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Abstrat

Fluid �ow around blu� bodies have been thoroughly investigated in the past few deades

due to their high engineering importane. This phenomenon plays an important role for

example in o�shore risers, high slender buildings, himney staks, heat exhangers, et.

The vorties shedding from the blu� body superimpose a periodi load on the struture,

whih an ause high-amplitude osillations. This e�et is referred to as vortex-indued

vibrations (VIV).

In this PhD dissertation the vortex-indued vibration of a irular ylinder is inves-

tigated by means of two-dimensional CFD omputations at low Reynolds numbers. The

governing equations of the �uid and solid motions are solved using an in-house ode based

on the �nite di�erene method. Some details of the CFD approah are provided in Chapter

2. After the independene studies, a step-by-step validation is arried out to ompare the

urrently obtained results against the literature data (see Chapter 3). Good agreement

was found for all test ases.

In Chapter 4 two-degree-of-freedom vortex-indued vibrations are investigated at dif-

ferent nondimensional natural frequeny values K. It was found that plotting the data

set belonging to di�erent K values against U∗
St makes omparison easier than using the

Reynolds number as an independent parameter. Here U∗
is the redued veloity and St

is the Strouhal number for a stationary ylinder. For the dimensionless natural frequeny

values between K ∼= 12.3 and 34.7, the root-mean-square (rms) values of the streamwise

vibration omponent and �uid fore oe�ient x0′ and Cx′
display loal peak values at

U∗
St

∼= 0.47. In addition, at around U∗
St = 0.5 Cx′

approahes zero, at the same point

where the phase di�erene of the streamwise �uid fore relative to the x omponent of

the motion hanges abruptly from 0◦ to 180◦. The pressure omponent of the streamwise

�uid fore oe�ient seems to be responsible for the sudden hange.

The results from the two-degree-of-freedom VIV omputations at distint K values

reveal also that the non-dimensional natural frequeny in�uenes signi�antly the ylinder

path. For the values of K < 36.6 only distorted �gure-eight motions are found. However,

in the range of K ∼= 36.6�43.7 orbital trajetories (i.e. the raindrop-shaped paths) our

in a thin U∗
St domain, whih extends with K. For orbital paths two high-intensity peaks

are observed in the frequeny spetra of the x vibration omponent. Due to the multi-

frequeny vibration, the raindrop-shaped trajetory is asymmetri. P+S vortex strutures

are identi�ed for these paths, whih on�rms the asymmetrial nature of the orbit. The

time-mean values of the transverse �uid fore jump abruptly between two solutions. The

pre- and post-jump analysis reveals that these solutions are mirror images of eah other.

In Chapter 5 single-degree-of-freedom VIV omputations are arried out, where the

ylinder is allowed to move only streamwise with the free stream. The investigations

at various Reynolds numbers (Re = 100, 180 and 250), and di�erent mass ratio values

(m∗ = 2, 5, 10 and 20) show that streamwise-only vortex-indued vibrations are possible

at low Reynolds numbers. A single exitation region is identi�ed, whih orresponds to

the seond response branh reported in the literature for moderately high Re. The dimen-

sionless vibration amplitude x̂0 plotted against U∗
for one partiular ombination of Re

and m∗
inreases up to its peak value, then it dereases. The non-dimensional vibration

frequeny f ∗

x behaves oppositely. Although the peak value of x̂0 appears to be independent
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Abstrat iv

ofm∗
, varying the Reynolds number the maximum vibration amplitude shows a signi�ant

inrease. It was also shown that the magnitude of the streamwise �uid fore oe�ient

approahes zero at the point, where the vibration frequeny oinides with the ylinder's

natural frequeny. Sine the amplitude of ylinder osillation is non-zero at this point, the

streamwise �uid fore has strongly non-harmoni nature. Unlike the phase angle between

Cx and x0, whih is restrited to the values of 0◦ and 180◦, the phase di�erene of the

transverse �uid fore relative to the ylinder displaement inreases gradually with U∗
.

This e�et is attributed to the swith in the timing of vortex shedding.

Finally, in Chapter 6 transverse-only vortex-indued vibrations are investigated at

the Reynolds number and mass ratio values of Re = 300 and m∗ = 10, respetively, for
di�erent strutural damping ratios between ζ = 0% and 5%. Up until now, researhers

have reported an upper branh only at high Reynolds numbers and low m∗ζ values.

However, in this study we have observed three-branh behavior (initial, upper and lower

branhes) at Re = 300 for ζ ≤ 1%. The upper branh is bounded by two gradual phase

hanges: at the boundary adjaent to the initial branh, the time-averaged phase di�erene

of the vortex fore, and at that to the lower branh, the time-averaged phase di�erene

of the transverse �uid fore relative to the ylinder displaement hanges between 0◦ and
180◦. Unbounded variations and phase slips are observed in the time-dependent phase

di�erenes, whih explains the gradual hanges in their time-mean values. In the upper

branh 2P

O

and P+S modes, while in the initial and lower branhes 2S vortex strutures

are identi�ed. The seond harmoni frequeny omponent plays an important role in the

spetra of transverse �uid fore, whih is losely related to the observed P+S vortex

struture. Inreasing the strutural damping over ζ = 1%, only initial and lower branhes

are found.
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Kivonat

A tompa testek körüli áramlási folyamatok vizsgálatával � a téma nagy mérnöki fontos-

sága miatt � számos tanulmány foglalkozik. A jelenség fontos szerepet játszik például a

szélterhelésnek kitett karsú épületeknél, a vízfelszín alatti vezetékeknél vagy a h®seré-

l®knél. Ismeretes, hogy a tompa testekr®l leváló örvények periódikus terhelést jelentenek a

szerkezetre nézve, amelynek következtében a test nagyamplitúdójú rezg®mozgásba jöhet.

E jelenséget angol nyelven �vortex-indued vibration�-nek nevezik.

A jelen PhD disszertáió egy párhuzamos áramlásba helyezett, szabadrezgésre képes

(rugalmasan felfüggesztett) körhenger körüli áramlási folyamatok kétdimenziós numeri-

kus áramlástani vizsgálatával foglalkozik. A folyadékáramlást és a henger mozgását leíró

egyenleteket egy a tanszéken kifejlesztett számítógépes programkód segítségével oldom

meg, amely a véges di�ereniák módszerét alkalmazza. A számítási eljárás részleteit a 2.

fejezetben ismertetem. Ezt követ®en függetlenségi vizsgálatokat végzek, majd az eredmé-

nyeket összehasonlítom az irodalomban rendelkezésre álló adatokkal (lásd 3. fejezet).

A dolgozat 4. fejezetében az örvényleválás által gerjesztett kétszabadságfokú rezg®moz-

gásokat vizsgálom különböz® K dimenziótlan sajátfrekveniák esetén. Azt tapasztaltam,

hogy az U∗
St paramétert használva független változóként � ahol U∗

a redukált sebesség és

St a Strouhal-szám �, a különböz® K értékek esetén számított görbék egy viszonylag sz¶k

tartományba hozhatók, amely nagymértékben javította az adatsorok összehasonlíthatósá-

gát. A hosszirányú rezgéskomponens és er®tényez® rms értéke (x0′ és Cx′
) az U∗

St

∼= 0,47
értéknél lokális maximumot mutat, illetve Cx′

az U∗
St

∼= 0,5 helyen zérushoz tart. A Cx

és x0 id®függvényeinek segítségével kimutattam, hogy U∗
St < 0,5 esetén a két jel fázisban

van. Az U∗
St

∼= 0,5 elérésekor x0 és Cx hirtelen ellenfázisba kerül, amely az U∗
St > 0,5

tartományban fennáll. A számításokból arra következtettem, hogy Cx′
zérussá válását,

illetve az x0 és Cx közti hirtelen fázisugrást a hosszirányú er®tényez® nyomásból származó

komponense okozza.

Számítási eredményeim azt mutatják, hogy a dimenziótlan sajátfrekvenia növelése

jelent®s hatással van a henger pályagörbéjére. Megállapítottam, hogy míg K < 36,6 ese-

tén a henger minden esetben torzított nyolas alakú görbét ír le, addig a K ∼= 36,6�43,7
intervallumon belül, keskeny U∗

St tartományban es®sepp alakú orbitális mozgásgörbe

is jelentkezik. Bebizonyítottam, hogy K értékének növelésével az orbitális pálya U∗
St

tartománya kiszélesedik. Tapasztalataim alapján elmondható, hogy az es®sepp alakú pá-

lyagörbe aszimmetrikus viselkedést mutat, amelyet az x irányú rezgéskomponens frekven-

iaspektrumában megjelen® két jelent®s intenzitású frekveniasús okozza. A pályagörbe

aszimmetrikus voltát alátámasztja, hogy a henger mögött P+S típusú örvényszerkezet

jelenik meg. A felhajtóer®-tényez® Cy id®átlaga (abszolút értékben) nagymértékben meg-

n® orbitális hengermozgás esetén; továbbá Cy két megoldás között ugrásszer¶en változik.

A határiklusokat [(Cx, Cy) vagy (x0, y0)℄ egy ugrás két oldalán ábrázolva azt tapasztal-

tam, hogy a görbék egymásnak tükörképei. Ebb®l az következik, hogy Cy két megoldása

szimmetrikus.

Az 5. fejezetben egyszabadságfokú hosszirányú szabadrezgés numerikus vizsgálatá-

val foglalkozok különböz® Reynolds-számok (Re = 100, 180 és 250) és tömegarányok

(m∗ = 2, 5, 10 és 20) esetén. Számítási eredményeim azt mutatják, hogy a hosszirányú

szabadrezgés létrejötte lehetséges kis Reynolds-számok esetén. Egyágú rezgésképet azo-
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nosítottam, amely megfelel a szakirodalomban a közepesen nagy Re esetén bemutatott

második ággal, mivel minden egyes paraméterkombináiónál (Re, U∗, m∗
) alternáló ör-

vényleválást �gyeltem meg. Az x̂0 dimenziótlan rezgési amplitúdó a redukált sebesség

függvényében, súsértékének eléréséig növekv®-, majd azt követ®en sökken® tendeniát

mutat. Ezzel szemben az f ∗

x dimenziótlan rezgési frekvenia ellentétes viselkedést mutat:

f ∗

x változásában, kezdetben sökken®, a minimum érték elérése utána pedig növekv® jelleg

�gyelhet® meg. Az utóbbi két megállapítás minden vizsgált Re és m∗
érték esetén igaznak

bizonyult. Számítások segítségével bebizonyítottam, hogy x̂0 súsértéke független a tö-

megaránytól, azonban a Reynolds-szám változására érzékeny: Re növelésével x̂0 maximális

értéke növekv® tendeniát mutat. Megállapítottam, hogy a hosszirányú er®tényez® ampli-

túdója zérushoz tart ott, ahol a rezgési frekveniája megegyezik a henger sajátfrekveniá-

jával. A rezgési amplitúdó nemzérus ebben a pontban, amely meg�gyelés megmagyarázza

a Cx frekveniaspektrumában a magasabb rend¶ (második) felharmonikus megjelenését.

Számítási eredményeim továbbá azt mutatják, hogy a Cx és x0 közti fázisszög Φx = 0◦-ról
180◦-ra ugrásszer¶en változik abban a pontban, ahol a rezgési frekvenia közel azonos a

rendszer sajátfrekveniájával. Ezzel szemben a Cy és x0 közti fázisszög monoton növeke-

dést mutat, amely az örvényleválás id®zítésének eltolódásával van szoros összefüggésben.

Végezetül, a dolgozat 6. fejezetében a keresztirányú rezg®mozgásból származó eredmé-

nyeimet ismertetem. Kimutattam, hogy az eddig kizárólag nagy Reynolds-számú áram-

lások, illetve kis tömeg¶ és sillapítási tényez®j¶ rezg®rendszerek esetén azonosított há-

romágú rezgéskép (az alap-, fels®- és alsóág együttese) kis Reynolds-számok és sillapítási

tényez®k (Re = 300 és ζ ≤ 1%) esetén is megjelenik. A fels®ágat két fokozatos fázisváltozás

határolja: az alapággal szomszédos határon az örvényer®nek-, valamint az alsóággal szom-

szédos határvonalon a keresztirányú er®tényez®nek a henger elmozdulásához viszonyított

id®átlagolt fázisszöge változik 0◦ és 180◦ között. A fokozatos változást az id®ben változó fá-

zisszögekben észlelt határ nélküli növekedések és fázissúszások okozzák. A fels®ágon 2P

O

és P+S, valamint az alap és alsóágakon 2S típusú örvényszerkezetet találtam. A rezgési

frekvenia második felharmonikusa jelent®s szerepet játszik a keresztirányú er®tényez®

frekveniaspektrumában, amely összefüggésbe hozható a P+S örvényszerkezet megjele-

nésével. A dimenziótlan sillapítási tényez®t ζ = 1% felett változtatva kétágú rezgéskép

jelenik meg; ebben a tartományban a fels®ág elt¶nik a rezgésképb®l.
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Reommendation of the supervisor

This dissertation deals with an area of �ow-indued vibration (FIV). When a blu� body

is plaed in a uniform stream, vorties are shed periodially from the body. This periodi

vortex shedding indues periodi fores on the body that an lead to large amplitude

vibrations, espeially when the vortex shedding frequeny is near to the eigenfrequeny

of the system and the strutural damping is small. This led to the ollapse of the Taoma

Narrows Bridge and to the shutdown of the Monju fast-breeder nulear power plant in

Japan. FIV-related problems an our with tall, slender buildings or bridges in the wind

or in underwater strutures, or an ause noisy operation of heat exhangers. This is the

bakground of Dániel Dorogi's researh.

Some of the researh questions of his dissertation are as follows. (1) What are the ef-

fets of the dimensionless natural frequeny of an elastially-supported system on ylinder

vibration for two-degree-of-freedom (2DoF) ylinder vibration? (2) How does the asym-

metri vortex struture in�uene the ylinder path? (3) Can streamwise-only (1DoF)

vortex-indued vibration (VIV) our at low Reynolds numbers? (4) What are the e�ets

of Reynolds number and mass ratio on the ylinder response? (5) Can three-branh ylin-

der response our for transverse-only (1DoF) VIV at low Reynolds numbers? (6) What

is the e�et of strutural damping on the ylinder response for transverse-only VIV?

These researh questions are the fous of the very areful literature survey and system-

ati numerial investigations arried out by Dániel. He extended the ode I had developed

for fored ylinder vibration. He paid speial attention to arrying out independene

studies to determine the optimal omputational parameters, and to validating his results

against data available in the literature. He has arried out a great deal of systemati

omputations in order to address his researh questions. I �nd this dissertation to be well-

strutured, logially built and arefully written. It learly presents the questions, answers

them diretly, and disusses his �ndings using results from the literature. High-quality

�gures help the reader to omprehend data that an be quite omplex. The disussion of

the e�et of di�erent parameters on the �ow, the ylinder response and fore oe�ients

is well done and is based on mathematial and physial reasoning.

Dániel has worked hard throughout his studies on writing up his results for publiation.

At this point, three journal artiles based upon his dissertation topi have been published,

two of whih were published in prestigious international journals (both ranked in the

top 10% of all journals related to the �eld and assessed in the Simago system (D1

journals)). In addition, he has presented his work and published onferene papers in

several onferenes, inluding speialized onferenes abroad. He has reently submitted

two more manusripts to D1 journals that are under review at present.

Dániel's skills and attributes serve him well in aademia. He is hard-working, preise,

and keeps himself up to date, regularly monitoring the newest results related to his �eld.

He is apable of setting goals for himself and identifying gaps in the researh. He is a

professional MATLAB user and is pro�ient in developing odes in FORTRAN. He takes

his teahing duties seriously; he is a dediated teaher with a talent for explanation and

his presentation skills are well above average. He has been involved in joint researh (even

internationally) and has worked within several projets, as well. This dissertation is proof

that Dániel Dorogi is a talented researher who is apable of arrying out high level re-

searh independently.
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Nomenlature

Roman Symbols

b strutural damping [kg s−1
℄

CA added mass oe�ient [�℄

Cx streamwise �uid fore oe�ient, 2F̃x/(ρU
2
∞
d) [�℄

Cxp pressure streamwise �uid fore oe�ient [�℄

Cxv visous streamwise �uid fore oe�ient [�℄

Cy transverse �uid fore oe�ient, 2F̃y/(ρU
2
∞
d) [�℄

Cyp pressure transverse �uid fore oe�ient [�℄

Cyv visous transverse �uid fore oe�ient [�℄

CV vortex fore oe�ient, 2F̃V /(ρU
2
∞
d) [�℄

D dilation, non-dimensionalized by U∞/d

d ylinder diameter, length sale [m℄

F̃p potential added mass fore per unit length of the ylinder [N m−1
℄

F̃x streamwise �uid fore per unit length of the ylinder [N m−1
℄

F̃y transverse �uid fore per unit length of the ylinder [N m−1
℄

F̃V vortex fore per unit length of the ylinder [N m−1
℄

fN ylinder's natural frequeny in vauum, 1/(2π)
√
k/m [s−1

℄

fN,a ylinder's natural frequeny in still �uid, 1/(2π)
√
k/(m+mA) [s

−1
℄

fv vortex shedding frequeny for a stationary ylinder [s−1
℄

f ∗

x , f
∗

y vibration frequenies in x and y diretions, non-dimensionalized by U∞/d

f ∗

Cy
frequeny of transverse �uid fore, non-dimensionalized by U∞/d

f ∗

CV
frequeny of vortex fore, non-dimensionalized by U∞/d

K nondimensional natural frequeny, fNd
2/ν [�℄

k spring onstant [kg s−2
℄

m ylinder mass per unit length [kg m−1
℄

mA added mass of �uid per unit length of the ylinder, CAρd
2π/4 [kg m−1

℄

m∗
mass ratio, m∗ = 4m/(d2πρ) [�℄
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NOMENCLATURE xii

p pressure, non-dimensionalized by ρU2
∞

R radius, non-dimensionalized by d

Re Reynolds number, U∞d/ν [�℄

St dimensionless vortex shedding frequeny for a stationary ylinder, Strouhal

number, fvd/U∞ [�℄

t time, non-dimensionalized by d/U∞

U∗
redued veloity based on the ylinder's natural frequeny in vauum,

U∞/(fNd) [�℄

U∗

A redued veloity based on the ylinder's natural frequeny in still �uid,

U∞/(fN,ad) [�℄

U∞ free stream veloity, veloity sale [m s−1
℄

u, v veloity omponents in x and y diretions, non-dimensionalized by U∞

x, y Cartesian oordinates, non-dimensionalized by d

x0, y0 ylinder displaements in x and y diretions, non-dimensionalized by d

Greek Symbols

ζ strutural damping ratio, b/(2
√
km) [�℄

ν kinemati visosity of the �uid [m2 s−1
℄

ξmax, ηmax number of grid points in peripheral and radial diretion, respetively [�℄

ρ �uid density [kg m−3
℄

Φx phase di�erene of Cx relative to the displaement [�℄

Φy phase di�erene of Cy relative to the displaement [�℄

ΦV phase di�erene of CV relative to the displaement [�℄

ϕxp phase di�erene of Cxp relative to the displaement [�℄

ϕxv phase di�erene of Cxv relative to the displaement [�℄

Subsripts and supersripts

max peak value

n omponent in the diretion normal to the ylinder surfae

pot potential �ow

x streamwise

y transverse

1, 2 on the ylinder surfae, at the outer boundary of the domain, respetively

0 ylinder response

Abbreviations

C refers to the oalesene of the positive and negative vorties in the ylinder

wake
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NOMENCLATURE xiii

CFD Computational Fluid Dynamis

DoF Degree of Freedom

PSD Power Spetral Density

P refers to vortex pair shedding from the ylinder in eah motion yle

S refers to single vortex shedding from the ylinder in eah motion yle

VIV Vortex-Indued Vibration
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Chapter 1

Introdution

In this hapter, �rst a seletive literature review is given, whih links diretly to the

present dissertation (Setion 1.1). Sine there are numerous experimental and omputa-

tional studies in the �eld of �ow around an osillating ylinder, a omprehensive review

is not possible due to the spae limits. My aim is to reate the body of knowledge, whih

is essential for the orret understanding of the present objetives and the disussion of

the results. The literature survey overs

(a) the �uid �ow around a stationary irular ylinder (Setion 1.1.1);

(b) the �ow around a ylinder undergoing fored/ontrolled osillations (Setion 1.1.2);

() the most important results onerning the single-degree-of-freedom vortex-indued

vibrations (VIV), where the body is restrited to move only in transverse

1

or stream-

wise

2

diretion (Setions 1.1.3 and 1.1.4) and

(d) some results on two-degree-of-freedom VIV, where the ylinder is allowed to move

in the two diretions (Setion 1.1.5).

From the literature review I address researh questions, whih determine the objetives

of this PhD dissertation. The researh questions with the objetives are presented in

Setion 1.2.

1.1 Literature review

Fluid �ow around a irular ylinder exposed to wind or wave is widely investigated

due to its pratial importane. It plays a signi�ant role for example in o�shore risers,

himney staks, towers, bridge piles and heat exhangers. The periodi vortex shedding

from the body an indue high amplitude osillations, whih an ause serious damage to

the struture. This phenomenon played an important role in the ollapse of the Taoma

Narrows Bridge in 1940. Damage to the thermometer ases at the Monju fast-breeder

nulear power plant in 1995 leading to a major shutdown of the entire faility was also due

to periodi vortex shedding (Nishihara et al. [1℄). However, mehanial energy transferred

between the �uid and the moving body an also be bene�ial. Possibilities of energy

harvesting have been studied for example by Bernitsas et al. [2, 3℄ and Mehmood et al.

[4℄.

1

Diretion perpendiular to the free stream. The phrase ross-�ow is also used with the same meaning.

2

Diretion parallel with the free stream. The phrase inline is also used with the same meaning.
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1.1. LITERATURE REVIEW 4

1.1.1 Flow around a stationary irular ylinder

The origin of this researh �eld an be dated bak to the late 19th entury, to the experi-

ments of Vinen Strouhal. His study published in 1878 [5℄ was the �rst pioneering study

in whih the vortex shedding frequeny fv measured in the wake of a irular ylinder

was presented. The non-dimensional vortex shedding frequeny, the well-known Strouhal

number whih was named after him, is de�ned as

St =
fvd

U∞

, (1.1)

where d is the ylinder diameter, and U∞ is the free stream veloity. Sine then, several

studies foused on desribing the Strouhal number as funtion of the Reynolds number

Re =
U∞d

ν
, (1.2)

where ν is the kinemati visosity of the �uid. Rayleigh [6, 7℄ suggested to express St(Re)
in terms of a Taylor's expansion as:

St = A +
B

Re

+
C

Re

2 + . . . . (1.3)

Roshko [8℄ plotted fvd
2/ν as funtion of the Reynolds number and �tted a linear urve

on the measured data points:

fvd
2

ν
= B + ARe, (1.4)

where A and B are the oe�ients of the linear least-square �t. Taking into aount

that fvd
2/ν 3

is the produt of the Strouhal and Reynolds numbers, fvd
2/ν = StRe, the

following formula an be written:

St = A +
B

Re

. (1.5)

Note that this expression is the trunated form of the Taylor's expansion suggested

by [6℄ and [7℄ [see Eq. (1.3)℄. Tritton [9℄ applying a quadrati least-square �t obtained the

following formula:

St = ARe +B +
C

Re

, (1.6)

where A,B and C are the oe�ients of the least-square �t. Williamson [10℄ arried

out experiments at the low-Reynolds number domain (49 < Re < 250), and omputed

the oe�ient values arise in Eqs. (1.5) and (1.6). Note that urve-�tting was applied

on the data points obtained in the range of 49 < Re < 180, beause St(Re) showed a

disontinuity at around Re = 180. Williamson [10℄ found that the error-of-�t

4

for Eq.

(1.5) is 0.0021 (when A = 0.2175 and B = −5.1064), while for Eq. (1.6) it is only 0.0005

(using A = 1.6 × 10−4, B = 0.1816 and C = −3.3265). For this reason, the three-term

�t suggested by Tritton [9℄ was found to be more aurate than the two-term expression

proposed by Roshko [8℄.

Williamson and Brown [11℄ based on the e�etive wake width obtained the expression

as follows:

3

Nowadays, this parameter is referred to as the Roshko number Ro = fvd
2/ν.

4

�The absolute value of the error averaged over all the data points.� (see [10℄, p. 1075).
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1.1. LITERATURE REVIEW 5

St = A +
B√
Re

+
C

Re

. (1.7)

Using the data published in [10℄ they obtained A = 0.285, B = −1.3897 and C = 1.8061
oe�ients. The error-of-�t for this estimation is 0.0002, whih is less than the values using

Eqs. (1.5) and (1.6). Henderson [12℄ arried out Diret Numerial Simulations (DNS) in

an extended Reynolds number range of Re = 47�1000. Williamson and Brown [11℄ tested

Eq. (1.7) on the DNS results at high Re, where the �ow is three-dimensional. They found

that the error-of-�t is 0.0005 (when A = 0.2731, B = −1.1129 and C = 0.4821), whih is

omparable to that obtained in the domain of 49 < Re < 180.
Kovásznay [13℄ arried out time-resolved measurements using the hot-wire anemom-

etry. The Reynolds number was varied from zero (orresponding to �uid at rest) up to

Re

∼= 104. His early experimental results showed that the onset of vortex shedding (where

the Kármán vortex street started to develop) ours at Re

∼= 40. This value agrees well
with the Computational Fluid Dynamis (CFD) results of Thompson and Le Gal [14℄

(Re

∼= 47), and Baranyi and Lewis [15℄ (Re

∼= 47.2). Kovásznay [13℄ showed also that the

periodi vortex shedding remains stable below Re

∼= 160. This Reynolds number value
ompares well with Re

∼= 180, where Williamson [10℄ observed a three-dimensional �ow

struture, whih resulted in a disontinuity in the St(Re) urve. Barkley and Henderson

[16℄ using linear stability analysis found that the �ow is fully two-dimensional (2D) up

to Re

∼= 188.5. They identi�ed three-dimensional instabilities at Re

∼= 188.5 and 259,
whih Williamson [10℄ named as Mode A and Mode B. Thus, the appliation of a 2D

omputational ode above Re = 188.5 is not justi�ed for a stationary ylinder. This is

the reason why 2D omputations (for a stationary ylinder) are arried out only at low

Reynolds numbers (mainly below Re = 200).
Posdzieh and Grundmann [17℄ using 2D omputations investigated the low-Re regime.

They analyzed the e�ets of grid resolution and the extension of the omputational domain

on the time-mean and root-mean-square values of the aerodynami fore oe�ients (lift

and drag), and on the Strouhal number. In addition, they reated di�erent empirial

formulæ desribing the relationship between the Strouhal and Reynolds numbers. Their

most aurate formula an be written as follows:

St = A+BRe

C . (1.8)

Using A = 0.2844, B = −0.8706 and C = −0.4304 the error-of-�t is 0.00038. Note that

this expression will be applied in later setions.

The experimental studies mentioned above are frequently applied for the validation

of the CFD results. Ye et al. [18℄ and Lai and Peskin [19℄ used the immersed boundary

method to solve the governing equations of the �uid �ow. Baranyi and Shirakashi [20℄

applied the �nite di�erene method, and ompared the Strouhal number and the time-

mean values of the drag oe�ient against experimental data. Lima E Silva et al. [21℄

ombined the �nite di�erene method with the virtual boundary method, and omputed

the �ow around a irular ylinder. Bolló [22℄ arried out systemati omputations in the

range of Re < 200 using the �nite volume method. She applied the Strouhal number, and

the time-mean and root-mean-square values of lift and drag oe�ients for omparisons.

Another important diretion of researh in this �eld is the investigation of aerodynami

fores ating on the ylinder. For results in this area see Norberg [23℄ and Sumer and

Fredsoe [24℄.

1.1.2 Fored ylinder vibrations

As mentioned in Setion 1.1.1, two-dimensional omputations of the �ow around a sta-

tionary ylinder are limited to the Reynolds number range of Re < 188.5, due to the
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1.1. LITERATURE REVIEW 6

ourrene of the Mode A instability [16℄. For vibrating ylinders, however, the experi-

ments by Bearman and Obasaju [25℄ and Koide et al. [26℄, and the numerial simulations

by Ponet [27℄ showed that the synhronization between vortex shedding and ylinder

motion enhanes the two-dimensionality of the �ow ompared to the ase of a stationary

ylinder. The upper limit of the two-dimensionality region has not yet been determined

beause of the large number of in�uening parameters.

As mentioned earlier, the vorties shedding from the ylinder mean periodi load on the

struture. In the ase when the vortex shedding frequeny is lose to the natural frequeny

of the system fN , high amplitude vibration an our. This phenomenon is always referred

to as lok-in or synhronization. The terminology vortex-indued vibration (VIV)

5

is often

used referring to osillations aused by the vortex shedding. VIV is widely modeled using

the fored/ontrolled osillation approah, where the ylinder is osillated mehanially.

This approah is a simplifying model, and is often hosen beause no equations are needed

to be solved for the ylinder motion.

A large number of papers deal with fored osillation in one-degree-of-freedom (1DoF)

ylinder motion, where the body is restrited to move only in transverse diretion.

Williamson and Roshko [28℄ arried out fored vibration experiments in the range of

Re = 300�1000. They reated a so-alled wake mode map (known as the Williamson-

Roshko map), where they organized the di�erent vortex strutures in the amplitude-

wavelength plane. It an be seen from their results that a 2P vortex struture (two pairs

of vorties are shed from the ylinder in eah motion yle) plays an important role in

the fundamental lok-in domain for high Reynolds numbers (Re > 300). In addition,

Williamson and Roshko [28℄ identi�ed a P+S asymmetri mode (a vortex pair and a

single vortex) only at very high vibration amplitudes (ŷ0 = 1�2, where ŷ0 is osillation

amplitude nondimensionalized by the ylinder diameter). They found that dereasing the

Reynolds number below Re = 300, the 2P mode in the fundamental synhronization range

is replaed by the P+S vortex struture. The fored vibration CFD results of Meneghini

and Bearman [29℄ and Blakburn and Henderson [30℄ on�rmed this �nding: they did not

observe the 2P mode of vortex shedding but they found the P+S vortex struture. Leon-

tini et al. [31℄ arried out systemati fored vibration omputations at Re ≤ 300. Similar

to the experiments of Williamson and Roshko [28℄, Leontini et al. [31℄ investigated the

e�ets of foring frequeny and amplitude, and reated wake mode maps at Re = 100 and
300. At Re = 100 the P+S mode ourred only at very high vibration amplitudes (over

ŷ0 = 0.9) and, however, at Re = 300 they did identify the P+S vortex struture around

ŷ0 = 0.55, and near the fundamental lok-in domain.

Blakburn and Henderson [30℄ de�ned the mehanial energy transfer between the

�uid and the transversely osillating ylinder as

E =

∫ T

0

Cy ẏ0dt, (1.9)

where t is the dimensionless time, ẏ0 is the non-dimensional veloity of the ylinder, Cy

is the transverse �uid fore oe�ient, and T is the period of ylinder osillation. In ase

E > 0, energy is transferred from the �uid to the ylinder, whih is always the ase

for self-exited motions. In this sense, E is useful to loalize the domains, where vortex-

indued vibrations are possible to our. Baranyi and Darózy [32℄ investigated the e�ets

of vibration amplitude and frequeny, and Reynolds number on the mehanial energy

transfer. They found E > 0 values near the boundary of the fundamental lok-in domain,

when the dimensionless osillation amplitude was below ŷ0 = 0.6.
Nishihara et al. [1℄ showed that the failure of the thermometer ases at the Monju

nulear power plant was aused by vibrations streamwise with the free stream. Despite,

researhes on �uid �ow around a irular ylinder fored to osillate only in streamwise

5

For synonyms of the term �vortex-indued vibration�, �self-exited motion� or �free vibration� is

ommonly used.
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1.1. LITERATURE REVIEW 7

diretion are muh sare than investigations onerning a transversely osillated ylinder.

The investigations arried out by Al-Mdallal et al. [33℄ and Mureithi et al. [34℄ are the most

well-known studies in this �eld. Tanida et al. [35℄ arried out experiments in the range of

40 ≤ Re ≤ 150 at the dimensionless osillation amplitude value of x̂0 = 0.14. They showed
that the phase di�erene of streamwise �uid fore relative to the ylinder displaement

is negative, yielding negative mehanial energy transfer [E < 0, de�ned similarly to Eq.

(1.9)℄. The reent CFD studies by Konstantinidis and Bouris [36℄ (x̂0 = 0.1,Re = 150) and
Kim and Choi [37℄ (x̂0 = 0.05,Re = 100) showed similar features to Tanida et al. [35℄'s

experimental results: E was negative in all the omputation points. Contrary to E > 0,
negative mehanial energy transfer indiates that self-exited vibration of the ylinder in

streamwise diretion is not feasible in the low-Reynolds number range. Nevertheless, the

question arises whether streamwise-only vortex-indued vibration of a irular ylinder

an our for low Reynolds numbers (maybe at lower osillation amplitudes).

In reality, the ylinder osillates always in two diretions at the same time (streamwise

and transverse), whih leads to two-degree-of-freedom ylinder motion. Two types of ylin-

der paths are observed in the free vibration experiments: (a) when the frequeny of ylinder

osillation in streamwise diretion is double that in transverse diretion (f ∗

x = 2f ∗

y ), yield-

ing a �gure-eight type path

6

[38�41℄, and (b) when the vibration frequenies in the two

diretions are idential (f ∗

x = f ∗

y ), whih results in orbital paths [42�44℄. The experimen-

tal or numerial studies for fored �gure-eight ylinder motions inlude Jeon and Gharib

[45℄, Baranyi [46℄, and Peppa et al. [47℄. Baranyi [46℄ found that the orientation of the

path strongly in�uenes the fore oe�ients and the mehanial energy transfer. When

the ylinder orbit is antilokwise on the upper loop of �gure-eight, E > 0 over the large

part of the parameter domain, in ontrast with the lokwise orbit where E is mainly

negative. There is relatively little researh arried out for �ow around a irular ylinder

following orbital paths [48, 49℄. Baranyi [50℄ showed results of numerial simulation of

low-Reynolds number �ow (Re = 120�180) past a irular ylinder following an elliptial

path. He systematially hanged the transverse osillation amplitude while keeping the

in-line amplitude onstant. When plotting the results against transverse osillation ampli-

tude, jumps have been found in the time-mean and root-mean-square values of the fore

oe�ients, and in the mehanial energy transfer between the �uid and ylinder.

1.1.3 Transverse vortex-indued vibrations

Another approah to the investigation of vortex-indued vibrations (VIV) involves an

elastially supported ylinder model, where the ylinder osillates due to the �utuating

transverse and streamwise �uid fores ating on the body. A large number of studies have

dealt with this model, inluding Bishop and Hassan [51℄, Bearman [52, 53℄, Sarpkaya [54,

55℄, Williamson and Govardhan [39℄, and Blevins [56℄.

Although in reality the ylinder is allowed to move in two degrees of freedom (both

streamwise with and transverse to the main stream), transverse-only vibration is often

used to model VIV. Feng [57℄, Brika and Laneville [58℄ and Khalak and Williamson [59℄

showed that the ylinder response (amplitude and frequeny values) highly depends on

the mass-damping parameter m∗ζ . Here m∗
is the mass ratio (ylinder mass divided by

the mass of the displaed �uid) and ζ is the strutural damping ratio:

m∗ =
4m

ρd2π
, ζ =

b

2
√
km

, (1.10a, b)

where m is the mass per unit length of the ylinder, ρ is the �uid density, and b and k are

the strutural damping and spring onstant values, respetively. The osillation amplitude

shows higher values at distint region, whih domains are usually referred to as �response

6

For synonym of the term ��gure-eight path�, �Lissajous urve� is ommonly used.
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1.1. LITERATURE REVIEW 8

branhes� [39℄ for transverse-only VIV. Feng [57℄ and Brika and Laneville [58℄ investigated

high-m∗ζ ases. Plotting the amplitude of ylinder osillation against redued veloity

U∗

A =
U∞

fN,ad
, (1.12)

where fN,a is the natural frequeny of the ylinder in sill �uid, they found two response

branhes, namely the initial and lower branhes, where the initial branh was assoiated

with the peak osillation amplitude. In addition, Brika and Laneville [58℄ showed that the

transition between the initial and lower branhes is hystereti, due to the abrupt hange

in the vortex struture. Using the notations introdued by Williamson and Roshko [28℄,

Brika and Laneville [58℄ observed a 2S mode (two single vorties are shed from the ylinder

in eah motion yle) in the initial branh, while a 2P mode in the lower branh.

Khalak and Williamson [59℄ identi�ed three response branhes (initial, upper and

lower branhes) for very low mass-damping values, where the peak vibration amplitude

was assoiated with the upper branh. They found hysteresis in the initial↔upper branh

transition range, where the vortex struture swithes from 2S to 2P mode. The transition

between the upper and lower branhes is found to be intermittent, sine the wake mode

does not show hanges (2P mode is observed both in the upper and lower branhes).

Govardhan and Williamson [60℄ investigated also low mass-damping ases using experi-

mental tehniques. Following Lighthill [61℄, Govardhan and Williamson [60℄ deomposed

the transverse �uid fore into the vortex fore and potential added mass fore ompo-

nents. The phase di�erenes for transverse �uid fore and vortex fore relative to the

ylinder displaement Φy and ΦV were alulated using the Hilbert transform of the or-

responding signals. They showed that ΦV jumps between approximately 0◦ and 180◦ in the
initial↔upper branh transition range, where the vortex struture swithes from 2S to 2P

mode. In this range the ylinder displaement remained in-phase with the transverse �uid

fore. However, in the transition domain between the upper and lower branhes (where

no signi�ant hanges were identi�ed in the wake mode) Φy was found to jump from 0◦

to 180◦, and the vortex fore remained out-of-phase with the ylinder displaement.

Klamo et al. [62℄ investigated the e�ets of strutural damping ratio and Reynolds

number on the ylinder response. They showed that inreasing ζ , the high-amplitude

three-branh response swithes to two-branh response, where the osillation amplitude is

signi�antly lower. Soti et al. [63℄ arried out a systemati experimental study for di�erent

ζ values. In addition to the ylinder response, they analyzed the power transfer between

the osillating ylinder and the surrounding �uid. They identi�ed three-branh response

for a wide damping ratio range; they showed the ourrene of the upper branh even at

low osillation amplitudes (down to ŷ0 = 0.2). Bernitsas et al. [2℄ and Lee and Bernitsas

[64℄ investigated the possibilities of energy harvesting from vortex-indued vibrations.

Bernitsas et al. [2℄ based on harmoni approximations derived an analytial formula for

the alulation of power transfer. Their expression shows that zero mehanial power is

transferred from the �uid to the ylinder when Φy (or ΦV ) equals to 0◦ or 180◦, i.e. for
undamped vibrations. Their formula reveals also that inreasing the strutural damping

ratio the power transfer an be inreased, whih �nding agrees well with the experimental

results of [63℄.

Klamo et al. [62℄ and Govardhan and Williamson [65℄ showed that the Reynolds num-

ber in�uenes the ylinder response signi�antly. Most of the experiments are arried

out in the Reynolds number range of Re = O(103-104). However, numerial simulations,

due to the high omputational time demand are usually arried out in the low-Reynolds

number range [Re = O(102)℄. Another issue an be the three-dimensionality of the �ow

struture (see details in Setions 1.1.1 and 1.1.2).

The omputational results available in the literature show that osillation amplitudes

for low Reynolds numbers are signi�antly lower (maximum y0′ ∼= 0.55, see Navrose and
Mittal [66℄) ompared to high-Re experiments (an exeed y0′ ∼= 0.8, see Govardhan
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and Williamson [60℄). Anagnostopoulos and Bearman [67℄ obtained similar harateristis

using measurement tehniques in the range of Re = 90�150. Leontini et al. [68℄ using

CFD simulations found two-branh ylinder response at the parameter ombination of

Re = 200, m∗ = 10 and ζ = 1%. The vortex strutures are markedly di�erent from those

observed at high Reynolds numbers: 2S and C(2S) wake modes were found in the initial

and lower branhes, respetively. Here C refers to the oalesene of the positive and

negative vorties in the ylinder wake. Navrose and Mittal [66℄ arried out numerial sim-

ulations at Re = 100 and ζ = 0% using di�erent mass ratios in the range of m∗ = 30�150.
They found a thin redued veloity range in the middle of the lower branh, where the

osillation amplitude was very low and the vibration frequeny did not synhronize with

the ylinder's natural frequeny. They also showed that the width of this low-amplitude

domain extends with m∗
.

In reality the Reynolds number and the redued veloity are not independent parame-

ters. Assuming that the natural frequeny of the ylinder is onstant, the following linear

relationship exists between Re and U∗
:

Re = KU∗. (1.13)

Here U∗ = U∞/(fNd) is the redued veloity, where fN is the ylinder's natural frequeny

is vauum, and K = fNd
2/ν is the dimensionless natural frequeny. Willden and Graham

[69℄ investigated the e�et of mass ratio between m∗ = 1 and 50 using K = 20. They iden-
ti�ed primary, seondary and tertiary responses. The primary response ourred around

lok-in, where the osillation amplitude reahed its maximum value. In the seondary re-

sponse (found only for m∗ > 5) the non-dimensional vortex shedding frequeny was lose

to the dimensionless vortex shedding frequeny for a stationary ylinder, and the osil-

lation frequeny approahed the natural frequeny of the body. In the tertiary response

(identi�ed only for m∗ < 10) nearly onstant vibration amplitude ould be maintained.

Bahmani and Akbari [70℄ investigated numerially the separate e�ets of mass and stru-

tural damping ratios for K = 17.9. They found that inreasing m∗
or ζ has almost the

same e�et: both the osillation amplitude and the lok-in domain size derease.

The numerial studies investigating vortex-indued vibrations at low Reynolds num-

bers have not reported an upper branh even for undamped systems [66, 68℄. However,

Evangelinos and Karniadakis [71℄ showed that the P+S vortex pattern may also be asso-

iated with the upper branh, whih is rarely identi�ed in VIV ases. Singh and Mittal

[72℄ investigated two-degrees-of-freedom vortex-indued vibrations numerially and found

P+S vortex pattern above Re = 300. As mentioned in Setion 1.1.2, Leontini et al. [31℄

using transverse-only fored vibrations showed that the P+S vortex struture appears

near the fundamental lok-in domain.

1.1.4 Streamwise vortex-indued vibrations

Besides self-exited motions transverse to the main �ow, the �utuating �uid fores an

indue vibrations along the diretion of the free stream, i.e. in the streamwise (or inline)

diretion. In the literature streamwise-only VIV reeived less attention, most likely be-

ause the lower amplitudes of ylinder osillation. In the early review paper about vortex

shedding and its appliations, King [73℄ disussed some relevant results on streamwise-only

vortex-indued vibrations. He showed that the maximum vibration amplitude (a peak-to-

peak value) is about 0.2 times of the ylinder diameter. This value is very low ompared

to the transverse-only VIV ases, where the peak osillation amplitude an easily be ten

times higher.

For streamwise-only VIV ases the regions within whih the vibration amplitude shows

higher values are often referred to as �instability regions� [73℄ or �exitation regions� [74℄.

Note that, the terminology �response branh� is also used, but its physial meaning is

di�erent from that used in transverse-only free vibrations (see Setion 1.1.3). The early
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experimental study arried out by King [73℄ and Aguirre [75℄ revealed that two exitation

regions exist in streamwise VIV. The �rst branh ours below the redued veloity value

of U∗

A
∼= 2.5, whih is assoiated with a symmetrial shedding of vorties simultaneously

from both sides of the ylinder. The seond branh ours at U∗

A > 2.5, and is assoiated

with an alternating vortex shedding mode, whih type of wake mode Williamson and

Roshko [28℄ denoted as 2S mode. These harateristis of self-exited in-line vibrations

was on�rmed by further experimental studies [76�78℄. The value of U∗

A
∼= 2.5 orresponds

approximately to the point, where the natural frequeny of the system oinides with

the double of the vortex shedding frequeny from a stationary ylinder; fN,a
∼= 2fv or

U∗−1
A

∼= 2St (assuming St = 0.2). Sine the Strouhal number [de�ned by Eq. (1.1)℄ is the

funtion of the Reynolds number, espeially in the low-Re regime, U∗

A
∼= 2.5 should be

replaed as U∗

A = 1/(2St).
The e�ets of mass ratio m∗

and strutural damping oe�ient ζ on the streamwise

response has not yet been thoroughly investigated. Aguirre [75℄ onluded from his exper-

iments that mass and damping a�eted the ylinder response in di�erent ways. He noted

that the mass ratio did not a�et the normalized osillation amplitude and the sti�ness

of the mehanial system did in�uene the normalized response frequeny. Okajima et

al. [76℄ in their experiments investigated the e�et of �redued mass-damping�, whih is

proportional to the mass-damping parameter m∗ζ used in many transverse VIV ases

[57�59℄. Okajima et al. [76℄ found that as they inreased the redued mass-damping, the

vibration amplitude in both exitation regions dereased. Note that this e�et was due

to the inreasing value of strutural damping, beause the mass ratio was �xed in their

study.

The above mentioned studies arried out experiments at moderately high Reynolds

numbers, i.e. above Re = 103. Tanida et al. [35℄, Konstantinidis and Bouris [36℄ and

Kim and Choi [37℄ found that vortex-indued streamwise vibrations of a irular ylinder

may not our at low Reynolds numbers (see further disussion in Setion 1.1.2). They

obtained their results using the fored vibration model, and they onsidered onstant

osillation amplitudes above x̂0 = 0.05. However, self-exited streamwise vibration of a

irular ylinder is plausible but at lower osillation amplitudes; at x̂0 < 0.05. The researh
question whether inline VIV is possible to our at low Reynolds numbers has not yet

been addressed. To the best knowledge of the author, the study arried out by Bourguet

and Lo Jaono [79℄ is the solely one, where the streamwise vortex-indued vibration of a

rotating ylinder is investigated at Re = 100. The osillation amplitude for a non-rotating

ylinder is negligible ompared to ases when the body was rotating.

1.1.5 Two-degree-of-freedom VIV

In most engineering appliations the ylinder is allowed to move in two degrees of freedom

(2DoF), both streamwise with and transverse to the main stream. In general, mass ratios

(m∗

x andm∗

y) and natural frequenies (fNx and fNy) are di�erent in the two diretions. Moe

and Wu [80℄ investigated 2DoF vortex-indued vibrations at m∗

x/m
∗

y = 2 and fNx/fNy =
2.18. The vortex shedding was found to synhronize with the ylinder motion in a wide

range of redued veloity U∗ = U∞/(fNyd). However, response branhes observed for

transverse-only vibrations, were not found. Sarpkaya [54℄ arried out investigations for

fNx/fNy = 1−2 andm∗

x 6= m∗

y. He showed that the osillation amplitudes for fNx/fNy = 1
inreased by 19% ompared to those obtained for transverse-only VIV. Sarpkaya [54℄ found

no evidene for distint ylinder response branhes. In the experiments of Dahl et al. [81℄

fNx/fNy = 1 − 1.9 was onsidered, where the mass ratios di�ered in eah diretions.

They showed that the maximum vibration amplitude shifted to higher redued veloity

values when the natural frequeny ratio was inreased. At fNx/fNy = 1.9 two amplitude

peaks were observed, whih was in agreement with the results of [54℄. Dahl et al. [82℄

arried out both experimental and numerial studies in the range of fNx/fNy = 1 − 2

Last updated: April 20, 2020



1.1. LITERATURE REVIEW 11

with m∗

x 6= m∗

y. They showed that when inreasing the natural frequeny ratio, the third

harmoni frequeny omponent of transverse �uid fore beomes signi�ant. Considering

m∗

x = m∗

y, Bao et al. [83℄ and Wang et al. [84℄ investigated numerially the e�et of natural

frequeny ratio at Re = 150 and 500, respetively. Both studies reported the ourrene of

the third harmoni frequeny omponent in the frequeny spetra of transverse �uid fore.

Jauvtis and Williamson [85℄ analyzed the e�et of mass ratio at the limiting ase of fNx =
fNy = fN and m∗

x = m∗

y = m∗
. They found that the streamwise vibration omponent has

only a tiny e�et on the transverse osillation omponent in the medium mass ratio range

6 < m∗ < 25. In ontrast, for m∗ < 6 the existene of a high-amplitude super-upper

branh was reported, where the 2T type of vortex struture (two triple vorties are shed

from the ylinder) was observed. The third harmoni omponent of transverse �uid fore

was also found, whih the authors attributed to the 2T mode of vortex shedding. Sanhis

[86℄ arried out experiments in the range of fNx/fNy < 1. He found that the response

amplitudes were quite similar to those at fNx = fNy.

As disussed in Setion 1.1.3, the CFD omputations are mainly arried out at low

Reynolds numbers. Similarly to the transverse-only VIV studies, two di�erent types of

omputations an be found in the literature: (1) when the Reynolds number and the

redued veloity are varied independently and (2) when Re is varied linearly with U∗
.

Singh and Mittal [72℄ arried out two sets of omputations: (1) at Re = 100 and varying

U∗
and (2) at U∗ = 4.92 and varying Re. They showed that the initial↔lower branh

transition range is hystereti, whih is onsistent with the �ndings of Brika and Laneville

[58℄. Hysteresis jump was also found at the upper boundary of the lower branh, whih

was on�rmed by the experiments of Klamo et al. [62℄. Singh and Mittal [72℄ also found

that varying the redued veloity at Re = 100, 2S wakes were identi�ed for low osillation

amplitudes and C(2S) for relatively high osillation amplitudes. This observation agrees

well with the transverse-only VIV results by Leontini et al. [68℄. Singh and Mittal [72℄

showed that varying the Reynolds number above Re = 300, P+S vortex struture was

observed (a vortex pair and a single vortex are shed from the ylinder in eah vibration

period), whih is very rare in VIV.

Assuming that the natural frequeny of the system is onstant, the Reynolds number

hanges linearly with the redued veloity [see Eq. (1.13)℄. In the following numerial

studies 2DoF VIV was investigated, where the natural frequenies in streamwise and

transverse diretions were hosen to be idential (fNx = fNy = fN ) and onstant. Prasanth
et al. [87, 88℄ investigated the e�ets of numerial blokage ratio B = d/H (the ratio of the

ylinder diameter and the height of the omputational domain H) at K = 16.6. Similarly

to the �ndings of [72℄, Prasanth and Mittal [88℄ observed hysteresis loops at the lower and

upper boundaries of the lok-in domain. They showed that the width of the hysteresis

loop at the lower boundary of the synhronization range redues as the blokage ratio is

dereased. The hysteresis loop ompletely disappeared at B = 2.5%. Prasanth and Mittal

[88℄ omputed the phase angle Φy between the transverse �uid fore and the transverse

vibration omponent. An abrupt phase jump (between Φy = 0◦ and 180◦) was observed
at Re = 110. Deomposing the transverse �uid fore into pressure and visous parts, their

results showed that the jump in Φy was aused by the pressure transverse fore, sine

the visous part remained in-phase with the transverse vibration omponent in the entire

Re range. Mittal and Singh [89℄ arried out omputations for a very low non-dimensional

natural frequeny value (K = 3.1875) and found that VIV ourred as low as Re = 20,
whih is in the steady state regime for a stationary ylinder. They showed that the vortex

shedding frequeny and the natural frequeny of the system are relatively far from eah

other for low mass ratios (m∗ = 4.73). Inreasing the mass ratio up to m∗ = 50, the
frequeny values moved loser to eah other. This phenomenon was on�rmed by the

experimental data of Williamson and Govardhan [39℄.

For two-degree-of-freedom free vibration ases the path of the ylinder is another area

of interest. The numerial studies of Mittal and Kumar [38℄ and Bao et al. [83℄ and the
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experimental studies of Sarpkaya [55℄, Williamson and Govardhan [39℄, Dahl et al. [41,

81, 82℄, Blevins and Coughran [40℄, and Srinil et al. [90℄ showed that an isolated ylinder

plaed into a uniform stream usually follows a �gure-eight path, where the osillation

frequeny in streamwise diretion is double that in transverse diretion (f ∗

x = 2f ∗

y ). In

addition to the �gure-eight orbits, there are some appliations where the ylinder follows

orbital motion, where f ∗

x = f ∗

y . Kang et al. [91℄ investigated experimentally the e�ets

of aspet ratio L/d (where L is the length of the ylinder), and natural frequeny ratio

fNx/fNy on the moving trajetory. Orbital motions suh as D-shaped, egg-shaped or

raindrop-shaped paths were found for L/d = 24 by varying fNx/fNy. The e�et of natural

frequeny ratio was less signi�ant for L/d = 6; only �gure-eight paths were identi�ed.

Kheirkhah et al. [42℄, Oviedo-Tolentino et al. [92℄ and Marble et al. [93℄ investigated

the VIV of a rigid pivoted ylinder, where the osillation amplitude varied linearly along

the ylinder span. An elliptial path was observed in a wide redued veloity range. Tu

et al. [43℄ and Gsell et al. [44℄ investigated numerially the two-dimensional �ow around

an isolated irular ylinder plaed in a planar shear �ow. They found that inreasing

the shear parameter (the ratio of the dimensionless in�ow veloity gradient and the free

stream veloity at the ylinder enter) swithed the path of the ylinder from �gure-eight

to elliptial motion. Prasanth and Mittal [94℄ arried out systemati omputations for

two irular ylinders (with idential diameters) in tandem and staggered arrangements.

For the staggered arrangement the downstream ylinder showed orbital motion in a wide

range of redued veloity. These studies show that orbital motion truly ours in several

engineering appliations. However, to the best knowledge of the author, the ourrene

of orbital motion has not been spei�ed for a single isolated ylinder plaed into uniform

free stream onsidering low Reynolds numbers.

1.2 Objetives and layout of the urrent dissertation

In this PhD dissertation inompressible Newtonian onstant property �uid �ow around

a irular ylinder undergoing vortex-indued vibrations is investigated by means of two-

dimensional CFD omputations. The dissertation is organized as follows:

• In Chapter 2, �rst the dimensional and non-dimensional forms of the partial di�er-

ential equations governing the �uid and solid motions are written. After that, the

boundary and initial onditions, and the numerial solution methodology are given

in detail.

• In order to �nd the best ompromise between auray and omputational time,

independene studies are arried out. Afterwards, the urrently obtained results are

validated against the data in literature for di�erent vortex-indued vibration ases.

The results of these investigations are shown in Chapter 3.

• Based on the literature review (see Setion 1.1), di�erent researh questions an

be addressed, whih determine the objetives of this dissertation. I try to answer

these questions in Chapters 4, 5 and 6. The researh questions and the objetives

are detailed in the following points.

Objetive I

In experimental studies the independent e�ets of the Reynolds number Re and the re-

dued veloity U∗
are hard to investigate, sine both parameters depend on the free stream

veloity. When the natural frequeny of the ylinder fN is onstant (whih mostly hap-

pens in the measurements), a linear relationship an be written between Re and U∗
as

Re = KU∗
, where K = fNd

2/ν is the dimensionless natural frequeny. Although there
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are some studies in the literature in whih the Reynolds number varied linearly with

the redued veloity [69, 70, 87�89℄, these investigations are limited to low dimensionless

natural frequeny values (K < 20 for transverse-only VIV and K < 16.6 for 2DoF free

vibrations). The �rst researh question addressed in this dissertation is as follows:

What are the e�ets of the dimensionless natural

frequeny K on the ylinder response and aerodynami

fore oe�ients?

In order to answer this question, systemati omputations are arried out at di�erent

dimensionless natural frequeny values between K = 12 and 35. The Reynolds number

is varied in the range of 60 ≤ Re ≤ 250 (orresponding to the variation of K), while the

mass and damping ratio values are �xed at m∗ = 10 and ζ = 0%, respetively. The results

of these investigations are shown in Chapter 4, Setion 4.1.

Objetive II

Singh and Mittal [72℄ arried out omputations at the �xed redued veloity of U∗ = 4.92
in the Reynolds number range 50 ≤ Re ≤ 500. They showed that below Re = 300
the traditional 2S and C(2S) vortex strutures our. However, varying the Reynolds

number over Re = 300, the asymmetrial P+S wake mode an be observed, whih is rarely

identi�ed in vortex-indued vibration ases. About this the following researh questions

are addressed:

Does P+S wake mode our at high dimensionless

natural frequeny values? What is the e�et of this

asymmetrial mode on the ylinder path?

These questions are aimed to be answered in Chapter 4, Setion 4.2. For these aims

systemati omputations are arried out at �xed mass and damping ratio values of m∗ =
10 and ζ = 0%. The dimensionless natural frequeny is hosen to be in the domain of

K = 34�44, and the Reynolds number is hanged from Re = 60 to 250 (orresponding to

the variation of K).

Objetive III

There are several studies available in the literature investigating the streamwise-only

vortex-indued vibration of a irular ylinder at moderately high Reynolds numbers,

Re > 103 [73�78℄. However, the fored vibration studies revealed that self-exited stream-

wise vibration of a irular ylinder is not feasible at low Reynolds numbers [35�37℄. In

this part of the researh projet the following question is addressed:

Is it possible for streamwise-only VIV to our in the

low-Re domain? What are the e�ets of m∗
and Re on the

ylinder response?

In order to answer these questions, systemati omputations are arried out, where

the ylinder is restrited to move only streamwise with the free stream. Two sets of

omputations are performed: (a) at the mass ratio values of m∗ = 2, 5, 10 and 20, and

onstant Reynolds number of 180, and (b) di�erent Reynolds numbers between Re = 100
and 250 and �xed mass ratio value of 10. In both omputation sets the redued veloity

is varied between U∗ = 1.5 and 3.5, while the strutural damping ratio is �xed at zero

(ζ = 0%). The results of these investigations are presented in Chapter 5.
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Objetive IV

It was mentioned in Setion 1.1.3 that the ylinder responses for high and low Reynolds

numbers, onsidering transverse-only vortex-indued vibrations, show very di�erent har-

ateristis. For high Re, depending on the ombined mass-damping parameter m∗ζ , two
and three-branh responses an our. In ontrast, in the low-Reynolds number domain,

irrespetive of the m∗ζ value, only two-branh response has been identi�ed; a separate

upper branh has not yet been reported.

However, there are some results available in the literature, whih suggest that the upper

branh an our at low Reynolds numbers. Evangelinos and Karniadakis [71℄ onluded

from their 2D and 3D omputations that the upper branh may be assoiated with the

asymmetrial P+S mode (see Setion 1.1.3). Leontini et al. [31℄ using transverse-only

fored vibration omputations showed that the P+S vortex struture appears at Re = 300
in a thin range near the fundamental lok-in domain (see Setion 1.1.2). Singh and Mittal

[72℄ arried out 2DoF VIV omputations, and they found this asymmetrial wake mode

for Re > 300 (see Setion 1.1.5). For this reason the following researh questions are

addressed:

Does the upper branh (i.e. the three-branh ylinder

response) our at the Reynolds number of 300? What is

the e�et of strutural damping on the ylinder response?

In order the answer these researh questions, omputations are performed at the

Reynolds number and mass ratio values of Re = 300 and m∗ = 10, respetively. Damping

ratio between ζ = 0% and 5% is onsidered, that is, the ombined mass-damping param-

eter is hosen to be in the range of m∗ζ = 0 and 0.5. The redued veloity based on the

natural frequeny of the ylinder in vauum is varied from U∗ = 2.5 to 7.5. The results

of this analysis are shown in Chapter 6.
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Chapter 2

Methodology

In this dissertation �uid �ow around a irular ylinder undergoing vortex-indued vibra-

tions is analyzed at low Reynolds numbers using a two-dimensional Computational Fluid

Dynamis (CFD) approah. The outline of this hapter is as follows. In Setions 2.1 and

2.2 the dimensional and dimensionless forms of the governing equations of �uid and solid

motions are introdued. In Setion 2.3 the applied boundary onditions are given and,

�nally, in Setion 2.4 the numerial solution methodology is presented.

2.1 Dimensional forms of the governing equations

The partial di�erential equations governing the Newtonian inompressible onstant prop-

erty �uid �ow around an osillating irular ylinder are the two omponents of the

Navier-Stokes equations (written in the non-inertial frame of referene attahed to the

moving body) and the ontinuity equation, whih in dimensional forms are written as

follows:

∂ũ

∂t̃
+ ũ

∂ũ

∂x̃
+ ṽ

∂ũ

∂ỹ
= −1

ρ

∂p̃

∂x̃
+ ν

(
∂2ũ

∂x̃2
+

∂2ũ

∂ỹ2

)
− ¨̃x0, (2.1)

∂ṽ

∂t̃
+ ũ

∂ṽ

∂x̃
+ ṽ

∂ṽ

∂ỹ
= −1

ρ

∂p̃

∂ỹ
+ ν

(
∂2ṽ

∂x̃2
+

∂2ṽ

∂ỹ2

)
− ¨̃y0, (2.2)

D̃ =
∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (2.3)

In these equations tilde (.̃ . .) refers to dimensional quantities, i.e., t̃ is time, ũ and ṽ
are the veloity omponents along x̃ (streamwise) and ỹ (transverse) Cartesian diretions,

respetively, p̃ is hydrodynami pressure that involves omponents due to �uid motion and

gravitational fore (see details for example in [95℄), ρ and ν are the density and kinemati

visosity of the �uid and D̃ is dilation. In Eqs. (2.1) and (2.2)

¨̃x0 and
¨̃y0 are the aeleration

omponents of the ylinder in streamwise and transverse diretions, respetively.

Figure 2.1 shows the layout of the elastially supported irular ylinder, where the

body with diameter of d and mass per unit length of m is elastially onstrained in both

streamwise and transverse diretions. This vibration system is plaed into a uniform �ow

haraterized by the free stream veloity U∞. Vorties shedding from the ylinder means

a periodi load on the struture that an ause the vibration of the body; in this ase

in two degrees of freedom (2DoF). The possibility of high-amplitude osillation strongly

depends on the natural frequeny of the system, whih in vauum is de�ned as

fN =
1

2π

√
k

m
, (2.4)
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2.2. NON-DIMENSIONAL GOVERNING EQUATIONS 16

Figure 2.1: Layout of the elastially supported ylinder

where k is the spring sti�ness, whih is idential in x̃ and ỹ diretions (see Fig. 2.1);

thus, the natural frequenies are also equal in the streamwise and transverse diretions.

However, in experimental studies ylinder natural frequeny is measured in still �uid,

whih an be expressed as

fN,a =
1

2π

√
k

m+mA

. (2.5)

In this equation mA = CAρ
d2π
4

is the added mass per unit length of the body, where CA

is the added mass oe�ient. Blevins [56℄ showed analytially using the potential �ow

theory that CA = 1 for a irular ylinder.

In order to ompute the two aeleration omponents in Eqs. (2.1) and (2.2), Newton's

seond laws of motion written for the dynami system shown in Fig. 2.1 are applied:

m¨̃x0 + b ˙̃x0 + kx̃0 = F̃x, (2.6)

m¨̃y0 + b ˙̃y0 + kỹ0 = F̃y, (2.7)

where x̃0 and
˙̃x0 are the streamwise ylinder displaement and veloity, and ỹ0 and ˙̃y0 are

the same quantities in transverse diretion. In these equations overdot indiates derivative

with respet to dimensional time. In Eqs. (2.6) and (2.7) b is strutural damping and F̃x

and F̃y are the �uid fore omponents per unit length of the ylinder in x̃ and ỹ diretions.

2.2 Non-dimensional governing equations

In this study the governing equations are solved in dimensionless forms. The non-

dimensional Navier-Stokes and ontinuity equations are read as follows:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
− ẍ0, (2.8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
− ÿ0, (2.9)

D =
∂u

∂x
+

∂v

∂y
= 0, (2.10)

where x = x̃/d and y = ỹ/d are the dimensionless Cartesian oordinates, u = ũ/U∞ and

v = ṽ/U∞ are the non-dimensional veloity omponents in streamwise and transverse
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2.3. BOUNDARY AND INITIAL CONDITIONS 17

diretions, respetively, t = t̃U∞/d is the dimensionless time, p = p̃/(ρU2
∞
) is the non-

dimensional pressure and ẍ0 = ¨̃x0d/U
2
∞
and ÿ0 = ¨̃y0d/U

2
∞
are the dimensionless streamwise

and transverse aeleration omponents of the ylinder. In Eq. (2.10) D = D̃d/U∞ is the

dimensionless dilation and Re = U∞d/ν is the Reynolds number. Note that, here overdot

refers to derivative with respet to dimensionless time.

Theoretially the instantaneous veloity and pressure �elds an be obtained by solving

Eqs. (2.8)�(2.10). However, as seen in Eq. (2.10), the ontinuity equation does not expli-

itly involve time, whih an ause numerial instabilities. In order to redue the ompu-

tational errors, based on the methodology developed by Harlow and Welh [96℄, the �uid

pressure is obtained by solving a separate Poisson equation, whih in non-dimensional

form an be written as follows:

∇2p =
∂2p

∂x2
+

∂2p

∂y2
= 2

(
∂u

∂x

∂v

∂y
− ∂u

∂y

∂v

∂x

)
− ∂D

∂t
. (2.11)

Although dilation is zero for inompressible �uids [see Eq. (2.10)℄, ∂D/∂t is retained in

Eq. (2.11) to avoid omputational instabilities [96℄.

Non-dimensionalizing the ylinder equations of motion [see Eqs. (2.6) and (2.7)℄, the

following dimensionless equations are obtained:

ẍ0 +
4πζ

U∗
ẋ0 +

(
2π

U∗

)2

x0 =
2Cx

πm∗
, (2.12)

ÿ0 +
4πζ

U∗

ẏ0 +

(
2π

U∗

)2

y0 =
2Cy

πm∗

, (2.13)

where x0 = x̃0/d and ẋ0 = ˙̃x0/U∞ are the dimensionless streamwise ylinder displaement

and veloity omponents, and y0 = ỹ0/d and ẏ0 = ˙̃y0/U∞ are the same quantities in

transverse diretion. In these equations U∗ = U∞/(fNd) is the redued veloity, ζ =

b/(2
√
km) is the strutural damping ratio, and m∗ = 4m/(ρd2π) is the mass ratio. In

Eqs. (2.12) and 2.13) Cx and Cy are the streamwise and transverse �uid fore oe�ients,

respetively, whih are omputed from the pressure and shear stress distributions on the

ylinder surfae. Therefore Cx and Cy an be divided into two parts:

F̃x
ρ

2
U2
∞
d
= Cx = Cxp + Cxv,

F̃y
ρ

2
U2
∞
d
= Cy = Cyp + Cyv, (2.14a, b)

where subsripts p and v refer to pressure and visous parts, respetively.

2.3 Boundary and initial onditions

In the left-hand side of Fig. 2.2 the physial domain is shown, where R1 is the dimensionless

radius of the ylinder and R2 represents the outer surfae of the physial domain. On

the ylinder surfae (R = R1) no-slip boundary onditions are applied to the veloity

omponents u and v and Neumann-type boundary ondition is used for pressure p:

u = 0, v = 0, (2.16a, b)

∂p

∂n
=

1

Re

∇2vn − ẍ0n − ÿ0n. (2.17)
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Figure 2.2: The physial and omputational domains

where subsript n refers to the outer normal of the irular ylinder. In the outer surfae

of the physial domain (R = R2) potential �ow (�pot�) is assumed, so that

u = upot − ẋ0, v = vpot − ẏ0, (2.18a, b)

and

∂p

∂n
=

(
∂p

∂n

)

pot

∼= 0. (2.19)

Posdzieh and Grundmann [17℄ and Baranyi [50℄ showed that this simpli�ation auses

only small distortions in the veloity �elds. At t = 0 ylinder is assumed to be at rest,

that is

x0(t = 0) = y0(t = 0) = 0, and ẋ0(t = 0) = ẏ0(t = 0) = 0. (2.20a, b)

Potential �ow is assumed around the ylinder at t = 0, hene the fore oe�ients are

Cx(t = 0) = Cy(t = 0) = 0, whih ombined with Eqs. (2.12, 2.13) and (2.20) yields zero

initial ylinder aeleration ẍ0(t = 0) = ÿ0(t = 0) = 0.
In order to satisfy boundary onditions desribed by Eqs. (2.16)-(2.19) aurately,

boundary �tted oordinates are used. For this reason, applying linear mapping funtions

[50℄ the physial domain shown in the left-hand side of Fig. 2.2 is transformed into a

retangular omputational domain (see on the right in Fig. 2.2). Due to the properties

of the mapping funtions, the omputational grid on the physial domain is very �ne in

the viinity of the ylinder and oarse in the far �eld, but the grid is equidistant in the

omputational domain.

2.4 Numerial solution

The transformed governing equations with the mapped boundary onditions are solved

using an in-house CFD ode based on �nite di�erene method [50℄. The spae derivatives

are approximated using fourth order aurate shemes, exept for onvetive terms, whih

are disretized using the third order modi�ed upwind di�erene shemes [97℄. The equa-

tions of �uid and solid motions are integrated in time expliitly using the �rst order Euler

and fourth order Runge-Kutta methods, respetively. The linear system obtained from

the disretization of the pressure Poisson equation is solved iteratively using the sues-

sive over-relaxation (SOR) method, while the ontinuity equation is satis�ed at eah time

step.

At eah time step, integrating shear stress and pressure around the surfae of the

ylinder, �uid fore oe�ients Cx and Cy an be obtained. Substituting the alulated

fore omponents into ylinder equations of motion and integrating them numerially,
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2.4. NUMERICAL SOLUTION 19

ylinder displaement, veloity and aeleration omponents an be omputed. At the

next time step the aeleration omponents are updated, and the two omponents of the

Navier-Stokes equations are integrated numerially to obtain the new veloity �elds. Using

the previously omputed u and v values the Poisson equation is solved for pressure, where

the ontinuity equation is satis�ed.
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Chapter 3

Veri�ation and validation

The numerial approah detailed in Chapter 2 has been employed previously in several

studies on �ow around a stationary ylinder [15℄ and �ow around a ylinder undergoing

fored vibrations [32, 46, 50℄. However, the in-house ode has not yet been used to inves-

tigate vortex-indued vibration of a irular ylinder, hene areful validation is required

before arrying out the systemati omputations. In Setion 3.1 the results of indepen-

dene studies used to determine the optimal ombination of omputational parameters

are shown. Afterwards, a step-by-step validation is presented, where the urrently ob-

tained results are ompared against those available in the literature. First, single-degree-

of-freedom VIV are investigated, where the ylinder is allowed to osillate only in trans-

verse or streamwise diretion (see the results in Setions 3.2 and 3.3, respetively). Then,

omparisons are shown for 2DoF VIV ases, where the natural frequenies are equal or

di�erent in x and y diretions. These results are presented in Setion 3.4.

3.1 Independene studies

The three parameters, whih haraterize the omputational setup are the radius ratio

R2/R1, grid resolution ξmax × ηmax (number of grid points in the peripheral and radial

diretions, respetively), and the dimensionless time step ∆t. In order to �nd the optimal

ombination of these parameters, whih is the best ompromise between high auray and

omputational ost, independene studies are needed. In these investigations 2DoF VIV is

onsidered where Reynolds number, redued veloity, mass ratio and strutural damping

ratio values are �xed at Re = 205, U∗ = 4.8029, m∗ = 10 and ζ = 0%, respetively. Note

that this is a speial parameter ombination where the so-alled raindrop-shaped ylinder

path is identi�ed (see details in Chapter 4 and also in [J3℄). The root-mean-square (rms)

values of streamwise and transverse ylinder displaements x0′ and y0′, the rms values of

�uid fore oe�ients in the same diretions Cx′
and Cy′ and the time-mean values of

streamwise �uid fore oe�ient Cx are presented.

First, the e�et of radius ratio is analyzed, where the number of grid points on the

ylinder surfae is set to ξmax = 360, and the dimensionless time step value is hosen

to be ∆t = 0.0005. Radius ratio values of R2/R1 = 120, 160 and 200 are onsidered.

In order to reate an equidistant grid on the omputational domain, the number of grid

points in the radial diretion (belonging to the investigated R2/R1 values) are hosen to

be ηmax = 274, 291 and 304. The results are shown in Table 3.1. The relative di�erene

between y0′, Cx′
and Cx values obtained from R2/R1 = 120 and those from R2/R1 = 200

is less than 0.35%. On the other hand the relative di�erene between x0′ for R2/R1 = 120
and 200 is 1.03%, and between Cy′ for the same radius ratio values is 1.5%. However,

omparing the results obtained from R2/R1 = 160 and 200 the relative di�erene values

are under 0.4%. For this reason, the radius ratio value of R2/R1 = 160 is hosen for further

omputations.
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Table 3.1: E�et of radius ratio on the omputational results for Re = 205 and U∗ = 4.8029

R2/R1 x0′ y0′ Cx′ Cy′ Cx

120 0.02535 0.4098 0.5179 0.3390 2.0487

160 0.02519 0.4105 0.5192 0.3404 2.0449

200 0.02509 0.4108 0.5197 0.3441 2.0416

A grid dependene study is arried out to investigate the e�et of ξmax (the number

of grid points on the ylinder surfae) on the ylinder response and aerodynami fore

oe�ients. ξmax = 300, 360 and 420 are investigated. To make the mesh equidistant on

the omputational domain the number of points in radial diretion is inreased with ξmax;

ηmax = 242, 291 and 339 are used. In Table 3.2 the results of the grid dependene study

are shown. It an be seen that ξmax has only a minimal e�et on y0′ , Cx′
and Cx. The

relative di�erene between the values obtained from the two oarsest grids (ξmax = 300
and 360) and those from ξmax = 420 is less than 0.18%. However, grid resolution has a

higher impat on x0′ and Cy′ . The relative di�erene between x0′ and Cy′ for ξmax = 300
and ξmax = 420 is approximately 1%. Inreasing the grid resolution up to ξmax = 360,
the relative di�erene dereases to 0.3% for both x0′ and Cy′. Consequently, ξmax = 360
seems to be adequate for further systemati omputations.

Table 3.2: Results of the grid dependene study for Re = 205 and U∗ = 4.8029

ξmax x0′ y0′ Cx′ Cy′ Cx

300 0.02531 0.4102 0.5188 0.3380 2.0475

360 0.02519 0.4105 0.5192 0.3404 2.0449

420 0.02508 0.4107 0.5193 0.3414 2.0439

Finally, the e�et of dimensionless time step is analyzed, while the radius ratio and

the grid resolution are �xed at R2/R1 = 160 and 360 × 291, respetively. During these

investigations time step values of 0.001 (∆t1), 0.0005 (∆t2) and 0.00025 (∆t3) are onsid-
ered. The results are shown in Table 3.3. The relative di�erenes between x0′ and Cy′ for

∆t1 and for ∆t3 are 1.27% and 1.29%, respetively, while the di�erene for y0′, Cx′
and

Cx is under 0.32%. The relative di�erenes between all the investigated values (x0′ , y0′,
Cx′

, Cy′ and Cx) for ∆t2 and ∆t3 do not exeed 0.35%. Hene, ∆t2 = 0.0005 is hosen for

further omputations.

Table 3.3: E�ets of dimensionless time step on the omputational results for Re = 205 and

U∗ = 4.8029

∆t x0′ y0′ Cx′ Cy′ Cx

0.001 0.02545 0.4103 0.5197 0.3433 2.0428

0.0005 0.02519 0.4105 0.5192 0.3404 2.0449

0.00025 0.02513 0.4116 0.5190 0.3392 2.0461

3.2 Validation for transverse-only VIV

Using R2/R1 = 160, ξmax×ηmax = 360×291 and ∆t = 0.0005 step-by-step validations are

arried out. In this setion omparisons are shown for one-degree-of-freedom (1DoF) VIV,

where the ylinder is allowed to move only in transverse diretion; the streamwise displae-

ment, veloity and aeleration omponents are set to zero, x0(t) = ẋ0(t) = ẍ0(t) = 0.
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Leontini et al. [68℄ arried out omputations at �xed Reynolds number, mass and

strutural damping ratio values of Re = 200, m∗ = 10 and ζ = 1%, respetively. Figure

3.1a shows the dimensionless osillation amplitude ŷ0 and in Fig. 3.1b the amplitude of

transverse �uid fore oe�ient Ĉy is plotted against redued veloity. Note that in these

notations the hat symbol ( ˆ. . .) refers to the amplitude of the orresponding signal. As

seen in the �gures the urrent results show good agreement with those presented in [68℄.
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Ĉy

Figure 3.1: Dimensionless amplitude of ylinder osillation (a) and the amplitude of transverse

�uid fore oe�ient (b) against redued veloity for Re = 200, m∗ = 10 and ζ = 1%; omparison

of the urrent results ( ) against those of Leontini et al. [68℄ ( )
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Figure 3.2: Validations for transverse-only VIV: rms values of dimensionless ylinder displae-

ment (a), dimensionless vibration frequeny (b), and rms values of transverse () and streamwise

�uid fore oe�ients (d) against the redued veloity for Re = 100, m∗ = 70 and ζ = 0. ,

Navrose and Mittal [66℄; , present study
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Larger disrepanies an be observed between U∗ ∼= 4.2 and 4.8 and in the viinity of

U∗ = 6.2. These loations orrespond to the boundaries of the synhronization domain

where the results are very sensitive to the hange in redued veloity.

Navrose and Mittal [66℄ investigated also transverse-only VIV where the e�ets of

redued veloity was studied at di�erent mass ratio values ranging from m∗ = 10 to 150
at Re = 100 and ζ = 0%. At high mass ratios they found a desynhronized range in the

middle of the lok-in domain, where the osillation amplitude was very low. In Figs. 3.2a

and 3.2b the dimensionless osillation amplitude and frequeny ŷ0 and f ∗

y , and in Figs. 3.2

and 3.2d the rms values of transverse and streamwise �uid fore oe�ients Cx′
and Cy′

are plotted against U∗
for m∗ = 70. It an be seen that the agreement between our results

and those obtained by Navrose and Mittal [66℄ is exellent even in the desynhronized

regime (6.5 < U∗ ≤ 7).

3.3 Validation for streamwise-only VIV

Streamwise vortex-indued vibrations an also be investigated using the in-house ode

detailed in Chapter 2. In this ase ylinder motion is obtained by solving Eq. (2.12);

transverse displaement, veloity and the aeleration omponents are kept at zero [y0(t) =
ẏ0(t) = ÿ0(t) = 0℄. Bourguet and Lo Jaono [79℄ arried out systemati omputations for

streamwise VIV of a rotating ylinder at Re = 100, m∗ = 40/π and ζ = 0%. In Figs. 3.3a

and 3.3b the dimensionless osillation amplitude and frequeny x̂0 and f ∗

x , and in Figs.

3.3 and 3.3d the amplitudes of streamwise and transverse �uid fore oe�ients Ĉx and

Ĉy are ompared against those presented in [79℄ for a non-rotating ylinder. It an be seen

that urrent results ompare very well with those in [79℄.
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Figure 3.3: Dimensionless osillation amplitude (a), non-dimensional vibration frequeny (b),

and root-mean square values of streamwise () and transverse �uid fores (d) against the redued

veloity for Re = 100, m∗ = 40/π and ζ = 0. , Bourguet and Lo Jaono [79℄; , present study
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3.4 Validation for two-degree-of-freedom VIV

Prasanth and Mittal [88℄ and He and Zhang [98℄ arried out omputations for 2DoF

vortex-indued vibrations where the natural frequenies were idential in streamwise and

transverse diretions, fNx = fNy = fN , and it was kept at a onstant value, whih

was hosen to agree with the vortex shedding frequeny for a stationary ylinder at the

Reynolds number Re = 100. In this ase the relationship between Re and U∗
is Re = KU∗

,

where K = fNd
2/ν = 16.6 is the dimensionless natural frequeny. The mass ratio was

�xed at m∗ = 10, and the strutural damping oe�ient was set to zero. In Figs. 3.4a and

3.4b y0′ and x0′ , while in Figs. 3.4 and 3.4d Cx′
and Cy′ are shown against the Reynolds

number. Similar to the validation ases presented in Setion 3.2 the urrent results and

those obtained by [88℄ and [98℄ are in a good agreement exept for the lower and higher

thresholds of the �ow synhronization (in the viinity of Re = 90 and 130).
In the systemati omputations arried out by Bao et al. [83℄ the natural frequenies

in streamwise and transverse diretions (fNx and fNy) were di�erent. They investigated

�ows at Re = 150, m∗ = 8/π and ζ = 0%. The natural frequeny ratio FR = fNx/fNy was

in the range of FR = 1�2. In Figs. 3.5a and 3.5b the streamwise and transverse osillation

amplitudes, and in Figs. 3.5 and 3.5d the time-mean and rms values of stremawise �uid

fore oe�ients are shown against the redued veloity U∗ = U∞/(fNyd) for FR = 2. It
an be seen that the urrently obtained results ompare well with those of [83℄.
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Figure 3.4: Two-degree-of-freedom VIV results ( ): transverse osillation amplitude (a), and rms

values of streamwise ylinder displaement (b), transverse �uid fore () and stremawise �uid

fore oe�ients (d) against the Reynolds number ompared to [88℄ ( ) and [98℄ ( )
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Figure 3.5: Results for ylinder vibrating freely in two degrees of freedom ( ): transverse (a)

and streamwise osillation amplitudes (b), and time-mean () and root-mean-square (d) values

of streamwise �uid fore oe�ient against the redued veloity ompared to [83℄ ( )

3.5 Conlusions

In this setion, �rst, independene studies are arried out to �nd the optimal ombination

of the omputational parameters. These investigations resulted in R2/R1 = 160, ξmax ×
ηmax = 360× 291 and ∆t = 0.0005. Using these set of parameters validations are arried

out with asending omplexity. The omparisons of our results against those presented in

Leontini et al. [68℄, Navrose and Mittal [66℄, Bourguet and Lo Jaono [79℄, Prasanth and

Mittal [88℄, He and Zhang [98℄ and Bao et al. [83℄ show very good agreements. Additional

omparisons for stationary and osillating ylinders in whih good agreement was found

are presented in Dorogi and Baranyi [J1, J3℄.
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Chapter 4

Two-degree-of-freedom vortex-indued

vibrations

In this hapter two-degree-of-freedom vortex-indued vibrations are investigated at on-

stant mass and damping ratio values ofm∗ = 10 and ζ = 0%, respetively, in the Reynolds

number range of Re = 60�250. As disussed in Setions 1.1.3 and 1.1.5, in the experimental

studies the Reynolds number and the redued veloity are not independent parameters.

When the natural frequeny of ylinder fN is onstant, Re and U∗
are in linear rela-

tionship, Re = KU∗
, where K = fNd

2/ν is the dimensionless natural frequeny of the

system. The literature review revealed that earlier investigations had been limited to low

dimensionless natural frequeny values; for two-degree-of-freedom vortex-indued vibra-

tions only K ≤ 16.6 ases were analyzed [87�89℄. Hene, one an ask the question as

follows (see also in Setion 1.2):

What are the e�ets of the dimensionless natural frequeny K on the

ylinder response and aerodynami fore oe�ients?

In order to answer this question, systemati omputations are arried out at four di�er-

ent K values ranging between approximately K = 12.3 and 34.7. The results of these

omputations are disussed in Setion 4.1.

Singh and Mittal [72℄ investigated 2DoF VIV at �xed redued veloity value of U∗ =
4.92 and varying Re. They showed that for Re < 300 the lassi 2S and C(2S) vortex

strutures our, while for Re > 300 they identi�ed the asymmetrial P+S wake mode.

One an ask the following questions (see also in Setion 1.2):

Does P+S wake mode our at high dimensionless natural frequeny

values? What is the e�et of this asymmetrial mode on the ylinder

path?

This gave me the motivation to arry out further systemati omputations for dimension-

less natural frequeny values between K ∼= 34.7 and 43.7. The results of this analysis are
given in Setion 4.2 in detail.

Sine the dimensionless natural frequeny values used in the omputations mentioned

below are alulated based on assumptions (see details in [J1, J3℄), these values are not

whole numbers. The exat and the rounded K values, and the orresponding markers

used in the �gures in Setions 4.1 and 4.2 are summarized in Table 4.1. For the sake of

simpliity, in further disussions the rounded K values will be used.

4.1 Dimensionless natural frequeny e�ets at K=12�

35

In this setion systemati omputations are arried out for di�erent dimensionless natural

frequeny values ranging from K ∼= 12.3 to 34.7 (see Table 4.1). The mass and the
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Table 4.1: Dimensionless natural frequeny values used in this hapter.

Setion K = fNd
2/ν K (rounded) Marker

4.1

12.3440 12.3

16.6000 16.6

25.4920 25.5

34.7400 34.7

4.2

34.7400 34.7

36.5854 36.6

37.6016 37.6

38.6179 38.6

40.6504 40.7

42.6829 42.7

43.6992 43.7

strutural damping ratio values are �xed at m∗ = 10 and ζ = 0%, respetively, while the

Reynolds number is varied in the domain of Re = 60�250.
Figure 4.1a shows the root-mean-square values of the transverse ylinder displaement

y0′ and in Fig. 4.1b the variations of the dimensionless transverse vibration frequeny f ∗

y ,

the Strouhal number St and the reiproal values of the redued veloity U∗−1
are shown

against the Reynolds number for K ∼= 25.5. It an be seen that, the ylinder response

shows two-branh behavior, whih is typial for low Reynolds numbers. Below Re

∼= 110 y0′
is very low, and the transverse vibration frequeny is lose the Strouhal number, f ∗

y
∼= St.

Between Re

∼= 110 and 130 an initial branh is found, where the transverse vibration

amplitude inreases intensively. In this range the frequeny of ylinder vibration loks

neither to St nor to U∗−1
. Beyond the initial branh up to Re

∼= 165, the lower branh

is identi�ed where the osillation frequeny synhronizes with the natural frequeny of

the system, i.e. f ∗

y
∼= U∗−1

, resulting in high osillation amplitudes. Above Re = 165 the

osillation amplitude beomes small again and f ∗

y loks in to St, as was observed in the

very low amplitude range at Re < 110.

80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

Re

y0′

(a)

80 100 120 140 160 180 200
0.1

0.15

0.2

0.25

Re

 

 
(b) f∗y

St
U∗−1

Figure 4.1: The root-mean-square values of the dimensionless transverse ylinder displaement

(a), and the dimensionless transverse vibration frequeny, the Strouhal number [17℄, and the

reiproal values of the redued veloity for K ∼= 25.5 against the Reynolds number

In Fig. 4.2a the y0′ values obtained for di�erent dimensionless natural frequenies

ranging between K ∼= 12.3 and 34.7 are shown against the Reynolds number. It an be
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seen that the Reynolds number range where �ow synhronization is identi�ed strongly

depends on K, therefore the omparison of the data is di�ult. Khalak and Williamson

[59℄ showed that the ylinder responses for di�erent ombined mass-damping parameters

m∗ζ plotted against the �true� redued veloity 1/f ∗

y (instead of redued veloity U∗
)

an ollapse into a single urve. Sine ζ = 0% in this set of omputations, the mass-

damping parameter is zero in all the ases investigated in this dissertation. Singh and

Mittal [72℄ used U∗
St as an independent variable for the ases where either Re or U∗

was

kept onstant:

U∗

St =
U∞

fNd

fv
U∞d

=
fv
fN

. (4.1)

As an be seen, U∗
St is the ratio of the vortex shedding frequeny for a stationary ylinder

and the natural frequeny of the osillating body. To the best knowledge of the author,

U∗
St as an independent parameter has not previously been applied for onstant natural

frequeny ases.

In Fig. 4.2b the rms values of transverse ylinder displaement is plotted against U∗
St.

This �gure shows that the urves belonging to di�erent K values an be represented in the

same range, i.e., using U∗
St as an independent parameter is advantageous. It an be seen

in Fig. 4.2b that the y0′ urves shift upwards when the dimensionless natural frequeny

is inreased. A larger di�erene in y0′ values is found between K ∼= 12.3 and 16.6 than

between K ∼= 25.5 and 34.7. It an also be observed that the lower branh is signi�antly

wider for lowerK values. Previous researhers (e.g. [88℄) reported that in the initial branh

the �ow is quasi-periodi, whih is the same what I found in this dissertation. My results

show also that the width of the initial branh also depends on K. For K ∼= 12.3 and 16.6
y0′ jumps abruptly between the very low amplitude range and the lower branhes, while

for K ∼= 25.5 and 34.7 the transverse osillation amplitude shows a gradual hange.
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0
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Figure 4.2: Root-mean-square values of dimensionless transverse ylinder displaement against

Re (a) and U∗
St (b) for K ∼= 12.3 ( ), 16.6 ( ), 25.5 ( ) and 34.7 ( )

In Figs. 4.3a and 4.3b the rms values of streamwise displaement x0′ and streamwise

�uid fore oe�ient Cx′
are shown against U∗

St. As expeted, the amplitude of ylin-

der osillation in streamwise diretion is signi�antly lower than that in the transverse

diretion. Similar harateristis are observed, as were seen for y0′ in Fig. 4.2: the urves

belonging to inreasing K shift to higher values for both x0′ and Cx′
. It is very important

to see that the rms values of streamwise ylinder displaement show a loal peak value at

around U∗
St

∼= 0.47, whih inreases with the dimensionless natural frequeny (see Fig.

4.3a). As an be seen in Fig. 4.3b, the rms of streamwise �uid fore displays a similar
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Figure 4.3: Root-mean-square values of dimensionless streamwise ylinder displaement (a) and

streamwise �uid fore (b) against U∗
St for K ∼= 12.3 ( ), 16.6 ( ), 25.5 ( ) and 34.7 ( )

feature to that of x0′ , but Cx′
varies in a broader range (the peak value of Cx′

is 0.52, while
that of x0′ is only 0.0066 for K ∼= 34.7). That is, the details of Cx′

lose to U∗
St = 0.47

are hard to see.

For the aim of better illustration, the domain 0.4 < U∗
St ≤ 0.6 is shown at higher

resolution in the inset hart of Figs. 4.3a and 4.3b. Note that x0′ and Cx′
do not display

loal peaks for K ∼= 12.3; thus, urves orresponding to this partiular dimensionless

natural frequeny value are not shown in the inset plots. It an be seen in the inset �gures

that x0′ inreases ontinuously until it reahes its loal peak value at around U∗
St = 0.47

(see Fig. 4.3a). As expeted, with dereasing K the peak value dereases, and almost

disappears at K = 16.6. In addition to the peak, a loal minimum point is identi�ed in

Cx′
at U∗

St

∼= 0.5, where Cx′ → 0 (see Fig. 4.3b). Beyond the loal minimum point Cx′

starts to inrease with the slope of the urve inreasing with K.

In order to explore the signi�ane of the loal maximum values of x0′ and Cx′
and

the loal minimum values of Cx′
, the range 0.4 < U∗

St ≤ 0.6 is further investigated.

The relative waveforms of streamwise ylinder displaement and �uid fore x∗

0 and C∗

x are

de�ned as

x∗

0(t) =
x0(t)− x0

x̂0
, (4.2)

C∗

x(t) =
Cx(t)− Cx

Ĉx

, (4.3)

where x0 and Cx are the time-mean values of streamwise displaement and �uid fore

oe�ient, respetively, and x̂0 and Ĉx are the amplitude values of x0 and Cx. Figure 4.4
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shows the time histories of x∗

0 and C∗

x at di�erent U∗
St values. It an be seen that the

point of U∗
St

∼= 0.5 separates two di�erent regions. Below U∗
St

∼= 0.5 the displaement

and the �uid fore oe�ient along the diretion of the free stream are in-phase signals,

while above the point of approximately U∗
St = 0.5 x∗

0 is out-of-phase with C∗

x.
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0

C ∗

x

t

(a)
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t

(b)
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t

(c)
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t

(d)

Figure 4.4: The relative waveforms of streamwise ylinder displaement (x∗0, blue dashed lines)

and streamwise �uid fore (C∗

x, red solid lines) at U∗
St = 0.467 (a), 0.492 (b), 0.498 () and

0.536 (d) for K ∼= 34.7

Let us assume that the streamwise ylinder displaement and the �uid fore oe�ient

are sinusoidal funtions of time:

x0(t) = x̂0 sin(2πf
∗

xt), (4.4)

Cx(t) = Ĉx sin(2πf
∗

xt+ Φx), (4.5)

where f ∗

x is the frequeny of ylinder vibration in streamwise diretion, and Φx is the

instantaneous phase di�erene of streamwise �uid fore relative to the ylinder displae-

ment in the orresponding diretion (hereafter the streamwise phase). Note that the mean

omponents of these signals are omitted, beause they do not a�et the dynamis. The

time-dependent streamwise phase (Φx) is obtained using the Hilbert transformation, how-

ever, in this setion only its time-averaged value Φx is shown. The alulation methodology

of the time-varying phase is shown in Appendix A.2.2 in detail. In Fig. 4.5 the Φx val-

ues are shown against U∗
St for the dimensionless natural frequenies ranging between

0.4 0.45 0.5 0.55 0.6
0

60

120

180

U ∗St

Φx

Figure 4.5: Time-averaged phase di�erene of streamwise �uid fore relative to the streamwise

ylinder displaement against U∗
St for K ∼= 16.6 ( ), 25.5 ( ) and 34.7 ( )
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Figure 4.6: Root-mean-square values of pressure streamwise �uid fore (a) and visous streamwise

�uid fore (b) against U∗
St for K ∼= 16.6 ( ), 25.5 ( ) and 34.7 ( )

K ∼= 16.6 and 34.7. The irregular hange in the phase di�erene an be learly observed

in this �gure: for U∗
St < 0.5 Φx

∼= 0◦, and at the ritial value of U∗
St

∼= 0.5 the time-

averaged streamwise phase swithes from Φx
∼= 0◦ to 180◦. This approximately 180◦ jump

an be seen for all K values above K ∼= 12.3.
The total streamwise �uid fore oe�ient is omposed of two parts: one is due to

pressure Cxp (pressure streamwise �uid fore) and the other part is originated from fri-

tion on the ylinder wall Cxv (visous streamwise �uid fore), as stated by Eq. (2.14). As

an be seen in Fig. 4.6, the rms values of the pressure and visous streamwise �uid fore

oe�ients Cxp′ and Cxv′ in the range 0.4 < U∗
St ≤ 0.65 show di�erent behaviors. Al-

though both quantities have maximum and minimum values in this domain, the variation

of Cxp′ is similar to Cx′
(see the inset plot in Fig. 4.3b), while the hange in Cxv′ is similar

to the harateristis of x0′ (see the inset plot in Fig. 4.3a).

In Figs. 4.7a and 4.7b the time-averaged phase di�erenes of Cxp and Cxv relative

to the streamwise ylinder displaement ϕxp and ϕxv are shown as funtions of U∗
St for

K ∼= 16.6�34.7. It an be seen that, ϕxv and ϕxp show di�erent trends in the viinity of

U∗
St = 0.5. In the range of 0.4 < U∗

St ≤ 0.5 there is a ϕxv
∼= 35◦ phase shift between
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Figure 4.7: Time-averaged phase di�erene values ϕxp (a) and ϕxv (b) for K ∼= 16.6 ( ), 25.5
( ) and 34.7 ( )
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Cxv and x0. After this period ϕxv hanges gradually until it reahes approximately 180◦

(see Fig. 4.7b). In ontrast, Cxp and x0 are approximately in phase between U∗
St = 0.4

and 0.5, while in the viinity of U∗
St = 0.5 the time-averaged phase di�erene hanges

abruptly to ϕxp
∼= 180◦ (see Fig. 4.7a).

The tendenies of ϕxp and Φx are very similar (see Figs. 4.7a and 4.5), therefore pres-

sure distribution around the ylinder surfae in�uenes the �ow struture more strongly

than shear stress does. This behavior is similar to that observed by Prasanth and Mittal

[88℄ for K = 16.6, who found an abrupt jump in the phase between the transverse �uid

fore and displaement from 0◦ to 180◦ (between Re = 110 and 115). Deomposing the

transverse �uid fore into omponents due to pressure and shear stress they showed that

the pressure omponent is responsible for the jump, sine the visous omponent remains

in-phase with the displaement.

In Fig. 4.8 the limit yle urves (time histories of visous streamwise fore versus those

of pressure streamwise fore) are shown in the viinity of U∗
St = 0.5 for K ∼= 25.5. It

an be seen that below U∗
St

∼= 0.499 the orientation of the urves is lokwise, indiated

by �lled arrows (see Fig. 4.8). At U∗
St ≥ 0.499 the orientation swithes abruptly to

ounterlokwise (shown by lined arrows in Fig. 4.8), whih means that pressure and

visous streamwise fore omponents beome nearly antiphase. This substantial hange is

mainly aused by Cxp, sine ϕxv inreases gradually in this regime (Fig. 4.7b), in ontrast

to ϕxp, whih jumps abruptly between ϕxv = 0◦ and 180◦ at around U∗
St = 0.5 (Fig.

4.7a). The amplitudes of signals Cxp and Cxv (losely related to Cxp′ and Cxv′) are almost

idential in the viinity of U∗
St = 0.5. These two features (antiphase and equal signal

amplitudes) nearly anel eah other out, resulting in an approximately zero value of Cx′

(shown in Fig. 4.3b).
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Figure 4.8: Limit yle urves (Cxv, Cxp) in the viinity of U∗
St = 0.5 for K ∼= 25.5

The results of the CFD omputations show also that the vibration frequeny of the

ylinder in streamwise diretion is double that in transverse diretion, whih leads to

�gure-eight ylinder motion (see Setion 1.1.2). In Fig. 4.9 the paths of the ylinder are

shown at di�erent U∗
St values for K ∼= 34.7. Similar to the features observed in the

(Cxv, Cxp) limit yle urves, the orientation of the motion trajetory swithes near the

point of U∗
St = 0.5. It an be seen that below U∗

St

∼= 0.5 the orbit is lokwise in the

upper loop of the ylinder path, while in the domain of U∗
St > 0.5 the orientation of the

ylinder trajetory is ounterlokwise.
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Figure 4.9: Cylinder paths at U∗
St

∼= 0.455 (a), 0.480 (b), 0.483 () and 0.505 (d) for K ∼= 34.7

4.2 Ourrene of orbital ylinder motion for high di-

mensionless natural frequenies

As mentioned earlier, in this setion systemati omputations are arried out to explore

whether P+S vortex struture ours at higher dimensionless natural frequenies. To

aomplish this aim, di�erent K values are onsidered in the range of K ∼= 34.7�43.7 (see
Table 4.1). The Reynolds number is varied in the domain of Re = 60�250, and the mass

and strutural damping ratio values are �xed at m∗ = 10 and ζ = 0%, respetively.

4.2.1 Cylinder response and vortex strutures

In Figs. 4.10a and 4.10b x0′ and y0′ are shown against U
∗
St for three di�erent dimensionless

natural frequeny values. It an be seen in Fig. 4.10a that for K ∼= 40.7 x0′ shows a steep

inrease (up to x0′ = 0.023) in the approximate range of 0.92 < U∗
St ≤ 0.97, and then

jumps abruptly to lower values (x0′ = 0.005). For the data sets for K ∼= 16.6 and 34.7 this
phenomenon is not observed, whih suggests that only larger K values result in a steep

inrease in the streamwise osillation amplitude. In ontrast, y0′ behaves di�erently, as
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Figure 4.10: Root-mean-square values of streamwise (a) and transverse (b) ylinder displae-

ments against U∗
St for K ∼= 16.6 ( ), 34.7 ( ) and 40.7 ( )
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only a small jump is found at around U∗
St = 0.97 for K = 40.7 (Fig. 4.10b).

In order to investigate what happens in the range where x0′ steeply inreases, �rst the

paths of the ylinder are analyzed. In Fig. 4.11 the ratios of streamwise and transverse

osillation frequenies to the natural frequeny of the system in vauum fx/fN and fy/fN
are shown against U∗

St for K ∼= 40.7. Figure 4.12 shows the ylinder trajetories (see the
top row of the �gure), the FFT spetra of streamwise and transverse vibration omponents

(middle row), and the instantaneous vortiity ontours (bottom row) at di�erent U∗
St

values for K ∼= 40.7. The blue and the red urves orrespond to the FFT spetra of

streamwise and transverse osillation omponents, respetively. Note that Power Spetral

Density (PSD, also referred to as intensity) in Fig. 4.12 is shown in a logarithmi sale.

It an be seen in Fig. 4.11 that onditions fy/fN ∼= 1 and fx/fN ∼= 2 satisfy when

U∗
St < 0.92 and U∗

St > 0.97 (where x0′ is su�iently low), resulting in distorted �gure-

eight motion (see Figs. 4.12a and 4.12d). This ylinder path ours most often in vortex-

indued vibrations, as seen for example in Mittal and Kumar [38℄, Williamson and Govard-

han [39℄, Blevins and Coughran [40℄ and Dahl et al. [41℄. Although, the most dominant

frequeny peaks of transverse and streamwise omponents are identi�ed at f/fN ∼= 1 and
2, respetively (Figs. 4.12a and 4.12d), they show additional (but less signi�ant) peaks.

Note that f/fN = i is usually referred to as the ith harmoni frequeny omponents.

In this dissertation the osillation frequeny ratio shown in Fig. 4.11 is de�ned with the

highest-intensity frequeny peaks in the spetra. It an also be seen in Figs. 4.12a and

4.12d that the frequeny peaks for the two osillation omponents do not overlap. For

example, the fourth and the third harmoni omponents are identi�ed in the spetra of

x0 and y0, respetively, but the f/fN = 3 in streamwise vibration omponent and the

f/fN = 4 in transverse omponent are not found. Using the notations introdued by

Williamson and Roshko [28℄, at the orresponding U∗
St values where distorted �gure-

eight motions are found, 2S and C(2S) vortex strutures are seem to develop. For both

vortex on�gurations two single vorties are shed from the ylinder, but for the C(2S)

wake mode the positive and the negative vorties are in oalesene.

As an be seen in Fig. 4.11, in the range of 0.92 < U∗
St ≤ 0.97 (where x0′ inreases

steeply) both streamwise and transverse vibration frequenies lok into the natural fre-

queny of the system, i.e. fx = fy ∼= fN . Kheirkhah et al. [42℄ found similar harateristis

for the �ow around a pivoted ylinder, and attributed this e�et to an orbital type of ylin-

der motion. Kang et al. [91℄, investigating the e�et of streamwise to transverse natural

frequeny ratio at di�erent aspet ratios, also found orbital trajetories that they named

raindrop-shaped motion. In Figs. 4.12b and 4.12 the raindrop-shaped motions and the

0.9 1 1.1 1.2
0

0.5

1

1.5

2

2.5

U ∗St

f/fN

 

 

fx/fN
fy/fN

Figure 4.11: Ratios of streamwise and transverse vibration frequenies to the natural frequeny

of the system for K ∼= 40.7
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Figure 4.12: Paths of the ylinder (upper row), frequeny spetra of streamwise (blue urves)

and transverse (red urves) ylinder displaements (middle row), and vortex strutures (bottom

row) at U∗
St = 0.9280 (a), 0.9441 (b), 0.9708 () and 0.9757 (d) for K ∼= 40.7. Eah vortex

ontours are reorded at random phases of the ylinder osillation

orresponding frequeny spetra and vortex strutures are shown. In ontrast to those

observed for distorted �gure-eight paths, the high-intensity frequeny peaks for the two

osillation omponents overlap. It an be seen that for streamwise ylinder displaement

the �rst and the seond harmoni frequeny omponents play signi�ant role, and in

the spetra of transverse displaement only the �rst harmoni omponent is identi�ed as

high-intensity frequeny peak. The Power Spetral Density of the rest of the frequeny

omponents is negligible. Due to the fat that two dominant frequeny peaks are found

for x0 (f/fN = 1 and 2), the path of the ylinder is asymmetri (see Figs. 4.12b and

4.12). The asymmetri behavior of the raindrop-shaped motion is on�rmed by the vor-

tex on�gurations; P+S wake modes are identi�ed in these ases (see Figs. 4.12b and

4.12). Therefore, I an answer the researh question I put up at the beginning of Setion

4.2; P+S vortex struture an our at higher natural frequeny values.

To onlude the previous �ndings, it seems likely that the high jump in x0′ and the

sudden hange in y0′ ourring at around U∗
St = 0.97 for K ∼= 40.7 (see Fig. 4.10) appear

to aount for the abrupt hanges in the ylinder path (from raindrop-shaped to distorted

�gure-eight motion) and the swith in the vortex struture (between P+S and 2S modes).

Brika and Laneville [58℄ investigated experimentally high mass-damping ases in the

high-Reynolds number range. They showed that the ylinder response is hystereti in the

domain where the vortex struture hanges. Singh and Mittal [72℄ and Prasanth and Mittal

[88℄ observed a similar phenomenon for low Reynolds numbers using a numerial approah.

As was shown previously, the vortex struture hanges abruptly at the boundary where

the motion trajetory swithes (at around U∗
St = 0.97 for K ∼= 40.7), whih suggests the

ourrene of a hysteresis loop. In order to investigate whether this hysteresis loop exists
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in the viinity of U∗
St

∼= 0.97 for K ∼= 40.7, di�erent types of omputations are arried

out:

(a) Diret omputations, where the ylinder is initially at rest, and it impulsively

starts to osillate at the beginning of the omputation. The Reynolds number is

�xed during the omputation.

(b) Inreasing-Re omputations. First, a diret step is arried out at a given ombi-

nation of Re, U∗, m∗
and ζ . The veloity and the pressure �elds obtained at the end

of the diret step are used as initial onditions in the next step, where the Reynolds

number and the redued veloity are inreased by ∆Re and ∆U∗ = ∆Re/K, respe-

tively. As suggested by [58℄, the redued veloity inrement is set to ∆U∗ = 0.02.
This proess is repeated until the required number of steps are ompleted;

() Dereasing-Re omputations. This approah is very similar to the previous one,

but the Reynolds number and the redued veloity are dereased aordingly.

In Fig. 4.13a x0′ obtained from the inreasing Re and the dereasing Re omputations

and those from the diret omputations are plotted against U∗
St. In Figs. 4.13b-4.13e the

ylinder paths are shown at di�erent U∗
St values, where I and D (in the top-left orner)

refer to inreasing or dereasing Reynolds numbers (and redued veloities), respetively.

It an be observed that di�erent solutions an be obtained when Re is inreased or de-

reased. As seen, raindrop-shaped motion develops for inreasing Re (see Fig. 4.13), and
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Figure 4.13: Root-mean-square values of streamwise ylinder displaement obtained from the

diret omputations ( ), the inreasing Re omputations ( ), and the dereasing Re ompu-

tations ( ) against U∗
St for K ∼= 40.7 (a), and the ylinder paths for inreasing and dereasing

Re ases at U∗
St

∼= 0.9661 (b), 0.9802 ( and d) and 1.0129 (e). Here I and D refer to inreasing

and deeasing Re (and U∗
) values, respetively
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distorted �gure-eight paths are found for dereasing Re ases (see Fig. 4.13d) in the range

of 0.97 < U∗
St ≤ 1.01. Below U∗

St = 0.97 raindrop-shaped paths are found and above

U∗
St = 1.01 distorted �gure-eight motions are observed for both inreasing and dereasing

Reynolds number ases (see Figs. 4.13b and 4.13e).

In Fig. 4.14 the vortex strutures are shown at the same U∗
St values, where the motion

trajetories were analyzed in Fig. 4.13. Wake modes orresponding to inreasing Reynolds

numbers are shown in the top row, while the dereasing Re ases are shown in the bottom

row. As in the �gure, within the hysteresis domain (between U∗
St = 0.97 and 1.01) P+S

wake modes are observed for inreasing Re omputations and 2S vortex strutures are

found for dereasing Re ases (see Fig. 4.14b). Outside of the hysteresis range the same

vortex strutures are obtained by either inreasing or dereasing the Reynolds number

(see Fig. 4.14a and 4.14).

P+SI P+SI C(2S)I

P+SD

(a)

C(2S)D

(b)

C(2S)D

(c)

Figure 4.14: Vortiity ontours in ase of inreasing and dereasing Re and U∗
at U∗

St

∼= 0.9661
(a), 0.9802 (b) and 1.0129 () for K ∼= 40.7. Eah vortex ontours are reorded at random phases

of the ylinder osillation

Systemati omputations are arried out to investigate the e�ets of dimensionless nat-

ural frequeny on the ylinder path. In Fig. 4.15 x0′ is plotted against U∗
St for di�erent

K values ranging from K ∼= 34.7 to 43.7. Values at around 0.007 are for the distorted-

�gure-eight paths, while higher x0′ values indiate raindrop-shaped motion. It an be seen

that K ∼= 36.6 is the lowest dimensionless natural frequeny value where both raindrop-

shaped and distorted �gure-eight motions an our. Varying K between K ∼= 36.6 and

43.7, raindrop-shaped motion ours over a narrow U∗
St domain that widens with inreas-

ing the dimensionless natural frequeny. It is also shown in Fig. 4.15 that the x0′ urves

shift upwards and the loation of the jump whih separates the raindrop-shaped and the

distorted-�gure-eight motion ranges dereases with the dimensionless natural frequeny.

4.2.2 Analysis of �uid fore oe�ients

In order to show additional di�erenes between the e�ets aused by the P+S and the 2S

vortex strutures, the frequeny spetra of transverse and streamwise �uid fore oe�-

ients are investigated. Figure 4.16 shows the frequeny spetra of Cy and Cx at the same

U∗
St values where the ylinder paths and the vortex strutures were previously analyzed

(see Fig. 4.12). The blue and the red urves stand for the FFT spetra of transverse and

streamwise �uid fores, respetively. It an be seen that both fore oe�ients ontain

two signi�ant frequeny peaks at the U∗
St values where 2S vortex strutures are found

(see Figs. 4.16a and 4.16d). In the FFT of transverse �uid fore the �rst and the third

harmoni frequeny omponents are found, and in streamwise �uid fore the seond and
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Figure 4.15: Root-mean-square values of streamwise ylinder displaement against U∗
St for

K ∼= 34.7 ( ), 36.6 ( ), 37.6 ( ), 38.6 ( ), 40.7 ( ), 42.7 ( ) and 43.7 ( )

the fourth harmoni omponents are identi�ed with high PSD values. Prasanth and Mit-

tal [88℄ found a jump in the phase di�erene between Cy and y0 in the lower branh.

They showed that in the viinity of the swith f/fN ∼= 3 was muh more signi�ant in

the spetrum of transverse �uid fore than the frequeny omponent oiniding with the

transverse vibration frequeny. The experimental data of Dahl et al. [41, 82℄ also showed

this dual resonane e�et. In addition, they found that f/fN ∼= 3 in the spetra of Cy in-

�uened the �rst harmoni omponent. It an also be seen in Figs. 4.16a and 4.16d (where

distorted �gure-eight motions are identi�ed) that the frequeny peaks in the spetra of

transverse and streamwise �uid fore oe�ients do not overlap. This �nding is the same

what I showed earlier for the Fast Fourier spetra of the vibration omponents in Figs.

4.12a and 4.12d.
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Figure 4.16: Frequeny spetra of transverse and streamwise �uid fore (red and blue urves) at

U∗
St = 0.9154 (a), 0.9441 (b), 0.9708 () and 0.9757 (d) for K = 40.7

Figures 4.16b and 4.16 show the FFT spetra of Cy and Cx at the U
∗
St values where

P+S asymmetri wake modes are identi�ed. It an be seen that the loation of the high-

intensity frequeny peaks of transverse and streamwise �uid fore omponents overlap. In

ontrast to those observed during the spetral analyses of the vibration omponents (see

Figs. 4.12b and 4.12), f/fN ∼= 1, 2, 3 and 4 our with remarkable PSD values in the

spetra of both transverse and streamwise �uid fores.

Baranyi [46℄ investigated the e�et of foring frequeny in ase of �gure-eight ylinder

motion. Post-proessing the data in [46℄, we found that in ase of 2S vortex strutures the

FFT spetra of Cy and Cx did not overlap (similar to Figs. 4.16a and 4.16d), while the

frequeny peaks of transverse and streamwise �uid fores ollapsed where P+S wake mode
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was observed (as in Figs. 4.16b and 4.16). Therefore, the urrent results for free vibration

and those obtained using the data of Baranyi [46℄ for fored ylinder motion are in good

qualitative agreement. Good qualitative agreement is also found with the omputations of

Bao et al. [83℄, who observed P+S wake mode at only one parameter ombination, and

where the frequeny spetra of Cy and Cx showed similarities to those seen in Figs. 4.16b

and 4.16.

Figure 4.17a shows the time-mean values of transverse �uid fore oe�ient Cy against

U∗
St for K ∼= 37.6, 40.7 and 43.7. The results show similar features for all of the inves-

tigated K values, so only three urves are presented here to avoid onfusion. It an be

seen that Cy is negligible in the range where distorted �gure-eight motion is found. As

was shown earlier, P+S vortex struture is observed for orbital ylinder trajetories (see

Figs. 4.12b and 4.12). Sine this wake mode means an asymmetri load on the struture,

|Cy| > 0 in raindrop-shaped motion ases, whih is seen in Fig. 4.17a. Blakburn and

Henderson [30℄ and Baranyi [46℄, using the fored vibration models, found also that Cy is

non-zero for ases where the P+S asymmetri vortex strutures are found.
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Figure 4.17: Time mean values of transverse �uid fore against U∗
St for K ∼= 37.6 ( ), 40.7

( ) and 43.7 ( ) (a), and (Cx, Cy) (b) and (x0, y0) () limit yle urves in pre- and post-jump

ases (red thik urve: U∗
St = 0.930; blue thin urve: U∗

St = 0.931) for K ∼= 43.7

In the raindrop-shaped-motion domain two state urves exist, and the solution jumps

abruptly between them. In Fig. 4.17b (Cx, Cy) limit yle urves are shown before and

after a jump. The urves appear to be mirror images of eah other, whih is due to a

symmetry breaking bifuration [99℄. In a nonlinear system there are two attrators, eah

with a basin of attration [99℄. If the set of parameters (e.g. Re, U∗, m∗
, et.) is lose to

the boundary separating the basins of attration then a tiny hange an lead to an abrupt

jump (see Fig. 4.17a). In Fig. 4.17 the paths of the ylinder are shown in the pre- and

post-jump ases. It an be seen that these urves are also appear to be mirror images of

eah other.

Figures 4.18a and 4.18b show the rms values of streamwise and transverse �uid fore

oe�ients Cx′
and Cy′ against U∗

St for K ∼= 37.6, 40.7 and 43.7. The results show

similar features for all of the investigated dimensionless natural frequeny values, so only

three urves are presented here to avoid onfusion. Both Cx′
and Cy′ show jumps at the

upper boundary separating raindrop-shaped and distorted �gure-eight motion domains,

as an also be seen in x0′ (see Fig. 4.15). It an be observed that Cx′
urves belonging

to inreasing K values shift to higher values in both the raindrop-shaped and �gure-

eight motion domains. In ontrast, by inreasing K the Cy′ urves shift upwards in the

raindrop-shaped and downwards in the �gure-eight motion domains.
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Figure 4.18: Root-mean-square values of stremawise (a) and transverse (b) �uid fores against

U∗
St for K ∼= 37.6 ( ), 40.7 ( ) and 43.7 ( )

4.3 New sienti� ontributions

Contribution I

Systemati omputations are arried out for two-degree-of-freedom vortex-indued vi-

brations at di�erent non-dimensional natural frequeny values from K = 12.3 to 34.7,
and onstant mass and strutural damping ratios of m∗ = 10 and ζ = 0%, respetively

(Re = 60− 250). I found that

(a) Plotting the data set belonging to di�erent K values against U∗
St makes the om-

parison easier than using Re as an independent parameter;

(b) Loal peak values are found in the rms of streamwise ylinder displaement x0′ , and

streamwise �uid fore oe�ient Cx′
at around U∗

St = 0.47. The loal maximum

values in x0′ and Cx′
are found to inrease with K;

() Cx′
approahes zero in the viinity of U∗

St = 0.5, at the same loation, where the

phase di�erene of Cx relative to x0 hanges suddenly from 0◦ to 180◦;

(d) While the phase angle between the pressure streamwise �uid fore Cxp and the

ylinder displaement suddenly shifts from 0◦ to 180◦ at U∗
St

∼= 0.5, the phase

di�erene of the visous streamwise �uid fore Cxv relative to the ylinder motion

is initially at ∼ 35◦, whih inreases slowly to 180◦. These �ndings indiate that the
pressure omponent of the streamwise �uid fore is responsible for the abrupt phase

hange between Cx and x0. Due to the sudden hange in the phase angle between

Cxp and x0, the limit yle urves (Cxv, Cxp) swith from lokwise to antilokwise

orientation at U∗
St

∼= 0.5;

(e) The orientation of the ylinder path hanges from lokwise to ounterlokwise

orbit (in the upper loop of the �gure-eight) at around U∗
St = 0.5.

Related publiations: Dorogi and Baranyi [J1℄

Contribution II

Using two-degrees-of-freedom VIV omputations at di�erent non-dimensional natural fre-

queny values in the range of K = 34.7−43.7, and onstant mass and strutural damping
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ratio values of m∗ = 10 and ζ = 0%. I found that K highly in�uenes the path of

the ylinder. For dimensionless natural frequeny values below K ∼= 36.6 only distorted

�gure-eight motions are observed. Between the values of K ∼= 36.6 and 43.7, besides
�gure-eight paths, orbital ylinder trajetories (i.e. raindrop-shaped orbits) are identi�ed

in a thin U∗
St domain (e.g. in 0.92 < U∗

St < 0.97 for K ∼= 40.7), whih widens with

K. In the range where raindrop-shaped motions are found, the rms values of the stream-

wise vibration omponent x0′ is signi�antly higher (an exeed x0′ = 0.023) ompared

to the distorted �gure-eight path domains (around x0′ = 0.005). I showed that as the

non-dimensional natural frequeny inreases, the x0′ urves shift upwards.

The frequeny spetra of the streamwise vibration omponent for raindrop-shaped

orbits ontain two high-intensity frequeny peaks orresponding to f ∗

y and 2f ∗

y , where

f ∗

y is the transverse osillation frequeny of the ylinder. Due to the multi-frequeny

vibration, the raindrop-shaped paths are asymmetri. I found P+S asymmetrial vortex

strutures in the wake of the ylinder for raindrop-shaped motions, while 2S or C(2S)

modes for distorted �gure-eight motion ases. Here P and S refer to vortex pairs and

single vorties shedding form the body, respetively, and C refers to the oalesene of the

positive and negative vorties.

I identi�ed abrupt hanges in the rms values of streamwise and transverse vibration

omponents and �uid fore oe�ients (x0′ , y0′, Cx′, Cy′), whih orresponds to the point,

where (1) the ylinder path swithes from raindrop-shaped to distorted �gure-eight, and

(2) the wake mode hanges from P+S to 2S. I found a hysteresis loop lose the boundary,

where the vortex struture and the ylinder orbit swith. I showed that inreasing the U∗

(together with Re) in the range of 0.97 < U∗ ≤ 1.01, orbital trajetories and P+S modes

are formed. However, dereasing U∗
(and Re) in the same domain, distorted �gure-eight

paths and 2S modes our.

I found that the time-mean values of the transverse �uid fore oe�ient Cy is ap-

proximately zero for distorted �gure-eight paths, while for raindrop-shaped trajetories∣∣Cy

∣∣ > 0. Due to the nonlinearity of the �uid �ow, Cy jumps abruptly between two so-

lutions. Plotting the (Cx, Cy) and (x0, y0) limit yles in the pre- and post-jump ases, I

found that these urves are mirror images of eah other; hene the two solutions of Cy

are symmetri.

Related publiations: Dorogi and Baranyi [J3℄, Dorogi and Baranyi [C7℄ and Dorogi

and Baranyi [C8℄
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Chapter 5

Analyses of streamwise vortex-indued

vibrations

As was mentioned in Setion 1.1.2, the experimental �ndings of Tanida et al. [35℄, and the

omputational results of Konstantinidis and Bouris [36℄ and Kim and Choi [37℄ indiate

that streamwise-only vortex-indued vibrations are not feasible at low Reynolds numbers.

However, Bourguet and Lo Jaono [79℄ investigated self-exited streamwise vibration

of a rotating ylinder at Re = 100. Their results obtained for the non-rotating ase show

a single-peak response, but the maximum osillation amplitude is only 0.2% of the ylin-

der diameter.

1

In addition, the omputational results from the 2DoF VIV omputations

presented in Chapter 4 and published in [J1℄, indiate that the root-mean-square val-

ues of streamwise vibration omponent x0′ display a loal maximum value at around

U∗
St = 0.47. Sine the transverse osillation amplitude is negligible in this domain, we

suspet that the peak value in x0′ is resulted only by the streamwise vibration omponent.

For this reason, the following researh questions is addressed:

Is it possible for streamwise-only VIV to our in the low-Re

domain? What are the e�ets of m∗
and Re on the ylinder

response?

In order to answer these questions two sets of omputations are arried out. First,

omputations are performed at the mass ratio values m∗ = 2, 5, 10 and 20, while keep-

ing the Reynolds number onstant at Re = 180. The results of these investigations are

presented in Setion 5.1. A model based on harmoni assumptions is used to explain the

phenomenon observed in the numerial results. Seond, omputations are arried out at

di�erent Reynolds numbers (Re = 100, 180, 200 and 250), while keeping mass ratio on-

stant at m∗ = 10, whih results are disussed in Setion 5.2. In both sets of omputations

the redued veloity is varied between U∗ = 1.5 and 3.5, while the strutural damping

ratio is �xed at zero.

5.1 The e�et of mass ratio

In this setion streamwise-only vortex-indued vibrations are investigated at di�erent mass

ratio values of m∗ = 2, 5, 10 and 20. The Reynolds number and the strutural damping

ratio values are �xed at Re = 180 and ζ = 0%, respetively, while the redued veloity is

varied between U∗ = 1.5 and 3.5.
Figure 5.1 shows the dimensionless osillation amplitude x̂0 (see Figs. 5.1a and 5.1),

and the non-dimensional vibration frequeny f ∗

x (Figs. 5.1b and 5.1d) against the redued

1

Note that the results obtained by Bourguet and Lo Jaono [79℄ have been previously used for

validation purposes; good agreement was found (see the results in Setion 3.3).
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veloity for di�erent m∗
values. It an be seen that the ylinder response displays a single

exitation region with a peak osillation amplitude of approximately 1.1% of the ylinder

diameter for all mass ratios investigated. As an be observed, x̂0 inreases gradually up

its peak value, and than it dereases monotonially. Although the maximum vibration

amplitude seems to be independent of the mass ratio, the U∗
value where the maximum

in x̂0 is identi�ed inreases with m∗
. The root-mean-square values of streamwise ylinder

displaement x0′ obtained from the 2DoF VIV omputations show similar trends in the

range of 0.4 < U∗
St < 0.6 (see Setion 4.1); a loal peak value is observed in x0′ at around

U∗
St = 0.47. In that ase the loal maximum value inreased, beause the Reynolds

numbers orresponding to the peak x0′ values inreased.

The dimensionless vibration frequeny (see Figs. 5.1b and 5.1d) shows an opposite

behavior: f ∗

x dereases to its minimum point, whih ours approximately at the same

U∗
value where the peak amplitude is observed. Beyond the minimum point, f ∗

x inreases

asymptotially to a value orresponding to the double of the Strouhal number for a sta-

tionary ylinder [2St ∼= 0.383 at Re = 180 using Eq. (1.8) obtained by [17℄℄. In other words,
in the exitation region the dimensionless vibration frequeny of the ylinder is always

lower than the double of the Strouhal number, i.e. f ∗

x < 2St. This �nding is onsistent

with the fored vibration results obtained by Nishihara et al. [1℄ and Konstantinidis and

Liang [100℄, who showed that streamwise-only VIV due to alternating vortex shedding

an our only for f ∗

x < 2St.
It an also be observed in Fig. 5.1 that as we inrease the mass ratio, the width of

the exitation region diminishes, i.e. the rate of hange of x̂0 and f ∗

x beomes faster. In

partiular, for m∗ = 20, the osillation amplitude and frequeny show sudden hanges at

U∗ = 2.614, at the same point where the peak response is observed (see Figs. 5.1 and

5.1d).
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Figure 5.1: Dimensionless osillation amplitude (a and ) and frequeny (b and d) against

redued veloity for di�erent mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,
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Aguirre [75℄, Okajima et al. [76℄ and Cagney and Balabani [77℄ investigated exper-

imentally streamwise-only vortex-indued vibrations. Their results at moderately high

Reynolds numbers reveal that two exitation regions (branhes) our. The �rst branh

is assoiated with a symmetrial mode of vortex shedding, while in the seond branh an

alternating vortex shedding mode

2

is observed. Figure 5.2 shows the vortiity ontours

at the orresponding ombinations of m∗
and U∗

, where the peak responses (maximum

osillation amplitude and minimum vibration frequeny) our. It an be seen that, irre-

spetive of m∗
, only alternating modes of vortex shedding are found. This suggest that

the single exitation region shown in Fig. 5.1 orresponds to the seond branh. The

experimental results at moderately high Re show also that symmetrial mode of vortex

shedding develops only for x̂0 > 0.1 ases. The peak osillation amplitude for Re = 180
is only 0.011, whih is not su�iently high for the symmetrial vortex shedding mode.

Consequently, the absene of the �rst branh at Re = 180 is expeted.

In Fig. 5.3 the amplitude of streamwise �uid fore oe�ient Ĉx is plotted against

U∗
for di�erent m∗

values. As an be seen, Ĉx follows similar trends for all mass ratios.

Initially, Ĉx inreases gradually with U∗
reahing a peak level near the point where peak

amplitudes of ylinder osillation our (see Fig. 5.1a and Fig. 5.1). Despite the peak

(a) (b) (c)

Figure 5.2: Vortiity ontours (red: positive, blue: negative) at the peak amplitude points

(m∗, U∗) = (2, 2.17) (a) (10, 2.55) (b) and (20, 2.614) () for Re = 180. Eah vortex ontours are

reorded at random phases of the ylinder osillation
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Figure 5.3: Amplitude of streamwise �uid fore oe�ient against redued veloity for di�erent

mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,

2

Similar to the Kármán vortex street. Using the notations introdued by Williamson and Roshko [28℄,

alternating vortex shedding mode is referred to as 2S mode. However, in terms of streamwise-only VIV,

the terminology alternating mode of vortex shedding is more preferred than the 2S mode.
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vibration amplitude is only x̂0 = 0.011, the maximum Ĉx is around 0.106, whih is roughly
three times higher than the value obtained for a stationary ylinder. After the maximum

point, a steep derease of Ĉx within a narrow range of U∗
is observed at the end of whih

it approahes zero; Ĉx → 0 at U∗ ∼= 2.625. Note that the results obtained from the two-

degree-of-freedom VIV omputations, presented in Setion 4.1 show a somewhat similar

e�et; as seen in Fig. 4.3, Cx′ → 0 at around U∗
St = 0.5. It is also seen in Fig. 5.3 that

beyond the point where Ĉx → 0 the amplitude of the streamwise �uid fore oe�ient

inreases gradually. Similar to the tendenies observed in the non-dimensional osillation

amplitude and frequeny (see Fig. 5.1), Ĉx found to jump at U∗ = 2.614 for m∗ = 20,

losely after the redued veloity value where the peak value in Ĉx is identi�ed (see Fig.

5.3b).

In order to investigate the phenomenon Ĉx → 0 more in depth, a model based on

harmoni assumptions (often alled harmoni osillator model) is used. Let us assume

that the ylinder displaement and the streamwise �uid fore oe�ient are sinusoidal

funtions of time:

x0(t) = x̂0 sin 2πf
∗

xt, (5.1)

Cx(t) = Ĉx sin(2πf
∗

xt+ Φx), (5.2)

where Φx is the phase di�erene of streamwise �uid fore relative to the ylinder displae-

ment (i.e. the streamwise phase). Similar to Eqs. (4.4) and (4.5), the mean omponents of

x0(t) and Cx(t) are omitted, beause they do not a�et the dynamis. The di�erentiation

of x0(t) with respet to time result in the following formulæ for the time-varying veloity

ẋ0(t) and aeleration ẍ0(t) of the ylinder:

ẋ0(t) = 2πf ∗

x x̂0 cos 2πf
∗

xt, (5.3)

ẍ0(t) = −4π2f ∗2
x x̂0 sin 2πf

∗

xt. (5.4)

Substituting Eqs. (5.1)-(5.4) into the ylinder equation of motion [Eq. (2.12)℄, the

following equation is obtained:

− 4π2f ∗2
x x̂0 sin(2πf

∗

xt) +
8π2f ∗

x x̂0ζ

U∗

cos(2πf ∗

xt) +
4π2x̂0

U∗2
sin(2πf ∗

xt)

=
2Ĉx

πm∗
[sin(2πf ∗

xt) cosΦx + cos(2πf ∗

xt) sinΦx] .

(5.5)

Equating the sine and osine terms in this equation the following expressions an be

obtained:

cosΦx =
2π3m∗x̂0

ĈxU∗2
(1− f ∗2

x U∗2), (5.6)

sinΦx =
4π3m∗ζx̂0

ĈxU∗

f ∗

x . (5.7)

Adding the squares of Eqs. (5.6) and (5.7), and expressing the amplitude of streamwise

�uid fore oe�ient the following formula is resulted in:

Ĉx =
2π3m∗x̂0

U∗2

√
(1− f ∗2

x U∗2)2 + 4ζ2f ∗2
x U∗2. (5.8)
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Substituting zero strutural damping ratio ζ = 0% into Eq. (5.8), it an be seen that

Ĉx = 0 at the point where the frequeny of ylinder vibration oinides with the natural

frequeny of the system in vauum, i.e. at f ∗

xU
∗ = 1. Table 5.1 shows f ∗

x and f ∗

xU
∗
at

di�erent redued veloity values for m∗ = 10. It an be observed that f ∗

xU
∗
is very lose

to unity at U∗ = 2.625, at the same point where the amplitude of streamwise �uid fore

oe�ient approahes zero (see Fig. 5.3).

Table 5.1: The f∗

x and f∗

xU
∗
for di�erent redued veloity values lose to the point where Ĉx → 0

for m∗ = 10 and Re = 180

U∗

2.618 2.62 2.625 2.63 2.635

f ∗

x 0.3805 0.3806 0.3807 0.3808 0.3809

f ∗

xU
∗

0.9961 0.9972 0.9993 1.0015 1.0037

Besides, Eq. (5.7) shows that for ζ = 0% sinΦx = 0, therefore Eq. (5.6) an results in

only Φx = 0◦ and 180◦ values; hene the ylinder displaement an be only in-phase or out-

of-phase with the streamwise �uid fore oe�ient. In Fig. 5.4 Φx
3

is plotted against the

redued veloity for di�erent m∗
values. This �gure seems to on�rm the above mentioned

riteria, Φx jumps between approximately 0◦ and 180◦ at around U∗ = 2.625 for all mass

ratio values.
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Figure 5.4: Phase di�erene of streamwise �uid fore relative to ylinder displaement against

the redued veloity for m∗ = 2 ( ), 5 ( ), 10 ( ) and 20 ( ) at Re = 180

It is very important to see in Fig. 5.1 that the dimensionless osillation amplitude

shows a non-zero value at the point where Ĉx reahes zero. The question arises how an

the unsteady streamwise �uid fore with approximately zero �utuation result in �nite

amplitude of ylinder osillation. Figure 5.5 shows the relative waveforms of the ylinder

displaement x∗

0 and streamwise �uid fore C∗

x [de�ned by Eqs. (4.2) and (4.3)℄, and the

frequeny spetra of Cx at di�erent U∗
values for m∗ = 2. It an be seen that, while x∗

0
is harmoni, the streamwise �uid fore shows a strongly non-harmoni behavior in the

viinity of the point where Ĉx → 0. As seen in the Fast Fourier spetra of Cx, a frequeny

omponent with the double of the ylinder's vibration frequeny 2f ∗

x (i.e. the seond

harmoni omponent) appears. It an be observed that the intensity of 2f ∗

x inreases with

3

The omputation methodology of Φx is shown in Appendix A.2.1.
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Figure 5.5: The relative waveforms (top plots) of streamwise ylinder displaement (x∗0, blue
dashed lines) and streamwise �uid fore (C∗

x, red solid lines), and the frequeny spetra of stream-

wise �uid fore (bottom plots) for U∗ = 2.61 (a), 2.62 (b), 2.63 () and 2.64 (d) at m∗ = 2 and

Re = 180

the redued veloity towards the point of f ∗

xU
∗ = 1. At the point where the vibration

frequeny is the losest to the natural frequeny of the system, at U∗ = 2.63, the 2f ∗

x

peak is the most dominant in the spetra, the intensity of the f ∗

x frequeny omponent

is very low. This result indiates that, vortex-indued vibrations at around f ∗

xU
∗ = 1 is

highly nonlinear, and the mehanial energy is transferred from the �uid to the ylinder

aross di�erent harmoni omponents.

Figure 5.6 shows the amplitude of transverse �uid fore Ĉy against U∗
for di�erent

mass ratio values between m∗ = 2 and 20. As an be seen, Ĉy displays omparable

tendenies at all m∗
values, similarly to Ĉx (see Fig. 5.3). At the beginning, Ĉy inreases

monotonially up to its peak value, whih is followed by a rapid derease. Beyond the

minimum point Ĉy inreases gradually. It an be seen that inreasing the mass ratio, the

maximum and minimum points of Ĉy shift towards inreasing U∗
values. In ontrast to

the �ndings onerning the amplitude of streamwise �uid fore oe�ient, the maximum

and minimum Ĉy values are only 6% higher and 5% lower, respetively, than the value
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Figure 5.6: Amplitude of transverse �uid fore oe�ient against redued veloity for di�erent

mass ratio values at Re = 180. m∗ = 2, ; 5, ; 10, ; 20,
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obtained for a stationary ylinder. Note that, the minimum point observed for m∗ = 20 is
an exeption, it is only 3% lower than the orresponding value for a stationary ylinder.

Sine the body osillates only streamwise with the free stream, there is no inertial fore

in the transverse diretion, whih ould result in larger hanges in Ĉy. For this reason,

the variations of Ĉy an only be aused by the hanges in the vortex dynamis. As an

be seen in Fig. 5.2 no signi�ant hange an be observed in the vortex shedding, so that,

a small variation in Ĉy is expeted.

Similarly to the time history of Cx, let us assume that the transverse �uid fore

oe�ient an be represented as a harmoni funtion of time:

Cy(t) = Ĉy sin(πf
∗

xt+ Φy), (5.9)

where Φy is the phase di�erene of transverse �uid fore relative to the ylinder dis-

plaement. Note that the frequeny of Cy is f ∗

x/2, hene the phase di�erene value is

meaningful in the range of 0◦ ≤ Φy ≤ 180◦. In Fig. 5.7 Φy is shown against the redued

veloity for di�erent m∗
values. Unlike Φx whih is restrited to the values of 0◦ and 180◦

for ζ = 0% [Eqs. (5.6) and (5.7)℄, Φy shows a smooth variation between approximately

20◦ to 110◦. It was shown earlier that as the mass ratio is inreased the width of the

exitation range dereases (see Fig. 5.1), onsequently, the rate of hange for Φy inreases

(Fig. 5.7). Moreover, at U∗ = 2.614 for m∗ = 20 Φy jumps abruptly from Φy = 56.5◦ to
93.4◦.

1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

U ∗

Φy

Figure 5.7: Phase di�erene of transverse �uid fore relative to the ylinder displaement for

m∗ = 2 ( ), 5 ( ), 10 ( ) and 20 ( ) at Re = 180

Konstantinidis et al. [101℄ investigated the �ow around a stationary ylinder plaed into

a free stream upon whih a periodi veloity osillation (perturbation) is superimposed.

They measured the unsteady transverse veloity omponent, and alulated the phase

di�erene of this veloity omponent with respet to the in-�ow veloity. Note that this

phase angle value is similar to the Φy applied in this study. Konstantinidis et al. [101℄ found

that inreasing the frequeny of veloity perturbation the phase di�erene value inreases.

They attributed this e�et to the shift in the timing of vortex shedding

4

. Sine the ase

investigated in [101℄ is kinematially equivalent with the streamwise-only vortex-indued

vibration of a irular ylinder analyzed in the hapter, the gradual inrease observed in

Φy (Fig. 5.7) may be attributed also to the shift in the timing of vortex shedding.

Konstantinidis et al. [101℄ alulated also the vortex strength Γ based on the veloity

�elds obtained using the Digital Partile Image Veloimetry tehnique. They showed that

4

�... the phase at whih a vortex pinhes o� from the ylinder with respet to the in�ow veloity

osillation� (see [101℄, p. 48.)

Last updated: April 20, 2020



5.1. THE EFFECT OF MASS RATIO 49

Γ inreases up to the point (time instant), where a vortex is shed from the ylinder. At

this instant Γ shows a sudden drop. In terms of transverse �uid fore (obtained from the

present CFD simulations), inreasing vortex strength means inreasing Cy, whih reahes

its maximum (or minimum) value at the same point where Γ is at its maximum, i.e. at

the time instant where a vortex (negative or positive) is shed from the body. In other

words, the time instant of vortex shedding an be determined from the time history of the

transverse �uid fore. Negative or positive vorties are shed from the body at the points,

where Cy reahes its maximum or minimum, respetively.

Figure 5.8 shows the vortiity distributions at the time instants orresponding to the

positive extreme point (top row) and the zero ross-over point (middle row) of the ylinder

displaement at di�erent U∗
values form∗ = 5. The relative waveforms of the displaement

and the transverse �uid fore oe�ient x∗

0 and C∗

y
5

are shown in the bottom row. It an be

seen in Fig. 5.8a that at U∗ = 2.35 the time orresponding to the peak values observed in

x∗

0 and C∗

y are very lose to eah other. This �nding indiates that the (negative) vortex

is shed from the ylinder lose to the point at whih the body approahes its positive

extreme position. As an be seen in Fig. 5.7, the phase di�erene value is Φy = 40.6◦ at
U∗ = 2.35. However, inreasing the redued veloity, Φy shows a signi�ant inrease; at

U∗ = 2.6 the phase di�erene reahes Φy
∼= 96◦. This remarkable inrease is related to the

shift in the timing of vortex shedding. It an be observed in Fig. 5.8b that the instants

where the negative vortex is shed from the ylinder and that where the ylinder attains
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Figure 5.8: Vortiity ontours at di�erent time instants (top and middle rows), and the relative

waveforms of the ylinder displaement (blue dashed line) and the transverse �uid fore (red

solid line) for U∗ = 2.35 (a), 2.6 (b) and 2.7 () at m∗ = 5 and Re = 180. The vortex strutures

in the top and middle rows are reorded at the time instant values at whih the ylinder is at its

positive extreme point and zero-ross over point

5

The relative waveform of the transverse �uid fore is de�ned as C∗

y
= [Cy −Cy]/Ĉy, similarly to x∗

0

and C∗

x
[see Eqs. (4.2) and (4.3)℄
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its positive extreme position are far from eah other: C∗

y (t) < 0 at the point where x∗

0(t)
is at its maximum. As an also be seen, beyond U∗ = 2.6 there is no signi�ant hange

in Φy, for example at U∗ = 2.7 the phase di�erene value of Φ = 99.2◦ is obtained. This
implies a slight shift in the timing of vortex shedding.

5.2 The e�et of Reynolds number

In this setion the streamwise-only VIV of a irular ylinder is investigated at di�erent

Reynolds numbers (Re = 100, 180 and 250), and onstant mass and strutural damping

ratio values (m∗ = 10 and ζ = 0%, respetively). Similar to the omputations arried out

earlier and present in Setion 5.1, the redued veloity is varied between U∗ = 1.5 and

3.5.
Figure 5.9a shows the non-dimensional osillation amplitude x̂0 against the redued

veloity for di�erent Re values. It an be seen the x̂0 urves show similar trends; inreasing

the redued veloity at a ertain Reynolds number, x̂0 inreases ontinuously up to its

peak value, and then it shows a dereasing e�et. As seen, the amplitude urves shift

upwards with Re. Table 5.2 shows the peak values in x̂0, Ĉx and Ĉy, and the minimum

values in f ∗

x and Ĉy at the three Reynolds numbers for m∗ = 10. It is observed that

inreasing the Re from 100 to 180 the peak vibration amplitude shows a �vefold inrease,

and the maximum x̂0 at Re = 250 is more than the double of the value obtained for

Re = 180. As an also be seen, when the Reynolds number is inreased, the rate of hange

for the amplitude of ylinder osillation inreases. Similar to high mass ratio ases for

Re = 180, x̂0 displays a sudden drop diretly after the point orresponding to the peak

ylinder response for Re = 250.
Figure 5.9a reveals also that the U∗

value where the peak vibration amplitude ours

dereases with Re. For example the maximum x̂0 is observed at U∗ = 2.469 for Re = 250,
whih redued veloity value is very lose to the point of 1/(2St) = 2.457. Sine the

Strouhal number inreases in the domain of 100 ≤ Re ≤ 250 [see Eq. (1.8) [17℄℄, the point
orresponding to 1/(2St) dereases; hene the U∗

value where the peak x̂0 ours has to

derease with the Reynolds number.

Figure 5.9b shows the dimensionless vibration frequeny of the ylinder as funtion

of the redued veloity for di�erent Reynolds numbers. It an be seen that the f ∗

x urves

display similar harateristis for all Re ases. At one partiular Reynolds number f ∗

x

dereases to its minimum point, whih ours approximately at the same redued velo-
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Figure 5.9: Dimensionless osillation amplitude (a) and frequeny (b) against the redued ve-

loity for Re = 100 ( ), 180 ( ) and 250 ( ) at m∗ = 10
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Table 5.2: The maximum values in x̂0, Ĉx and Ĉy, and the minimum values in f∗

x and Ĉy for

di�erent Reynolds numbers at m∗ = 10

Re St

x̂0 f ∗

x Ĉx Ĉy

Max Min Max Min Max

100 0.1644 0.00215 0.3273 0.0109 0.3151 0.3234

180 0.1913 0.01080 0.3722 0.1057 0.5724 0.6363

250 0.2035 0.02340 0.3856 0.2279 0.7642 0.8701

ity value, where the maximum x̂0 is observed. Beyond the minimum point f ∗

x inreases

asymptotially to a value orresponding to the double of the Strouhal number. Sine St

depends highly on Re in the low-Reynolds number domain, the asymptote shifts towards

higher frequeny values. It is also learly seen in Fig. 5.9b that f ∗

x shifts upwards with

Re. Although this phenomenon is partially aused by the strong dependene of St on

Re, the orrelation is not expliit, beause the di�erene between the minimum f ∗

x and

2St is strongly in�uened by the peak osillation amplitude, whih depends also on the

Reynolds number. As an be seen in Fig. 5.9, the higher peak osillation amplitude (or

the Reynolds number), the higher the di�erene between 2St and the minimum vibration

frequeny value. For example the minimum f ∗

x is only 0.47% lower than the double of the

Strouhal number for Re = 100, while for Re = 250 f ∗

x is 5.27% lower than 2St (see Table
5.2).

In Fig. 5.10a the amplitude of streamwise �uid fore oe�ient is shown against the re-

dued veloity for di�erent Re values. Similarly to the osillation amplitude and frequeny

urves (see Fig. 5.9), the Ĉx data sets orresponding to di�erent Reynolds numbers show

similar tendenies. It an be seen that inreasing the redued veloity at one partiular

Reynolds number, at the beginning, Ĉx inreases gradually reahing a peak level, whih

point approximately oinides with the point of peak ylinder response. It was shown

earlier that the U∗
value, where the maximum in x̂0 and the minimum in f ∗

x is identi�ed

dereases with Re. Hene, the point where the maximum Ĉx is found also tends to lower

redued veloity values, when the Reynolds number is inreased. As seen in Table 5.2, the

peak Ĉx value inreases intensively with Re, and, as already mentioned, these values are

signi�antly larger than those obtained for a stationary ylinder (see the relevant disus-
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Figure 5.10: Amplitude of streamwise (a) and transverse �uid fore (b) against redued veloity

for Re = 100 ( ), 180 ( ) and 250 ( ) at m∗ = 10

Last updated: April 20, 2020



5.2. THE EFFECT OF REYNOLDS NUMBER 52

sion in Setion 5.1). After the maximum point Ĉx found to derease to a value of zero.

Similar to the di�erent mass ratio ases presented in Setion 5.1, the loation of Ĉx → 0
oinides with the point where f ∗

x = U∗−1
. It an be seen that inreasing the Reynolds

number, the U∗
value where Ĉx tends to zero dereases, whih may also be attributable to

the fat that St = St(Re). As also seen, when Re inreases, the interval within whih Ĉx

diminishes is narrowing. In addition, Ĉx shows a high jump between the redued veloity

values of U∗ = 2.469 and 2.47 for Re = 250. Beyond the minimum point, Ĉx inreases

gradually for all Reynolds numbers investigated.

Figure 5.10b shows the amplitude of transverse �uid fore oe�ient against the re-

dued veloity for di�erent Re values and onstant m∗ = 10. It an be seen that the

trends in Ĉy is very similar to that in Ĉx (see Fig. 5.10a). As an be seen, when the

redued veloity is varied, at a ertain Reynolds number, Ĉy gradually inreases up to

its peak point, then it dereases to its minimum value within a domain whih narrows

with Re. It an be observed that Ĉy displays a sudden drop for Re = 250 at the same

point where x̂0, f
∗

x and Ĉx jump (see Figs. 5.9 and 5.10a). After the minimum point Ĉy

inreases monotonially. It was mentioned earlier in Setion 5.1 that the maximum and

minimum values in Ĉy are only slightly higher and lower than the orresponding value

for a stationary ylinder. This �nding holds true for eah Reynolds numbers onsidered

in this analysis. The maximum values in Ĉy are 2.06% and 10.6% higher than the values

obtained for a stationary ylinder for Re = 100 and 250, respetively, while the minimum

values of Ĉy for the same Reynolds numbers are 0.5% and 2.8% lower than those for a

non-osillating ylinder. As mentioned earlier in Setion 5.1, the slight hanges in Ĉy is

aused only by vortex dynamis. Figure 5.11 shows the vortiity ontours at di�erent

Reynolds numbers orresponding to the point of peak ylinder response. As seen, despite

the signi�ant inrement in the osillation amplitude, there is no remarkable hange in

the vortex struture; alternating modes of vortex shedding are observed at eah Re values.

For this reason, the small variations in the amplitude of transverse �uid fore oe�ient

are expeted, whih is onsistent with the results presented in Fig. 5.10b.

Figures 5.12a and 5.12b show the variations of Φx and Φy, respetively, against the

redued veloity for di�erent Re. As shown earlier, Φx is restrited to the values of 0◦ and
180◦, and the jump between these two values ours at the point where the amplitude

of streamwise �uid fore tends to zero [see Eqs. (5.6) and (5.7)℄. It an be observed in

Fig. 5.10a that the U∗
value where Ĉx → 0 dereases with the Reynolds number, whih

explains why the point where Φx jumps between approximately 0◦ and 180◦ shifts to lower
redued veloities. Instead of abrupt hanges, the phase di�erene of transverse �uid fore

relative to the ylinder displaement, i.e. Φy, inreases gradually from approximately 20◦

to 120◦ (see Fig. 5.12b). Note that the data set obtained for Re = 250 is an exeption,

(a) (b) (c)

Figure 5.11: Vortiity ontours for (Re, U∗) = (100, 2.9) (a), (180, 2.55) (b) and (250, 2.469) ()
at m∗ = 10. Eah snapshots are reorded at random phases of the ylinder osillation
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Figure 5.12: Phase di�erenes of streamwise (a) and transverse (b) �uid fore oe�ients relative

to the ylinder displaement against the redued veloity for Re = 100 ( ), 180 ( ) and 250
( ) at m∗ = 10

Φy displays a sudden hange at U∗ = 2.469, similar to the quantities investigated earlier

(x̂0, f
∗

x , Ĉy and Ĉy). It was shown in detail in Setion 5.1 that the gradual inrease in Φy

relates to the shift in the timing of vortex shedding.

5.3 New sienti� results

Contribution III

Using two-dimensional CFD omputations I showed that streamwise-only vortex-indued

vibrations are possible at low Reynolds numbers. A single exitation region is observed

for all Reynolds number and mass ratio ombinations investigated (Re = 100, 180 and

250, and m∗ = 2, 5, 10 and 20). The dimensionless osillation amplitude x̂0 inreases up

to its peak value, beyond whih it gradually dereases. The nondimensional frequeny

of ylinder vibration f ∗

x behaves oppositely: it dereases to its minimum value, then it

monotonially inreases. I showed that the dimensionless vibration frequeny is always

lower than the double of the Strouhal number for a stationary ylinder. This �nding is

onsistent with the fored vibration results available in the literature.

The peak value in x̂0 and the minimum value in f ∗

x are identi�ed approximately at

the same U∗
value. These maximum and minimum values appear to be independent of

the mass ratio. Inreasing the Reynolds number, the peak x̂0 value inreases intensively;

for the Reynolds number values of Re = 100, 180 and 250 the peak vibration amplitudes

are approximately 0.22%, 1.1% and 2.3% of the ylinder diameter, respetively. I showed

also that the single exitation region identi�ed in this study orresponds to the seond

response branh found at moderately high-Re experiments, beause alternating modes of

vortex shedding are observed in eah ases.

Related publiations: Konstantinidis et al. [J5℄, Dorogi et al. [C12℄ and Dorogi et al.

[C11℄

Contribution IV

Assuming that the ylinder displaement x0 and the streamwise �uid fore oe�ient Cx

are sinusoidal funtions of time I derived the following formula for the amplitude of Cx:
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Ĉx =
2π3m∗x̂0

U∗2

√
(1− f ∗2

x U∗2)2 + 4ζ2f ∗2
x U∗2, (5.8)

where m∗
and ζ are the mass ratio and damping ratio values, respetively, x̂0 and f ∗

x

are the dimensionless osillation amplitude and frequeny values, and U∗
is the redued

veloity. Substituting ζ = 0%, it an be seen that Ĉx = 0 at the point, where the vibration
frequeny oinides with the ylinder's natural frequeny, i.e. at f ∗

xU
∗ = 1. I on�rmed this

�nding using CFD simulations for m∗ = 2, 5, 10 and 20 at Re = 180. The omputations

revealed that Ĉx → 0 at U∗ ∼= 2.625. Sine x̂0 is non-zero, the streamwise �uid fore

oe�ient has strongly non-harmoni nature in the viinity of U∗ = 2.625. I showed the

ourrene of a frequeny omponent double the frequeny of ylinder vibration (i.e. the

seond harmoni omponent) just before the point of Ĉx → 0. At the redued veloity

value, where the vibration frequeny is the losest to the natural frequeny of the ylinder,

the intensity of the seond harmoni omponent is the highest.

The harmoni osillator model show that the phase di�erene of Cx relative to x0

has to swith suddenly between 0◦ and 180◦, whih I on�rmed using the CFD data.

Besides, I alulated the phase lag of the transverse �uid fore with respet to the ylinder

displaement Φy. Instead of abrupt jumps, I showed that Φy displays gradual inrease from

approximately 20◦ to 110◦. This gradual inrease an be attributed to shift in the timing

of vortex shedding, whih was on�rmed using the instantaneous vortiity ontours.

Related publiations: Konstantinidis et al. [J5℄, Dorogi et al. [C12℄ and Dorogi et al.

[C11℄
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Chapter 6

Transverse vortex-indued vibrations:

identi�ation of the upper branh for

Re = 300

In this hapter, similar to the omputations arried out in Chapter 5, single-degree-of-

freedom vortex-indued vibrations are investigated, but here the ylinder is restrited

to osillate only transverse to the main stream. Although there are several studies in the

literature dealing with transverse-only vortex-indued vibrations, there are still some open

questions whih are worth to deal with.

As was pointed out in Chapter 1, vortex-indued vibrations show very di�erent trends

at high and low Reynolds numbers. For high-Re ases, and very low mass and damping

values, three-branh ylinder response ours; initial, upper and lower branhes are found

[59, 60, 62, 63, 102℄. Feng [57℄ and Khalak and Williamson [59℄ showed that the mass-

damping parameter a�ets the ylinder response signi�antly; at high m∗ζ values the

upper branh does not appear, a two-branh response is identi�ed. In ontrast, in the low-

Reynolds number domain, independently of the m∗ζ only two-branh ylinder response is

identi�ed; an upper branh has not yet been observed [38, 66, 70, 72, 89℄.

However, there are some relevant �ndings available in the literature, whih may refer

to the possible existene of the upper branh in the low-Reynolds number domain. These

�ndings are listed as follows:

(a) Khalak and Williamson [59℄ found 2P wake mode in the upper branh. However,

Evangelinos and Karniadakis [71℄ reported using two and three-dimensional ompu-

tations that the P+S vortex pattern may also be assoiated with the upper branh;

(b) Leontini et al. [31℄ arried out transverse-only fored vibration omputations at

several Reynolds numbers. At Re = 300, lose to the fundamental lok-in domain

they identi�ed the P+S vortex struture with positive mehanial energy transfer,

meaning that the energy is transferred from the �uid to the ylinder.

() Singh and Mittal [72℄ investigated two degrees of freedom vortex-indued vibrations

at onstant U∗ = 4.92. They showed the ourrene of the P+S wake mode above

Re = 300;

(d) The results from the 2DoF VIV omputations presented in Chapter 4, and published

in [J3℄, show that the P+S vortex shedding mode develops at high dimensionless

natural frequeny values, near the Reynolds number of 300.

These �ndings motivated us to address the following researh questions (see also Se-

tion 1.2):
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Does the upper branh (i.e. the three-branh ylinder

response) our at the Reynolds number of 300? What is the

e�et of strutural damping on the ylinder response?

In order to answer these questions, omputations are arried out at the Reynolds

number and mass ratio values of Re = 300 and m∗ = 10, respetively. The strutural

damping ratio is onsidered between ζ = 0% and 5%, hene the ombined mass-damping

parameter is hosen to be in the range of m∗ζ = 0 and 0.5. The redued veloity based

on the ylinder's natural frequeny in vauum is varied from U∗ = 2.5 to 7.5.

6.1 The three-branh response

Figure 6.1a shows the rms values of the non-dimensional ylinder displaement y0′, and
in Fig. 6.1b the vibration frequeny normalized by the ylinder's natural frequeny in

vauum fy/fN is plotted against U∗
for ζ = 0%. The dashed line in Fig. 6.1b represents

fv/fN , where fv is the vortex shedding frequeny for a stationary ylinder. It an be seen

that the ylinder response obtained is very similar to the three-branh response presented

in many studies but only for high Reynolds numbers. In the following, the individual

branhes will be desribed in detail.

As an be seen, in the range of 2.5 ≤ U∗ ≤ 3.5 the osillation amplitude is very low and

the vibration frequeny is lose to the vortex shedding frequeny for a stationary ylinder

(fy ∼= fv). From U∗ = 3.5 to 4 an initial branh is identi�ed, where fy/fN represents

an approximately onstant value of fy/fN ∼= 0.95, and y0′ inreases intensively. Between
U∗ = 4 and 5.9 lok-in or synhronization is observed, where the vibration frequeny loks
approximately to the natural frequeny of the system (see Fig. 6.1b). The entire lok-in

domain an be divided into two subdomains. Relatively high osillation amplitudes are

observed in the range of 4 < U∗ ≤ 4.89 (see Fig. 6.1a), where the vibration frequeny is

slightly lower than the ylinder's natural frequeny (fy/fN < 1, Fig. 6.1b). This redued
veloity domain appears to orrespond to the upper branh. In order to on�rm this

suggestion, areful analysis is needed, whih is presented in Setion 6.2. At the higher

boundary of the suggested upper branh y0′ drops abruptly by 7%, and fy passes through
fN . Govardhan and Williamson [60℄ identi�ed a similar phenomenon at the boundary

separating the upper and the lower branhes for Re

∼= 103�104. Between U∗ = 4.89 and

5.9 the lower branh is observed, where fy is slightly higher than fN (see Fig. 6.1b), and y0′
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Figure 6.1: Root-mean square values of transverse ylinder displaement (a) and the vibration

frequeny normalized by the natural frequeny of the system in vauum (b) against the redued

veloity for ζ = 0%
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reahes intermediate values (Fig. 6.1a). The redued veloity range above U∗ = 5.9 is out
of the lok-in domain: the osillation amplitude is very low (y0′ ∼= 0.1), and the vibration

frequeny is lose again to the vortex shedding frequeny for a stationary ylinder.

Govardhan and Williamson [60℄, based on the methodology introdued by Lighthill [61℄

applied the following deomposition on the time-dependent transverse �uid fore F̃y(t):

F̃y(t̃) = F̃V (t̃) + F̃p(t̃). (6.1)

In this formula F̃V and F̃p are the instantaneous vortex and potential added mass

fores, respetively, per unit length of the ylinder. The potential added mass fore is

de�ned as follows [60℄:

F̃p(t̃) = −CAmd
¨̃y0(t̃), (6.2)

where CA is the potential added mass oe�ient, whih equals to unity for a irular

ylinder [56℄, md = ρd2π
4

is the displaed �uid mass per unit length of the ylinder, and

¨̃y0
is the dimensional ylinder aeleration. Rearranging and normalizing Eq. (6.1) by

1
2
ρU2

∞
d

the following expression an be obtained for the instantaneous vortex fore oe�ient:

CV (t) = Cy(t) +
π

2
ÿ0(t), (6.3)

where ÿ0 =
d

U2
∞

¨̃y0 is the non-dimensional ylinder aeleration.

Figures 6.2a and 6.2b show the rms values of transverse �uid fore and vortex fore

oe�ients Cy′ and CV ′
, respetively, against U∗

for ζ = 0%. It an be seen that for very

low ylinder displaements, i.e. in the domains of 2.5 ≤ U∗ ≤ 3.45 and 5.9 < U∗ ≤ 7.5,
Cy′ and CV ′

are approximately idential and near the value obtained for a stationary

ylinder (Cy′
∼= CV ′ ∼ 0.5, see Norberg [23℄). Govardhan and Williamson [60℄ found

Cy′
∼= CV ′

∼= 0.1 in the very low osillation amplitude range (in U∗ < 4 and U∗ > 10.5
in their study), whih is lose to CV ′

∼= 0.05, the value identi�ed for a non-osillating

ylinder at Re ∼ 103 [23℄. In this sense, the urrently obtained CFD results for Re = 300
and the experimental �ndings of [60℄ for high Reynolds numbers show good qualitative

agreement.

Inreasing the redued veloity in the initial branh, Cy′ inreases gradually, and

reahes its peak value at the beginning of the suggested upper branh (at U∗ = 4, see
Fig. 6.2a). Between U∗ = 4 and 4.89 Cy′ drops dramatially, moreover at U∗ = 4.36 (in
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Figure 6.2: Root-mean square values of transverse �uid fore (a) and vortex fore (b) against

the redued veloity for ζ = 0%
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the middle of the proposed upper branh) it su�ers a sudden hange from Cy′
∼= 0.71

to approximately 0.25. It is also seen in Fig. 6.2a that at U∗ = 4.89 Cy′ shows another

but muh smaller jump, above whih it inreases. The experimental results of Govardhan

and Williamson [60℄ and the trends in the urrent omputational results are very similar.

However, abrupt hange in Cy′ in the middle of the upper branh has not been identi�ed

in the high-Reynolds number domain; this jump may orrespond to other important �ow

phenomena.

The rms values of vortex fore oe�ient (see Fig. 6.2b) found to derease in the initial

branh until it reahes its minimum value. The loations of the extreme values in Cy′ and

CV ′
are near to eah other. In the proposed upper branh CV ′

inreases strongly, and

at U∗ = 4.36 it hanges suddenly between CV ′
∼= 0.53 and 1.02. Similarly again to the

tendenies observed in Cy′, at U
∗ = 4.89 the rms of vortex fore oe�ient shows another

but muh smaller jump. The peak value in CV ′
is observed at the beginning of the lower

branh, whih �nding qualitatively agrees well with that of [60℄.

6.2 Phase dynamis for undamped vibrations

The results presented earlier suggest that the upper branh exists at the Reynolds number

of 300. In order to on�rm this suggestion, areful analyses are required. Let us assume

again that the motion of the ylinder and the aerodynami fore oe�ients ating on the

body are sinusoidal funtions of time:

y0(t) = ŷ0 sin 2πf
∗

y t, (6.4)

Cy(t) = Ĉy sin(2πf
∗

y t+ Φy), (6.5)

CV (t) = ĈV sin(2πf ∗

y t + ΦV ), (6.6)

where Ĉy and ĈV are the amplitude of the transverse �uid fore and vortex fore oe�-

ients, and ŷ0 and f ∗

y are the non-dimensional osillation amplitude and frequeny values.

In these expressions Φy and ΦV are the phase di�erenes for transverse �uid fore and

vortex fore, respetively, relative to the ylinder displaement. For the sake of simpliity,

Φy and ΦV will be referred to as transverse and vortex phases, respetively.

In Chapter 5 the harmoni osillator model is given in detail for a irular ylinder

free to vibrate only in streamwise diretion. Sine the approahes used for transverse-only

and streamwise-only vortex-indued vibrations are very similar to eah other, only little

detail is provided in this hapter. For further details the reader is referred to Chapter 5,

Setion 5.1.

Substituting Eqs. (6.4) and (6.5) into the ylinder equation of motion [Eq. (2.13)℄,

and equating the oe�ients of sine and osine terms, the following expressions an be

obtained:

cosΦy = 2π3 m∗ŷ0

ĈyU∗2
(1− f ∗2

y U∗2), (6.7)

sinΦy = 4π3m
∗ζŷ0

ĈyU∗

f ∗

y . (6.8)

It an be seen in Eq. (6.7) that cosΦy hanges from positive to negative at the point

where the vibration frequeny passes through the natural frequeny of the system in

vauum, i.e. at f ∗

yU
∗ = 1. In addition, Eq. (6.8) shows that for zero strutural damping,

sinΦy = 0, therefore, the ylinder motion an only be in-phase (Φy = 0◦) or out-of-phase
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(Φy = 180◦) with the transverse �uid fore. Hene, as the system goes through f ∗

yU
∗ = 1

for ζ = 0◦, the transverse phase has to jump from 0◦ to 180◦.
Introduing Cy(t) = CV (t) − π

2
ÿ0(t) [based on Eq. 6.3℄ and the harmoni approxima-

tions [Eqs. (6.4) and (6.6)℄ into Eq. (2.13), and equating the oe�ients of the sine and

osine funtions, the following formulæ are obtained:

cosΦV = 2π3 (m
∗ + CA)ŷ0

ĈV U∗2
A

(1− f ∗2
y U∗2

A ), (6.9)

sinΦV = 4π3

√
m∗(m∗ + CA)ζŷ0

ĈVU
∗

A

f ∗

y , (6.10)

where U∗

A is the redued veloity based on the ylinder's natural frequeny in still �uid

fN,a. Similarly to Eq. (6.7), Eq. (6.9) shows that cosΦV hanges from positive to negative

as the system passes through f ∗

yU
∗

A = 1. Sine for undamped vibrations the vortex phase

is restrited to the values of ΦV = 0◦ and 180◦, the vortex phase has to jump between

these two values (0◦ and 180◦) at the point orresponding to f ∗

yU
∗

A = 1.
Govardhan and Williamson [60℄ at high Reynolds numbers and low mass and damping

values found that ΦV and Φy jump at di�erent redued veloity values. The U∗
domain

whih is enlosed between the two phase jumps (in ΦV at its beginning and in Φy at its

upper boundary) orresponds to upper branh. In other words, to on�rm that the range

of 4 < U∗ ≤ 4.89, where relatively high osillation amplitudes are found (see Fig. 6.1),

represents the upper branh, Φy and ΦV should be investigated.

The time-dependent transverse and vortex phases (Φy and ΦV ) are alulated using

the analytial signal approah based on Hilbert transform, whih is shown in detail in

Appendix A.2.2. In the �gures the time-dependent phase di�erenes are mostly plotted in

radian as unwrapped signals. However, their time-average values (Φy and ΦV ) are shown

in degrees, and are alulated via time-averaging Φy and ΦV wrapped in the interval of

[−π/2, 3π/2] (see also Appendix A.2.2).

Figure 6.3 shows Φy (on the left-hand side) and ΦV (right) for di�erent redued veloity

values in the very low amplitude range (see Figs. 6.3a and 6.3b), and in the initial branh

(Fig. 6.3). It an be seen that in the domain of 2.5 ≤ U∗ ≤ 3.45 the transverse and vortex

phases are approximately onstant, only small osillations are observed near U∗ = 3.45
(Fig. 6.3b). In the initial branh (3.45 < U∗ ≤ 4) Φy shows intermediate osillations,

but its time-mean value is roughly zero (Fig. 6.3). However, in the same range ΦV shows

unbounded derease, whih orresponds to the loss of synhronization between the ylinder

motion and the vortex fore oe�ient [103, 104℄. In Pikovsky et al. [103℄ this phenomenon

is interpreted by analyzing the relationship between motion and foring frequenies.

In Fig. 6.4 di�erenes of vibration frequeny relative to the frequeny of transverse

�uid fore and vortex fore oe�ients, i.e. f ∗

y −f ∗

Cy
and f ∗

y −f ∗

CV
, respetively, are shown

against U∗
in the initial, proposed upper and lower branhes. These quantities are alled

detuning. It an be seen that in the initial branh f ∗

y > f ∗

CV
, whih explains why the

time-dependent vortex phase dereases in this domain [103℄. In addition, the di�erene

between the two frequeny values is relatively large in the range of 3.45 < U∗ ≤ 4, whih
auses the roughly uniform drop in the vortex phase (see Fig. 6.3). It is also shown in

Fig. 6.4 that f ∗

y − f ∗

Cy

∼= 0 in the initial branh, whih implies the roughly onstant value

of transverse phase.

Based on Fig. 6.1, the upper branh is expeted to appear in the domain of 4 < U∗ ≤
4.89. Figures 6.5a and 6.5b show the times histories of transverse and vortex phases at

U∗ = 4.2 and 4.28, respetively. In ontrast to the trends observed in the initial branh, in

the range of 4 < U∗ ≤ 4.28 f ∗

y is lower than f ∗

CV
(see Fig. 6.4), whih leads to inreasing

ΦV (Fig. 6.5). Besides, |f ∗

y − f ∗

CV
| is signi�antly lower in this domain ompared to that
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Figure 6.3: Time-dependent phase di�erenes of transverse �uid fore (left) and vortex fore

(right) relative to ylinder displaement at the redued veloity values of U∗ = 3 (a), 3.36 (b)

and 4 () for ζ = 0%

in the initial branh; thus, one an expet remarkable hanges in the dynamis of vortex

phase. As shown in Fig. 6.5, instead of unbounded hanges, ΦV onsists of time intervals,

so alled epohs [103℄, where the vortex phase is approximately onstant. It an be seen

that the time interval of an epoh extends with the redued veloity. Two neighboring

epohs are separated by so-alled phase slips, where the vortex phase shows rapid hange

[103℄. In addition, Figs. 6.5a and 6.5b show approximately onstant Φy values, whih

is expeted beause |f ∗

y − f ∗

Cy
| ∼= 0 between U∗ = 4 and 4.28 (Fig. 6.4). Note that in

this ontext, the phrase approximately onstant refers to that the phase di�erene varies

around a onstant value (in this ase, around zero).

Figure 6.6 shows the time histories of vortex phase wrapped between −π/2 and 3π/2
at the same redued veloity values where the time-dependent phase di�erenes were

investigated in Figs. 6.3 and 6.5. Pikovsky et al. [103℄ showed that the hange of phase

di�erene via a phase slip (see Fig. 6.5) annot be arbitrary, it is always the whole number

multiples of π. This �nding is expliitly shown in Figs. 6.6b and 6.6.

It is also very important to see that at an epoh, the wrapped vortex phase varies

periodially around π (see Figs. 6.6a and 6.6b), and Φy represents an almost onstant zero

value (Fig. 6.5). For this reason, the onditions of the existene of the upper branh (ΦV =
π and Φy = 0) in 4 < U∗ ≤ 4.28 seem to be satis�ed. However, in-between two epohs (i.e.

in phase slips) the vortex phase deviates marginally from π, whih auses disrepanies in

its time-mean value. As shown earlier, time lengths of the epohs inrease with U∗
, that

is, the deviation in ΦV from its theoretially expeted value (ΦV = 180◦) dereases with
the redued veloity. Similar issues appear in the initial branh (see Fig. 6.6a), where the

high spikes ourring in the wrapped phase angle in�uene ΦV signi�antly. In further

time-averaged phase di�erene plots it is neessary to distinguish between synhronous

and non-synhronous ases. By non-synhronous ases I mean that at the orresponding

U∗
values unbounded hanges or phase slips are identi�ed. These points will be indiated

by empty symbols.
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against the redued veloity in the initial
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y , f
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and f∗

CV
are the frequenies of ylinder osillation,

transverse �uid fore and vortex fore, respetively
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Figure 6.5: Time-dependent phase di�erenes Φy (left) ΦV (right) at U∗ = 4.2 (a) and 4.28 (b)

in the upper branh for ζ = 0%

Figure 6.7 shows the time histories of transverse and vortex phases in the range of

4.28 < U∗ ≤ 4.89. As an be seen in Fig. 6.4, the frequenies of vortex fore and transverse

�uid fore are equal to the vibration frequeny of the ylinder between U∗ = 4.28 and

4.7. Consequently, approximately onstant Φy and ΦV values are expeted in this domain.

Figures 6.7a-6.7 orroborate these expetations: neither unbounded hange nor phase

slips are identi�ed in Φy and ΦV . It is also seen in these �gures that the time-mean values

of ΦV and Φy approximately equal to π and 0, respetively, whih are onsistent with the

experimental results for the upper branh. This �nding further strengthens my previous

evidene onerning the existene of the upper branh at Re = 300.
It an also be seen in Figs. 6.7a-6.7 that the �utuations in transverse and vortex

phases are ampli�ed when U∗
is inreased. As seen, in the range of 4.28 < U∗ ≤ 4.35,

both Φy and ΦV show small periodi osillations (Fig. 6.7a). Varying the redued veloity

from U∗ = 4.35 to 4.48, Φy osillates randomly with very high rms values. The random

osillations are also observed in the time history of ΦV , but its �utuation is signi�antly

lower. In the domain of 4.48 < U∗ ≤ 4.7 the transverse and the vortex phases return bak

to periodi, but the very high �utuations in Φy are still observed (see Fig. 6.7).
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Figure 6.6: Time-dependent vortex phase at U∗ = 4 (a), 4.2 (b) and 4.28 () for ζ = 0%. Here,

phase di�erene is wrapped in [−π/2; 3π/2]
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Figure 6.7: Time-dependent phase di�erenes Φy (left) ΦV (right) at U∗ = 4.35 (a), 4.4 (b), 4.65
() and 4.89 (d) in the upper branh for ζ = 0%
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Inreasing the redued veloity in the range of 4.7 < U∗ ≤ 4.89, I found that the

detuning f ∗

y − f ∗

Cy
drops to approximately −0.2 (Fig. 6.4), whih auses an unbounded

inrease in the transverse phase (Fig. 6.7d). It is very interesting to note that the absolute

value of this detuning is very lose to the Strouhal number at Re = 300, i.e. f ∗

y − f ∗

Cy

∼=
−St. Besides, the vibration frequeny is also near St in the aforementioned U∗

range

(f ∗

y
∼= St, see Fig. 6.1b). Combining these two �ndings the detuning value of −0.2 an

only be ahieved when the frequeny of the transverse �uid fore, more preisely, the

most dominant frequeny omponent in the spetra of Cy, is double the Strouhal number,

f ∗

Cy

∼= 2St ∼= 2f ∗

y . Moreover, the unreasonably high �utuations in Φy appear to be aused

by the ourrene of higher order harmonis for Cy. These e�ets are further investigated

in Setion 6.4.

Figure 6.8 shows Φy and ΦV in the range of 4.89 < U∗ ≤ 5.9, whih domain orresponds

to the lower branh, beause Φy
∼= ΦV

∼= 180◦ [60, 63℄. It an be seen that the rms values

of transverse and vortex phases derease with the redued veloity.

Figure 6.9 shows the time-mean values of transverse and vortex phases Φy and ΦV ,

respetively, in degrees where �lled and empty symbols indiate synhronous and non-
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Figure 6.8: Time-dependent phase di�erenes Φy (left) ΦV (right) at U∗ = 4.9 (a) and 5.5 (b)

in the lower branh for ζ = 0%
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Figure 6.9: Time-mean transverse and vortex phase values against U∗
for ζ = 0%. Here syn-

hronous and non-synhronous ases are denoted by �lled and empty symbols, respetively
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synhronous ases. Although the phase di�erenes show gradual variations between 0◦

and 180◦, the transitions in ΦV and Φy are observed in di�erent U∗
ranges, whih is

the distintive feature of three-branh response. However, experimental studies at high

Reynolds numbers and low mass and damping values reported abrupt phase hanges in

the initial↔upper and upper↔lower branh transition domains. As disussed earlier, the

reason behind the gradual and not abrupt variations in ΦV and Φy is the unbounded

hanges and phase slips found in the time-dependent transverse and vortex phases.

To onlude, the initial branh is observed in the range of 3.45 < U∗ ≤ 4, the upper
branh between U∗ = 4 and 4.89, and the lower branh in the domain of 4.89 < U∗ ≤ 5.9.
The most important observations related to the dynamis of Φy and ΦV at the di�erent

response branhes are summarized in Table 6.1.

Table 6.1: Summary of phase dynamis in the three response branhes

Branh U∗
domain Φ Φv

� [2.5, 3.45] low periodi os. low periodi os.

Initial ]3.45, 4.0] intermediate os. unbounded derease

Upper

]4.0, 4.28] low random os. phase slips

]4.28, 4.35] low periodi os. low periodi os.

]4.35, 4.48] high random os. low random os.

]4.48, 4.7] high periodi os. low periodi os.

]4.7, 4.89] unbounded inrease low periodi os.

Lower ]4.89, 5.9] low periodi os. low periodi os.

6.3 Analyses for non-zero strutural damping

As mentioned at the beginning of Chapter 6, the seond important aim of this hapter is

to investigate the e�et of strutural damping ratio on the ylinder response. Figure 6.10

shows y0′ and fy/fN as funtions of the redued veloity for di�erent strutural damping

ratio values between ζ = 0% and 5%. It an be seen that the results obtained harmonize
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Figure 6.10: Root-mean square values of transverse ylinder displaement (a) and vibration

frequeny normalized by the natural frequeny in vauum (b) against the redued veloity for

ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5% ( )
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with the expetations: the osillation amplitude dereases with the damping ratio. As an

be observed in Fig. 6.10a, the strutural damping auses signi�ant hanges in the ylinder

response. The obtained y0′ and fy/fN urves for ζ ≤ 1% are very similar to eah other,

they seem to form three-branh response. For these ζ values and low redued veloities

(below approximately U∗ = 3.5), the osillation amplitude is very low. Between U∗ ∼= 3.5
and 4 the initial branh is identi�ed, where y0′ inreases intensively. At U

∗ ∼= 4, regardless
of ζ , the osillation amplitude shows a sudden upward jump, whih orresponds to the

boundary separating the initial and upper branhes. However, the U∗
value where the

ylinder response swithes between the upper and lower branhes shows to derease with

the strutural damping ratio. Klamo et al. [62℄ found a somewhat di�erent feature, in their

study the upper↔lower branh transition range remained independent of the strutural

damping. Soti et al. [63℄ investigated a wider ζ range. They showed that when damping

was inreased the boundary between the upper and lower branhes shifted to lower U∗

values. This �nding is very similar to my results at Re = 300 (see Fig. 6.10).

Figure 6.11 shows the time-dependent transverse and vortex phases in the initial

branh (Fig. 6.11a), upper branh (Fig. 6.11b and Fig. 6.11) and lower branh (Fig.

6.11d) for ζ = 0.5%. It an be seen in Fig. 6.11a that ΦV shows an unbounded derease in

the initial branh, similar to that observed for undamped vibrations. At the beginning of

the upper branh phase slips are found in the vortex phase (Fig. 6.11b), but interestingly,

ΦV remains approximately onstant, beause the detuning f ∗

y − f ∗

CV
is zero in this range.

Inreasing the redued veloity in the further part of the upper branh, the results show

similar features to those reported for ζ = 0%. However, at the end of the upper branh

no unbounded inrease was identi�ed in the transverse phase, whih is in ontrast to the

results presented for undamped vibrations (see Fig. 6.7d). Figure 6.11 shows Φy and

ΦV just before the jump to the lower branh, and here approximately onstant transverse
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Figure 6.11: Time histories of phase di�erenes Φy (left) ΦV (right) at redued veloity values

of U∗ = 3.8 (a), 4.25 (b), 4.68 () and 4.8 (d) for ζ = 0.5%
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phase is shown. The possible reason behind this phenomenon is that the role of the seond

harmoni frequeny omponent hanges with the strutural damping ratio. This e�et will

be further investigated in Setion 6.4.

It an also be seen in Fig. 6.10 that ylinder responses for ζ = 3% and 5% are very

di�erent from those observed in ζ = 0�1%. For these high-damping ases, without any

sudden hanges, y0′ and fy/fN show smooth variations, with no upper branh ourring,

only initial and lower branhes are identi�ed. Feng [57℄, Khalak and Williamson [59℄,

Klamo et al. [62℄ and Soti et al. [63℄ also found that inreasing the damping ratio (or

the ombined mass-damping parameter) an lead to the transition from three-branh

to two-branh response. Sine the ondition of fy/fN ∼= 1 does not satisfy, no lassi

lok-in domains are found for high strutural damping values. This is in ontrast to the

phenomenon observed for ζ ≤ 1%. Although Prasanth et al. [105℄ investigated the e�et

of mass ratio, they arried out CFD omputations for ζ = 0.1% and 10%. For ζ = 10%
they observed a similar phenomena; fy/fN inreased almost linearly with U∗

.

In order to show expliitly that the upper branh does not our for ζ = 3% and

5%, the time-averaged transverse and vortex phases are analyzed. As already disussed

in Setion 6.2, theoretially, the upper branh is haraterized by abrupt phase jumps at

its lower and higher boundaries. Although for zero damping ratio, the phase di�erene

values of 0◦ and 180◦ are the only theoretially possible values [as shown by Eqs. (6.8)

and (6.10)℄, for ζ > 0% Φy and ΦV are allowed to vary between 0◦ and 180◦. Figures
6.12a and 6.12b show Φy and ΦV against the redued veloity for di�erent damping ratio

values. Similar to the notations employed in Fig. 6.9, �lled and empty symbols refer to

synhronous and non-synhronous ases. It an be seen in Fig. 6.12 that for relatively

high ylinder displaements, time-averaged phase di�erenes, espeially Φy, do depend

on strutural damping. Similar to undamped vibrations, ΦV inreases gradually at the

initial↔upper branh transition range, while Φy transitions at the boundary separating

the upper and lower branhes.

It is also seen in Fig. 6.12 that the hange of ΦV through the initial↔upper branh

transition range is a weak funtion of damping ratio. For instane, for ζ = 0.1% ΦV

hanges by 175.08◦, and for ζ = 1% by 159.77◦. However, the inrement observed in Φy

depends strongly on ζ ; for ζ = 0.1% Φy jumps roughly by ∆Φy
∼= 158.1◦ and for ζ = 1%

only by ∆Φy
∼= 43.4◦. Moreover, in high strutural damping ases (at ζ = 3% or 5%)

jumps in Φ disappear, resulting in an almost ontinuous inrease of the time-averaged
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Figure 6.12: Time-mean values of transverse (a) and vortex phases (b) against redued veloity

for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5% ( ). Filled and empty

symbols refer to synhronous and non-synhronous ases, respetively.
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phase angles. This �nding ompares qualitatively well with the experimental results of

Soti et al. [63℄.

The lower limits of the upper and lower branhes U∗

UB and U∗

LB and the widths of

the upper branh ∆U∗ = U∗

UB − U∗

LB are summarized in Table 6.2. It an be seen that

similarly to experimental results obtained at high Reynolds numbers [62, 63℄, the branh-

ing behavior is strongly in�uened by the damping ratio. As we inrease ζ , the width

of the upper branh diminishes, and for ζ = 3% and 5% it ompletely disappears, only

the initial and lower branhes remain. In other words, for low-damping ases (ζ ≤ 1%)

a three-branh response is identi�ed, and for high-damping ases (at ζ = 3% and 5%)

a two-branh response is found. Klamo et al. [62℄ and Soti et al. [63℄ found a similar

phenomenon in their experimental studies.

Table 6.2: E�et of damping ratio on ylinder response. Here U∗

UB and U∗

LB are the redued

veloity values where ylinder response shift to upper and lower branhes, respetively.

ζ U∗

UB U∗

LB ∆U∗

0% 4.00 4.89 0.88

0.1% 4.03 4.84 0.80

0.5% 4.06 4.69 0.63

1% 4.30 4.61 0.31

3% − 4.68 −
5% − 4.66 −

6.4 Analysis of hydrodynami features

In Setion 6.2 the harmoni osillation model, applied to on�rm the existene of the

upper branh is shown. Rearranging Eq. (6.8), the following expression is obtained:

Ĉy sinΦy = 4π3
f ∗

y ŷ0

U∗

m∗ζ. (6.11)

This formula shows that Ĉy sinΦy (responsible for the mehanial energy transfer)

varies linearly with f ∗

y ŷ0/U
∗
, where the proportionality fator is proportional to the mass-

damping parameter m∗ζ . Figure 6.13 shows Ĉy sinΦy against 4π3f ∗

y ŷ0/U
∗
for di�erent

damping values between ζ = 0% and 5% and onstant m∗ = 10. Empty and �lled symbols

refer to data points belonging to the upper and lower branhes, respetively. Dashed lines

represent the results from the harmoni osillator model [desribed by Eq. (6.11)℄, and

the numbers (belonging to the dashed lines) show strutural damping ratio values. It an

be seen in Fig. 6.13 that harmoni approximation seems to be very aurate in the lower

branh and at the beginning of the upper branh. However, at the remaining part of the

upper branh the results are very far from the harmoni solutions, whih suggests that

in these domains the transverse �uid fore is not harmoni funtion of time. The results

presented earlier are onsistent with this proposal. For undamped vibrations I found

very high detuning values (around f ∗

y − f ∗

Cy
= −0.2) in the range of 4.7 < U∗ ≤ 4.89,

whih may refer to that the most remarkable frequeny in the spetra of Cy equals to

the double of the vibration frequeny. Besides, in the domain of 4.36 < U∗ ≤ 4.7 the

time-dependent transverse phase shows unreasonably high �utuations, whih may also

indiate the ourrene of higher order harmonis in the spetra of transverse �uid fore.

In order to on�rm the non-harmoni nature of Cy (in some ranges), time histories and

frequeny spetra of ylinder displaement and transverse �uid fore are further analyzed.
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Figure 6.13: Ĉy sinΦ against 4π3f∗ŷ0/U
∗
in the upper branh (empty symbols) and in the lower

branh (�lled symbols) for ζ = 0% ( ), 0.1% ( ), 0.5% ( ), 1% ( ), 3% ( ) and 5%
( ). The dashed lines represent solutions obtained from the harmoni osillator model given

by Eq. (6.11)

The analyses are arried out �rst for undamped ylinder vibrations, and than for non-zero

damping ratio values.

6.4.1 Undamped ylinder vibration

Figure 6.14 shows the time histories of non-dimensional ylinder displaement (left-hand

side of the �gure) and transverse �uid fore (middle) at di�erent U∗
values in the initial

(see Fig. 6.14a), upper (Figs. 6.14b-6.14e), and lower branhes (Fig. 6.14f) for ζ = 0%.

Frequeny spetra of the signals (displaement and transverse �uid fore) normalized by

the ylinder's natural frequeny in vauum obtained using Fast Fourier Transform (FFT)

are shown in the right plots of the �gures. Here PSD denotes Power Spetral Density, and

vertial axis has logarithmi sale.

It an be seen in Fig. 6.14a that the signals show quasi-periodi nature in the initial

branh (3.45 < U∗ ≤ 4); y0 and Cy ontain multiple frequeny omponents. This is the

reason why the time-dependent transverse phase shows random �utuations in the same

redued veloity range (see Fig. 6.3). At U∗ = 4 high jumps are observed in y0′ and fy/fN
(Fig. 6.1), at the loation where the ylinder response shifts from the initial to the upper

branh. The high ylinder displaement in the upper branh an observed in Fig. 6.14b.

This �gure shows also that in the domain of 4 < U∗ ≤ 4.28, the ylinder motion and the

transverse �uid fore are quasi-periodi signals. These e�ets are expeted, beause in this

range the time-dependent transverse phase shows random variation (see Fig. 6.5). Due to

the quasi-periodi behavior, the frequeny spetra of y0 and Cy ontain multiple frequeny

omponents from whih f/fN ∼= 1 and 3 have the highest PSD values. Note that f/fN ∼= i
frequeny peak is usually referred to as the ith harmoni frequeny omponent. Between

the redued veloity values of U∗ = 4.29 and 4.35 the time-dependent phase di�erenes

show periodi variations (see Fig. 6.7a), whih refers to periodi ylinder vibrations. It

an be seen in Fig. 6.14 that both y0 and Cy are periodi signals; transverse �uid fore

ontains relevant frequeny omponents at f/fN ∼= 1 (highest intensity) and 3 (relatively

low intensity), while in the spetrum of ylinder displaement only f/fN ∼= 1 is identi�ed.
Inreasing the redued veloity from U∗ = 4.36 to 4.48, slightly above the jumps found

in Cy′ and CV ′
(see Fig. 6.2), the transverse �uid fore and the ylinder displaement

beome quasi-periodi again (Fig. 6.14d). These signals show similar behaviors to the

time-dependent phases, in the same U∗
domain random osillations have been found in
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Figure 6.14: Time histories (left and middle) and Fourier spetra (right) of ylinder displaement

and transverse �uid fore at U∗ = 4 (a), 4.2 (b), 4.3 (), 4.4 (d), 4.6 (e) and 5.5 (f) for ζ = 0. In
the FFT spetra red and blue olors indiate the frequeny spetra of transverse �uid fore and

ylinder displaement, respetively.
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Φy and ΦV . Besides, in the frequeny spetra of Cy the �rst, the seond and the third

harmoni omponents are identi�ed as high-intensity peaks. Varying the redued veloity

in the range of 4.48 < U∗ ≤ 4.89, Cy is found to be periodi again and the f/fN ∼= 2
frequeny omponent is found to play very signi�ant role in its spetra (see Fig. 6.14e).

This �nding, whih we expeted, explains why the omputational results do not agree with

the harmoni solutions represented by Eq. (6.11) at some parts of the upper branh (see

Fig. 6.13), and implies why the transverse phase shows unreasonably high �utuations

between U∗ = 4.36 and 4.7 (Fig. 6.7).

Many studies have been dealing with the frequeny omponents ourring in the

spetra of transverse �uid fore. Without aiming to give an exhaustive list, Jauvtis and

Williamson [85℄, Dahl et al. [81℄, Dahl et al. [82℄, Dahl et al. [41℄, Wang et al. [84℄ have

disussed the relevane of the �rst and the third harmoni omponents in Cy for two-

degree-of-freedom vortex-indued vibrations. However, the seond harmoni omponent

is not so typial in VIV. Bao et al. [83℄ investigated also two degrees of freedom VIV and

they identi�ed the f/fN ∼= 2 frequeny peak in the spetra of Cy. In Chapter 4 I showed

that the seond harmoni frequeny omponent has a fundamental e�et on the path

of the ylinder; asymmetri raindrop-shaped ylinder paths our in these ases. These

results have been published in Dorogi and Baranyi [J3℄.

In the lower branh (from U∗ = 4.9 to 5.9) both y0 and Cy are periodi signals. As

seen in Fig. 6.14f, the seond harmoni omponent ompletely disappears, only f/fN ∼= 1
and 3 peaks remain (see Fig. 6.14f). Sine the intensity of f/fN ∼= 3 is muh lower than

the PSD of the �rst harmoni omponent, the f/fN ∼= 3 peak in�uenes the vibration

very slightly. This is why the data points orresponding to the lower branh �t very well

on the model results based on the harmoni approximations (see Fig. 6.13).

As an be seen in Fig. 6.4, high detuning value of f ∗

y − f ∗

Cy

∼= −0.2 ours in the range

of 4.7 < U∗ < 4.89 for zero strutural damping ratio, whih value agrees approximately

with the Strouhal number at Re = 300. Sine the vibration frequeny in this range is also

lose to the Strouhal number, this detuning value an only be reahed when the seond

harmoni frequeny omponent is the most dominant in the spetra of Cy. Although I

showed that f/fN ∼= 2 ours in the upper branh, it was not on�rmed whether it is

the most relevant harmoni in the domain of 4.7 < U∗ ≤ 4.89. Figure 6.15 shows the

frequeny spetra of transverse �uid fore at di�erent U∗
values, where Power Spetral

Density normalized by the maximum PSD in the spetra PSD

norm

= PSD/PSD

max

is

plotted against f/fN . Note that vertial axis is saled linearly. It an be seen that at

U∗ = 4.5 (see Fig. 6.15a) f/fN ∼= 1 is the most intensive peak, while the normalized PSD

at f/fN ∼= 2 is low. As expeted, in the range of 4.7 < U∗ ≤ 4.89 the roles of the �rst

and seond harmoni omponents are swithed; f/fN ∼= 2 is the most dominant, while

the normalized PSD of f/fN ∼= 1 is relatively low (see Figs. 6.15b and 6.15). However,

swithing to the lower branh auses a dramati hange in the FFT of Cy. As shown in

Fig. 6.15d, the seond harmoni omponent ompletely disappears and the �rst and third

harmoni omponents remain in the spetra (f/fN ∼= 1 is the most relevant omponent).

Singh and Mittal [72℄, Prasanth and Mittal [88℄ and Bahmani and Akbari [70℄ found

that the formation of vorties shedding from the body is very sensitive to the value of the

redued veloity. Figure 6.16 shows the vortex strutures at the same U∗
values where the

time histories and the FFT spetra of the ylinder displaement and transverse �uid fore

were previously analyzed (see Fig. 6.14). As shown in Fig. 6.14a, y0 and Cy are quasi-

periodi signals in the initial branh, that is, the vortex strutures at the orresponding

redued veloity values hange dynamially with time (see Fig. 6.16a).

Shifting to the upper branh, in the range of 4 < U∗ ≤ 4.28 the ylinder motion and

the �uid fore oe�ients are still quasi-periodi signals, that is, the vortex struture is

also highly time-dependent in this domain (see Fig. 6.16b). It was found that the time

histories of y0 and Cy are periodi between U∗ = 4.29 and 4.35, and the FFT spetra

of Cy ontain relevant frequeny peaks at f/fN = 1 and 3 (Fig. 6.14). It an be seen

Last updated: April 20, 2020



6.4. ANALYSIS OF HYDRODYNAMIC FEATURES 71

in Fig. 6.16 that in the orresponding range 2P

O

wake mode seems to develop, whih

means that two pairs of vorties are shed from the ylinder in eah motion period, but the

seondary vortex in eah pair is muh weaker than the primary vortex [106℄. Morse and

Williamson [106℄ found that when the vortex pair is moving downstream from the ylinder,

the seondary vortex deays, whih is also seen in Fig. 6.16. Khalak and Williamson [107℄

and Khalak and Williamson [59℄ identi�ed 2P vortex shedding mode in the upper branh,

where the strengths of the primary and the seondary vortex are approximately idential.

It has to be noted that 2P

O

vortex struture has not been found for suh low Reynolds

number ases.

At the losing part of the upper branh (4.35 < U∗ ≤ 4.89), the f/fN ∼= 2 peak was

found to our, whih strongly in�uenes the vortex struture. Although the struture

of vorties hanges in time between U∗ = 4.35 and 4.48, due to the modulations in

the aerodynami fore oe�ients, the wake modes are very similar to the P+S vortex

shedding mode (Fig. 6.16d). Here P+S denotes that a pair of vorties and a single vortex

are shed from the ylinder. In the domain of 4.48 < U∗ ≤ 4.89 (still belongs to the upper

branh) the time traes of y0 and Cy return bak to periodi. In this range the seond

harmoni frequeny omponent plays an important role in Cy (see Fig. 6.15), whih seems

to make the vortex struture asymmetri: stable P+S modes are found in the domain of

4.48 < U∗ ≤ 4.89 (see Fig. 6.16e). Suh e�et of f/fN ∼= 2 on the vortex shedding was

shown earlier in Chapter 4.

As shown in Figs. 6.14 and 6.15, in the lower branh the f/fN ∼= 2 frequeny peak
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Figure 6.15: Frequeny spetra of transverse �uid fore at U∗ = 4.5 (a), 4.8 (b), 4.89 () and

4.9 (d) for ζ = 0%

(a) (b) (c)

(d) (e) (f)

Figure 6.16: Vortex strutures (red: positive vortiity, blue: negative) at U∗ = 4 (a), 4.2 (b), 4.3
(), 4.4 (d), 4.6 (e) and 5.5 (f) for ζ = 0. Eah vortex ontours are reorded at random phases

of the ylinder osillation
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ompletely disappears from the spetra of Cy. For this reason the vortex struture beomes

symmetri; 2S wake modes (two single vorties) are found in this domain (4.89 < U∗ ≤ 5.9,
see Fig. 6.16f).

6.4.2 Damped ylinder vibrations

It was shown in Setion 6.3 that inreasing the strutural damping leads to the transition

from three-branh to two-branh response. While initial, upper and lower branhes are

found for ζ ≤ 1% at Re = 300, only initial and lower branhes are observed for ζ = 3%
and 5%. It an be seen in Fig. 6.11 that no unbounded inrease appears in the transverse

phase at the boundary separating the upper and lower branhes for ζ = 0.5%. This �nding

is in ontrast to what I found for undamped vibrations (see Fig. 6.7d).

It was on�rmed in Setion 6.4.1 that the unbounded inrease of the transverse phase

is aused by the fat that the seond harmoni frequeny omponent is the most dominant

in the spetrum of Cy. For this reason, the lak of unbounded variation in Φy for ζ = 0.5%
suggests that the intensity of f/fN ∼= 2 is not the highest in the upper↔lower branh

transition range. Figure 6.17 shows the normalized spetra of transverse �uid fore at

di�erent redued veloity values in the upper branh for ζ = 0.5%. This �gure orroborates

the former assumption; the role of f/fN ∼= 2 inreases with U∗
but at the boundary

between the upper and lower branhes (at U∗ = 4.688, see Fig. 6.17d) the �rst harmoni

omponent dominates all over the spetra, and f/fN ∼= 2 ours only with low intensity.

The additional �ndings related to e.g. the vortex formation downstream from the ylinder

hold true in the range of ζ ≤ 1%, where three-branh responses are found.
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Figure 6.17: Frequeny spetra of transverse �uid fore at U∗ = 4.5 (a), 4.56 (b), 4.6 () and

4.688 (d)

As mentioned earlier, inreasing the strutural damping ratio over ζ = 1%, only the

initial and lower branhes are found, the upper branh disappears from the response. The

question arises what the di�erene is between three and two-branh responses in terms

of frequeny spetra and vortex strutures. Figure 6.18 shows the frequeny spetra of

ylinder displaement and transverse �uid fore (top row), and vortex ontours (bottom

row) at di�erent redued veloity values for ζ = 3%. As an be seen in Fig. 6.18a, the FFT

spetra of the transverse �uid fore and ylinder displaement for U∗ = 4.2 ontains several
frequeny omponents, that is, y0 and Cy are quasi-periodi signals. Due to the same

reason, the vortex struture is highly time dependent at this point, but very similar to the

regular 2S vortex shedding mode. The above mentioned �ow and vibration harateristis

between the redued veloity values of U∗ = 4 and 4.66 are similar to those of the

initial branh in the ζ ≤ 1% domain. Inreasing redued veloity up to U∗ = 4.68, the
ylinder response reahes the lower branh where both y0 and Cy return bak to periodi.

In ontrast to the results reported in the low-damping domain, the vibration frequeny

does not lok exatly to the natural frequeny of the system in vauum (see also Fig.

6.10). Figures 6.18b and 6.18 show the spetra of y0 and Cy in the range where the
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osillation amplitude is relatively high. As seen, the �rst and the third harmoni frequeny

omponents an be found in the spetra of Cy. Sine the peak of f/fN ∼= 2 is not present

in the spetra, 2S vortex strutures are found in these omputational points.
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Figure 6.18: Frequeny spetra of ylinder displaement (blue urves) and transverse �uid fore

(red urves), and the vortiity ontours at U∗ = 4.2 (a), 4.68 (b) and 5.4 () for ζ = 3%. Eah

snapshots are reorded at random phases of the ylinder osillation

6.5 New sienti� ontributions

Contribution V

Up until now an upper branh (i.e. a three-branh ylinder response) has been reported

only for high-Reynolds number �ows (Re = 103�104). Using two-dimensional CFD simu-

lations I showed that the ylinder response (osillation amplitude and frequeny) plotted

against the redued veloity U∗
displays a three-branh behavior at the Reynolds number

of Re = 300, and mass and strutural damping ratio values of m∗ = 10 and ζ = 0%, re-

spetively. The initial branh takes plae in the range of 3.45 < U∗ ≤ 4, the upper branh
is observed between U∗ = 4 and 4.89, and the lower branh ours in the domain of

4.89 < U∗ ≤ 5.9. I found that the time-averaged phase di�erenes of the vortex fore and

the transverse �uid fore relative to the ylinder displaement show gradual variations be-

tween approximately 0◦ and 180◦ at the upper and lower boundaries of the upper branh,

respetively. I observed unbounded variations and phase slips in the time-dependent phase

angle values, whih explains the gradual hanges in their time-mean values.

I found that inreasing the strutural damping ratio leads to the transition from three-

branh to two-branh response. This �nding is omparable to the experimental results

(available in the literature) at high Reynolds numbers. In the domain of ζ ≤ 1% the

upper branh is found to our whose redued veloity range ∆U∗

UB dereases with the

damping ratio (e.g. ∆U∗

UB = 0.88 for ζ = 0%, while ∆U∗

UB = 0.31 for ζ = 1%). For

ζ = 3% and 5%, the upper branh ompletely disappears from the response, only the

initial and lower branhes remain.

Related publiations: Dorogi and Baranyi [J4℄, Dorogi and Baranyi [C10℄ and Dorogi

and Baranyi [C9℄
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Contribution VI

I showed that the phase di�erene of the transverse �uid fore relative to the ylinder

displaement (i.e. the transverse phase) inreases roughly uniformly with time at the end

of the upper branh (4.7 < U∗ ≤ 4.89) for Re = 300, m∗ = 10 and ζ = 0%. This e�et is

aused by the large detuning value between the frequenies of ylinder vibration f ∗

y and

transverse �uid fore f ∗

Cy
; f ∗

y −f ∗

Cy

∼= −0.2, whih in absolute value is lose to the Strouhal

number St at Re = 300. Sine f ∗

y
∼= St between U∗ = 4.7 and 4.89, the detuning value

f ∗

y − f ∗

Cy

∼= −St an only be ahieved when f ∗

Cy
= 2f ∗

y
∼= 2St. The frequeny spetra of

the transverse �uid fore on�rms the non-harmoni nature of the transverse �uid fore.

I found that the seond harmoni frequeny omponent is the most intensive peak in the

range of 4.7 < U∗ ≤ 4.89 for ζ = 0%.

Inreasing the strutural damping ratio value up to ζ = 0.5%, I showed that the

detuning value is zero f ∗

y − f ∗

Cy
= 0 in the entire redued veloity domain, hene the

time-dependent transverse phase no longer shows unbounded inrease at the higher end

of the upper branh. This e�et implies that the role of the seond harmoni frequeny

omponent dereases with the strutural damping ratio. The spetral analyses of the

transverse �uid fore showed that the intensity of the seond harmoni omponent was

negligible.

The urrently obtained CFD data belonging to various strutural damping ratio values

(between ζ = 0% and 5%) have been ompared to the results using the harmoni osillator

model. I showed that the omputational and the harmoni model results ompare very

well at the beginning of the upper branh and in the lower branh. However, at the end

of the upper branh the CFD data and and the harmoni model results are far from eah

other. This �nding on�rms my previous statement onerning the non-harmoni nature

of the transverse �uid fore at the end of the upper branh.

Related publiations: Dorogi and Baranyi [J4℄, Dorogi and Baranyi [C10℄ and Dorogi

and Baranyi [C9℄
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Chapter 7

Possible future works

In this PhD dissertation various types of vortex-indued vibrations are investigated, in-

luding the single-degree-of-freedommotions, where the ylinder is allowed to move only in

streamwise or transverse diretions, and two-degree-of-freedom vibration ases. Although

several analyses have been performed in the dissertation, there are still a lot of unanswered

questions, whih an lead to further investigations. These topis related diretly to my

researhes are summarized in the following points:

• In Chapter 4 omputational results have been presented for the ases, when the nat-

ural frequenies in streamwise and transverse diretions fNx and fNy are idential.

The question arises what the e�et of the natural frequeny ratio FR = fNx/fNy

is on the ylinder response. Preliminary results are available in this topi [J2℄ (in-

diating that FR highly in�uenes the ylinder path), but additional omputations

are required.

• As disussed in Chapter 5, a single exitation region ours for streamwise-only

vortex-indued vibrations in the low-Reynolds number domain. However, at moder-

ately high Reynolds numbers two response branhes have been identi�ed. In order

to investigate how the response swithes between one-branh and two-branh re-

sponses, three-dimensional omputations are needed. This an be arried out using

either ommerial softwares (e.g. ANSYS FLuent or ANSYS CFX) or open-soure

CFD odes (e.g. OpenFOAM, Nektar++ or Nek5000).

• It was shown that a separate upper branh ours at the Reynolds number of 300
(see Chapter 6). However, at lower Re values (e.g. at Re = 100) two response

branhes (i.e. the initial and lower branhes) have been reported in the literature. I

aim to perform CFD omputations at di�erent Reynolds numbers ranging between

Re = 50 − 300 to �nd the ritial Reynolds number value Rec, above whih three-

branh response ours, but at Re < Rec only the initial and lower branhes an be

identi�ed.

During the literature review I realized that vortex-indued vibrations of a irular

ylinder plaed into an osillatory �ow reeived less attention. However, it appears in many

engineering �elds, for example the wave motions are ommonly modeled with osillatory

�ows. To my best knowledge, very few paper examine this problem numerially. For this

reason, systemati CFD omputations are planned in this �eld in the near future.
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Appendix A

Evaluation of CFD data

The data sets obtained from the CFD omputations (e.g. the ylinder displaement or

the aerodynami fore oe�ients) are mostly time-varying signals, whih inlude a few

million elements. For this reason, the proper evaluation of these data sets are required.

The evaluation proess overs the alulation of the time-mean and root-mean-square

values, the frequenies of the signals (see Appendix A.1) and the phase di�erenes (or

phase angles) between two distint signals (Appendix A.2).

A.1 Statistial properties of periodi signals

Figure A.1a shows the time history of the dimensionless transverse ylinder displaement.

In this test ase the ylinder is allowed to move only in the transverse diretion, and the

following parameter ombination is used: Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.9. It
an be seen in Fig. A.1a that the body is initially at rest, orresponding to the initial

onditions [see Eq. (2.20)℄. In the approximate non-dimensional time interval of 0 < t <
150 the amplitude of ylinder vibration inreases, beyond the transitional domain the body

osillates with a onstant amplitude value. In order to get the most aurate statistial

parameters [the root-mean-square (rms), the time-mean and the frequeny values℄, the

transitional part of the signal has to be omitted. In this study the statistial quantities

are alulated based on the last Nc periods of ylinder osillation, whih takes plae in

the time domain of tstart < t < tfinish. The root-mean-square and the time-mean values

are de�ned as follows:
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Figure A.1: The time history (a) and the frequeny spetra of the ylinder displaement for

Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.9
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y0′ =

√√√√ 1

n− 1

n∑

i=1

(y0,i − y0)
2, (A.1)

y0 =
1

n

n∑

i=1

y0,i. (A.2)

Here n = (tfinish − tstart)/∆t, where ∆t is the dimensionless time step and y0,i is the ith

element of the data set.

The Fast Fourier Transform (FFT) algorithm is used to represent the signal (e.g.

displaement(s) or fore oe�ient(s)) in the frequeny domain. Figure A.1b shows the

frequeny spetrum of the ylinder displaement, i.e. the Power Spetral Density PSD

against the non-dimensional frequeny f ∗
. In this test ase the vertial axes are shown

in a logarithmi sale. However, in Chapters 5 and 6 the normalized spetrum of the

signal is also used, whih means that the Power Spetral Density is normalized by the

maximum PSD value in the spetrum. In these ases the vertial axis is saled linearly.

The frequeny of the signal (f ∗

y for y0) is onsidered to be the frequeny value belonging

to the highest intensity peak in the spetra, whih is denoted by a red dashed line in

Fig. A.1b. Note that although the alulation of these statistial parameters are shown

here for the ylinder displaement, the methodologies are valid for other quantities, for

example for x0, Cx, Cy, CV , et..

A.2 Determination of phase di�erene

In this study the phase di�erene (or phase angle) of a fore oe�ient (in either stream-

wise or transverse diretion) relative to the ylinder displaement in the orresponding

diretion is frequently omputed. In this setion two distint methods are shown to obtain

this phase di�erene value.

A.2.1 Harmoni signals

In ase the �uid fore oe�ient and the ylinder displaement are periodi signals, the

phase di�erene value an be easily alulated. This ondition satis�es in streamwise-only

vortex-indued vibrations (see the results in Chapter 5) for all the investigated ases; thus

the method is introdued via the omputation of phase di�erene between streamwise �uid

fore oe�ient Cx(t) and streamwise ylinder displaement x0(t).
Let us assume that the streamwise �uid fore oe�ient an be represented as:

Cx(t) ∼=
N∑

i=1

C i
x cos(2πif

∗

xt + Φ
i
x), (A.3)

where C i
x is the magnitude of the ith harmoni omponent of the streamwise �uid fore

oe�ent, f ∗

x is the dimensionless vibration frequeny and Φ
i
x is the phase di�erene of

the ith harmoni omponent relative to the ylinder displaement. Multiplying Cx(t) by
sin 2πf ∗

xt, and integrating it over one period of ylinder osillation T = 1/f ∗

x , the following

simple expression an be obtained:

I1 =

∫ T

0

Cx(t) sin 2πf
∗

xtdt =

∫ T

0

[
N∑

i=1

C i
x cos(2πif

∗

xt+ Φ
i
x)

]
sin 2πf ∗

xtdt =

= −1

2
f ∗−1
x C1

x sinΦ
1
x.

(A.4)
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Although Φ
1
x is an unknown quantity, I1 an be alulated by integrating∫ T

0
Cx(t) sin 2πf

∗

xtdt numerially using the trapezoidal rule or some other numerial

quadrature. Besides, multiplying Cx(t) by cos 2πf ∗

xt and integrating the expression over

one osillation yle, the following formula an be obtained:

I2 =

∫ T

0

Cx(t) cos 2πf
∗

xtdt =

∫ T

0

[
N∑

i=1

C i
x cos(2πif

∗

xt+ Φ
i
x)

]
cos 2πf ∗

xtdt =

=
1

2
f ∗−1
x C1

x cosΦ
1
x.

(A.5)

Similarly to Eq. (A.4), I2 an be solved numerially. Dividing Eq. (A.4) by Eq. (A.5), the

following formula an be obtained for the phase di�erene value:

Φx = Φ
1
x = tan−1

(
−I1
I2

)
. (A.6)

A.2.2 Appliation of Hilbert transform

In ase Eq. (A.3) does not hold true, the alulation methodology of the phase di�erene,

detailed in Appendix A.2.1 is not appliable. In these ases the analytial signal approah

based on Hilbert transform an be used [103, 104℄. This methodology is applied in Chapter

4 to ompute the phase di�erene between the streamwise �uid fore and the streamwise

ylinder displaement, and in Chapter 6 to obtain the phase di�erene of the transverse

�uid fore and vortex fore relative to the transverse ylinder displaement.

In order to introdue this approah, let us onsider a vortex-indued vibration problem,

where the ylinder is restrited to osillate only in transverse diretion. The analytial

signal of the ylinder displaement y0(t) an be expressed as [104℄:

y0a(t) = y0(t) + iy0h(t) = Ay0(t)e
iΦy0

(t), (A.7)

where i is the imaginary unit, y0h(t) is the Hilbert transform of y0(t), and Ay0(t) is the
time-dependent amplitude of the signal and Φy0(t) is the time-varying phase of the ylinder

Φy0

y0

y0h

Cyh

Cy

ΦCy

Re

Im

y0a

Cya

Figure A.2: The arrangement of the analytial signals y0a and Cya at an arbitrary time instant.

Here Im and Re denote the imaginary and the real axes, respetively
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displaement:

Ay0(t) =
√

y0(t)2 + y0h(t)2, Φy0(t) = tan−1

[
y0h(t)

y0(t)

]
. (A.8a, b)

Figure A.2 shows the analytial signals of the ylinder displaement and the transverse

�uid fore y0a and Cya on the omplex number plane at an arbitrary time instant. Similarly

to Φy0, the time-varying phase of the transverse �uid fore an be determined as

ΦCy
(t) = tan−1

[
Cyh(t)

Cy(t)

]
, (A.10)

where Cyh(t) is the Hilbert transform of the transverse �uid fore oe�ient. As an be

seen in Fig. A.2, the phase di�erene of the transverse �uid fore relative to the ylinder

displaement, i.e. the transverse phase, an be obtained as

Φ(t) = ΦCy
(t)− Φy0(t). (A.11)

It should be noted that Pikovsky et al. [103℄ de�ned the phase di�erene value as the

di�erene of the displaement with respet to the fore. For the sake of omparison, we

applied Eq. A.11 to obtain the phase angle value. The same methodology an be used

to obtain the vortex phase, i.e. the phase di�erene of the vortex fore relative to the

ylinder displaement:

ΦV (t) = ΦCV
(t)− Φy0(t), (A.12)
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Figure A.3: Time histories of y0, Cy and CV (top row), and the time-varying unwrapped (middle

row) and wrapped (bottom row) transverse and vortex phases for transverse-only VIV. In the

top row the displaement and fore oe�ient urves are shown in blue and red, respetively.

The following omputational parameters are used: Re = 300, m∗ = 10, ζ = 0% and U∗ = 4.2
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where ΦCV
(t) is the phase of the vortex fore oe�ient.

When the two investigated signals have the same frequeny values (i.e. the signals

are synhronized), the phase di�erene between them is onstant in time. However, there

are some speial ases, when the frequenies of the signals are di�erent, whih auses

inreasing/dereasing e�ets in the orresponding phase di�erene (see Chapter 6). In

terms of time-averaged phase di�erenes, the phase angle value between 0◦ and 360◦ is

meaningful. In order to alulate an aurate time-mean value, the phase di�erene signal

has to be wrapped in a 2π-long interval; in this dissertation between −π/2 and 3π/2.
Figure A.3 helps to understand the di�erene between unwrapped and wrapped phase

angles. Figure A.3a shows the time histories of y0 and Cy (top row), the time-varying

transverse phase Φy as an unwrapped signal (middle row), and the time history of Φy

wrapped between −π/2 and 3π/2 (bottom row). The strutures of Figs. A.3a and A.3b

are similar, but in Fig. A.3b the time histories of CV and ΦV are shown instead of the

Cy and Φy. It an be seen that, sine the frequenies of the ylinder displaement and

the transverse �uid fore are idential, the unwrapped and wrapped transverse phases

show the same harateristis (Fig. A.3a). In ontrast, a small detuning

1

ours between

CV and y0, hene, the unwrapped vortex phase shows an inreasing e�et (Fig. A.3b).

As mentioned earlier, to obtain the time-averaged vortex phase, ΦV has to be wrapped

between −π/2 and 3π/2, whih is show in the bottom row of Fig. A.3b.

1

The di�erene between the frequenies of fore oe�ient and the ylinder displaement
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