mass ratio (cylinder mass divided by
the mass of the displaced fluid) and ( is the structural damping ratio:

4m b
m* = : — , 1.10a, b
pd*m ¢ 2V Em ( )

where m is the mass per unit length of the cylinder, p is the fluid density, and b and £ are
the structural damping and spring constant values, respectively. The oscillation amplitude
shows higher values at distinct region, which domains are usually referred to as “response

6For synonym of the term “figure-eight path”, “Lissajous curve” is commonly used.
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branches” [39] for transverse-only VIV. Feng [57| and Brika and Laneville [58] investigated
high-m*( cases. Plotting the amplitude of cylinder oscillation against reduced velocity

fN,ad’

where fy, is the natural frequency of the cylinder in sill fluid, they found two response
branches, namely the initial and lower branches, where the initial branch was associated
with the peak oscillation amplitude. In addition, Brika and Laneville [58] showed that the
transition between the initial and lower branches is hysteretic, due to the abrupt change
in the vortex structure. Using the notations introduced by Williamson and Roshko [2§],
Brika and Laneville [58] observed a 2S mode (two single vortices are shed from the cylinder
in each motion cycle) in the initial branch, while a 2P mode in the lower branch.

Khalak and Williamson [59] identified three response branches (initial, upper and
lower branches) for very low mass-damping values, where the peak vibration amplitude
was associated with the upper branch. They found hysteresis in the initial<»upper branch
transition range, where the vortex structure switches from 2S to 2P mode. The transition
between the upper and lower branches is found to be intermittent, since the wake mode
does not show changes (2P mode is observed both in the upper and lower branches).
Govardhan and Williamson [60] investigated also low mass-damping cases using experi-
mental techniques. Following Lighthill [61], Govardhan and Williamson [60] decomposed
the transverse fluid force into the vortex force and potential added mass force compo-
nents. The phase differences for transverse fluid force and vortex force relative to the
cylinder displacement &, and ¢y were calculated using the Hilbert transform of the cor-
responding signals. They showed that @y jumps between approximately 0° and 180° in the
initial<>upper branch transition range, where the vortex structure switches from 2S to 2P
mode. In this range the cylinder displacement remained in-phase with the transverse fluid
force. However, in the transition domain between the upper and lower branches (where
no significant changes were identified in the wake mode) @, was found to jump from 0°
to 180°, and the vortex force remained out-of-phase with the cylinder displacement.

Klamo et al. [62] investigated the effects of structural damping ratio and Reynolds
number on the cylinder response. They showed that increasing (, the high-amplitude
three-branch response switches to two-branch response, where the oscillation amplitude is
significantly lower. Soti et al. [63] carried out a systematic experimental study for different
¢ values. In addition to the cylinder response, they analyzed the power transfer between
the oscillating cylinder and the surrounding fluid. They identified three-branch response
for a wide damping ratio range; they showed the occurrence of the upper branch even at
low oscillation amplitudes (down to gy = 0.2). Bernitsas et al. [2] and Lee and Bernitsas
[64] investigated the possibilities of energy harvesting from vortex-induced vibrations.
Bernitsas et al. |2| based on harmonic approximations derived an analytical formula for
the calculation of power transfer. Their expression shows that zero mechanical power is
transferred from the fluid to the cylinder when @, (or @y) equals to 0° or 180°, i.e. for
undamped vibrations. Their formula reveals also that increasing the structural damping
ratio the power transfer can be increased, which finding agrees well with the experimental
results of [63].

Klamo et al. [62] and Govardhan and Williamson [65] showed that the Reynolds num-
ber influences the cylinder response significantly. Most of the experiments are carried
out in the Reynolds number range of Re = O(10%-10). However, numerical simulations,
due to the high computational time demand are usually carried out in the low-Reynolds
number range [Re = O(10%)]. Another issue can be the three-dimensionality of the flow
structure (see details in Sections [ 1.1l and [LT.2).

The computational results available in the literature show that oscillation amplitudes
for low Reynolds numbers are significantly lower (maximum yo = 0.55, see Navrose and
Mittal |66]) compared to high-Re experiments (can exceed yy = 0.8, see Govardhan

U (1.12)
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and Williamson [60]). Anagnostopoulos and Bearman [67] obtained similar characteristics
using measurement, techniques in the range of Re = 90-150. Leontini et al. |68] using
CFD simulations found two-branch cylinder response at the parameter combination of
Re = 200, m* = 10 and ¢ = 1%. The vortex structures are markedly different from those
observed at high Reynolds numbers: 2S and C(2S) wake modes were found in the initial
and lower branches, respectively. Here C refers to the coalescence of the positive and
negative vortices in the cylinder wake. Navrose and Mittal [66] carried out numerical sim-
ulations at Re = 100 and ¢ = 0% using different mass ratios in the range of m* = 30-150.
They found a thin reduced velocity range in the middle of the lower branch, where the
oscillation amplitude was very low and the vibration frequency did not synchronize with
the cylinder’s natural frequency. They also showed that the width of this low-amplitude
domain extends with m*.

In reality the Reynolds number and the reduced velocity are not independent parame-
ters. Assuming that the natural frequency of the cylinder is constant, the following linear
relationship exists between Re and U*:

Re = KU*. (1.13)

Here U* = U, /(fnd) is the reduced velocity, where fy is the cylinder’s natural frequency
is vacuum, and K = fyd?/v is the dimensionless natural frequency. Willden and Graham
[69] investigated the effect of mass ratio between m* = 1 and 50 using K = 20. They iden-
tified primary, secondary and tertiary responses. The primary response occurred around
lock-in, where the oscillation amplitude reached its maximum value. In the secondary re-
sponse (found only for m* > 5) the non-dimensional vortex shedding frequency was close
to the dimensionless vortex shedding frequency for a stationary cylinder, and the oscil-
lation frequency approached the natural frequency of the body. In the tertiary response
(identified only for m* < 10) nearly constant vibration amplitude could be maintained.
Bahmani and Akbari [70] investigated numerically the separate effects of mass and struc-
tural damping ratios for K = 17.9. They found that increasing m* or ¢ has almost the
same effect: both the oscillation amplitude and the lock-in domain size decrease.

The numerical studies investigating vortex-induced vibrations at low Reynolds num-
bers have not reported an upper branch even for undamped systems [66, [68]. However,
Evangelinos and Karniadakis |71] showed that the P+S vortex pattern may also be asso-
ciated with the upper branch, which is rarely identified in VIV cases. Singh and Mittal
[72] investigated two-degrees-of-freedom vortex-induced vibrations numerically and found
P-+S vortex pattern above Re = 300. As mentioned in Section [[T.2] Leontini et al. |31]
using transverse-only forced vibrations showed that the P+4S vortex structure appears
near the fundamental lock-in domain.

1.1.4 Streamwise vortex-induced vibrations

Besides self-excited motions transverse to the main flow, the fluctuating fluid forces can
induce vibrations along the direction of the free stream, i.e. in the streamwise (or inline)
direction. In the literature streamwise-only VIV received less attention, most likely be-
cause the lower amplitudes of cylinder oscillation. In the early review paper about vortex
shedding and its applications, King [73| discussed some relevant results on streamwise-only
vortex-induced vibrations. He showed that the maximum vibration amplitude (a peak-to-
peak value) is about 0.2 times of the cylinder diameter. This value is very low compared
to the transverse-only VIV cases, where the peak oscillation amplitude can easily be ten
times higher.

For streamwise-only VIV cases the regions within which the vibration amplitude shows
higher values are often referred to as “instability regions” [73] or “excitation regions” [74].
Note that, the terminology “response branch” is also used, but its physical meaning is
different from that used in transverse-only free vibrations (see Section [[LT.3]). The early
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experimental study carried out by King |73] and Aguirre |75] revealed that two excitation
regions exist in streamwise VIV. The first branch occurs below the reduced velocity value
of U} = 2.5, which is associated with a symmetrical shedding of vortices simultaneously
from both sides of the cylinder. The second branch occurs at U} > 2.5, and is associated
with an alternating vortex shedding mode, which type of wake mode Williamson and
Roshko [28] denoted as 2S mode. These characteristics of self-excited in-line vibrations
was confirmed by further experimental studies [76-78|. The value of U} = 2.5 corresponds
approximately to the point, where the natural frequency of the system coincides with
the double of the vortex shedding frequency from a stationary cylinder; fy, = 2f, or
U*! =2 2St (assuming St = 0.2). Since the Strouhal number [defined by Eq. (LI)] is the
function of the Reynolds number, especially in the low-Re regime, U} = 2.5 should be
replaced as U} = 1/(2St).

The effects of mass ratio m* and structural damping coefficient ( on the streamwise
response has not yet been thoroughly investigated. Aguirre |75] concluded from his exper-
iments that mass and damping affected the cylinder response in different ways. He noted
that the mass ratio did not affect the normalized oscillation amplitude and the stiffness
of the mechanical system did influence the normalized response frequency. Okajima et
al. |[76] in their experiments investigated the effect of “reduced mass-damping”, which is
proportional to the mass-damping parameter m*( used in many transverse VIV cases
[57-59]. Okajima et al. |[76] found that as they increased the reduced mass-damping, the
vibration amplitude in both excitation regions decreased. Note that this effect was due
to the increasing value of structural damping, because the mass ratio was fixed in their
study.

The above mentioned studies carried out experiments at moderately high Reynolds
numbers, i.e. above Re = 103. Tanida et al. |35], Konstantinidis and Bouris [36] and
Kim and Choi [37] found that vortex-induced streamwise vibrations of a circular cylinder
may not occur at low Reynolds numbers (see further discussion in Section [[T.2]). They
obtained their results using the forced vibration model, and they considered constant
oscillation amplitudes above Z; = 0.05. However, self-excited streamwise vibration of a
circular cylinder is plausible but at lower oscillation amplitudes; at y < 0.05. The research
question whether inline VIV is possible to occur at low Reynolds numbers has not yet
been addressed. To the best knowledge of the author, the study carried out by Bourguet
and Lo Jacono [79] is the solely one, where the streamwise vortex-induced vibration of a
rotating cylinder is investigated at Re = 100. The oscillation amplitude for a non-rotating
cylinder is negligible compared to cases when the body was rotating.

1.1.5 Two-degree-of-freedom VIV

In most engineering applications the cylinder is allowed to move in two degrees of freedom
(2DoF), both streamwise with and transverse to the main stream. In general, mass ratios
(m} and m}) and natural frequencies (fn, and fy,) are different in the two directions. Moe
and Wu [8(] investigated 2DoF vortex-induced vibrations at m}/m; = 2 and fn./fn, =
2.18. The vortex shedding was found to synchronize with the cylinder motion in a wide
range of reduced velocity U* = Uy /(fn,d). However, response branches observed for
transverse-only vibrations, were not found. Sarpkaya [54] carried out investigations for
fne/ vy = 1—2 and m} # m;. He showed that the oscillation amplitudes for fy,/fny, = 1
increased by 19% compared to those obtained for transverse-only VIV. Sarpkaya [54] found
no evidence for distinct cylinder response branches. In the experiments of Dahl et al. [31]]
fne/fny = 1 — 1.9 was considered, where the mass ratios differed in each directions.
They showed that the maximum vibration amplitude shifted to higher reduced velocity
values when the natural frequency ratio was increased. At fu,/fny, = 1.9 two amplitude
peaks were observed, which was in agreement with the results of [54]. Dahl et al. |82]
carried out both experimental and numerical studies in the range of fy,/fn, = 1 — 2
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with m} # m;. They showed that when increasing the natural frequency ratio, the third
harmonic frequency component of transverse fluid force becomes significant. Considering
m;, = m,, Bao et al. [83] and Wang et al. [84] investigated numerically the effect of natural
frequency ratio at Re = 150 and 500, respectively. Both studies reported the occurrence of
the third harmonic frequency component in the frequency spectra of transverse fluid force.
Jauvtis and Williamson [85] analyzed the effect of mass ratio at the limiting case of fy, =
fny = fv and m} = m; = m*. They found that the streamwise vibration component has
only a tiny effect on the transverse oscillation component in the medium mass ratio range
6 < m* < 25. In contrast, for m* < 6 the existence of a high-amplitude super-upper
branch was reported, where the 2T type of vortex structure (two triple vortices are shed
from the cylinder) was observed. The third harmonic component of transverse fluid force
was also found, which the authors attributed to the 2T mode of vortex shedding. Sanchis
|86] carried out experiments in the range of fy,/fn, < 1. He found that the response
amplitudes were quite similar to those at fn, = fny.

As discussed in Section [L1.3] the CFD computations are mainly carried out at low
Reynolds numbers. Similarly to the transverse-only VIV studies, two different types of
computations can be found in the literature: (1) when the Reynolds number and the
reduced velocity are varied independently and (2) when Re is varied linearly with U*.
Singh and Mittal |72]| carried out two sets of computations: (1) at Re = 100 and varying
U* and (2) at U* = 4.92 and varying Re. They showed that the initial<>lower branch
transition range is hysteretic, which is consistent with the findings of Brika and Laneville
[58]. Hysteresis jump was also found at the upper boundary of the lower branch, which
was confirmed by the experiments of Klamo et al. [62]. Singh and Mittal |72] also found
that varying the reduced velocity at Re = 100, 2S wakes were identified for low oscillation
amplitudes and C'(25) for relatively high oscillation amplitudes. This observation agrees
well with the transverse-only VIV results by Leontini et al. [68]. Singh and Mittal |72]
showed that varying the Reynolds number above Re = 300, P+S vortex structure was
observed (a vortex pair and a single vortex are shed from the cylinder in each vibration
period), which is very rare in VIV.

Assuming that the natural frequency of the system is constant, the Reynolds number
changes linearly with the reduced velocity [see Eq. (LI3)]. In the following numerical
studies 2DoF VIV was investigated, where the natural frequencies in streamwise and
transverse directions were chosen to be identical (fn. = fy, = fn) and constant. Prasanth
et al. [87, 188] investigated the effects of numerical blockage ratio B = d/H (the ratio of the
cylinder diameter and the height of the computational domain H) at K = 16.6. Similarly
to the findings of |72]|, Prasanth and Mittal [88] observed hysteresis loops at the lower and
upper boundaries of the lock-in domain. They showed that the width of the hysteresis
loop at the lower boundary of the synchronization range reduces as the blockage ratio is
decreased. The hysteresis loop completely disappeared at B = 2.5%. Prasanth and Mittal
[88] computed the phase angle @, between the transverse fluid force and the transverse
vibration component. An abrupt phase jump (between &, = 0° and 180°) was observed
at Re = 110. Decomposing the transverse fluid force into pressure and viscous parts, their
results showed that the jump in @, was caused by the pressure transverse force, since
the viscous part remained in-phase with the transverse vibration component in the entire
Re range. Mittal and Singh [89] carried out computations for a very low non-dimensional
natural frequency value (K = 3.1875) and found that VIV occurred as low as Re = 20,
which is in the steady state regime for a stationary cylinder. They showed that the vortex
shedding frequency and the natural frequency of the system are relatively far from each
other for low mass ratios (m* = 4.73). Increasing the mass ratio up to m* = 50, the
frequency values moved closer to each other. This phenomenon was confirmed by the
experimental data of Williamson and Govardhan [39].

For two-degree-of-freedom free vibration cases the path of the cylinder is another area
of interest. The numerical studies of Mittal and Kumar [38] and Bao et al. [83] and the
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1.2. OBJECTIVES AND LAYOUT OF THE CURRENT DISSERTATION 12

experimental studies of Sarpkaya [55], Williamson and Govardhan [39], Dahl et al. |41,
81, 82|, Blevins and Coughran [40], and Srinil et al. [90] showed that an isolated cylinder
placed into a uniform stream usually follows a figure-eight path, where the oscillation
frequency in streamwise direction is double that in transverse direction (fy = 2fy). In
addition to the figure-eight orbits, there are some applications where the cylinder follows
orbital motion, where f; = f;. Kang et al. [91] investigated experimentally the effects
of aspect ratio L/d (where L is the length of the cylinder), and natural frequency ratio
fnz/fny on the moving trajectory. Orbital motions such as D-shaped, egg-shaped or
raindrop-shaped paths were found for L/d = 24 by varying fn,/fny. The effect of natural
frequency ratio was less significant for L/d = 6; only figure-eight paths were identified.
Kheirkhah et al. [42|, Oviedo-Tolentino et al. |[92] and Marble et al. [93] investigated
the VIV of a rigid pivoted cylinder, where the oscillation amplitude varied linearly along
the cylinder span. An elliptical path was observed in a wide reduced velocity range. Tu
et al. [43] and Gsell et al. [44] investigated numerically the two-dimensional flow around
an isolated circular cylinder placed in a planar shear flow. They found that increasing
the shear parameter (the ratio of the dimensionless inflow velocity gradient and the free
stream velocity at the cylinder center) switched the path of the cylinder from figure-eight
to elliptical motion. Prasanth and Mittal [94] carried out systematic computations for
two circular cylinders (with identical diameters) in tandem and staggered arrangements.
For the staggered arrangement the downstream cylinder showed orbital motion in a wide
range of reduced velocity. These studies show that orbital motion truly occurs in several
engineering applications. However, to the best knowledge of the author, the occurrence
of orbital motion has not been specified for a single isolated cylinder placed into uniform
free stream considering low Reynolds numbers.

1.2 Objectives and layout of the current dissertation

In this PhD dissertation incompressible Newtonian constant property fluid flow around
a circular cylinder undergoing vortex-induced vibrations is investigated by means of two-
dimensional CFD computations. The dissertation is organized as follows:

e In Chapter 2 first the dimensional and non-dimensional forms of the partial differ-
ential equations governing the fluid and solid motions are written. After that, the
boundary and initial conditions, and the numerical solution methodology are given
in detail.

e In order to find the best compromise between accuracy and computational time,
independence studies are carried out. Afterwards, the currently obtained results are
validated against the data in literature for different vortex-induced vibration cases.
The results of these investigations are shown in Chapter Bl

e Based on the literature review (see Section [LI]), different research questions can
be addressed, which determine the objectives of this dissertation. I try to answer
these questions in Chapters [ [l and [6l The research questions and the objectives
are detailed in the following points.

Objective 1

In experimental studies the independent effects of the Reynolds number Re and the re-
duced velocity U* are hard to investigate, since both parameters depend on the free stream
velocity. When the natural frequency of the cylinder fy is constant (which mostly hap-
pens in the measurements), a linear relationship can be written between Re and U* as
Re = KU*, where K = fyd?/v is the dimensionless natural frequency. Although there
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1.2. OBJECTIVES AND LAYOUT OF THE CURRENT DISSERTATION 13

are some studies in the literature in which the Reynolds number varied linearly with
the reduced velocity [69, [70, 87-89|, these investigations are limited to low dimensionless
natural frequency values (K < 20 for transverse-only VIV and K < 16.6 for 2DoF free
vibrations). The first research question addressed in this dissertation is as follows:

What are the effects of the dimensionless natural
frequency K on the cylinder response and aerodynamic
force coefficients?

In order to answer this question, systematic computations are carried out at different
dimensionless natural frequency values between K = 12 and 35. The Reynolds number
is varied in the range of 60 < Re < 250 (corresponding to the variation of K'), while the
mass and damping ratio values are fixed at m* = 10 and ¢ = 0%, respectively. The results
of these investigations are shown in Chapter @ Section A1

Objective 11

Singh and Mittal [72] carried out computations at the fixed reduced velocity of U* = 4.92
in the Reynolds number range 50 < Re < 500. They showed that below Re = 300
the traditional 2S and C(2S) vortex structures occur. However, varying the Reynolds
number over Re = 300, the asymmetrical P+S wake mode can be observed, which is rarely
identified in vortex-induced vibration cases. About this the following research questions
are addressed:

Does P+S wake mode occur at high dimensionless
natural frequency values? What is the effect of this
asymmetrical mode on the cylinder path?

These questions are aimed to be answered in Chapter [, Section [£.2] For these aims
systematic computations are carried out at fixed mass and damping ratio values of m* =
10 and ¢ = 0%. The dimensionless natural frequency is chosen to be in the domain of
K = 34-44, and the Reynolds number is changed from Re = 60 to 250 (corresponding to
the variation of K).

Objective 111

There are several studies available in the literature investigating the streamwise-only
vortex-induced vibration of a circular cylinder at moderately high Reynolds numbers,
Re > 10? [73-178]. However, the forced vibration studies revealed that self-excited stream-
wise vibration of a circular cylinder is not feasible at low Reynolds numbers [35-37]. In
this part of the research project the following question is addressed:

Is it possible for streamwise-only VIV to occur in the
low-Re domain? What are the effects of m* and Re on the
cylinder response?

In order to answer these questions, systematic computations are carried out, where
the cylinder is restricted to move only streamwise with the free stream. Two sets of
computations are performed: (a) at the mass ratio values of m* = 2,5,10 and 20, and
constant Reynolds number of 180, and (b) different Reynolds numbers between Re = 100
and 250 and fixed mass ratio value of 10. In both computation sets the reduced velocity
is varied between U* = 1.5 and 3.5, while the structural damping ratio is fixed at zero
(¢ = 0%). The results of these investigations are presented in Chapter
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Objective IV

It was mentioned in Section [[LT.3] that the cylinder responses for high and low Reynolds
numbers, considering transverse-only vortex-induced vibrations, show very different char-
acteristics. For high Re, depending on the combined mass-damping parameter m*(, two
and three-branch responses can occur. In contrast, in the low-Reynolds number domain,
irrespective of the m*( value, only two-branch response has been identified; a separate
upper branch has not yet been reported.

However, there are some results available in the literature, which suggest that the upper
branch can occur at low Reynolds numbers. Evangelinos and Karniadakis [71] concluded
from their 2D and 3D computations that the upper branch may be associated with the
asymmetrical P+S mode (see Section [LT.3). Leontini et al. [31] using transverse-only
forced vibration computations showed that the P+S vortex structure appears at Re = 300
in a thin range near the fundamental lock-in domain (see Section [[L1.2]). Singh and Mittal
[72] carried out 2DoF VIV computations, and they found this asymmetrical wake mode
for Re > 300 (see Section [[LT.5)). For this reason the following research questions are
addressed:

Does the upper branch (i.e. the three-branch cylinder
response) occur at the Reynolds number of 3007 What is
the effect of structural damping on the cylinder response?

In order the answer these research questions, computations are performed at the
Reynolds number and mass ratio values of Re = 300 and m* = 10, respectively. Damping
ratio between ¢ = 0% and 5% is considered, that is, the combined mass-damping param-
eter is chosen to be in the range of m*( = 0 and 0.5. The reduced velocity based on the
natural frequency of the cylinder in vacuum is varied from U* = 2.5 to 7.5. The results
of this analysis are shown in Chapter [6l
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Chapter 2
Methodology

In this dissertation fluid flow around a circular cylinder undergoing vortex-induced vibra-
tions is analyzed at low Reynolds numbers using a two-dimensional Computational Fluid
Dynamics (CFD) approach. The outline of this chapter is as follows. In Sections 2] and
the dimensional and dimensionless forms of the governing equations of fluid and solid
motions are introduced. In Section the applied boundary conditions are given and,
finally, in Section the numerical solution methodology is presented.

2.1 Dimensional forms of the governing equations

The partial differential equations governing the Newtonian incompressible constant prop-
erty fluid flow around an oscillating circular cylinder are the two components of the
Navier-Stokes equations (written in the non-inertial frame of reference attached to the
moving body) and the continuity equation, which in dimensional forms are written as
follows:

a_ﬂ a6_ﬂ+’5@ — _l@+y @+@ —.l"; (21)
of  oxr ' oy  pox 072 ' o2 0 '
o v v 1dp P 0\ -
EVJFU% +v8—,yv = —;8—g+7/ (@ @) — Yo, (2.2)
- o Ov
D = =+ =0. 2.
7 oy Y (2:3)

In these equations tilde (777) refers to dimensional quantities, i.e., ¢ is time, % and o
are the velocity components along = (streamwise) and y (transverse) Cartesian directions,
respectively, p is hydrodynamic pressure that involves components due to fluid motion and
gravitational force (see details for example in [95]), p and v are the density and kinematic

viscosity of the fluid and D is dilation. In Eqgs. (Z1]) and (2.2]) 7y and y, are the acceleration
components of the cylinder in streamwise and transverse directions, respectively.

Figure 2.1] shows the layout of the elastically supported circular cylinder, where the
body with diameter of d and mass per unit length of m is elastically constrained in both
streamwise and transverse directions. This vibration system is placed into a uniform flow
characterized by the free stream velocity U,,. Vortices shedding from the cylinder means
a periodic load on the structure that can cause the vibration of the body; in this case
in two degrees of freedom (2DoF). The possibility of high-amplitude oscillation strongly
depends on the natural frequency of the system, which in vacuum is defined as

1 k
I = %\/% (24)
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Figure 2.1: Layout of the elastically supported cylinder

where k is the spring stiffness, which is identical in = and y directions (see Fig. 21));
thus, the natural frequencies are also equal in the streamwise and transverse directions.
However, in experimental studies cylinder natural frequency is measured in still fluid,
which can be expressed as

1 k

"o m4+my

INa (2.5)

In this equation my = CApdfT” is the added mass per unit length of the body, where C4
is the added mass coefficient. Blevins [56] showed analytically using the potential flow
theory that C'y = 1 for a circular cylinder.

In order to compute the two acceleration components in Eqgs. (2.1) and (2:2]), Newton’s
second laws of motion written for the dynamic system shown in Fig. 2] are applied:

mio + by + ko = Fy, (2.7)

where oy and fo are the streamwise cylinder displacement and velocity, and 7, and fy} are
the same quantities in transverse direction. In these equations overdot indicates derivative

with respect to dimensional time. In Egs. (Z8) and ([22) b is structural damping and F,,
and F), are the fluid force components per unit length of the cylinder in z and ¥y directions.

2.2 Non-dimensional governing equations

In this study the governing equations are solved in dimensionless forms. The non-
dimensional Navier-Stokes and continuity equations are read as follows:

%+ @+ % _ _@+i @+@ _k (28)
ot " 'ox v@y ~ 0xr  Re\022 0y o, '
v ov v op 1 (0% % )
E‘FU%*F’Ua—y = —8—y+@(@+a—y2>_y0a (2'9)
0 0
D = a—Z+8—Z:0, (2.10)

where x = 7 /d and y = y/d are the dimensionless Cartesian coordinates, u = u/U,, and
v = ¥/Uy are the non-dimensional velocity components in streamwise and transverse
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2.3. BOUNDARY AND INITIAL CONDITIONS 17

directions, respectively, t = tUs,/d is the dimensionless time, p = p/(pU2) is the non-
dimensional pressure and Zy = xod/ U2 and §j, = yod/ U2 are the dimensionless streamwise
and transverse acceleration components of the cylinder. In Eq. (Z10) D = Dd/U. is the
dimensionless dilation and Re = U,.d/v is the Reynolds number. Note that, here overdot
refers to derivative with respect to dimensionless time.

Theoretically the instantaneous velocity and pressure fields can be obtained by solving
Eqs. ([2:8)-(2I0). However, as seen in Eq. (ZI0), the continuity equation does not explic-
itly involve time, which can cause numerical instabilities. In order to reduce the compu-
tational errors, based on the methodology developed by Harlow and Welch [96], the fluid
pressure is obtained by solving a separate Poisson equation, which in non-dimensional
form can be written as follows:

o Fp_, (000 oudv) oD
ox2 " Oy2 " \drdy Oyox ot
Although dilation is zero for incompressible fluids [see Eq. (ZI0)], 0D/t is retained in
Eq. (ZI1) to avoid computational instabilities [96].

Non-dimensionalizing the cylinder equations of motion [see Eqs. (2.6) and (2.7)], the
following dimensionless equations are obtained:

Vip = (2.11)

. Ar om\ 2 2C,
Zo + U*Cl‘o + (U*) Ty = 7Tm*’ (212)
LA 2m\ 20,
= 2.13
Yo + U y0+<U*) Yo p— (2.13)

where xy = 7y/d and &y = To /U are the dimensionless streamwise cylinder displacement

and velocity components, and yo = yo/d and ¢y = y,/U are the same quantities in
transverse direction. In these equations U* = U, /(fnd) is the reduced velocity, ( =
b/(2vkm) is the structural damping ratio, and m* = 4m/(pd®n) is the mass ratio. In
Eqs. 212) and 213) C,, and C, are the streamwise and transverse fluid force coefficients,
respectively, which are computed from the pressure and shear stress distributions on the
cylinder surface. Therefore C; and C, can be divided into two parts:

F, F,
2U2.d == ot G 2U2d

=Cy=0Cy +Cy, (2.14a,b)
where subscripts p and v refer to pressure and viscous parts, respectively.

2.3 Boundary and initial conditions

In the left-hand side of Fig.[2.2lthe physical domain is shown, where R; is the dimensionless
radius of the cylinder and R, represents the outer surface of the physical domain. On
the cylinder surface (R = R;) no-slip boundary conditions are applied to the velocity
components v and v and Neumann-type boundary condition is used for pressure p:

u=0, v =0, (2.16a,b)

0 1 .
8_7’; - gvgvn - xOn Yon- (2]‘7)
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Figure 2.2: The physical and computational domains

where subscript n refers to the outer normal of the circular cylinder. In the outer surface
of the physical domain (R = Ry) potential flow (“pot”) is assumed, so that

U = Upot — Lo, V= Upot — Yos (2.18a,b)

9 _ (%
on  \On pot
Posdziech and Grundmann [17] and Baranyi [50] showed that this simplification causes

only small distortions in the velocity fields. At ¢t = 0 cylinder is assumed to be at rest,
that is

and

1%

0. (2.19)

ot =0) =yo(t =0) =0, and zo(t=0)=7g(t=0)=0. (2.20a, b)

Potential flow is assumed around the cylinder at ¢ = 0, hence the force coefficients are
C.(t =0) = Cy(t = 0) = 0, which combined with Eqs. (212 213)) and (2.20) yields zero
initial cylinder acceleration o (t = 0) = §jo(t = 0) = 0.

In order to satisfy boundary conditions described by Egqs. (2.16)-(2I9) accurately,
boundary fitted coordinates are used. For this reason, applying linear mapping functions
[50] the physical domain shown in the left-hand side of Fig. is transformed into a
rectangular computational domain (see on the right in Fig. 2.2). Due to the properties
of the mapping functions, the computational grid on the physical domain is very fine in
the vicinity of the cylinder and coarse in the far field, but the grid is equidistant in the
computational domain.

2.4 Numerical solution

The transformed governing equations with the mapped boundary conditions are solved
using an in-house CFD code based on finite difference method [50]. The space derivatives
are approximated using fourth order accurate schemes, except for convective terms, which
are discretized using the third order modified upwind difference schemes [97]. The equa-
tions of fluid and solid motions are integrated in time explicitly using the first order Euler
and fourth order Runge-Kutta methods, respectively. The linear system obtained from
the discretization of the pressure Poisson equation is solved iteratively using the succes-
sive over-relaxation (SOR) method, while the continuity equation is satisfied at each time
step.

At each time step, integrating shear stress and pressure around the surface of the
cylinder, fluid force coefficients C, and C, can be obtained. Substituting the calculated
force components into cylinder equations of motion and integrating them numerically,
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2.4. NUMERICAL SOLUTION 19

cylinder displacement, velocity and acceleration components can be computed. At the
next time step the acceleration components are updated, and the two components of the
Navier-Stokes equations are integrated numerically to obtain the new velocity fields. Using
the previously computed u and v values the Poisson equation is solved for pressure, where
the continuity equation is satisfied.
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Chapter 3

Verification and validation

The numerical approach detailed in Chapter 2] has been employed previously in several
studies on flow around a stationary cylinder [15] and flow around a cylinder undergoing
forced vibrations [32, 46, [50]. However, the in-house code has not yet been used to inves-
tigate vortex-induced vibration of a circular cylinder, hence careful validation is required
before carrying out the systematic computations. In Section [3.1] the results of indepen-
dence studies used to determine the optimal combination of computational parameters
are shown. Afterwards, a step-by-step validation is presented, where the currently ob-
tained results are compared against those available in the literature. First, single-degree-
of-freedom VIV are investigated, where the cylinder is allowed to oscillate only in trans-
verse or streamwise direction (see the results in Sections and B3] respectively). Then,
comparisons are shown for 2DoF VIV cases, where the natural frequencies are equal or
different in x and y directions. These results are presented in Section 3.4l

3.1 Independence studies

The three parameters, which characterize the computational setup are the radius ratio
Ry /Ry, grid resolution &4z X Nmaz (number of grid points in the peripheral and radial
directions, respectively), and the dimensionless time step At. In order to find the optimal
combination of these parameters, which is the best compromise between high accuracy and
computational cost, independence studies are needed. In these investigations 2DoF VIV is
considered where Reynolds number, reduced velocity, mass ratio and structural damping
ratio values are fixed at Re = 205, U* = 4.8029, m* = 10 and ¢ = 0%, respectively. Note
that this is a special parameter combination where the so-called raindrop-shaped cylinder
path is identified (see details in Chapter @ and also in |J3]). The root-mean-square (rms)
values of streamwise and transverse cylinder displacements xy and gy, the rms values of
fluid force coefficients in the same directions C, and C, and the time-mean values of

streamwise fluid force coefficient C, are presented.

First, the effect of radius ratio is analyzed, where the number of grid points on the
cylinder surface is set to &, = 360, and the dimensionless time step value is chosen
to be At = 0.0005. Radius ratio values of Ry/R; = 120,160 and 200 are considered.
In order to create an equidistant grid on the computational domain, the number of grid
points in the radial direction (belonging to the investigated Ry/R; values) are chosen to
be Mmae = 274,291 and 304. The results are shown in Table 3.1l The relative difference
between yy, C, and C, values obtained from Ry/R; = 120 and those from Ry/R; = 200
is less than 0.35%. On the other hand the relative difference between zy for Ry/R; = 120
and 200 is 1.03%, and between C,, for the same radius ratio values is 1.5%. However,
comparing the results obtained from Rs/R; = 160 and 200 the relative difference values
are under 0.4%. For this reason, the radius ratio value of Ry/R; = 160 is chosen for further
computations.
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Table 3.1: Effect of radius ratio on the computational results for Re = 205 and U* = 4.8029

RQ/Rl o Yor Cm/ Cy/ Cm

120 0.02535 0.4098 0.5179 0.3390 2.0487
160 0.02519 0.4105 0.5192 0.3404 2.0449
200 0.02509 0.4108 0.5197 0.3441 2.0416

A grid dependence study is carried out to investigate the effect of &4, (the number
of grid points on the cylinder surface) on the cylinder response and aerodynamic force
coefficients. &,,,.. = 300,360 and 420 are investigated. To make the mesh equidistant on
the computational domain the number of points in radial direction is increased with &,,4.;
Nmaz = 242,291 and 339 are used. In Table the results of the grid dependence study
are shown. It can be seen that &,,,, has only a minimal effect on yo, C and C,. The
relative difference between the values obtained from the two coarsest grids (&4, = 300
and 360) and those from &,,,, = 420 is less than 0.18%. However, grid resolution has a
higher impact on zy and Cy. The relative difference between zy and Cy for &4, = 300
and &,,.. = 420 is approximately 1%. Increasing the grid resolution up to &4, = 360,
the relative difference decreases to 0.3% for both zy and Cy. Consequently, &4 = 360
seems to be adequate for further systematic computations.

Table 3.2: Results of the grid dependence study for Re = 205 and U™ = 4.8029

gmax Ty Yo Cm/ Cy/ Cm

300 0.02531 0.4102 0.5188 0.3380 2.0475
360 0.02519 0.4105 0.5192 0.3404 2.0449
420 0.02508 0.4107 0.5193 0.3414 2.0439

Finally, the effect of dimensionless time step is analyzed, while the radius ratio and
the grid resolution are fixed at Ry/R; = 160 and 360 x 291, respectively. During these
investigations time step values of 0.001 (At;), 0.0005 (Ats) and 0.00025 (Ats) are consid-
ered. The results are shown in Table 3.3l The relative differences between zy and C,, for
Aty and for Atz are 1.27% and 1.29%, respectively, while the difference for yy, C,/ and
C'; is under 0.32%. The relative differences between all the investigated values (z¢, Yo,
Cy, Cy and C,) for Aty and Aty do not exceed 0.35%. Hence, Aty = 0.0005 is chosen for
further computations.

Table 3.3: Effects of dimensionless time step on the computational results for Re = 205 and
U* = 4.8029

At Lo Yo/ Cxl Cy/ CQC

0.001 0.02545 0.4103 0.5197 0.3433 2.0428
0.0005 0.02519 0.4105 0.5192 0.3404 2.0449
0.00025 0.02513 0.4116 0.5190 0.3392 2.0461

3.2 Validation for transverse-only VIV

Using Ry /Ry = 160, &naz X Nmae = 360 x 291 and At = 0.0005 step-by-step validations are
carried out. In this section comparisons are shown for one-degree-of-freedom (1DoF) VIV,
where the cylinder is allowed to move only in transverse direction; the streamwise displace-
ment, velocity and acceleration components are set to zero, xo(t) = &o(t) = Zo(t) = 0.
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Leontini et al. @] carried out computations at fixed Reynolds number, mass and
structural damping ratio values of Re = 200, m* = 10 and ¢ = 1%, respectively. Figure
3.1l shows the dimensionless oscillation amplitude go and in Fig. B.Ib the amplitude of
transverse fluid force coefficient C’y is plotted against reduced velocity. Note that in these
notations the hat symbol (.7.) refers to the amplitude of the corresponding signal. As
seen in the figures the current results show good agreement with those presented in [@]
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Figure 3.1: Dimensionless amplitude of cylinder oscillation (a) and the amplitude of transverse
fluid force coefficient (b) against reduced velocity for Re = 200, m* = 10 and ¢ = 1%; comparison
of the current results (@) against those of Leontini et al. [68] (a)
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Figure 3.2: Validations for transverse-only VIV: rms values of dimensionless cylinder displace-
ment (a), dimensionless vibration frequency (b), and rms values of transverse (c) and streamwise
fluid force coefficients (d) against the reduced velocity for Re = 100, m* = 70 and { = 0. a,
Navrose and Mittal @], @, present study
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Larger discrepancies can be observed between U* = 4.2 and 4.8 and in the vicinity of
U* = 6.2. These locations correspond to the boundaries of the synchronization domain
where the results are very sensitive to the change in reduced velocity.

Navrose and Mittal [66] investigated also transverse-only VIV where the effects of
reduced velocity was studied at different mass ratio values ranging from m* = 10 to 150
at Re = 100 and ¢ = 0%. At high mass ratios they found a desynchronized range in the
middle of the lock-in domain, where the oscillation amplitude was very low. In Figs. B.2h
and the dimensionless oscillation amplitude and frequency ¢ and f;, and in Figs.3.2c
and the rms values of transverse and streamwise fluid force coefficients C,» and C,,
are plotted against U* for m* = 70. It can be seen that the agreement between our results
and those obtained by Navrose and Mittal [66] is excellent even in the desynchronized
regime (6.5 < U* < 7).

3.3 Validation for streamwise-only VIV

Streamwise vortex-induced vibrations can also be investigated using the in-house code
detailed in Chapter 21 In this case cylinder motion is obtained by solving Eq. (212);
transverse displacement, velocity and the acceleration components are kept at zero [y (t) =
70(t) = §io(t) = 0]. Bourguet and Lo Jacono [79] carried out systematic computations for
streamwise VIV of a rotating cylinder at Re = 100, m* = 40/7 and ¢ = 0%. In Figs. B.3h
and [3.3b the dimensionless oscillation amplitude and frequency Zo and f, and in Figs.

B.3c and 3.3d the amplitudes of streamwise and transverse fluid force coefficients C, and

C'y are compared against those presented in [@] for a non-rotating cylinder. It can be seen
that current results compare very well with those in [79].
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Figure 3.3: Dimensionless oscillation amplitude (a), non-dimensional vibration frequency (b),

and root-mean square values of streamwise (c) and transverse fluid forces (d) against the reduced
velocity for Re = 100, m* = 40/7 and { = 0. A, Bourguet and Lo Jacono [79]; e, present study
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3.4 Validation for two-degree-of-freedom VIV

Prasanth and Mittal [88] and He and Zhang [98] carried out computations for 2DoF
vortex-induced vibrations where the natural frequencies were identical in streamwise and
transverse directions, fy, = fny = fn, and it was kept at a constant value, which
was chosen to agree with the vortex shedding frequency for a stationary cylinder at the
Reynolds number Re = 100. In this case the relationship between Re and U* is Re = KU*,
where K = fyd?/v = 16.6 is the dimensionless natural frequency. The mass ratio was
fixed at m* = 10, and the structural damping coefficient was set to zero. In Figs. [3.4h and
B.4b yo and zq, while in Figs. B4k and C, and C, are shown against the Reynolds
number. Similar to the validation cases presented in Section the current results and
those obtained by [88] and [98] are in a good agreement except for the lower and higher
thresholds of the flow synchronization (in the vicinity of Re = 90 and 130).

In the systematic computations carried out by Bao et al. [83] the natural frequencies
in streamwise and transverse directions (fy, and fy,) were different. They investigated
flows at Re = 150, m* = 8/7 and ¢ = 0%. The natural frequency ratio FR = fx,/fn, was
in the range of FR = 1-2. In Figs. B.5h and the streamwise and transverse oscillation
amplitudes, and in Figs. B.5k and the time-mean and rms values of stremawise fluid
force coeflicients are shown against the reduced velocity U* = Uy /(fn,d) for FR = 2. It
can be seen that the currently obtained results compare well with those of [83].

(a) o.6f
0.5f

|(b) 0.015(

0.4t

Y0 o 3 jro

0.2t

0.1t

Figure 3.4: Two-degree-of-freedom VIV results (®): transverse oscillation amplitude (a), and rms
values of streamwise cylinder displacement (b), transverse fluid force (c¢) and stremawise fluid
force coefficients (d) against the Reynolds number compared to [8§] (a) and [98] ()
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Figure 3.5: Results for cylinder vibrating freely in two degrees of freedom (®): transverse (a)
and streamwise oscillation amplitudes (b), and time-mean (c) and root-mean-square (d) values
of streamwise fluid force coefficient against the reduced velocity compared to (a)

3.5 Conclusions

In this section, first, independence studies are carried out to find the optimal combination
of the computational parameters. These investigations resulted in Ry/R; = 160, &pnae ¥
Nmaz = 360 x 291 and At = 0.0005. Using these set of parameters validations are carried
out with ascending complexity. The comparisons of our results against those presented in
Leontini et al. [68], Navrose and Mittal &], Bourguet and Lo Jacono [79], Prasanth and
Mittal [88], He and Zhang [98] and Bao et al. [83] show very good agreements. Additional
comparisons for stationary and oscillating cylinders in which good agreement was found
are presented in Dorogi and Baranyi ,%E]
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Chapter 4

Two-degree-of-freedom vortex-induced
vibrations

In this chapter two-degree-of-freedom vortex-induced vibrations are investigated at con-
stant mass and damping ratio values of m* = 10 and ¢ = 0%, respectively, in the Reynolds
number range of Re = 60-250. As discussed in Sections[LT.3and [LT.5 in the experimental
studies the Reynolds number and the reduced velocity are not independent parameters.
When the natural frequency of cylinder fy is constant, Re and U* are in linear rela-
tionship, Re = KU*, where K = fyd?/v is the dimensionless natural frequency of the
system. The literature review revealed that earlier investigations had been limited to low
dimensionless natural frequency values; for two-degree-of-freedom vortex-induced vibra-
tions only K < 16.6 cases were analyzed [87-89|. Hence, one can ask the question as
follows (see also in Section [[.2):

What are the effects of the dimensionless natural frequency K on the
cylinder response and aerodynamic force coefficients?

In order to answer this question, systematic computations are carried out at four differ-
ent K values ranging between approximately K = 12.3 and 34.7. The results of these
computations are discussed in Section [£.1]

Singh and Mittal [72] investigated 2DoF VIV at fixed reduced velocity value of U* =
4.92 and varying Re. They showed that for Re < 300 the classic 2S and C(2S) vortex
structures occur, while for Re > 300 they identified the asymmetrical P4+S wake mode.
One can ask the following questions (see also in Section [[.2):

Does P+S wake mode occur at high dimensionless natural frequency
values? What is the effect of this asymmetrical mode on the cylinder
path?

This gave me the motivation to carry out further systematic computations for dimension-
less natural frequency values between K = 34.7 and 43.7. The results of this analysis are

given in Section in detail.

Since the dimensionless natural frequency values used in the computations mentioned
below are calculated based on assumptions (see details in [J1, lJ3]), these values are not
whole numbers. The exact and the rounded K values, and the corresponding markers
used in the figures in Sections [4.1] and are summarized in Table For the sake of
simplicity, in further discussions the rounded K values will be used.

4.1 Dimensionless natural frequency effects at K—=12—
35

In this section systematic computations are carried out for different dimensionless natural
frequency values ranging from K 2= 12.3 to 34.7 (see Table [£1). The mass and the
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Table 4.1: Dimensionless natural frequency values used in this chapter.

Section K = fyd?/v | K (rounded) Marker
12.3440 12.3 -
16.6000 16.6 -0
EI 25.4920 25.5 -
34.7400 34.7 AN
34.7400 34.7 AN
36.5854 36.6 -
37.6016 37.6 ~
4.2] 38.6179 38.6 4
40.6504 40.7 -0
42.6829 42.7 <
43.6992 43.7 <

structural damping ratio values are fixed at m* = 10 and ¢ = 0%, respectively, while the
Reynolds number is varied in the domain of Re = 60-250.

Figure 4Tl shows the root-mean-square values of the transverse cylinder displacement
Yo and in Fig. .Tb the variations of the dimensionless transverse vibration frequency f7,

the Strouhal number St and the reciprocal values of the reduced velocity U*~! are shown
against the Reynolds number for K = 25.5. It can be seen that, the cylinder response
shows two-branch behavior, which is typical for low Reynolds numbers. Below Re =2 110 yq
is very low, and the transverse vibration frequency is close the Strouhal number, f7 = St.
Between Re = 110 and 130 an initial branch is found, where the transverse vibration
amplitude increases intensively. In this range the frequency of cylinder vibration locks
neither to St nor to U*~!. Beyond the initial branch up to Re = 165, the lower branch
is identified where the oscillation frequency synchronizes with the natural frequency of
the system, i.e. f; = U*~L, resulting in high oscillation amplitudes. Above Re = 165 the
oscillation amplitude becomes small again and f locks in to St, as was observed in the
very low amplitude range at Re < 110.

(@)

0.4t

0.3t

Yo
0.2}

0.1t

s BN

80 100 120 140 160 180 200 80 100 120 140 160 180 200
Re Re

Figure 4.1: The root-mean-square values of the dimensionless transverse cylinder displacement
(a), and the dimensionless transverse vibration frequency, the Strouhal number [17], and the
reciprocal values of the reduced velocity for K = 25.5 against the Reynolds number

In Fig. 4.2h the yy values obtained for different dimensionless natural frequencies
ranging between K = 12.3 and 34.7 are shown against the Reynolds number. It can be
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seen that the Reynolds number range where flow synchronization is identified strongly
depends on K, therefore the comparison of the data is difficult. Khalak and Williamson
[59] showed that the cylinder responses for different combined mass-damping parameters
m*( plotted against the “true” reduced velocity 1/f¥ (instead of reduced velocity U*)
can collapse into a single curve. Since ¢ = 0% in this set of computations, the mass-
damping parameter is zero in all the cases investigated in this dissertation. Singh and
Mittal [72] used U*St as an independent variable for the cases where either Re or U* was
kept constant:

Ue fo R
deUood fN.

As can be seen, U*St is the ratio of the vortex shedding frequency for a stationary cylinder
and the natural frequency of the oscillating body. To the best knowledge of the author,
U*St as an independent parameter has not previously been applied for constant natural
frequency cases.

In Fig. the rms values of transverse cylinder displacement is plotted against U*St.
This figure shows that the curves belonging to different K values can be represented in the
same range, i.e., using U*St as an independent parameter is advantageous. It can be seen
in Fig. that the yo curves shift upwards when the dimensionless natural frequency
is increased. A larger difference in 1y values is found between K = 12.3 and 16.6 than
between K = 25.5 and 34.7. It can also be observed that the lower branch is significantly
wider for lower K values. Previous researchers (e.g. [88]) reported that in the initial branch
the flow is quasi-periodic, which is the same what I found in this dissertation. My results
show also that the width of the initial branch also depends on K. For K = 12.3 and 16.6
Yo jumps abruptly between the very low amplitude range and the lower branches, while
for K = 25.5 and 34.7 the transverse oscillation amplitude shows a gradual change.

| (0)

0.4;

U*St =

(4.1)

(@)

0.4t

0.3} 0.3}
Yo Yo
0.2} 1 0.2}
0.1} 0.1
0 L
240 04 06 08 1 1.2 14 16

U*St

Figure 4.2: Root-mean-square values of dimensionless transverse cylinder displacement against
Re (a) and U*St (b) for K = 12.3 (-#-), 16.6 (-e-), 25.5 (=) and 34.7 (-A-)

In Figs. A3k and [£3b the rms values of streamwise displacement xy and streamwise
fluid force coefficient C,, are shown against U*St. As expected, the amplitude of cylin-
der oscillation in streamwise direction is significantly lower than that in the transverse
direction. Similar characteristics are observed, as were seen for yy in Fig. the curves
belonging to increasing K shift to higher values for both zy and C,.. It is very important
to see that the rms values of streamwise cylinder displacement show a local peak value at
around U*St = 0.47, which increases with the dimensionless natural frequency (see Fig.
[43h). As can be seen in Fig. [£3b, the rms of streamwise fluid force displays a similar
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Figure 4.3: Root-mean-square values of dimensionless streamwise cylinder displacement (a) and
streamwise fluid force (b) against U*St for K = 12.3 (-4-), 16.6 (-e-), 25.5 (@) and 34.7 (-A-)

feature to that of z/, but C,/ varies in a broader range (the peak value of C,/ is 0.52, while
that of z¢ is only 0.0066 for K = 34.7). That is, the details of C,/ close to U*St = 0.47
are hard to see.

For the aim of better illustration, the domain 0.4 < U*St < 0.6 is shown at higher
resolution in the inset chart of Figs. 4.3k and 4.3b. Note that xy and C,, do not display
local peaks for K = 12.3; thus, curves corresponding to this particular dimensionless
natural frequency value are not shown in the inset plots. It can be seen in the inset figures
that xy increases continuously until it reaches its local peak value at around U*St = 0.47
(see Fig. [£3h). As expected, with decreasing K the peak value decreases, and almost
disappears at K = 16.6. In addition to the peak, a local minimum point is identified in
Cy at U*St = 0.5, where Cpy — 0 (see Fig. [43b). Beyond the local minimum point C,.
starts to increase with the slope of the curve increasing with K.

In order to explore the significance of the local maximum values of xy and C,/ and
the local minimum values of C/, the range 0.4 < U*St < 0.6 is further investigated.

The relative waveforms of streamwise cylinder displacement and fluid force xj; and C; are
defined as

O %O_TO (4.2)
* o C$(t)_6x
Ci(t) = 6 (4.3)

where T, and C, are the time-mean values of streamwise displacement and fluid force
coefficient, respectively, and o and C, are the amplitude values of xy and C,. Figure
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shows the time histories of x and C7 at different U*St values. It can be seen that the
point of U*St = 0.5 separates two different regions. Below U*St = 0.5 the displacement
and the fluid force coefficient along the direction of the free stream are in-phase signals,
while above the point of approximately U*St = 0.5 x{ is out-of-phase with C.

1t (a); (b);
X 0
Cy
-1
570 575 580570 575 580570 575 580570 575 580

t t t t

Figure 4.4: The relative waveforms of streamwise cylinder displacement (xz(j, blue dashed lines)
and streamwise fluid force (C%, red solid lines) at U*St = 0.467 (a), 0.492 (b), 0.498 (c) and
0.536 (d) for K = 34.7

Let us assume that the streamwise cylinder displacement and the fluid force coefficient
are sinusoidal functions of time:

xo(t) = Zosin(2mfrt), (4.4)
Co(t) = C,sin(2nfit+ &,), (4.5)

where f7 is the frequency of cylinder vibration in streamwise direction, and @, is the
instantaneous phase difference of streamwise fluid force relative to the cylinder displace-
ment in the corresponding direction (hereafter the streamwise phase). Note that the mean
components of these signals are omitted, because they do not affect the dynamics. The
time-dependent streamwise phase (®,) is obtained using the Hilbert transformation, how-
ever, in this section only its time-averaged value @, is shown. The calculation methodology
of the time-varying phase is shown in Appendix [A.2.2] in detail. In Fig. the @, val-
ues are shown against U*St for the dimensionless natural frequencies ranging between

180 ‘ ﬁ’-‘rﬂ-‘“‘
4
120¢
(2
60}
0 M ‘
0.4 0.45 0.5 0.55 0.6

U*St

Figure 4.5: Time-averaged phase difference of streamwise fluid force relative to the streamwise
cylinder displacement against U*St for K = 16.6 (-e-), 25.5 (@) and 34.7 (-4&-)

Last updated: April 20, 2020



4.1. DIMENSIONLESS NATURAL FREQUENCY EFFECTS AT K=12-35 31

0.012 ‘ ‘ ‘ 0.003

(@) (b)

0.008r 1 0.002}
A
Cxp/ C.I,"UI
0.004r 1 0.001}

»

ploe00000eee T oo o]

0.4 0.45 0.5 0.55 0.6 04 0.45 0.5 0.55 0.6
U*St U*St

Figure 4.6: Root-mean-square values of pressure streamwise fluid force (a) and viscous streamwise
fluid force (b) against U*St for K = 16.6 (-@-), 25.5 (-&) and 34.7 (-A-)

K =16.6 and 34.7. The irregular change in the phase difference can be clearly observed
in this figure: for U*St < 0.5 ¢, = 0°, and at the critical value of U*St = 0.5 the time-
averaged streamwise phase switches from @, = 0° to 180°. This approximately 180° jump
can be seen for all K values above K =2 12.3.

The total streamwise fluid force coefficient is composed of two parts: one is due to
pressure C,, (pressure streamwise fluid force) and the other part is originated from fric-
tion on the cylinder wall C,, (viscous streamwise fluid force), as stated by Eq. (2.14). As
can be seen in Fig. [4.6] the rms values of the pressure and viscous streamwise fluid force
coefficients C,,y and Cy,y in the range 0.4 < U*St < 0.65 show different behaviors. Al-
though both quantities have maximum and minimum values in this domain, the variation
of Cy, is similar to C, (see the inset plot in Fig. @3b), while the change in Cj, is similar
to the characteristics of ¢ (see the inset plot in Fig. [£3h).

In Figs. &7 and E.7b the time-averaged phase differences of C,, and C,, relative
to the streamwise cylinder displacement @, and p,, are shown as functions of U*St for
K = 16.6-34.7. It can be seen that, p,,, and ©,, show different trends in the vicinity of
U*St = 0.5. In the range of 0.4 < U*St < 0.5 there is a ©,, = 35° phase shift between

(@) | | | (b)

180f : 180}

— 120 1 120¢
Tp Pav

601 1 601

0.4 0.45 05 0.55 0.6 0.4 0.45 0.5 0.55 0.6
U*St U*St

Figure 4.7: Time-averaged phase difference values ©,, (a) and ©,,, (b) for K = 16.6 (-@-), 25.5
(=) and 34.7 (-4&-)
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Cyv and zy. After this period i, changes gradually until it reaches approximately 180°
(see Fig. @7b). In contrast, C, and xy are approximately in phase between U*St = 0.4
and 0.5, while in the vicinity of U*St = 0.5 the time-averaged phase difference changes
abruptly to 3, = 180° (see Fig. B.7h).

The tendencies of 3, and @, are very similar (see Figs. A.7h and B.5), therefore pres-
sure distribution around the cylinder surface influences the flow structure more strongly
than shear stress does. This behavior is similar to that observed by Prasanth and Mittal
[@] for K = 16.6, who found an abrupt jump in the phase between the transverse fluid
force and displacement from 0° to 180° (between Re = 110 and 115). Decomposing the
transverse fluid force into components due to pressure and shear stress they showed that
the pressure component is responsible for the jump, since the viscous component remains
in-phase with the displacement.

In Fig.[£8 the limit cycle curves (time histories of viscous streamwise force versus those
of pressure streamwise force) are shown in the vicinity of U*St = 0.5 for K = 25.5. It
can be seen that below U*St = 0.499 the orientation of the curves is clockwise, indicated
by filled arrows (see Fig. L.8). At U*St > 0.499 the orientation switches abruptly to
counterclockwise (shown by lined arrows in Fig. 48], which means that pressure and
viscous streamwise force components become nearly antiphase. This substantial change is
mainly caused by C,, since @, increases gradually in this regime (Fig.[L7b), in contrast
to @,,, Which jumps abruptly between @, = 0° and 180° at around U*St = 0.5 (Fig.
[d7h). The amplitudes of signals C,,, and C,, (closely related to C,,y and C,,/) are almost
identical in the vicinity of U*St = 0.5. These two features (antiphase and equal signal
amplitudes) nearly cancel each other out, resulting in an approximately zero value of C

(shown in Fig. [4.3b).

0.976 I
U*St = 0.503

0.975— U*St = 0.499 ]
U*St = 0.482

U*St =0.495 U*St = 0.48

U*St = 0.490
0.974—

TP 0.973—

0.972—

0.971

\ \ \ \ \ \
0.97
0.368 0.369 0.37 0.371 0.372 0.373 0.374 0.375

C.’II’U

Figure 4.8: Limit cycle curves (Cyy, Cyp) in the vicinity of U*St = 0.5 for K = 25.5

The results of the CFD computations show also that the vibration frequency of the
cylinder in streamwise direction is double that in transverse direction, which leads to
figure-eight cylinder motion (see Section [LT.2). In Fig. the paths of the cylinder are
shown at different U*St values for K = 34.7. Similar to the features observed in the
(Cyp, Crp) limit cycle curves, the orientation of the motion trajectory switches near the
point of U*St = 0.5. It can be seen that below U*St = 0.5 the orbit is clockwise in the
upper loop of the cylinder path, while in the domain of U*St > 0.5 the orientation of the
cylinder trajectory is counterclockwise.
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Figure 4.9: Cylinder paths at U*St = 0.455 (a), 0.480 (b), 0.483 (c) and 0.505 (d) for K = 34.7

4.2 Occurrence of orbital cylinder motion for high di-
mensionless natural frequencies

As mentioned earlier, in this section systematic computations are carried out to explore
whether P-+S vortex structure occurs at higher dimensionless natural frequencies. To
accomplish this aim, different K values are considered in the range of K = 34.7-43.7 (see
Table [41]). The Reynolds number is varied in the domain of Re = 60-250, and the mass
and structural damping ratio values are fixed at m* = 10 and ¢ = 0%, respectively.

4.2.1 Cylinder response and vortex structures

In Figs. 410k and[4.10b ¢ and yo are shown against U*St for three different dimensionless
natural frequency values. It can be seen in Fig. that for K = 40.7 xy shows a steep
increase (up to xo = 0.023) in the approximate range of 0.92 < U*St < 0.97, and then
jumps abruptly to lower values (zo = 0.005). For the data sets for K = 16.6 and 34.7 this
phenomenon is not observed, which suggests that only larger K values result in a steep
increase in the streamwise oscillation amplitude. In contrast, yo behaves differently, as

(a) 0.025; 1(b) 0.5¢
0.02 0.4f
0.015 1,03
Lo/ Yor
0.01f 0.2
0.005 0.1
0 e ore —
06 07 08 09 1 11 12 13 06 07 08 09 1 11 12 13

U*St U*St

Figure 4.10: Root-mean-square values of streamwise (a) and transverse (b) cylinder displace-
ments against U*St for K = 16.6 (-A-), 34.7 (<) and 40.7 (-e-)

Last updated: April 20, 2020



4.2. OCCURRENCE OF ORBITAL CYLINDER MOTION FOR HIGH DIMENSIONLESS
NATURAL FREQUENCIES 34

only a small jump is found at around U*St = 0.97 for K = 40.7 (Fig. [£10b).

In order to investigate what happens in the range where zy steeply increases, first the
paths of the cylinder are analyzed. In Fig. [A1T] the ratios of streamwise and transverse
oscillation frequencies to the natural frequency of the system in vacuum f,/fy and f,/fn
are shown against U*St for K = 40.7. Figure shows the cylinder trajectories (see the
top row of the figure), the FFT spectra of streamwise and transverse vibration components
(middle row), and the instantaneous vorticity contours (bottom row) at different U*St
values for K = 40.7. The blue and the red curves correspond to the FFT spectra of
streamwise and transverse oscillation components, respectively. Note that Power Spectral
Density (PSD, also referred to as intensity) in Fig. is shown in a logarithmic scale.

It can be seen in Fig. [L11] that conditions f,/fy = 1 and f,/fy = 2 satisfy when
U*St < 0.92 and U*St > 0.97 (where xy is sufficiently low), resulting in distorted figure-
eight motion (see Figs. and [L121). This cylinder path occurs most often in vortex-
induced vibrations, as seen for example in Mittal and Kumar [38], Williamson and Govard-
han |39|, Blevins and Coughran [40] and Dahl et al. [41]. Although, the most dominant
frequency peaks of transverse and streamwise components are identified at f/fy = 1 and
2, respectively (Figs. and [£12[), they show additional (but less significant) peaks.
Note that f/fy = i is usually referred to as the i* harmonic frequency components.
In this dissertation the oscillation frequency ratio shown in Fig. is defined with the
highest-intensity frequency peaks in the spectra. It can also be seen in Figs. and
that the frequency peaks for the two oscillation components do not overlap. For
example, the fourth and the third harmonic components are identified in the spectra of
xo and yo, respectively, but the f/fy = 3 in streamwise vibration component and the
f/fy = 4 in transverse component are not found. Using the notations introduced by
Williamson and Roshko [28|, at the corresponding U*St values where distorted figure-
eight motions are found, 2S and C(2S) vortex structures are seem to develop. For both
vortex configurations two single vortices are shed from the cylinder, but for the C(2S)
wake mode the positive and the negative vortices are in coalescence.

As can be seen in Fig. [£11] in the range of 0.92 < U*St < 0.97 (where xy increases
steeply) both streamwise and transverse vibration frequencies lock into the natural fre-
quency of the system, i.e. f, = f, = fy. Kheirkhah et al. [42] found similar characteristics
for the flow around a pivoted cylinder, and attributed this effect to an orbital type of cylin-
der motion. Kang et al. [91], investigating the effect of streamwise to transverse natural
frequency ratio at different aspect ratios, also found orbital trajectories that they named
raindrop-shaped motion. In Figs. and the raindrop-shaped motions and the
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Figure 4.11: Ratios of streamwise and transverse vibration frequencies to the natural frequency
of the system for K = 40.7
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Figure 4.12: Paths of the cylinder (upper row), frequency spectra of streamwise (blue curves)
and transverse (red curves) cylinder displacements (middle row), and vortex structures (bottom
row) at U*St = 0.9280 (a), 0.9441 (b), 0.9708 (c) and 0.9757 (d) for K = 40.7. Each vortex
contours are recorded at random phases of the cylinder oscillation

corresponding frequency spectra and vortex structures are shown. In contrast to those
observed for distorted figure-eight paths, the high-intensity frequency peaks for the two
oscillation components overlap. It can be seen that for streamwise cylinder displacement
the first and the second harmonic frequency components play significant role, and in
the spectra of transverse displacement only the first harmonic component is identified as
high-intensity frequency peak. The Power Spectral Density of the rest of the frequency
components is negligible. Due to the fact that two dominant frequency peaks are found
for o (f/fny = 1 and 2), the path of the cylinder is asymmetric (see Figs. and
[4.12k). The asymmetric behavior of the raindrop-shaped motion is confirmed by the vor-
tex configurations; P+S wake modes are identified in these cases (see Figs. and
[d12k). Therefore, I can answer the research question I put up at the beginning of Section
4.2} P+S vortex structure can occur at higher natural frequency values.

To conclude the previous findings, it seems likely that the high jump in zy and the
sudden change in yy occurring at around U*St = 0.97 for K =2 40.7 (see Fig. [L.10) appear
to account for the abrupt changes in the cylinder path (from raindrop-shaped to distorted
figure-eight motion) and the switch in the vortex structure (between P+S and 2S modes).

Brika and Laneville [58] investigated experimentally high mass-damping cases in the
high-Reynolds number range. They showed that the cylinder response is hysteretic in the
domain where the vortex structure changes. Singh and Mittal [72] and Prasanth and Mittal
[88] observed a similar phenomenon for low Reynolds numbers using a numerical approach.
As was shown previously, the vortex structure changes abruptly at the boundary where
the motion trajectory switches (at around U*St = 0.97 for K = 40.7), which suggests the
occurrence of a hysteresis loop. In order to investigate whether this hysteresis loop exists
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in the vicinity of U*St = 0.97 for K = 40.7, different types of computations are carried
out:

(a) Direct computations, where the cylinder is initially at rest, and it impulsively
starts to oscillate at the beginning of the computation. The Reynolds number is
fixed during the computation.

(b) Increasing-Re computations. First, a direct step is carried out at a given combi-
nation of Re, U*, m* and (. The velocity and the pressure fields obtained at the end
of the direct step are used as initial conditions in the next step, where the Reynolds
number and the reduced velocity are increased by ARe and AU* = ARe/ K, respec-
tively. As suggested by [58], the reduced velocity increment is set to AU* = 0.02.
This process is repeated until the required number of steps are completed;

(c) Decreasing-Re computations. This approach is very similar to the previous one,
but the Reynolds number and the reduced velocity are decreased accordingly.

In Fig. A13k x¢ obtained from the increasing Re and the decreasing Re computations
and those from the direct computations are plotted against U*St. In Figs. A 13b4.13e the
cylinder paths are shown at different U*St values, where T and D (in the top-left corner)
refer to increasing or decreasing Reynolds numbers (and reduced velocities), respectively.
It can be observed that different solutions can be obtained when Re is increased or de-
creased. As seen, raindrop-shaped motion develops for increasing Re (see Fig. [L.13k), and
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Figure 4.13: Root-mean-square values of streamwise cylinder displacement obtained from the
direct computations (-@-), the increasing Re computations (-A-), and the decreasing Re compu-
tations (-&-) against U*St for K = 40.7 (a), and the cylinder paths for increasing and decreasing
Re cases at U*St = 0.9661 (b), 0.9802 (c and d) and 1.0129 (e). Here I and D refer to increasing
and deceasing Re (and U*) values, respectively
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distorted figure-eight paths are found for decreasing Re cases (see Fig.[£.13[) in the range
of 0.97 < U*St < 1.01. Below U*St = 0.97 raindrop-shaped paths are found and above
U*St = 1.01 distorted figure-eight motions are observed for both increasing and decreasing
Reynolds number cases (see Figs. A I3b and [13e).

In Fig.[A.14]the vortex structures are shown at the same U*St values, where the motion
trajectories were analyzed in Fig.[£.13 Wake modes corresponding to increasing Reynolds
numbers are shown in the top row, while the decreasing Re cases are shown in the bottom
row. As in the figure, within the hysteresis domain (between U*St = 0.97 and 1.01) P+S
wake modes are observed for increasing Re computations and 2S vortex structures are
found for decreasing Re cases (see Fig. [£14b). Outside of the hysteresis range the same
vortex structures are obtained by either increasing or decreasing the Reynolds number
(see Fig. T14h and E.T4k).
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Figure 4.14: Vorticity contours in case of increasing and decreasing Re and U* at U*St = 0.9661
(a), 0.9802 (b) and 1.0129 (c) for K = 40.7. Each vortex contours are recorded at random phases
of the cylinder oscillation

Systematic computations are carried out to investigate the effects of dimensionless nat-
ural frequency on the cylinder path. In Fig. xo is plotted against U*St for different
K values ranging from K = 34.7 to 43.7. Values at around 0.007 are for the distorted-
figure-eight paths, while higher xy values indicate raindrop-shaped motion. It can be seen
that K = 36.6 is the lowest dimensionless natural frequency value where both raindrop-
shaped and distorted figure-eight motions can occur. Varying K between K = 36.6 and
43.7, raindrop-shaped motion occurs over a narrow U*St domain that widens with increas-
ing the dimensionless natural frequency. It is also shown in Fig. that the zy curves
shift upwards and the location of the jump which separates the raindrop-shaped and the
distorted-figure-eight motion ranges decreases with the dimensionless natural frequency.

4.2.2 Analysis of fluid force coefficients

In order to show additional differences between the effects caused by the P+S and the 2S
vortex structures, the frequency spectra of transverse and streamwise fluid force coeffi-
cients are investigated. Figure shows the frequency spectra of C, and C, at the same
U*St values where the cylinder paths and the vortex structures were previously analyzed
(see Fig.AI2). The blue and the red curves stand for the FFT spectra of transverse and
streamwise fluid forces, respectively. It can be seen that both force coefficients contain
two significant frequency peaks at the U*St values where 2S vortex structures are found
(see Figs. and [T6H). In the FET of transverse fluid force the first and the third
harmonic frequency components are found, and in streamwise fluid force the second and
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Figure 4.15: Root-mean-square values of streamwise cylinder displacement against U*St for
K =2 34.7 (-4), 36.6 (-m), 37.6 (-V/), 38.6 (9-), 40.7 (-e-), 42.7 (&) and 43.7 (-9-)

the fourth harmonic components are identified with high PSD values. Prasanth and Mit-
tal “@] found a jump in the phase difference between C, and y, in the lower branch.
They showed that in the vicinity of the switch f/fy = 3 was much more significant in
the spectrum of transverse fluid force than the frequency component coinciding with the
transverse vibration frequency. The experimental data of Dahl et al. [|4_1|, ] also showed
this dual resonance effect. In addition, they found that f/fy = 3 in the spectra of C) in-
fluenced the first harmonic component. It can also be seen in Figs. and (where
distorted figure-eight motions are identified) that the frequency peaks in the spectra of
transverse and streamwise fluid force coefficients do not overlap. This finding is the same
what I showed earlier for the Fast Fourier spectra of the vibration components in Figs.

4.12h and A.124d.
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Figure 4.16: Frequency spectra of transverse and streamwise fluid force (red and blue curves) at
U*St = 0.9154 (a), 0.9441 (b), 0.9708 (c) and 0.9757 (d) for K = 40.7

Figures and show the FFT spectra of C, and C, at the U*St values where
P+S asymmetric wake modes are identified. It can be seen that the location of the high-
intensity frequency peaks of transverse and streamwise fluid force components overlap. In
contrast to those observed during the spectral analyses of the vibration components (see
Figs. and £12c), f/fy = 1,2,3 and 4 occur with remarkable PSD values in the
spectra of both transverse and streamwise fluid forces.

Baranyi ] investigated the effect of forcing frequency in case of figure-eight cylinder
motion. Post-processing the data in [46], we found that in case of 2S vortex structures the
FFT spectra of C, and C, did not overlap (similar to Figs. and L.T6M), while the
frequency peaks of transverse and streamwise fluid forces collapsed where P+S wake mode
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was observed (as in Figs. and [.T6k). Therefore, the current results for free vibration
and those obtained using the data of Baranyi ] for forced cylinder motion are in good
qualitative agreement. Good qualitative agreement is also found with the computations of
Bao et al. [83|, who observed P+S wake mode at only one parameter combination, and
where the frequency spectra of C and C, showed similarities to those seen in Figs.
and [4.16k. -

Figure d.17h shows the time-mean values of transverse fluid force coefficient C', against
U*St for K = 37.6,40.7 and 43.7. The results show similar features for all of the inves-
tigated K values, so only three curves are presented here to avoid confusion. It can be
seen that C), is negligible in the range where distorted figure-eight motion is found. As
was shown earlier, P-+S vortex structure is observed for orbital cylinder trajectories (see
Figs. and [£12k). Since this wake mode means an asymmetric load on the structure,
|C,| > 0 in raindrop-shaped motion cases, which is seen in Fig. EITh. Blackburn and

Henderson [30] and Baranyi [46], using the forced vibration models, found also that C,, is
non-zero for cases where the P+4S asymmetric vortex structures are found.
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Figure 4.17: Time mean values of transverse fluid force against U*St for K = 37.6 (-v-), 40.7
(-@-) and 43.7 (9-) (a), and (Cy, Cy) (b) and (z¢,yo) (c) limit cycle curves in pre- and post-jump
cases (red thick curve: U*St = 0.930; blue thin curve: U*St = 0.931) for K =~ 43.7

In the raindrop-shaped-motion domain two state curves exist, and the solution jumps
abruptly between them. In Fig. &17b (C,, C,) limit cycle curves are shown before and
after a jump. The curves appear to be mirror images of each other, which is due to a
symmetry breaking bifurcation [@] In a nonlinear system there are two attractors, each
with a basin of attraction [99]. If the set of parameters (e.g. Re, U*, m*, etc.) is close to
the boundary separating the basins of attraction then a tiny change can lead to an abrupt
jump (see Fig. AI7h). In Fig. the paths of the cylinder are shown in the pre- and
post-jump cases. It can be seen that these curves are also appear to be mirror images of
each other.

Figures and L.I8b show the rms values of streamwise and transverse fluid force
coefficients C,y and C} against U*St for K = 37.6,40.7 and 43.7. The results show
similar features for all of the investigated dimensionless natural frequency values, so only
three curves are presented here to avoid confusion. Both C, and C)s show jumps at the
upper boundary separating raindrop-shaped and distorted figure-eight motion domains,
as can also be seen in xy (see Fig. £15). It can be observed that C, curves belonging
to increasing K values shift to higher values in both the raindrop-shaped and figure-
eight motion domains. In contrast, by increasing K the C,/ curves shift upwards in the
raindrop-shaped and downwards in the figure-eight motion domains.
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Figure 4.18: Root-mean-square values of stremawise (a) and transverse (b) fluid forces against
U*St for K = 37.6 (-v-), 40.7 (-e-) and 43.7 ()

4.3 New scientific contributions

Contribution I

Systematic computations are carried out for two-degree-of-freedom vortex-induced vi-
brations at different non-dimensional natural frequency values from K = 12.3 to 34.7,
and constant mass and structural damping ratios of m* = 10 and { = 0%, respectively
(Re = 60 — 250). I found that

(a) Plotting the data set belonging to different K values against U*St makes the com-
parison easier than using Re as an independent parameter;

(b) Local peak values are found in the rms of streamwise cylinder displacement xy, and
streamwise fluid force coefficient C,, at around U*St = 0.47. The local maximum
values in xo and C, are found to increase with K;

(c) C. approaches zero in the vicinity of U*St = 0.5, at the same location, where the
phase difference of C, relative to xy changes suddenly from 0° to 180°;

(d) While the phase angle between the pressure streamwise fluid force C,, and the
cylinder displacement suddenly shifts from 0° to 180° at U*St = 0.5, the phase
difference of the viscous streamwise fluid force C,, relative to the cylinder motion
is initially at ~ 35°, which increases slowly to 180°. These findings indicate that the
pressure component of the streamwise fluid force is responsible for the abrupt phase
change between C, and zy. Due to the sudden change in the phase angle between
Cyp and g, the limit cycle curves (Cy,, Cyp) switch from clockwise to anticlockwise
orientation at U*St = 0.5;

(e) The orientation of the cylinder path changes from clockwise to counterclockwise
orbit (in the upper loop of the figure-eight) at around U*St = 0.5.

Related publications: Dorogi and Baranyi |.J1]

Contribution II

Using two-degrees-of-freedom VIV computations at different non-dimensional natural fre-
quency values in the range of K = 34.7—43.7, and constant mass and structural damping
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ratio values of m* = 10 and ¢ = 0%. I found that K highly influences the path of
the cylinder. For dimensionless natural frequency values below K = 36.6 only distorted
figure-eight motions are observed. Between the values of K = 36.6 and 43.7, besides
figure-eight paths, orbital cylinder trajectories (i.e. raindrop-shaped orbits) are identified
in a thin U*St domain (e.g. in 0.92 < U*St < 0.97 for K = 40.7), which widens with
K. In the range where raindrop-shaped motions are found, the rms values of the stream-
wise vibration component zy is significantly higher (can exceed z¢ = 0.023) compared
to the distorted figure-eight path domains (around zy = 0.005). I showed that as the
non-dimensional natural frequency increases, the xy curves shift upwards.

The frequency spectra of the streamwise vibration component for raindrop-shaped
orbits contain two high-intensity frequency peaks corresponding to f; and 2f7, where
f, is the transverse oscillation frequency of the cylinder. Due to the multi-frequency
vibration, the raindrop-shaped paths are asymmetric. I found P+S asymmetrical vortex
structures in the wake of the cylinder for raindrop-shaped motions, while 2S or C(2S)
modes for distorted figure-eight motion cases. Here P and S refer to vortex pairs and
single vortices shedding form the body, respectively, and C refers to the coalescence of the
positive and negative vortices.

I identified abrupt changes in the rms values of streamwise and transverse vibration
components and fluid force coefficients (zy, yor, Cyr, Cyr), which corresponds to the point,
where (1) the cylinder path switches from raindrop-shaped to distorted figure-eight, and
(2) the wake mode changes from P-+S to 2S. I found a hysteresis loop close the boundary,
where the vortex structure and the cylinder orbit switch. I showed that increasing the U*
(together with Re) in the range of 0.97 < U* < 1.01, orbital trajectories and P+S modes
are formed. However, decreasing U* (and Re) in the same domain, distorted figure-eight
paths and 2S modes occur. -

I found that the time-mean values of the transverse fluid force coefficient C, is ap-
proximately zero for distorted figure-eight paths, while for raindrop-shaped trajectories
’Cy} > 0. Due to the nonlinearity of the fluid flow, C, jumps abruptly between two so-
lutions. Plotting the (C,, C,) and (xo,yo) limit cycles in the pre- and post-jump cases, I
found that these curves are mirror images of each other; hence the two solutions of C,
are symmetric.

Related publications: Dorogi and Baranyi |J3|, Dorogi and Baranyi |C7] and Dorogi
and Baranyi [C§]
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Chapter 5

Analyses of streamwise vortex-induced
vibrations

As was mentioned in Section [[L1.2] the experimental findings of Tanida et al. |35], and the
computational results of Konstantinidis and Bouris [36] and Kim and Choi [37] indicate
that streamwise-only vortex-induced vibrations are not feasible at low Reynolds numbers.

However, Bourguet and Lo Jacono [79] investigated self-excited streamwise vibration
of a rotating cylinder at Re = 100. Their results obtained for the non-rotating case show
a single-peak response, but the maximum oscillation amplitude is only 0.2% of the cylin-
der diameter[] In addition, the computational results from the 2DoF VIV computations
presented in Chapter @ and published in |J1], indicate that the root-mean-square val-
ues of streamwise vibration component xy display a local maximum value at around
U*St = 0.47. Since the transverse oscillation amplitude is negligible in this domain, we
suspect that the peak value in z( is resulted only by the streamwise vibration component.
For this reason, the following research questions is addressed:

Is it possible for streamwise-only VIV to occur in the low-Re
domain? What are the effects of m* and Re on the cylinder
response?

In order to answer these questions two sets of computations are carried out. First,
computations are performed at the mass ratio values m* = 2,5,10 and 20, while keep-
ing the Reynolds number constant at Re = 180. The results of these investigations are
presented in Section [5.Il A model based on harmonic assumptions is used to explain the
phenomenon observed in the numerical results. Second, computations are carried out at
different Reynolds numbers (Re = 100, 180, 200 and 250), while keeping mass ratio con-
stant at m* = 10, which results are discussed in Section 5.2l In both sets of computations
the reduced velocity is varied between U* = 1.5 and 3.5, while the structural damping
ratio is fixed at zero.

5.1 The effect of mass ratio

In this section streamwise-only vortex-induced vibrations are investigated at different mass
ratio values of m* = 2,5,10 and 20. The Reynolds number and the structural damping
ratio values are fixed at Re = 180 and ¢ = 0%, respectively, while the reduced velocity is
varied between U* = 1.5 and 3.5.

Figure 5.1l shows the dimensionless oscillation amplitude Zg (see Figs. 5.1k and B.1k),
and the non-dimensional vibration frequency f (Figs.[5.Ib and 5.1H) against the reduced

!Note that the results obtained by Bourguet and Lo Jacono [79] have been previously used for
validation purposes; good agreement was found (see the results in Section [B.3]).
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velocity for different m* values. It can be seen that the cylinder response displays a single
excitation region with a peak oscillation amplitude of approximately 1.1% of the cylinder
diameter for all mass ratios investigated. As can be observed, Z, increases gradually up
its peak value, and than it decreases monotonically. Although the maximum vibration
amplitude seems to be independent of the mass ratio, the U* value where the maximum
in g is identified increases with m*. The root-mean-square values of streamwise cylinder
displacement xy obtained from the 2DoF VIV computations show similar trends in the
range of 0.4 < U*St < 0.6 (see Section [4.]]); a local peak value is observed in z( at around
U*St = 0.47. In that case the local maximum value increased, because the Reynolds
numbers corresponding to the peak zy values increased.

The dimensionless vibration frequency (see Figs. B.Ib and 5.Jd) shows an opposite
behavior: f decreases to its minimum point, which occurs approximately at the same
U* value where the peak amplitude is observed. Beyond the minimum point, f increases
asymptotically to a value corresponding to the double of the Strouhal number for a sta-
tionary cylinder [2St 2 0.383 at Re = 180 using Eq. (IL8) obtained by [17]]. In other words,
in the excitation region the dimensionless vibration frequency of the cylinder is always
lower than the double of the Strouhal number, i.e. f; < 2St. This finding is consistent
with the forced vibration results obtained by Nishihara et al. [1] and Konstantinidis and
Liang M], who showed that streamwise-only VIV due to alternating vortex shedding
can occur only for f* < 2St.

It can also be observed in Fig. .1] that as we increase the mass ratio, the width of
the excitation region diminishes, i.e. the rate of change of 2y and f; becomes faster. In
particular, for m* = 20, the oscillation amplitude and frequency show sudden changes at
U* = 2.614, at the same point where the peak response is observed (see Figs. .1k and
EIH).
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Figure 5.1: Dimensionless oscillation amplitude (a and c¢) and frequency (b and d) against
reduced velocity for different mass ratio values at Re = 180. m* = 2, -e—; 5, -A-; 10, =-; 20, V-
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Aguirre [75], Okajima et al. [76] and Cagney and Balabani [77] investigated exper-
imentally streamwise-only vortex-induced vibrations. Their results at moderately high
Reynolds numbers reveal that two excitation regions (branches) occur. The first branch
is associated with a symmetrical mode of vortex shedding, while in the second branch an
alternating vortex shedding mode? is observed. Figure shows the vorticity contours
at the corresponding combinations of m* and U*, where the peak responses (maximum
oscillation amplitude and minimum vibration frequency) occur. It can be seen that, irre-
spective of m*, only alternating modes of vortex shedding are found. This suggest that
the single excitation region shown in Fig. [5.1] corresponds to the second branch. The
experimental results at moderately high Re show also that symmetrical mode of vortex
shedding develops only for Zy > 0.1 cases. The peak oscillation amplitude for Re = 180
is only 0.011, which is not sufficiently high for the symmetrical vortex shedding mode.
Consequently, the absence of the first branch at Re = 180 is expected.

In Fig. the amplitude of streamwise fluid force coefficient C, is plotted against
U* for different m* values. As can be seen, C, follows similar trends for all mass ratios.
Initially, C, increases gradually with U* reaching a peak level near the point where peak
amplitudes of cylinder oscillation occur (see Fig. BIh and Fig. Bk). Despite the peak

m’.i. w.t.o‘ w.t.o‘

(@) (b) (©

Figure 5.2: Vorticity contours (red: positive, blue: negative) at the peak amplitude points
(m*,U*) = (2,2.17) (a) (10,2.55) (b) and (20,2.614) (c) for Re = 180. Each vortex contours are
recorded at random phases of the cylinder oscillation
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Figure 5.3: Amplitude of streamwise fluid force coefficient against reduced velocity for different
mass ratio values at Re = 180. m* = 2, --; 5, -A~; 10, =m-; 20,

2Similar to the Karman vortex street. Using the notations introduced by Williamson and Roshko [2§],
alternating vortex shedding mode is referred to as 2S mode. However, in terms of streamwise-only VIV,
the terminology alternating mode of vortex shedding is more preferred than the 25 mode.
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vibration amplitude is only 2y = 0.011, the maximum C, is around 0.106, which is roughly
three times higher than the value obtained for a stationary cylinder. After the maximum
point, a steep decrease of C, within a narrow range of U* is observed at the end of which
it approaches zero; C; — 0 at U* = 2.625. Note that the results obtained from the two-
degree-of-freedom VIV computations, presented in Section A1l show a somewhat similar
effect; as seen in Fig. 4.3, C,» — 0 at around U*St = 0.5. It is also seen in Fig. 5.3 that
beyond the point where C, = 0 the amplitude of the streamwise fluid force coefficient
increases gradually. Similar to the tendencies observed in the non-dimensional oscillation
amplitude and frequency (see Fig. B.T]), C,, found to jump at U* = 2.614 for m* = 20,

closely after the reduced velocity value where the peak value in C, is identified (see Fig.
b.3b).

In order to investigate the phenomenon C, — 0 more in depth, a model based on
harmonic assumptions (often called harmonic oscillator model) is used. Let us assume
that the cylinder displacement and the streamwise fluid force coefficient are sinusoidal
functions of time:

xo(t) = ZTosin2wfit, (5.1)

C.(t) = Cpsin2nfit+ &,), (5.2)

where @, is the phase difference of streamwise fluid force relative to the cylinder displace-
ment (i.e. the streamwise phase). Similar to Eqs. (£4) and (£.3), the mean components of
zo(t) and C,(t) are omitted, because they do not affect the dynamics. The differentiation
of zo(t) with respect to time result in the following formulse for the time-varying velocity
To(t) and acceleration Zy(t) of the cylinder:

to(t) = 2mwfrigcos2mfit, (5.3)
Fo(t) = —4rfi?3sin2nfit. (5.4)

Substituting Eqs. (5.I)-(5.4) into the cylinder equation of motion [Eq. (2ZI2))], the
following equation is obtained:

2 fx 2 4 92 A
— Ar2f 20 sin (2 f1t) + 87TU71*370C cos(erf21) + 2 T (o f
20 (5.5)
= — [sin(27 f;t) cos D, + cos(2m f1t) sin &y .
™m

Equating the sine and cosine terms in this equation the following expressions can be
obtained:

273m* T

cos P, = ————(1— f2U"), 5.6
= 1) (56)
43 m* (T

sin ¢, = ———fr. 5.7
T 61)

Adding the squares of Eqgs. (5.6) and (5.7)), and expressing the amplitude of streamwise
fluid force coefficient the following formula is resulted in:

. 2m3m* 3
Co = =gV = [RURR + A [P0 (5.8)
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Substituting zero structural damping ratio ( = 0% into Eq. (5.8]), it can be seen that

C, = 0 at the point where the frequency of cylinder vibration coincides with the natural
frequency of the system in vacuum, i.e. at f;U* = 1. Table b1l shows f¥ and f:U* at
different reduced velocity values for m* = 10. It can be observed that f;U* is very close
to unity at U* = 2.625, at the same point where the amplitude of streamwise fluid force
coefficient approaches zero (see Fig. 5.3)).

Table 5.1: The f and f;U* for different reduced velocity values close to the point where Cp =0
for m* = 10 and Re = 180

U*
2.618 2.62 2.625 2.63 2.635
I 0.3805 | 0.3806 | 0.3807 | 0.3808 | 0.3809

xT

fxU* 1 0.9961 | 0.9972 | 0.9993 | 1.0015 | 1.0037

Besides, Eq. (57) shows that for ¢ = 0% sin @, = 0, therefore Eq. (5.6]) can results in
only @, = 0° and 180° values; hence the cylinder displacement can be only in-phase or out-
of-phase with the streamwise fluid force coefficient. In Fig. 5.4 &, is plotted against the
reduced velocity for different m* values. This figure seems to confirm the above mentioned
criteria, @, jumps between approximately 0° and 180° at around U* = 2.625 for all mass

ratio values.
200 ‘ ‘ ‘
150¢ 1

T 100¢

501
OV VeV VaECoY yyvay iy v ‘
15 2 25 3 3.5

U*

Figure 5.4: Phase difference of streamwise fluid force relative to cylinder displacement against
the reduced velocity for m* =2 (-e-), 5 (-4-), 10 (4#-) and 20 (-v) at Re = 180

It is very important to see in Fig. [5.1] that the dimensionless oscillation amplitude
shows a non-zero value at the point where C,, reaches zero. The question arises how can
the unsteady streamwise fluid force with approximately zero fluctuation result in finite
amplitude of cylinder oscillation. Figure shows the relative waveforms of the cylinder
displacement zj; and streamwise fluid force C% [defined by Eqgs. (£2) and (£3)], and the
frequency spectra of C, at different U* values for m* = 2. It can be seen that, while zj
is harmonic, the streamwise fluid force shows a strongly non-harmonic behavior in the
vicinity of the point where C., — 0. As seen in the Fast Fourier spectra of C,, a frequency
component with the double of the cylinder’s vibration frequency 2f} (i.e. the second
harmonic component) appears. It can be observed that the intensity of 2/ increases with

3The computation methodology of @, is shown in Appendix [A.2.1]
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Figure 5.5: The relative waveforms (top plots) of streamwise cylinder displacement (zf;, blue
dashed lines) and streamwise fluid force (C?, red solid lines), and the frequency spectra of stream-
wise fluid force (bottom plots) for U* = 2.61 (a), 2.62 (b), 2.63 (c) and 2.64 (d) at m* = 2 and
Re =180

the reduced velocity towards the point of fU* = 1. At the point where the vibration
frequency is the closest to the natural frequency of the system, at U* = 2.63, the 2f
peak is the most dominant in the spectra, the intensity of the f frequency component
is very low. This result indicates that, vortex-induced vibrations at around f;U* =1 is
highly nonlinear, and the mechanical energy is transferred from the fluid to the cylinder
across different harmonic components.

Figure shows the amplitude of transverse fluid force C’y against U™ for different
mass ratio values between m* = 2 and 20. As can be seen, é'y displays comparable
tendencies at all m* values, similarly to C, (see Fig.[0.3]). At the beginning, é'y increases
monotonically up to its peak value, which is followed by a rapid decrease. Beyond the
minimum point é’y increases gradually. It can be seen that increasing the mass ratio, the
maximum and minimum points of C'y shift towards increasing U* values. In contrast to
the findings concerning the amplitude of streamwise fluid force coefficient, the maximum
and minimum C, values are only 6% higher and 5% lower, respectively, than the value

5 2 2.5 3 3.5 15 2 2.5 3 3.5

Figure 5.6: Amplitude of transverse fluid force coefficient against reduced velocity for different
mass ratio values at Re = 180. m* = 2, --; 5, -4~ 10, =-; 20,
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obtained for a stationary cylinder. Note that, the minimum point observed for m* = 20 is
an exception, it is only 3% lower than the corresponding value for a stationary cylinder.
Since the body oscillates only streamwise with the free stream, there is no inertial force
in the transverse direction, which could result in larger changes in é'y. For this reason,

the variations of C'y can only be caused by the changes in the vortex dynamics. As can
be seen in Fig. no significant change can be observed in the vortex shedding, so that,
a small variation in C’y is expected.

Similarly to the time history of C,, let us assume that the transverse fluid force
coefficient can be represented as a harmonic function of time:

C,(t) = C,sin(nfit + &), (5.9)

where @, is the phase difference of transverse fluid force relative to the cylinder dis-
placement. Note that the frequency of C, is f}/2, hence the phase difference value is
meaningful in the range of 0° < @, < 180°. In Fig. 5.1 ¢, is shown against the reduced
velocity for different m* values. Unlike @, which is restricted to the values of 0° and 180°
for ¢ = 0% [Eqgs. (&.6) and (51)|, ¢, shows a smooth variation between approximately
20° to 110°. It was shown earlier that as the mass ratio is increased the width of the
excitation range decreases (see Fig.[5.0)), consequently, the rate of change for @, increases
(Fig. B.7)). Moreover, at U* = 2.614 for m* = 20 &, jumps abruptly from ¢, = 56.5° to
93.4°.

120
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Figure 5.7: Phase difference of transverse fluid force relative to the cylinder displacement for
m* =2 (-e), 5 (-4), 10 (-=) and 20 (-v) at Re = 180

Konstantinidis et al. [L01] investigated the flow around a stationary cylinder placed into
a free stream upon which a periodic velocity oscillation (perturbation) is superimposed.
They measured the unsteady transverse velocity component, and calculated the phase
difference of this velocity component with respect to the in-flow velocity. Note that this
phase angle value is similar to the @, applied in this study. Konstantinidis et al. [101] found
that increasing the frequency of velocity perturbation the phase difference value increases.
They attributed this effect to the shift in the timing of vortex sheddingdl. Since the case
investigated in |[L01] is kinematically equivalent with the streamwise-only vortex-induced
vibration of a circular cylinder analyzed in the chapter, the gradual increase observed in
9, (Fig. 5.7) may be attributed also to the shift in the timing of vortex shedding.

Konstantinidis et al. [101] calculated also the vortex strength I' based on the velocity
fields obtained using the Digital Particle Image Velocimetry technique. They showed that

4« .. the phase at which a vortex pinches off from the cylinder with respect to the inflow velocity
oscillation” (see [101], p. 48.)
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I" increases up to the point (time instant), where a vortex is shed from the cylinder. At
this instant I" shows a sudden drop. In terms of transverse fluid force (obtained from the
present CFD simulations), increasing vortex strength means increasing C,,, which reaches
its maximum (or minimum) value at the same point where I is at its maximum, i.e. at
the time instant where a vortex (negative or positive) is shed from the body. In other
words, the time instant of vortex shedding can be determined from the time history of the
transverse fluid force. Negative or positive vortices are shed from the body at the points,
where Cy reaches its maximum or minimum, respectively.

Figure 5.8 shows the vorticity distributions at the time instants corresponding to the
positive extreme point (top row) and the zero cross-over point (middle row) of the cylinder
displacement at different U* values for m* = 5. The relative waveforms of the displacement
and the transverse fluid force coefficient zj; and C’;ﬁ are shown in the bottom row. It can be
seen in Fig. 5.8k that at U* = 2.35 the time corresponding to the peak values observed in
xy and C} are very close to each other. This finding indicates that the (negative) vortex
is shed from the cylinder close to the point at which the body approaches its positive
extreme position. As can be seen in Fig. 0.7, the phase difference value is ¢, = 40.6° at
U* = 2.35. However, increasing the reduced velocity, @, shows a significant increase; at
U* = 2.6 the phase difference reaches ¢, = 96°. This remarkable increase is related to the
shift in the timing of vortex shedding. It can be observed in Fig. [5.8b that the instants
where the negative vortex is shed from the cylinder and that where the cylinder attains

o VA L IS o VA LIS I VA I
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Figure 5.8: Vorticity contours at different time instants (top and middle rows), and the relative
waveforms of the cylinder displacement (blue dashed line) and the transverse fluid force (red
solid line) for U* = 2.35 (a), 2.6 (b) and 2.7 (c) at m* = 5 and Re = 180. The vortex structures
in the top and middle rows are recorded at the time instant values at which the cylinder is at its
positive extreme point and zero-cross over point

5The relative waveform of the transverse fluid force is defined as C; = [C) — C,]/ C,, similarly to zf,

and C? [see Eqs. ([@.2)) and (@.3)]
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its positive extreme position are far from each other: C*(t) < 0 at the point where ()
is at its maximum. As can also be seen, beyond U* = 2.6 there is no significant change
in @,, for example at U* = 2.7 the phase difference value of ¢ = 99.2° is obtained. This
implies a slight shift in the timing of vortex shedding.

5.2 The effect of Reynolds number

In this section the streamwise-only VIV of a circular cylinder is investigated at different
Reynolds numbers (Re = 100, 180 and 250), and constant mass and structural damping
ratio values (m* = 10 and ¢ = 0%, respectively). Similar to the computations carried out
earlier and present in Section 5.1 the reduced velocity is varied between U* = 1.5 and
3.5.

Figure 5.9 shows the non-dimensional oscillation amplitude z, against the reduced
velocity for different Re values. It can be seen the z( curves show similar trends; increasing
the reduced velocity at a certain Reynolds number, Z, increases continuously up to its
peak value, and then it shows a decreasing effect. As seen, the amplitude curves shift
upwards with Re. Table shows the peak values in ), C, and C’y, and the minimum

values in f! and é'y at the three Reynolds numbers for m* = 10. It is observed that
increasing the Re from 100 to 180 the peak vibration amplitude shows a fivefold increase,
and the maximum Z, at Re = 250 is more than the double of the value obtained for
Re = 180. As can also be seen, when the Reynolds number is increased, the rate of change
for the amplitude of cylinder oscillation increases. Similar to high mass ratio cases for
Re = 180, z( displays a sudden drop directly after the point corresponding to the peak
cylinder response for Re = 250.

Figure 5.9k reveals also that the U* value where the peak vibration amplitude occurs
decreases with Re. For example the maximum Z; is observed at U* = 2.469 for Re = 250,
which reduced velocity value is very close to the point of 1/(2St) = 2.457. Since the
Strouhal number increases in the domain of 100 < Re < 250 [see Eq. (L8) |17]], the point
corresponding to 1/(2St) decreases; hence the U* value where the peak &, occurs has to
decrease with the Reynolds number.

Figure shows the dimensionless vibration frequency of the cylinder as function
of the reduced velocity for different Reynolds numbers. It can be seen that the f curves
display similar characteristics for all Re cases. At one particular Reynolds number f
decreases to its minimum point, which occurs approximately at the same reduced veloc-
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Figure 5.9: Dimensionless oscillation amplitude (a) and frequency (b) against the reduced ve-
locity for Re = 100 (-e-), 180 (-&-) and 250 (@) at m* = 10
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Table 5.2: The maximum values in &g, C; and C'y, and the minimum values in f; and C’y for
different Reynolds numbers at m* = 10

=~ =~

2 fx C, Cy
Max Min Max Min Max
100 | 0.1644 | 0.00215 | 0.3273 | 0.0109 | 0.3151 | 0.3234
180 | 0.1913 | 0.01080 | 0.3722 | 0.1057 | 0.5724 | 0.6363
250 | 0.2035 | 0.02340 | 0.3856 | 0.2279 | 0.7642 | 0.8701

Re St

ity value, where the maximum 2, is observed. Beyond the minimum point f} increases
asymptotically to a value corresponding to the double of the Strouhal number. Since St
depends highly on Re in the low-Reynolds number domain, the asymptote shifts towards
higher frequency values. It is also clearly seen in Fig. that f’ shifts upwards with
Re. Although this phenomenon is partially caused by the strong dependence of St on
Re, the correlation is not explicit, because the difference between the minimum f; and
2St is strongly influenced by the peak oscillation amplitude, which depends also on the
Reynolds number. As can be seen in Fig. 5.9, the higher peak oscillation amplitude (or
the Reynolds number), the higher the difference between 2St and the minimum vibration
frequency value. For example the minimum [} is only 0.47% lower than the double of the
Strouhal number for Re = 100, while for Re = 250 f is 5.27% lower than 2St (see Table

In Fig. 510k the amplitude of streamwise fluid force coefficient is shown against the re-
duced velocity for different Re values. Similarly to the oscillation amplitude and frequency
curves (see Fig.[5.9), the C, data sets corresponding to different Reynolds numbers show
similar tendencies. It can be seen that increasing the reduced velocity at one particular
Reynolds number, at the beginning, C, increases gradually reaching a peak level, which
point approximately coincides with the point of peak cylinder response. It was shown
earlier that the U* value, where the maximum in Z; and the minimum in f} is identified
decreases with Re. Hence, the point where the maximum C, is found also tends to lower
reduced velocity values, when the Reynolds number is increased. As seen in Table[5.2] the
peak C,, value increases intensively with Re, and, as already mentioned, these values are
significantly larger than those obtained for a stationary cylinder (see the relevant discus-
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0.2y | *D—D-D—D":”D’djd:.ljjg.u—n—n—n—n—n—nﬂ

0.8f 1
Cﬁxo.15’ 1 Oy o X

0.4t
[ e 6 S 886 8888088888881 () 88888880

‘ 0.2 ‘ ‘ ‘
15 2 2.5 3 35 15 2 2.5 3 3.5

U~ U~

Figure 5.10: Amplitude of streamwise (a) and transverse fluid force (b) against reduced velocity
for Re = 100 (--), 180 (-A-) and 250 (-m-) at m* = 10
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sion in Section 5.1). After the maximum point C, found to decrease to a value of zero.

Similar to the different mass ratio cases presented in Section 5.1l the location of C, =0
coincides with the point where f = U*~!. Tt can be seen that increasing the Reynolds
number, the U* value where C., tends to zero decreases, which may also be attributable to
the fact that St = St(Re). As also seen, when Re increases, the interval within which C,
diminishes is narrowing. In addition, C,, shows a high jump between the reduced velocity
values of U* = 2.469 and 2.47 for Re = 250. Beyond the minimum point, C, increases
gradually for all Reynolds numbers investigated.

Figure 5.10b shows the amplitude of transverse fluid force coefficient against the re-
duced velocity for different Re values and constant m* = 10. It can be seen that the
trends in C’y is very similar to that in C, (see Fig. 5.I0h). As can be seen, when the

reduced velocity is varied, at a certain Reynolds number, C’y gradually increases up to
its peak point, then it decreases to its minimum value within a domain which narrows

with Re. It can be observed that C’y displays a sudden drop for Re = 250 at the same

point where Zg, f and C., jump (see Figs. and [.10h). After the minimum point C'y
increases monotonically. It was mentioned earlier in Section [5.I] that the maximum and
minimum values in C'y are only slightly higher and lower than the corresponding value
for a stationary cylinder. This finding holds true for each Reynolds numbers considered
in this analysis. The maximum values in C'y are 2.06% and 10.6% higher than the values
obtained for a stationary cylinder for Re = 100 and 250, respectively, while the minimum
values of é'y for the same Reynolds numbers are 0.5% and 2.8% lower than those for a

non-oscillating cylinder. As mentioned earlier in Section [B.1l the slight changes in C’y is
caused only by vortex dynamics. Figure L.11] shows the vorticity contours at different
Reynolds numbers corresponding to the point of peak cylinder response. As seen, despite
the significant increment in the oscillation amplitude, there is no remarkable change in
the vortex structure; alternating modes of vortex shedding are observed at each Re values.
For this reason, the small variations in the amplitude of transverse fluid force coefficient
are expected, which is consistent with the results presented in Fig. 5.10b.

Figures and show the variations of @, and @,, respectively, against the
reduced velocity for different Re. As shown earlier, @, is restricted to the values of 0° and
180°, and the jump between these two values occurs at the point where the amplitude
of streamwise fluid force tends to zero [see Egs. (.0) and (51)]. It can be observed in
Fig. that the U* value where C; — 0 decreases with the Reynolds number, which
explains why the point where @, jumps between approximately 0° and 180° shifts to lower
reduced velocities. Instead of abrupt changes, the phase difference of transverse fluid force

relative to the cylinder displacement, i.e. @,, increases gradually from approximately 20°
to 120° (see Fig. B.12b). Note that the data set obtained for Re = 250 is an exception,

0
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Figure 5.11: Vorticity contours for (Re, U*) = (100,2.9) (a), (180,2.55) (b) and (250, 2.469) (c)
at m* = 10. Each snapshots are recorded at random phases of the cylinder oscillation
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Figure 5.12: Phase differences of streamwise (a) and transverse (b) fluid force coefficients relative

to the cylinder displacement against the reduced velocity for Re = 100 (-e-), 180 (-&-) and 250
() at m* =10

9, displays a sudden change at U* = 2.469, similar to the quantities investigated earlier

Zo, [, C, and C,). It was shown in detail in Section 5.1 that the gradual increase in @
z Ly y g y

relates to the shift in the timing of vortex shedding.

5.3 New scientific results

Contribution III

Using two-dimensional CFD computations I showed that streamwise-only vortex-induced
vibrations are possible at low Reynolds numbers. A single excitation region is observed
for all Reynolds number and mass ratio combinations investigated (Re = 100, 180 and
250, and m* = 2,5,10 and 20). The dimensionless oscillation amplitude Zy increases up
to its peak value, beyond which it gradually decreases. The nondimensional frequency
of cylinder vibration f; behaves oppositely: it decreases to its minimum value, then it
monotonically increases. I showed that the dimensionless vibration frequency is always
lower than the double of the Strouhal number for a stationary cylinder. This finding is
consistent with the forced vibration results available in the literature.

The peak value in Zy and the minimum value in f} are identified approximately at
the same U* value. These maximum and minimum values appear to be independent of
the mass ratio. Increasing the Reynolds number, the peak Z, value increases intensively;
for the Reynolds number values of Re = 100, 180 and 250 the peak vibration amplitudes
are approximately 0.22%, 1.1% and 2.3% of the cylinder diameter, respectively. I showed
also that the single excitation region identified in this study corresponds to the second
response branch found at moderately high-Re experiments, because alternating modes of
vortex shedding are observed in each cases.

Related publications: Konstantinidis et al. [J5], Dorogi et al. [C12] and Dorogi et al.
[CL1]

Contribution IV

Assuming that the cylinder displacement xy and the streamwise fluid force coefficient C,
are sinusoidal functions of time I derived the following formula for the amplitude of C,:
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30 % 5

G, = T T U 1 A0, G3)
where m* and ( are the mass ratio and damping ratio values, respectively, 2o and [
are the dimensionless oscillation amplitude and frequency values, and U* is the reduced
velocity. Substituting ( = 0%, it can be seen that C., = 0 at the point, where the vibration
frequency coincides with the cylinder’s natural frequency, i.e. at f;U* = 1. I confirmed this
finding using CFD simulations for m* = 2,5, 10 and 20 at Re = 180. The computations
revealed that C’x — 0 at U* = 2.625. Since I is non-zero, the streamwise fluid force
coefficient has strongly non-harmonic nature in the vicinity of U* = 2.625. I showed the
occurrence of a frequency component double the frequency of cylinder vibration (i.e. the

second harmonic component) just before the point of C,, — 0. At the reduced velocity
value, where the vibration frequency is the closest to the natural frequency of the cylinder,
the intensity of the second harmonic component is the highest.

The harmonic oscillator model show that the phase difference of C, relative to xg
has to switch suddenly between 0° and 180°, which I confirmed using the CFD data.
Besides, I calculated the phase lag of the transverse fluid force with respect to the cylinder
displacement ,. Instead of abrupt jumps, I showed that &, displays gradual increase from
approximately 20° to 110°. This gradual increase can be attributed to shift in the timing
of vortex shedding, which was confirmed using the instantaneous vorticity contours.

Related publications: Konstantinidis et al. |J5], Dorogi et al. [C12] and Dorogi et al.
[C11]
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Chapter 6

Transverse vortex-induced vibrations:

identification of the upper branch for
Re = 300

In this chapter, similar to the computations carried out in Chapter [, single-degree-of-
freedom vortex-induced vibrations are investigated, but here the cylinder is restricted
to oscillate only transverse to the main stream. Although there are several studies in the
literature dealing with transverse-only vortex-induced vibrations, there are still some open
questions which are worth to deal with.

As was pointed out in Chapter [1], vortex-induced vibrations show very different trends
at high and low Reynolds numbers. For high-Re cases, and very low mass and damping
values, three-branch cylinder response occurs; initial, upper and lower branches are found
[59, 160, 162, 63, 102]. Feng [57] and Khalak and Williamson [59] showed that the mass-
damping parameter affects the cylinder response significantly; at high m*( values the
upper branch does not appear, a two-branch response is identified. In contrast, in the low-
Reynolds number domain, independently of the m*( only two-branch cylinder response is
identified; an upper branch has not yet been observed [38, 66, [70, 72, 89].

However, there are some relevant findings available in the literature, which may refer
to the possible existence of the upper branch in the low-Reynolds number domain. These
findings are listed as follows:

(a) Khalak and Williamson [59] found 2P wake mode in the upper branch. However,
Evangelinos and Karniadakis |71]| reported using two and three-dimensional compu-
tations that the P+S vortex pattern may also be associated with the upper branch;

(b) Leontini et al. [31] carried out transverse-only forced vibration computations at
several Reynolds numbers. At Re = 300, close to the fundamental lock-in domain
they identified the P-+S vortex structure with positive mechanical energy transfer,
meaning that the energy is transferred from the fluid to the cylinder.

(c) Singh and Mittal |72] investigated two degrees of freedom vortex-induced vibrations
at constant U* = 4.92. They showed the occurrence of the P4+S wake mode above
Re = 300;

(d) The results from the 2DoF VIV computations presented in Chapter ] and published
in |J3|, show that the P+S vortex shedding mode develops at high dimensionless
natural frequency values, near the Reynolds number of 300.

These findings motivated us to address the following research questions (see also Sec-

tion [L.2)):
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Does the upper branch (i.e. the three-branch cylinder
response) occur at the Reynolds number of 3007 What is the
effect of structural damping on the cylinder response?

In order to answer these questions, computations are carried out at the Reynolds
number and mass ratio values of Re = 300 and m* = 10, respectively. The structural
damping ratio is considered between ¢ = 0% and 5%, hence the combined mass-damping
parameter is chosen to be in the range of m*( = 0 and 0.5. The reduced velocity based
on the cylinder’s natural frequency in vacuum is varied from U* = 2.5 to 7.5.

6.1 The three-branch response

Figure [6.1l shows the rms values of the non-dimensional cylinder displacement yq, and
in Fig. the vibration frequency normalized by the cylinder’s natural frequency in
vacuum f,/ fy is plotted against U* for ¢ = 0%. The dashed line in Fig. represents
fo/fn, where f, is the vortex shedding frequency for a stationary cylinder. It can be seen
that the cylinder response obtained is very similar to the three-branch response presented
in many studies but only for high Reynolds numbers. In the following, the individual
branches will be described in detail.

As can be seen, in the range of 2.5 < U* < 3.5 the oscillation amplitude is very low and
the vibration frequency is close to the vortex shedding frequency for a stationary cylinder
(fy = fy). From U* = 3.5 to 4 an initial branch is identified, where f,/fy represents
an approximately constant value of f,/fy = 0.95, and yy increases intensively. Between
U* = 4 and 5.9 lock-in or synchronization is observed, where the vibration frequency locks
approximately to the natural frequency of the system (see Fig. [6.Ib). The entire lock-in
domain can be divided into two subdomains. Relatively high oscillation amplitudes are
observed in the range of 4 < U* < 4.89 (see Fig. [6.1h), where the vibration frequency is
slightly lower than the cylinder’s natural frequency (f,/fny < 1, Fig.[6.Ib). This reduced
velocity domain appears to correspond to the upper branch. In order to confirm this
suggestion, careful analysis is needed, which is presented in Section [6.21 At the higher
boundary of the suggested upper branch yo drops abruptly by 7%, and f, passes through
fn. Govardhan and Williamson [60] identified a similar phenomenon at the boundary
separating the upper and the lower branches for Re = 103-10*. Between U* = 4.89 and
5.9 the lower branch is observed, where f,, is slightly higher than fx (see Fig.[6.Ib), and yo
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Figure 6.1: Root-mean square values of transverse cylinder displacement (a) and the vibration
frequency normalized by the natural frequency of the system in vacuum (b) against the reduced
velocity for ¢ = 0%
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reaches intermediate values (Fig.[6.1h). The reduced velocity range above U* = 5.9 is out

of the lock-in domain: the oscillation amplitude is very low (yo = 0.1), and the vibration

frequency is close again to the vortex shedding frequency for a stationary cylinder.
Govardhan and Williamson [60], based on the methodology introduced by Lighthill [61]

applied the following decomposition on the time-dependent transverse fluid force F,(t):
BB = Fol@) + Fy(@). (6.1)

In this formula fv and fp are the instantaneous vortex and potential added mass
forces, respectively, per unit length of the cylinder. The potential added mass force is
defined as follows [60]:

Fy() = =Camagio (), (6.2)
where Cj is the potential added mass coefficient, which equals to unity for a circular
cylinder [56], mg = pd%’r is the displaced fluid mass per unit length of the cylinder, and g,

is the dimensional cylinder acceleration. Rearranging and normalizing Eq. (61I) by % pU2.d
the following expression can be obtained for the instantaneous vortex force coefficient:

Oy () = Cy(H) + Sho(t), (6.3)

where 1o = %?70 is the non-dimensional cylinder acceleration.

Figures [6.2h and show the rms values of transverse fluid force and vortex force
coefficients C, and Cy, respectively, against U* for ¢ = 0%. It can be seen that for very
low cylinder displacements, i.e. in the domains of 2.5 < U* < 3.45 and 5.9 < U* < 7.5,
Cy and Cy» are approximately identical and near the value obtained for a stationary
cylinder (Cyy = Cy» ~ 0.5, see Norberg [23]). Govardhan and Williamson [60] found
Cy = Cy = 0.1 in the very low oscillation amplitude range (in U* < 4 and U* > 10.5
in their study), which is close to Cy» = 0.05, the value identified for a non-oscillating
cylinder at Re ~ 10 [23]. In this sense, the currently obtained CFD results for Re = 300
and the experimental findings of [60] for high Reynolds numbers show good qualitative
agreement.

Increasing the reduced velocity in the initial branch, C) increases gradually, and
reaches its peak value at the beginning of the suggested upper branch (at U* = 4, see
Fig. 6.2h). Between U* = 4 and 4.89 C,, drops dramatically, moreover at U* = 4.36 (in
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Figure 6.2: Root-mean square values of transverse fluid force (a) and vortex force (b) against
the reduced velocity for ¢ = 0%
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the middle of the proposed upper branch) it suffers a sudden change from C, = 0.71
to approximately 0.25. It is also seen in Fig. 6.2k that at U* = 4.89 C,, shows another
but much smaller jump, above which it increases. The experimental results of Govardhan
and Williamson |60] and the trends in the current computational results are very similar.
However, abrupt change in C, in the middle of the upper branch has not been identified
in the high-Reynolds number domain; this jump may correspond to other important flow
phenomena.

The rms values of vortex force coefficient (see Fig.[6.2b) found to decrease in the initial
branch until it reaches its minimum value. The locations of the extreme values in Cy and
Cy+ are near to each other. In the proposed upper branch Cy. increases strongly, and
at U* = 4.36 it changes suddenly between Cy» = 0.53 and 1.02. Similarly again to the
tendencies observed in Cy, at U* = 4.89 the rms of vortex force coefficient shows another
but much smaller jump. The peak value in Cy- is observed at the beginning of the lower
branch, which finding qualitatively agrees well with that of |60].

6.2 Phase dynamics for undamped vibrations

The results presented earlier suggest that the upper branch exists at the Reynolds number
of 300. In order to confirm this suggestion, careful analyses are required. Let us assume
again that the motion of the cylinder and the aerodynamic force coefficients acting on the
body are sinusoidal functions of time:

Yo(t) = gosin2mfit, (6.4)
C,(t) = Cysin@rfjt+ &), (6.5)
Cyv(t) = Cysin@afit+ dy), (6.6)

where C'y and Cy are the amplitude of the transverse fluid force and vortex force coeffi-
cients, and o and f; are the non-dimensional oscillation amplitude and frequency values.
In these expressions ¢, and Py are the phase differences for transverse fluid force and
vortex force, respectively, relative to the cylinder displacement. For the sake of simplicity,
9, and Py will be referred to as transverse and vortex phases, respectively.

In Chapter [ the harmonic oscillator model is given in detail for a circular cylinder
free to vibrate only in streamwise direction. Since the approaches used for transverse-only
and streamwise-only vortex-induced vibrations are very similar to each other, only little
detail is provided in this chapter. For further details the reader is referred to Chapter [3]
Section [5.11

Substituting Eqs. (6.4) and (6.3) into the cylinder equation of motion [Eq. (ZI3])],
and equating the coefficients of sine and cosine terms, the following expressions can be
obtained:

m*g)o *2 7 742
cos ¢, = 27’ (1— fr2U"), (6.7)
C, U2 !
. m* (Yo
sin @, = 4r— *. 6.8
Y CyU* fy ( )

It can be seen in Eq. (6.1) that cos &, changes from positive to negative at the point
where the vibration frequency passes through the natural frequency of the system in
vacuum, i.e. at f*U* = 1. In addition, Eq. (6.8) shows that for zero structural damping,
sin ¢, = 0, therefore, the cylinder motion can only be in-phase (&, = 0°) or out-of-phase
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(@, = 180°) with the transverse fluid force. Hence, as the system goes through frU* =
for ¢ = 0°, the transverse phase has to jump from 0° to 180°.

Introducing Cy(t) = Cv(t) — Zijo(t) [based on Eq. 6.3] and the harmonic approxima-
tions [Egs. (6.4) and (6.6])] into Eq. (2.13), and equating the coefficients of the sine and
cosine functions, the following formula are obtained:

(m” + Ca)io

cos by = 21— 1 — 22U, 6.9

v o (1= f,°UX) (6.9)

sin ¢y = 4n3~ m (n} +CA)CyOf;, (6.10)
CyU%

where U7 is the reduced velocity based on the cylinder’s natural frequency in still fluid
fn.q- Similarly to Eq. ([6.7), Eq. (6.9) shows that cos @y changes from positive to negative
as the system passes through f;U} = 1. Since for undamped vibrations the vortex phase
is restricted to the values of @, = 0° and 180°, the vortex phase has to jump between
these two values (0° and 180°) at the point corresponding to f;U} = 1.

Govardhan and Williamson [60] at high Reynolds numbers and low mass and damping
values found that &y and &, jump at different reduced velocity values. The U* domain
which is enclosed between the two phase jumps (in @y at its beginning and in @, at its
upper boundary) corresponds to upper branch. In other words, to confirm that the range
of 4 < U* < 4.89, where relatively high oscillation amplitudes are found (see Fig. [6.]),
represents the upper branch, ¢, and @y should be investigated.

The time-dependent transverse and vortex phases (@, and &y ) are calculated using
the analytical signal approach based on Hilbert transform, which is shown in detail in
Appendix[A.2.2] In the figures the time-dependent phase differences are mostly plotted in
radian as unwrapped signals. However, their time-average values (&, and @) are shown
in degrees, and are calculated via time-averaging &, and ¢y wrapped in the interval of
[—7/2,3m/2] (see also Appendix [A.2.2]).

Figure[6.3lshows @, (on the left-hand side) and @y (right) for different reduced velocity
values in the very low amplitude range (see Figs.[6.3h and [63b), and in the initial branch
(Fig.[6.3c). It can be seen that in the domain of 2.5 < U* < 3.45 the transverse and vortex
phases are approximately constant, only small oscillations are observed near U* = 3.45
(Fig. 6.3b). In the initial branch (3.45 < U* < 4) &, shows intermediate oscillations,
but its time-mean value is roughly zero (Fig.[6.3k). However, in the same range ¢y shows
unbounded decrease, which corresponds to the loss of synchronization between the cylinder
motion and the vortex force coefficient [103,1104]. In Pikovsky et al. [103] this phenomenon
is interpreted by analyzing the relationship between motion and forcing frequencies.

In Fig. differences of vibration frequency relative to the frequency of transverse
fluid force and vortex force coefficients, i.e. f7 — f& and f; — f¢, , respectively, are shown
against U* in the initial, proposed upper and lower branches. These quantities are called
detuning. It can be seen that in the initial branch f; > f¢ , which explains why the
time-dependent vortex phase decreases in this domain [103]. In addition, the difference
between the two frequency values is relatively large in the range of 3.45 < U* < 4, which
causes the roughly uniform drop in the vortex phase (see Fig. [6.3k). It is also shown in
Fig. that f7 — /¢, = 0 in the initial branch, which implies the roughly constant value
of transverse phase.

Based on Fig.[6.1] the upper branch is expected to appear in the domain of 4 < U* <
4.89. Figures 6.5 and show the times histories of transverse and vortex phases at
U* = 4.2 and 4.28, respectively. In contrast to the trends observed in the initial branch, in
the range of 4 < U* < 4.28 f* is lower than f¢, (see Fig. [6.4), which leads to increasing

oy (Fig. [63). Besides, |f; — f¢, | is significantly lower in this domain compared to that
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Figure 6.3: Time-dependent phase differences of transverse fluid force (left) and vortex force
(right) relative to cylinder displacement at the reduced velocity values of U* = 3 (a), 3.36 (b)
and 4 (c) for ¢ = 0%

in the initial branch; thus, one can expect remarkable changes in the dynamics of vortex
phase. As shown in Fig.[6.5] instead of unbounded changes, @ consists of time intervals,
so called epochs [103], where the vortex phase is approximately constant. It can be seen
that the time interval of an epoch extends with the reduced velocity. Two neighboring
epochs are separated by so-called phase slips, where the vortex phase shows rapid change
[103]. In addition, Figs. [6.5h and show approximately constant @, values, which
is expected because [f; — f& | = 0 between U* = 4 and 4.28 (Fig. [6.4). Note that in
this context, the phrase approximately constant refers to that the phase difference varies
around a constant value (in this case, around zero).

Figure shows the time histories of vortex phase wrapped between —m/2 and 37 /2
at the same reduced velocity values where the time-dependent phase differences were
investigated in Figs. 6.3k and Pikovsky et al. [103] showed that the change of phase
difference via a phase slip (see Fig.[6.5]) cannot be arbitrary, it is always the whole number
multiples of 7. This finding is explicitly shown in Figs. and [6.6k.

It is also very important to see that at an epoch, the wrapped vortex phase varies
periodically around 7 (see Figs. 6.6k and [6.6b), and &, represents an almost constant zero
value (Fig.[6.3)). For this reason, the conditions of the existence of the upper branch (@, =
mand ¢, =0)in4 < U* < 4.28 seem to be satisfied. However, in-between two epochs (i.e.
in phase slips) the vortex phase deviates marginally from 7, which causes discrepancies in
its time-mean value. As shown earlier, time lengths of the epochs increase with U*, that
is, the deviation in @y from its theoretically expected value (@, = 180°) decreases with
the reduced velocity. Similar issues appear in the initial branch (see Fig.[6.6h), where the
high spikes occurring in the wrapped phase angle influence @y significantly. In further
time-averaged phase difference plots it is necessary to distinguish between synchronous
and non-synchronous cases. By non-synchronous cases I mean that at the corresponding
U* values unbounded changes or phase slips are identified. These points will be indicated
by empty symbols.
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Figure 6.5: Time-dependent phase differences @, (left) ¢y (right) at U* = 4.2 (a) and 4.28 (b)
in the upper branch for { = 0%

Figure shows the time histories of transverse and vortex phases in the range of
4.28 < U* < 4.89. As can be seen in Fig.[6.4] the frequencies of vortex force and transverse
fluid force are equal to the vibration frequency of the cylinder between U* = 4.28 and
4.7. Consequently, approzimately constant ®, and Py values are expected in this domain.
Figures 6. 766 7c corroborate these expectations: neither unbounded change nor phase
slips are identified in @, and @y It is also seen in these figures that the time-mean values
of &y and P, approximately equal to 7 and 0, respectively, which are consistent with the
experimental results for the upper branch. This finding further strengthens my previous
evidence concerning the existence of the upper branch at Re = 300.

It can also be seen in Figs. [6.7h46.7c that the fluctuations in transverse and vortex
phases are amplified when U* is increased. As seen, in the range of 4.28 < U* < 4.35,
both @, and @y show small periodic oscillations (Fig.6.7a). Varying the reduced velocity
from U* = 4.35 to 4.48, ¢, oscillates randomly with very high rms values. The random
oscillations are also observed in the time history of @/, but its fluctuation is significantly
lower. In the domain of 4.48 < U* < 4.7 the transverse and the vortex phases return back
to periodic, but the very high fluctuations in @, are still observed (see Fig. [6.7c).
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Increasing the reduced velocity in the range of 4.7 < U* < 4.89, T found that the
detuning f; — féy drops to approximately —0.2 (Fig. [64]), which causes an unbounded
increase in the transverse phase (Fig.[67d). It is very interesting to note that the absolute
value of this detuning is very close to the Strouhal number at Re = 300, i.e. f; — f(“}y =
—St. Besides, the vibration frequency is also near St in the aforementioned U* range
(fy = St, see Fig. 6.Ib). Combining these two findings the detuning value of —0.2 can
only be achieved when the frequency of the transverse fluid force, more precisely, the
most dominant frequency component in the spectra of C), is double the Strouhal number,
féy = 25t = 2f;. Moreover, the unreasonably high fluctuations in @, appear to be caused
by the occurrence of higher order harmonics for C,. These effects are further investigated
in Section

Figure[6.8shows ¢, and @y in the range of 4.89 < U* < 5.9, which domain corresponds
to the lower branch, because @, = @y, = 180° |60, 63]. It can be seen that the rms values
of transverse and vortex phases decrease with the reduced velocity. . .

Figure shows the time-mean values of transverse and vortex phases ¢, and &y,
respectively, in degrees where filled and empty symbols indicate synchronous and non-
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Figure 6.8: Time-dependent phase differences @, (left) @y (right) at U* = 4.9 (a) and 5.5 (b)

in the lower branch for ¢ = 0%
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Figure 6.9: Time-mean transverse and vortex phase values against U* for ¢ = 0%. Here syn-
chronous and non-synchronous cases are denoted by filled and empty symbols, respectively
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synchronous cases. Although the phase differences show gradual variations between 0°
and 180°, the transitions in @y, and @, are observed in different U* ranges, which is
the distinctive feature of three-branch response. However, experimental studies at high
Reynolds numbers and low mass and damping values reported abrupt phase changes in
the initial<>upper and upper<«+lower branch transition domains. As discussed earlier, the
reason behind the gradual and not abrupt variations in @y and @, is the unbounded
changes and phase slips found in the time-dependent transverse and vortex phases.

To conclude, the initial branch is observed in the range of 3.45 < U* < 4, the upper
branch between U* = 4 and 4.89, and the lower branch in the domain of 4.89 < U* < 5.9.
The most important observations related to the dynamics of ¢, and &y at the different

response branches are summarized in Table

Table 6.1: Summary of phase dynamics in the three response branches

Branch U* domain

o

P,

- [2.5,3.45]  low periodic osc. low periodic osc.
Initial  ]3.45,4.0]  intermediate osc. unbounded decrease
14.0,4.28]  low random osc. phase slips

Upper 14.28,4.35]  low periodic osc. low periodic osc.
14.35,4.48]  high random osc. low random osc.
14.48,4.7]  high periodic osc. low periodic osc.
14.7,4.89]  unbounded increase low periodic osc.

Lower ]4.89,5.9]  low periodic osc. low periodic osc.

6.3 Analyses for non-zero structural damping

As mentioned at the beginning of Chapter [6] the second important aim of this chapter is
to investigate the effect of structural damping ratio on the cylinder response. Figure
shows yy and f,/fn as functions of the reduced velocity for different structural damping
ratio values between ¢ = 0% and 5%. It can be seen that the results obtained harmonize
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0.9
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Figure 6.10: Root-mean square values of transverse cylinder displacement (a) and vibration
frequency normalized by the natural frequency in vacuum (b) against the reduced velocity for

C=0% (-e), 0.1% (-a-), 0.5% (-m-), 1% (-v), 3% (-9-) and 5% (&)
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with the expectations: the oscillation amplitude decreases with the damping ratio. As can
be observed in Fig.[6.10h, the structural damping causes significant changes in the cylinder
response. The obtained yy and f,/fn curves for ¢ < 1% are very similar to each other,
they seem to form three-branch response. For these ¢ values and low reduced velocities
(below approximately U* = 3.5), the oscillation amplitude is very low. Between U* = 3.5
and 4 the initial branch is identified, where yq increases intensively. At U* = 4, regardless
of (, the oscillation amplitude shows a sudden upward jump, which corresponds to the
boundary separating the initial and upper branches. However, the U* value where the
cylinder response switches between the upper and lower branches shows to decrease with
the structural damping ratio. Klamo et al. [62] found a somewhat different feature, in their
study the upper<slower branch transition range remained independent of the structural
damping. Soti et al. [63] investigated a wider  range. They showed that when damping
was increased the boundary between the upper and lower branches shifted to lower U*
values. This finding is very similar to my results at Re = 300 (see Fig. [6.10).

Figure shows the time-dependent transverse and vortex phases in the initial
branch (Fig. [6.11h), upper branch (Fig. and Fig. [6.11k) and lower branch (Fig.
6.11d) for ¢ = 0.5%. It can be seen in Fig. that @y shows an unbounded decrease in
the initial branch, similar to that observed for undamped vibrations. At the beginning of
the upper branch phase slips are found in the vortex phase (Fig.[611b), but interestingly,
Py remains approzimately constant, because the detuning f — f¢  is zero in this range.
Increasing the reduced velocity in the further part of the upper branch, the results show
similar features to those reported for ( = 0%. However, at the end of the upper branch
no unbounded increase was identified in the transverse phase, which is in contrast to the
results presented for undamped vibrations (see Fig. [6.7d). Figure shows @&, and
&y just before the jump to the lower branch, and here approximately constant transverse
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Figure 6.11: Time histories of phase differences @, (left) v (right) at reduced velocity values
of U* =3.8 (a), 4.25 (b), 4.68 (c) and 4.8 (d) for ¢ = 0.5%
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phase is shown. The possible reason behind this phenomenon is that the role of the second
harmonic frequency component changes with the structural damping ratio. This effect will
be further investigated in Section 6.4l

It can also be seen in Fig. that cylinder responses for ( = 3% and 5% are very
different from those observed in ( = 0-1%. For these high-damping cases, without any
sudden changes, yo and f,/fx show smooth variations, with no upper branch occurring,
only initial and lower branches are identified. Feng [57], Khalak and Williamson [59],
Klamo et al. [62] and Soti et al. [63] also found that increasing the damping ratio (or
the combined mass-damping parameter) can lead to the transition from three-branch
to two-branch response. Since the condition of f,/fy = 1 does not satisfy, no classic
lock-in domains are found for high structural damping values. This is in contrast to the
phenomenon observed for ¢ < 1%. Although Prasanth et al. [105] investigated the effect
of mass ratio, they carried out CFD computations for ¢ = 0.1% and 10%. For ¢ = 10%
they observed a similar phenomena; f,/fy increased almost linearly with U*.

In order to show explicitly that the upper branch does not occur for ¢ = 3% and
5%, the time-averaged transverse and vortex phases are analyzed. As already discussed
in Section [6.2] theoretically, the upper branch is characterized by abrupt phase jumps at
its lower and higher boundaries. Although for zero damping ratio, the phase difference
values of 0° and 180° are the only theoretically possible values [as shown by Eqs. (6.8)
and ([6.I0)], for ¢ > 0% &, and &y are allowed to vary between 0° and 180°. Figures

6.12h and [6.12b show &, and &y against the reduced velocity for different damping ratio
values. Similar to the notations employed in Fig. [6.9] filled and empty symbols refer to
synchronous and non-synchronous cases. It can be seen in Fig. [6.12] that for relatively

high cylinder displacements, time-averaged phase differences, especially ¢,, do depend
on structural damping. Similar to undamped vibrations, @y increases gradually at the
initial<>upper branch transition range, while 53/ transitions at the boundary separating
the upper and lower branches.

It is also seen in Fig. that the change of @y through the initial<>upper branch
transition range is a weak function of damping ratio. For instance, for ( = 0.1% &y
changes by 175.08°, and for ( = 1% by 159.77°. However, the increment observed in &,
depends strongly on ; for ( = 0.1% Ey jumps roughly by AEy =~ 158.1° and for ( = 1%
only by Ad, = 43.4°. Moreover, in high structural damping cases (at ¢ = 3% or 5%)
jumps in @ disappear, resulting in an almost continuous increase of the time-averaged

(a) 200 (b) 200
150 150¢
P, 100}
50(

Figure 6.12: Time-mean values of transverse (a) and vortex phases (b) against reduced velocity
for ¢ = 0% (-@-), 0.1% (-a-), 0.5% (-m-), 1% (), 3% (9-) and 5% (). Filled and empty
symbols refer to synchronous and non-synchronous cases, respectively.
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phase angles. This finding compares qualitatively well with the experimental results of
Soti et al. [63].

The lower limits of the upper and lower branches U}z and Uj, and the widths of
the upper branch AU* = U}z — Ufp are summarized in Table 6.2l It can be seen that
similarly to experimental results obtained at high Reynolds numbers [62, 63], the branch-
ing behavior is strongly influenced by the damping ratio. As we increase (, the width
of the upper branch diminishes, and for ( = 3% and 5% it completely disappears, only
the initial and lower branches remain. In other words, for low-damping cases (¢ < 1%)
a three-branch response is identified, and for high-damping cases (at ( = 3% and 5%)
a two-branch response is found. Klamo et al. [62] and Soti et al. [63] found a similar
phenomenon in their experimental studies.

Table 6.2: Effect of damping ratio on cylinder response. Here U;z and Ujp are the reduced
velocity values where cylinder response shift to upper and lower branches, respectively.

¢ Upp Uip AUT
0%  4.00 4.89 0.88
01% 4.03 4.84 0.80
05% 4.06 4.69 0.63
1% 430 4.61 0.31
3% — 468 —

5% — 466 —

6.4 Analysis of hydrodynamic features

In Section the harmonic oscillation model, applied to confirm the existence of the
upper branch is shown. Rearranging Eq. (6.8), the following expression is obtained:

L2 mrC. (6.11)

This formula shows that é'y sin @, (responsible for the mechanical energy transfer)
varies linearly with f; 7o /U*, where the proportionality factor is proportional to the mass-

damping parameter m*(. Figure shows C'y sin §, against 47° fy90/U™ for different
damping values between ¢ = 0% and 5% and constant m* = 10. Empty and filled symbols
refer to data points belonging to the upper and lower branches, respectively. Dashed lines
represent the results from the harmonic oscillator model [described by Eq. (611])], and
the numbers (belonging to the dashed lines) show structural damping ratio values. It can
be seen in Fig. that harmonic approximation seems to be very accurate in the lower
branch and at the beginning of the upper branch. However, at the remaining part of the
upper branch the results are very far from the harmonic solutions, which suggests that
in these domains the transverse fluid force is not harmonic function of time. The results
presented earlier are consistent with this proposal. For undamped vibrations I found
very high detuning values (around f; — fe, = —0.2) in the range of 4.7 < U* < 4.89,
which may refer to that the most remarkable frequency in the spectra of Cy equals to
the double of the vibration frequency. Besides, in the domain of 4.36 < U* < 4.7 the
time-dependent transverse phase shows unreasonably high fluctuations, which may also
indicate the occurrence of higher order harmonics in the spectra of transverse fluid force.
In order to confirm the non-harmonic nature of C) (in some ranges), time histories and
frequency spectra of cylinder displacement and transverse fluid force are further analyzed.
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Figure 6.13: C’y sin @ against 473 f*§jo/U* in the upper branch (empty symbols) and in the lower
branch (filled symbols) for ¢ = 0% (-e-), 0.1% (&), 0.5% (=), 1% (), 3% (9-) and 5%
(&). The dashed lines represent solutions obtained from the harmonic oscillator model given

by Eq. (6.11)

The analyses are carried out first for undamped cylinder vibrations, and than for non-zero
damping ratio values.

6.4.1 Undamped cylinder vibration

Figure shows the time histories of non-dimensional cylinder displacement (left-hand
side of the figure) and transverse fluid force (middle) at different U* values in the initial
(see Fig. [6.14h), upper (Figs. 6.I4b6.14k), and lower branches (Fig. [6.14f) for ( = 0%.
Frequency spectra of the signals (displacement and transverse fluid force) normalized by
the cylinder’s natural frequency in vacuum obtained using Fast Fourier Transform (FFT)
are shown in the right plots of the figures. Here PSD denotes Power Spectral Density, and
vertical axis has logarithmic scale.

It can be seen in Fig. that the signals show quasi-periodic nature in the initial
branch (3.45 < U* < 4); yo and C,, contain multiple frequency components. This is the
reason why the time-dependent transverse phase shows random fluctuations in the same
reduced velocity range (see Fig.[6.3c). At U* = 4 high jumps are observed in yy and f,/fn
(Fig.[61)), at the location where the cylinder response shifts from the initial to the upper
branch. The high cylinder displacement in the upper branch can observed in Fig. [6.14b.
This figure shows also that in the domain of 4 < U* < 4.28, the cylinder motion and the
transverse fluid force are quasi-periodic signals. These effects are expected, because in this
range the time-dependent transverse phase shows random variation (see Fig. [6.5). Due to
the quasi-periodic behavior, the frequency spectra of yy and C, contain multiple frequency
components from which f/fy = 1 and 3 have the highest PSD values. Note that f/fy =i
frequency peak is usually referred to as the ¥ harmonic frequency component. Between
the reduced velocity values of U* = 4.29 and 4.35 the time-dependent phase differences
show periodic variations (see Fig. [6.7h), which refers to periodic cylinder vibrations. Tt
can be seen in Fig. that both y, and C} are periodic signals; transverse fluid force
contains relevant frequency components at f/fy = 1 (highest intensity) and 3 (relatively
low intensity), while in the spectrum of cylinder displacement only f/fy = 1 is identified.

Increasing the reduced velocity from U* = 4.36 to 4.48, slightly above the jumps found
in Cy and Cy (see Fig. [6.2)), the transverse fluid force and the cylinder displacement
become quasi-periodic again (Fig. [6.14d). These signals show similar behaviors to the
time-dependent phases, in the same U* domain random oscillations have been found in
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Figure 6.14: Time histories (left and middle) and Fourier spectra (right) of cylinder displacement
and transverse fluid force at U* =4 (a), 4.2 (b), 4.3 (c¢), 4.4 (d), 4.6 (e) and 5.5 (f) for ( = 0. In
the FFT spectra red and blue colors indicate the frequency spectra of transverse fluid force and
cylinder displacement, respectively.
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9, and Py. Besides, in the frequency spectra of C), the first, the second and the third
harmonic components are identified as high-intensity peaks. Varying the reduced velocity
in the range of 4.48 < U* < 4.89, C, is found to be periodic again and the f/fy = 2
frequency component is found to play very significant role in its spectra (see Fig. [6.14k).
This finding, which we expected, explains why the computational results do not agree with
the harmonic solutions represented by Eq. (6.11]) at some parts of the upper branch (see
Fig. 6.13), and implies why the transverse phase shows unreasonably high fluctuations
between U* = 4.36 and 4.7 (Fig. 6.7c).

Many studies have been dealing with the frequency components occurring in the
spectra of transverse fluid force. Without aiming to give an exhaustive list, Jauvtis and
Williamson [85], Dahl et al. [81], Dahl et al. [82], Dahl et al. [41], Wang et al. [84] have
discussed the relevance of the first and the third harmonic components in C, for two-
degree-of-freedom vortex-induced vibrations. However, the second harmonic component
is not so typical in VIV. Bao et al. [83] investigated also two degrees of freedom VIV and
they identified the f/fy = 2 frequency peak in the spectra of C,. In Chapter H T showed
that the second harmonic frequency component has a fundamental effect on the path
of the cylinder; asymmetric raindrop-shaped cylinder paths occur in these cases. These
results have been published in Dorogi and Baranyi |J3].

In the lower branch (from U* = 4.9 to 5.9) both y, and C, are periodic signals. As
seen in Fig. [6.14f, the second harmonic component completely disappears, only f/fy =1
and 3 peaks remain (see Fig. [6.14f). Since the intensity of f/fy = 3 is much lower than
the PSD of the first harmonic component, the f/fy = 3 peak influences the vibration
very slightly. This is why the data points corresponding to the lower branch fit very well
on the model results based on the harmonic approximations (see Fig. [6.13)).

As can be seen in Fig. 6.4, high detuning value of f; — f¢&, = —0.2 occurs in the range
of 4.7 < U* < 4.89 for zero structural damping ratio, which value agrees approximately
with the Strouhal number at Re = 300. Since the vibration frequency in this range is also
close to the Strouhal number, this detuning value can only be reached when the second
harmonic frequency component is the most dominant in the spectra of C,. Although I
showed that f/fy = 2 occurs in the upper branch, it was not confirmed whether it is
the most relevant harmonic in the domain of 4.7 < U* < 4.89. Figure shows the
frequency spectra of transverse fluid force at different U* values, where Power Spectral
Density normalized by the maximum PSD in the spectra PSDyom — PSD/PSDyay is
plotted against f/fy. Note that vertical axis is scaled linearly. It can be seen that at
U* = 4.5 (see Fig. [6.I5h) f/fn = 1 is the most intensive peak, while the normalized PSD
at f/fn = 2 is low. As expected, in the range of 4.7 < U* < 4.89 the roles of the first
and second harmonic components are switched; f/fy = 2 is the most dominant, while
the normalized PSD of f/fy = 1 is relatively low (see Figs. and [6.15c). However,
switching to the lower branch causes a dramatic change in the FFT of C,. As shown in
Fig.[6.15d, the second harmonic component completely disappears and the first and third
harmonic components remain in the spectra (f/fy = 1 is the most relevant component).

Singh and Mittal |72|, Prasanth and Mittal [88] and Bahmani and Akbari |70] found
that the formation of vortices shedding from the body is very sensitive to the value of the
reduced velocity. Figure [6.16] shows the vortex structures at the same U* values where the
time histories and the FFT spectra of the cylinder displacement and transverse fluid force
were previously analyzed (see Fig. 6.14). As shown in Fig. 6.14h, yo and C, are quasi-
periodic signals in the initial branch, that is, the vortex structures at the corresponding
reduced velocity values change dynamically with time (see Fig. [6.16h).

Shifting to the upper branch, in the range of 4 < U* < 4.28 the cylinder motion and
the fluid force coefficients are still quasi-periodic signals, that is, the vortex structure is
also highly time-dependent in this domain (see Fig. [6.16b). It was found that the time
histories of yy and C, are periodic between U* = 4.29 and 4.35, and the FEF'T spectra
of C, contain relevant frequency peaks at f/fy = 1 and 3 (Fig. 6.I14c). It can be seen
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in Fig. that in the corresponding range 2Py wake mode seems to develop, which
means that two pairs of vortices are shed from the cylinder in each motion period, but the
secondary vortex in each pair is much weaker than the primary vortex NI(PE] Morse and
Williamson [106] found that when the vortex pair is moving downstream from the cylinder,
the secondary vortex decays, which is also seen in Fig.[6.16c. Khalak and Williamson ﬂm]
and Khalak and Williamson @] identified 2P vortex shedding mode in the upper branch,
where the strengths of the primary and the secondary vortex are approximately identical.
It has to be noted that 2P vortex structure has not been found for such low Reynolds
number cases.

At the closing part of the upper branch (4.35 < U* < 4.89), the f/fy = 2 peak was
found to occur, which strongly influences the vortex structure. Although the structure
of vortices changes in time between U* = 4.35 and 4.48, due to the modulations in
the aerodynamic force coefficients, the wake modes are very similar to the P+S vortex
shedding mode (Fig. [6.106d). Here P+S denotes that a pair of vortices and a single vortex
are shed from the cylinder. In the domain of 4.48 < U* < 4.89 (still belongs to the upper
branch) the time traces of yo and C, return back to periodic. In this range the second
harmonic frequency component plays an important role in Cy, (see Fig. [6.15]), which seems
to make the vortex structure asymmetric: stable P-+S modes are found in the domain of
4.48 < U* < 4.89 (see Fig. [6.ICk). Such effect of f/fy = 2 on the vortex shedding was
shown earlier in Chapter

As shown in Figs. and [6.15] in the lower branch the f/fy = 2 frequency peak
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Figure 6.15: Frequency spectra of transverse fluid force at U* = 4.5 (a), 4.8 (b), 4.89 (c) and
4.9 (d) for ¢ = 0%
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Figure 6.16: Vortex structures (red: positive vorticity, blue: negative) at U* =4 (a), 4.2 (b), 4.3
(c), 4.4 (d), 4.6 (e) and 5.5 (f) for ¢ = 0. Each vortex contours are recorded at random phases
of the cylinder oscillation
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completely disappears from the spectra of C,,. For this reason the vortex structure becomes
symmetric; 2S wake modes (two single vortices) are found in this domain (4.89 < U* < 5.9,
see Fig. G.I6).

6.4.2 Damped cylinder vibrations

It was shown in Section that increasing the structural damping leads to the transition
from three-branch to two-branch response. While initial, upper and lower branches are
found for ¢ < 1% at Re = 300, only initial and lower branches are observed for ¢ = 3%
and 5%. It can be seen in Fig. that no unbounded increase appears in the transverse
phase at the boundary separating the upper and lower branches for ( = 0.5%. This finding
is in contrast to what I found for undamped vibrations (see Fig. [6.7d).

It was confirmed in Section that the unbounded increase of the transverse phase
is caused by the fact that the second harmonic frequency component is the most dominant
in the spectrum of C,,. For this reason, the lack of unbounded variation in @, for ¢ = 0.5%
suggests that the intensity of f/fy = 2 is not the highest in the upper<slower branch
transition range. Figure shows the normalized spectra of transverse fluid force at
different reduced velocity values in the upper branch for ( = 0.5%. This figure corroborates
the former assumption; the role of f/fy = 2 increases with U* but at the boundary
between the upper and lower branches (at U* = 4.688, see Fig. [6.17d) the first harmonic
component dominates all over the spectra, and f/fy = 2 occurs only with low intensity.
The additional findings related to e.g. the vortex formation downstream from the cylinder
hold true in the range of ( < 1%, where three-branch responses are found.
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Figure 6.17: Frequency spectra of transverse fluid force at U* = 4.5 (a), 4.56 (b), 4.6 (c) and
4.688 (d)

As mentioned earlier, increasing the structural damping ratio over { = 1%, only the
initial and lower branches are found, the upper branch disappears from the response. The
question arises what the difference is between three and two-branch responses in terms
of frequency spectra and vortex structures. Figure shows the frequency spectra of
cylinder displacement and transverse fluid force (top row), and vortex contours (bottom
row) at different reduced velocity values for ¢ = 3%. As can be seen in Fig.[6.18h, the FFT
spectra of the transverse fluid force and cylinder displacement for U* = 4.2 contains several
frequency components, that is, yo and C, are quasi-periodic signals. Due to the same
reason, the vortex structure is highly time dependent at this point, but very similar to the
regular 2S vortex shedding mode. The above mentioned flow and vibration characteristics
between the reduced velocity values of U* = 4 and 4.66 are similar to those of the
initial branch in the ¢ < 1% domain. Increasing reduced velocity up to U* = 4.68, the
cylinder response reaches the lower branch where both y, and C), return back to periodic.
In contrast to the results reported in the low-damping domain, the vibration frequency
does not lock exactly to the natural frequency of the system in vacuum (see also Fig.
[6.10). Figures and show the spectra of yy and C, in the range where the
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oscillation amplitude is relatively high. As seen, the first and the third harmonic frequency
components can be found in the spectra of C,. Since the peak of f/fx = 2 is not present
in the spectra, 2S vortex structures are found in these computational points.
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Figure 6.18: Frequency spectra of cylinder displacement (blue curves) and transverse fluid force
(red curves), and the vorticity contours at U* = 4.2 (a), 4.68 (b) and 5.4 (c) for ( = 3%. Each
snapshots are recorded at random phases of the cylinder oscillation

6.5 New scientific contributions

Contribution V

Up until now an upper branch (i.e. a three-branch cylinder response) has been reported
only for high-Reynolds number flows (Re = 103-10%). Using two-dimensional CFD simu-
lations I showed that the cylinder response (oscillation amplitude and frequency) plotted
against the reduced velocity U* displays a three-branch behavior at the Reynolds number
of Re = 300, and mass and structural damping ratio values of m* = 10 and ¢ = 0%, re-
spectively. The initial branch takes place in the range of 3.45 < U* < 4, the upper branch
is observed between U* = 4 and 4.89, and the lower branch occurs in the domain of
4.89 < U* < 5.9.1 found that the time-averaged phase differences of the vortex force and
the transverse fluid force relative to the cylinder displacement show gradual variations be-
tween approximately 0° and 180° at the upper and lower boundaries of the upper branch,
respectively. I observed unbounded variations and phase slips in the time-dependent phase
angle values, which explains the gradual changes in their time-mean values.

I found that increasing the structural damping ratio leads to the transition from three-
branch to two-branch response. This finding is comparable to the experimental results
(available in the literature) at high Reynolds numbers. In the domain of ¢ < 1% the
upper branch is found to occur whose reduced velocity range AU}z decreases with the
damping ratio (e.g. AUj55; = 0.88 for ¢ = 0%, while AUj55; = 0.31 for ( = 1%). For
¢ = 3% and 5%, the upper branch completely disappears from the response, only the
initial and lower branches remain.

Related publications: Dorogi and Baranyi [M], Dorogi and Baranyi M] and Dorogi
and Baranyi [CY]
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Contribution VI

I showed that the phase difference of the transverse fluid force relative to the cylinder
displacement (i.e. the transverse phase) increases roughly uniformly with time at the end
of the upper branch (4.7 < U* < 4.89) for Re = 300, m* = 10 and ¢ = 0%. This effect is
caused by the large detuning value between the frequencies of cylinder vibration f and
transverse fluid force féy; Iy —f(“}y = —(0.2, which in absolute value is close to the Strouhal
number St at Re = 300. Since f; = St between U* = 4.7 and 4.89, the detuning value
fy — J¢&, = —5St can only be achieved when f¢ = 2f7 = 25t. The frequency spectra of
the transverse fluid force confirms the non-harmonic nature of the transverse fluid force.
I found that the second harmonic frequency component is the most intensive peak in the
range of 4.7 < U* < 4.89 for ( = 0%.

Increasing the structural damping ratio value up to ¢ = 0.5%, I showed that the
detuning value is zero f; — fgy = 0 in the entire reduced velocity domain, hence the
time-dependent transverse phase no longer shows unbounded increase at the higher end
of the upper branch. This effect implies that the role of the second harmonic frequency
component decreases with the structural damping ratio. The spectral analyses of the
transverse fluid force showed that the intensity of the second harmonic component was
negligible.

The currently obtained CFD data belonging to various structural damping ratio values
(between ¢ = 0% and 5%) have been compared to the results using the harmonic oscillator
model. T showed that the computational and the harmonic model results compare very
well at the beginning of the upper branch and in the lower branch. However, at the end
of the upper branch the CFD data and and the harmonic model results are far from each
other. This finding confirms my previous statement concerning the non-harmonic nature
of the transverse fluid force at the end of the upper branch.

Related publications: Dorogi and Baranyi |J4], Dorogi and Baranyi [C10] and Dorogi
and Baranyi [C9]
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Chapter 7

Possible future works

In this PhD dissertation various types of vortex-induced vibrations are investigated, in-
cluding the single-degree-of-freedom motions, where the cylinder is allowed to move only in
streamwise or transverse directions, and two-degree-of-freedom vibration cases. Although
several analyses have been performed in the dissertation, there are still a lot of unanswered
questions, which can lead to further investigations. These topics related directly to my
researches are summarized in the following points:

e In Chapter [ computational results have been presented for the cases, when the nat-
ural frequencies in streamwise and transverse directions fy, and fy, are identical.
The question arises what the effect of the natural frequency ratio FR = fn,/fny
is on the cylinder response. Preliminary results are available in this topic [J2]| (in-
dicating that FR highly influences the cylinder path), but additional computations
are required.

e As discussed in Chapter B a single excitation region occurs for streamwise-only
vortex-induced vibrations in the low-Reynolds number domain. However, at moder-
ately high Reynolds numbers two response branches have been identified. In order
to investigate how the response switches between one-branch and two-branch re-
sponses, three-dimensional computations are needed. This can be carried out using
either commercial softwares (e.g. ANSYS FLuent or ANSYS CFX) or open-source
CFD codes (e.g. OpenFOAM, Nektar++ or Nek5000).

e It was shown that a separate upper branch occurs at the Reynolds number of 300
(see Chapter [6). However, at lower Re values (e.g. at Re = 100) two response
branches (i.e. the initial and lower branches) have been reported in the literature. I
aim to perform CFD computations at different Reynolds numbers ranging between
Re = 50 — 300 to find the critical Reynolds number value Re., above which three-
branch response occurs, but at Re < Re. only the initial and lower branches can be
identified.

During the literature review I realized that vortex-induced vibrations of a circular
cylinder placed into an oscillatory flow received less attention. However, it appears in many
engineering fields, for example the wave motions are commonly modeled with oscillatory
flows. To my best knowledge, very few paper examine this problem numerically. For this
reason, systematic CFD computations are planned in this field in the near future.
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Appendix A
Evaluation of CFD data

The data sets obtained from the CFD computations (e.g. the cylinder displacement or
the aerodynamic force coefficients) are mostly time-varying signals, which include a few
million elements. For this reason, the proper evaluation of these data sets are required.
The evaluation process covers the calculation of the time-mean and root-mean-square
values, the frequencies of the signals (see Appendix [AT]) and the phase differences (or
phase angles) between two distinct signals (Appendix [A.2]).

A.1 Statistical properties of periodic signals

Figure[A 1k shows the time history of the dimensionless transverse cylinder displacement.
In this test case the cylinder is allowed to move only in the transverse direction, and the
following parameter combination is used: Re = 300, m* = 10, ( = 0% and U* = 4.9. It
can be seen in Fig. [A.Th that the body is initially at rest, corresponding to the initial
conditions [see Eq. (2:20)]. In the approximate non-dimensional time interval of 0 < t <
150 the amplitude of cylinder vibration increases, beyond the transitional domain the body
oscillates with a constant amplitude value. In order to get the most accurate statistical
parameters [the root-mean-square (rms), the time-mean and the frequency values|, the
transitional part of the signal has to be omitted. In this study the statistical quantities
are calculated based on the last V. periods of cylinder oscillation, which takes place in
the time domain of t54+ < t < tfinisn. The root-mean-square and the time-mean values
are defined as follows:

(a) 0.9 | | ‘ (b) 10 —
N, periods of cylinder oscillation
0.6
10°
0.3 |
Yo | PSD
0
10°
-0.3
-0.6 \ \ \ \ 10
0 200 400 600 800 1000 0 0.4 0.8

t fr

Figure A.1: The time history (a) and the frequency spectra of the cylinder displacement for
Re =300, m* =10, ( = 0% and U* = 4.9
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n

Yo = ! Z(yo,i_yo)Za (A.1)

n—14%
=1

1 n
Yo = ﬁ;yom (A.2)

Here n = (Lfinish — tstart)/At, where At is the dimensionless time step and yo; is the i
element of the data set.

The Fast Fourier Transform (FFT) algorithm is used to represent the signal (e.g.
displacement(s) or force coefficient(s)) in the frequency domain. Figure [A.Ib shows the
frequency spectrum of the cylinder displacement, i.e. the Power Spectral Density PSD
against the non-dimensional frequency f*. In this test case the vertical axes are shown
in a logarithmic scale. However, in Chapters [6l and [6] the normalized spectrum of the
signal is also used, which means that the Power Spectral Density is normalized by the
maximum PSD value in the spectrum. In these cases the vertical axis is scaled linearly.
The frequency of the signal (f; for yo) is considered to be the frequency value belonging
to the highest intensity peak in the spectra, which is denoted by a red dashed line in
Fig. [A.Tb. Note that although the calculation of these statistical parameters are shown
here for the cylinder displacement, the methodologies are valid for other quantities, for
example for xg, C,, Cy, Cy, etc..

A.2 Determination of phase difference

In this study the phase difference (or phase angle) of a force coefficient (in either stream-
wise or transverse direction) relative to the cylinder displacement in the corresponding
direction is frequently computed. In this section two distinct methods are shown to obtain
this phase difference value.

A.2.1 Harmonic signals

In case the fluid force coefficient and the cylinder displacement are periodic signals, the
phase difference value can be easily calculated. This condition satisfies in streamwise-only
vortex-induced vibrations (see the results in Chapter B) for all the investigated cases; thus
the method is introduced via the computation of phase difference between streamwise fluid
force coefficient C,(t) and streamwise cylinder displacement x((t).

Let us assume that the streamwise fluid force coefficient can be represented as:

N
Co(t) =) Cleos(2mifst + OL), (A.3)
i=1
where C? is the magnitude of the i harmonic component of the streamwise fluid force
coefficent, f is the dimensionless vibration frequency and ¢! is the phase difference of
the i harmonic component relative to the cylinder displacement. Multiplying C,(t) by
sin 27 f*t, and integrating it over one period of cylinder oscillation 7' = 1/ f, the following
simple expression can be obtained:

T T
I :/ C.(t) sin27rf;tdt:/
0 0

1
= —§f;*10; sin @

N
Z C! cos(2mifit + ®L)| sin 27w frtdt =
i=1 (A.4)
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Although ¢! is an unknown quantity, I; can be calculated by integrating

fOT C,(t) sin 27 f*tdt numerically using the trapezoidal rule or some other numerical
quadrature. Besides, multiplying C,(¢) by cos 27 ft and integrating the expression over
one oscillation cycle, the following formula can be obtained:

T T[N
I = / C,(t) cos 2w frtdt = / [Z C! cos(2mifit + ®L) | cos2nm fitdt =
0 0 Li=1 (A.5)
1
= §f;_1C’; cos @

Similarly to Eq. (A.4)), I can be solved numerically. Dividing Eq. (A.4]) by Eq. (A.3]), the
following formula can be obtained for the phase difference value:

¢, = ¢! =tan™! (--) . (A.6)

A.2.2 Application of Hilbert transform

In case Eq. (A.3) does not hold true, the calculation methodology of the phase difference,
detailed in Appendix [A.2.1lis not applicable. In these cases the analytical signal approach
based on Hilbert transform can be used [103,104]. This methodology is applied in Chapter
[ to compute the phase difference between the streamwise fluid force and the streamwise
cylinder displacement, and in Chapter [6] to obtain the phase difference of the transverse
fluid force and vortex force relative to the transverse cylinder displacement.

In order to introduce this approach, let us consider a vortex-induced vibration problem,
where the cylinder is restricted to oscillate only in transverse direction. The analytical
signal of the cylinder displacement yo(t) can be expressed as [104]:

Yo (t) = yo(t) + iyon(t) = Ay, (t)e' 0, (A7)

where i is the imaginary unit, yo,(¢) is the Hilbert transform of y,(¢), and A, () is the
time-dependent amplitude of the signal and &, (¢) is the time-varying phase of the cylinder

Im a
e
N\rle i
E o Dy E
G, % Re

Figure A.2: The arrangement of the analytical signals 1o, and Cy, at an arbitrary time instant.
Here Im and Re denote the imaginary and the real axes, respectively
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displacement:

Ay (1) = V/50(t)? + yon (t)?, ®,,(t) = tan™* [y;j((;)] . (A.8a,b)

Figure[A.2lshows the analytical signals of the cylinder displacement and the transverse
fluid force yo, and C,, on the complex number plane at an arbitrary time instant. Similarly
to &,,, the time-varying phase of the transverse fluid force can be determined as

Cyn(t)
&, (t) = tan™! {yi : (A.10)
! Cy(t)
where Cy,(t) is the Hilbert transform of the transverse fluid force coefficient. As can be
seen in Fig. [A2] the phase difference of the transverse fluid force relative to the cylinder

displacement, i.e. the transverse phase, can be obtained as

B(t) = Be, (1) — By(0). (A1)

It should be noted that Pikovsky et al. [103] defined the phase difference value as the
difference of the displacement with respect to the force. For the sake of comparison, we
applied Eq. [A.11] to obtain the phase angle value. The same methodology can be used

to obtain the vortex phase, i.e. the phase difference of the vortex force relative to the
cylinder displacement:

@V(t) = ¢Cv (t) - @yo (t)a (A'12)

? n|HlllHIlIllI“”‘“l““lllllmmnm
|HHlllll|||”|HH”””']”IIHHHHHIl;
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Figure A.3: Time histories of y9, Cy and Cy (top row), and the time-varying unwrapped (middle
row) and wrapped (bottom row) transverse and vortex phases for transverse-only VIV. In the

top row the displacement and force coefficient curves are shown in blue and red, respectively.
The following computational parameters are used: Re = 300, m* = 10, ( = 0% and U* = 4.2
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where &, (t) is the phase of the vortex force coefficient.

When the two investigated signals have the same frequency values (i.e. the signals
are synchronized), the phase difference between them is constant in time. However, there
are some special cases, when the frequencies of the signals are different, which causes
increasing/decreasing effects in the corresponding phase difference (see Chapter [6). In
terms of time-averaged phase differences, the phase angle value between 0° and 360° is
meaningful. In order to calculate an accurate time-mean value, the phase difference signal
has to be wrapped in a 2m-long interval; in this dissertation between —7/2 and 37/2.

Figure[A.3 helps to understand the difference between unwrapped and wrapped phase
angles. Figure [A.3h shows the time histories of yo and C, (top row), the time-varying
transverse phase @, as an unwrapped signal (middle row), and the time history of @,
wrapped between —m/2 and 37/2 (bottom row). The structures of Figs. [A.3h and [A.3b
are similar, but in Fig. [A.3b the time histories of Cy and &y are shown instead of the
Cy and @,. It can be seen that, since the frequencies of the cylinder displacement and
the transverse fluid force are identical, the unwrapped and wrapped transverse phases
show the same characteristics (Fig. [A3h). In contrast, a small detuningll occurs between
Cy and yg, hence, the unwrapped vortex phase shows an increasing effect (Fig. [A.3b).
As mentioned earlier, to obtain the time-averaged vortex phase, @, has to be wrapped
between —7/2 and 37 /2, which is show in the bottom row of Fig. [A.3b.

IThe difference between the frequencies of force coefficient and the cylinder displacement
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