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Chapter 1 General Introduction 

Cloud computing is a transformative technology that provides seamless access to a wide range 

of computing resources—including applications, servers, storage, and networks—without 

requiring an upfront investment. This technology supports substantial scalability, allowing 

users to pay only for the resources they utilize, which makes it highly adaptable to diverse 

needs. Cloud services, collectively known as "XaaS" (Everything as a Service) facilitate data-

driven decision-making, significantly enhancing productivity and customer service. Cloud 

computing effectively bridges the gap between client expectations and service delivery by 

offering internet-based services that improve collaboration, ease of access, and security [1]. 

Service Level Agreements (SLAs) are fundamental in defining the relationship between service 

providers and users by establishing the terms of service and quality expectations. SLAs also 

hold vendors accountable for non-compliance. As cloud computing adoption continues to 

grow, the importance of SLAs has increased, demanding robust guarantees for availability, 

uptime, and downtime. Effective SLAs go beyond mere contractual obligations; they are 

crucial for fostering trust between providers and clients, essential for sustainable success. 

Consequently, research has focused on developing SLA methodologies that enhance Quality 

of Service (QoS) and build customer trust, recognizing their significance in managing complex 

business relationships and shaping modern business practices [2][3]. Evaluating performance 

in cloud environments is complex due to the components involved, ranging from concrete 

elements like communication links to abstract ones like packets and protocols. Researchers and 

engineers must design a comprehensive performance evaluation plan to obtain meaningful 

results and answer critical questions. Such a plan should clearly define the objectives for 

assessing the system's performance and identify specific metrics to measure, such as round-trip 

time (RTT) and response time, to provide actionable insights [4]. SLA-oriented resource 

allocation in cloud computing involves several key components: brokers, SLA resource 

allocators, virtual machines (VMs), and physical machines. Users interact with cloud 

management systems through brokers, enabling dynamic resource allocation and concurrently 

operating multiple applications on a single machine. Data centers, composed of numerous 

servers and networks that function as transmission media for resources, form the backbone of 

cloud infrastructure. Despite these advanced capabilities, resource availability and privacy 

remain persistent concerns. Effective load balancing is crucial for enhancing service quality 

and optimizing resource utilization. Service brokers select the most appropriate geo-distributed 

data centers based on transmission delay, network delay, processing time, workload, and cost. 

The Rank-based Load Balancing in Geo-Distributed Datacenters (RLBGD) method employs a 

weighted combination of these criteria for optimization, ensuring efficient cloud resource 

management [5][6]. Fuzzy logic is a mathematical framework that handles uncertainty and 

imprecision by enabling approximate reasoning rather than fixed binary logic. Unlike 

traditional binary systems, where variables are strictly defined as true or false, fuzzy logic 

allows variables to have truth values between 0 and 1. This approach is beneficial for modeling 

complex systems where binary logic falls short. Based on fuzzy set theory, fuzzy computing 

simulates the human brain's nonlinear and imprecise information processing capabilities. It is 

widely applied in fields like Fuzzy Inference Systems (FIS), often in combination with other 

artificial intelligence methods. This approach enables more precise and scientific consumer 
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preference designs by reducing ambiguity through the fuzzy comprehensive evaluation method 

[7][8]. This thesis introduces several innovative approaches using fuzzy logic-based systems 

and algorithms to enhance SLA management, VM allocation, and decision-making in cloud 

computing environments. The study first presents the estimating Cloud Computing Round-Trip 

Time (RTT) Using Fuzzy Logic for Inter-Region Distances, a novel approach for estimating 

RTT in Amazon cloud environments. This method uses fuzzy logic to account for inter-region 

distances, providing a nuanced understanding of network latency by categorizing proximity 

and time and employing both ping tests and mathematical methods for accurate RTT 

calculation. Additionally, the thesis explores Selecting the SLA Guarantee by Evaluating the 

QoS Availability, which develops an intelligent SLA guarantee model using fuzzy theory. This 

model calculates SLA values for cloud service providers by evaluating specific computing and 

networking parameters and transforming data to manage ambiguity. The proposed fuzzy logic 

system classifies SLAs into 9 levels (ranging from 90% to 99%) based on QoS availability 

metrics, including computing (uptime and downtime) and networking (bandwidth, jitter, RTT, 

and packet loss). The primary objectives are to develop a versatile SLA model that diverges 

from typical CSP offerings and improve SLA categorization’s precision, tailored to user-

specific requirements. The work Enhancing Decision-Making in Uncertain Domains through 

Optimized Fuzzy Logic Systems proposes optimizing fuzzy logic systems by reducing fuzzy 

rules and improving decision-making accuracy. The study introduces flexible mathematical 

modeling to minimize time and cost while enhancing precision in fuzzy decision-making 

processes for classification and scheduling. A comparative analysis shows the advantage of 

this approach over traditional methods by employing three distinct membership functions 

(Triangular, Trapezoidal, and Gaussian), enhancing flexibility and accuracy in determining 

overlapping membership degrees. Another essential contribution is the Efficient Broker-Driven 

Request Packet Size approach, which introduces a broker-driven model using fuzzy logic for 

dynamic VM allocation based on request packet size. This method optimizes resource usage, 

reduces latency, and improves system performance. Compared to traditional techniques, 

simulations using data from Google Cloud Platform’s Europe West3 region demonstrated 

significant improvements in response time, data center processing, request serving time, and 

data transfer costs. Furthermore, the thesis presents the Intelligent Validation Cloud Broker 

System (IVCBS), which leverages an algorithm for dynamic VM allocation and intelligent 

SLA selection. The algorithm relies on a mathematical model aligned with the trapezoidal 

membership function, making decisions based on binary results (1 or 0). Tested across 31 AWS 

data centers worldwide with 11 EC2 types, IVCBS optimizes response time, improves 

processing efficiency, reduces VM and transfer costs, and enhances power efficiency while 

maintaining high QoS in cloud environments. Various tools and environments, including 

CloudAnalyst [9] and MATLAB, were utilized to conduct these studies. Lastly, the study 

proposes the Reliable and Cost-Effective Fuzzy-based Cloud Broker technique, which assists 

users in selecting suitable cloud service instances by evaluating user needs and service 

characteristics. This technique analyzes various scenarios, including static and mobile users, to 

assess the impact of user mobility on service quality and optimize cloud service management. 

The work emphasizes the necessity of cloud brokerage services as intermediaries, balancing 

user needs with service provider interests. The Edge CloudSim simulator [10] implemented the 

proposed cloud broker on the Multi-Access Edge Computing (MEC) paradigm. This choice 
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was made because services running on the virtualized edge are more sensitive to delay, and the 

broker's selection of the appropriate service instance significantly impacts such settings. In this 

scenario, different data centers belonging to Amazon Web Services (AWS), Google Cloud 

(GC), and Azure Cloud Services (AZURE) were placed in different regions. 

1.1 Problem statement 

Cloud computing, a cornerstone of modern IT, offers scalable, flexible, and on-demand access 

to computing resources through various service models governed by Service Level Agreements 

(SLAs), formal contracts between a cloud service provider (CSP) and a customer that define 

the specific level of service the provider guarantees to deliver.  However, challenges such as 

compliance mechanisms by Cloud Service Providers (CSPs), provider lock-in, and the 

proliferation of CSPs create complexity for users. Inconsistencies in promised Quality of 

Service (QoS) levels also complicate the decision-making process, leading to inefficiencies and 

suboptimal outcomes. As cloud data centers scale, energy consumption becomes a critical 

concern, making energy efficiency a vital aspect of cloud service management. Balancing 

energy consumption with QoS metrics is crucial for delivering sustainable and efficient cloud 

services that meet diverse user requirements [11][12]. By addressing these challenges, we can 

pave the way for more efficient and reliable cloud services, a key goal of this research. This 

will enhance the user experience and the overall performance of cloud computing. The 

complexity of cloud computing is amplified by factors such as the physical distance between 

data centers, which significantly impacts performance and round-trip time (RTT) for data 

transmission. As IT services increasingly migrate to cloud infrastructures, monitoring network 

performance becomes essential for ensuring optimal service delivery. However, Cloud Service 

Providers (CSPs) typically provide only qualitative information on network performance, 

resulting in uncertainties and suboptimal deployment decisions. To address these challenges, 

it is crucial to focus on cloud-to-user latency and the network paths connecting data centers to 

globally distributed users. Furthermore, managing distributed transactions in cloud 

environments involves balancing reliability and consistency, particularly in the face of 

hardware failures, network outages, and varying latencies. Analyzing these factors can lead to 

more informed strategies for cloud service deployment and optimization [13][14]. Given the 

current state of cloud service management, there is an urgent need for more intelligent and 

adaptive strategies. These strategies should focus on managing Service Level Agreement 

(SLA) selection and resource allocation in cloud environments. Their goal should be to 

optimize response times, reduce latency, and ensure service reliability. A compelling resource 

management strategy can enable cloud providers to lower energy consumption and minimize 

SLA violations within data centers, thus enhancing overall service efficiency and sustainability. 

Moreover, such a strategy can incorporate predictive models that anticipate future resource 

demands, prevent resource shortages, and dynamically scale resources in response to changing 

workloads, ensuring optimal performance and resource utilization [15][16]. Traditional 

approaches to managing cloud service environments often rely on extensive rule-based systems 

that are computationally intensive and lack the flexibility needed to adapt to these 

environments' diverse and dynamic nature [17]. Challenges such as data migration, resource 

allocation, and competition among providers can significantly limit the capabilities of cloud 
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computing environments. Similarly, in artificial intelligence (AI), decision-making in uncertain 

and ambiguous real-world scenarios presents substantial complexities. Fuzzy logic systems 

have proven valuable tools in these contexts, offering a means to approximate optimal 

decisions by effectively handling uncertainty and vagueness [18]. While fuzzy logic is a 

valuable method for modelling computer knowledge, traditional approaches have their 

limitations. These approaches rely extensively on significant rule sets to determine the degree 

of membership for elements within a fuzzy set. This reliance results in considerable 

computational overhead and limits the scalability of such systems, posing challenges to their 

efficient implementation in complex environments [19]. Efficient allocation of virtual 

machines (VMs) is essential for optimizing resource utilization in cloud environments. 

However, traditional VM allocation methods often face challenges in managing dynamic 

workloads, leading to suboptimal performance and increased operational costs. Resource 

management, particularly with a focus on CPU resource utilization, is a complex task that 

requires advanced strategies to enhance efficiency and reduce overall costs [20]. As cloud 

computing environments expand in scale and complexity, there is an increasing need for 

adaptive and efficient resource allocation strategies capable of dynamically responding to 

varying demand patterns in real time. Such a strategy must optimize resource utilization while 

maintaining low latency and fast execution times for real-time applications and interactive 

services. Artificial intelligence (AI) is increasingly being leveraged to automatically manage 

and optimize cloud resources, addressing challenges such as real-time performance 

requirements and energy efficiency concerns. The effectiveness of these methods can be further 

enhanced by incorporating advanced AI models and developing innovative solutions to address 

emerging challenges in distributed and heterogeneous cloud environments [16]. To address the 

intertwined challenges of optimizing cloud service delivery, there is a pressing need for 

innovative cloud brokerage systems that utilize advanced techniques such as fuzzy logic and 

intelligent algorithms. These systems can act as intermediaries between users and cloud service 

providers (CSPs), enabling more accurate and efficient service selection by accounting for user 

requirements and different CSPs' diverse characteristics. Additionally, to tackle environmental 

and operational concerns, future generations of cloud computing must focus on becoming more 

energy-efficient and sustainable while maintaining the delivery of high-quality services. This 

is a crucial direction for the future of cloud computing [21]. In conclusion, cloud computing 

services' rapid growth and complexity necessitate developing reliable, adaptive, and cost-

effective cloud brokerage solutions. These systems improve decision-making accuracy, 

optimize SLA selection, and manage workload distribution, preventing data center overload 

and minimizing costs [22]. 

1.2 The objectives of the thesis  

I. Estimating round-trip Time (RTT) in cloud computing environments using fuzzy logic 

to account for inter-region distances, providing a nuanced understanding of network 

latency by categorizing proximity and time, and employing two techniques a ping test 

and a mathematical approach—for accurate RTT calculation. 

II. To develop an intelligent fuzzy theory-based SLA guarantee model that calculates the 

SLA guarantee value for each cloud service provider by considering specific computing 
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and networking parameters, using fuzzy logic to handle and transform data to address 

ambiguity in results. 

III. This research aims to push the boundaries of cloud computing by improving the 

precision and accuracy of fuzzy decision-making processes and non-probabilistic 

models. I propose an innovative approach to flexible mathematical modeling that 

minimizes time and cost while eliminating the need for extensive fuzzy rules. This 

approach promises to revolutionize the efficiency of cloud computing environments. 

IV. To develop the Intelligent Validation Cloud Broker System (IVCBS) using a fuzzy 

logic-based algorithm aligned with the trapezoidal membership function to optimize 

Virtual Machine (VM) allocation dynamically, enhance response times, improve data 

center processing efficiency, reduce VM and data transfer costs, and achieve power 

efficiency, thereby addressing scalability and performance challenges while 

maintaining high Quality of Service (QoS) in cloud computing environments. 

V. Our research is dedicated to developing a broker-driven approach using a fuzzy logic 

system for the dynamic optimization of Virtual Machine (VM) allocation in cloud 

computing environments. Based on request packet size, this approach promises to 

optimize resource usage, reduce latency, enhance overall system performance, and 

improve response times, data center processing times, request serving times, and data 

transfer costs. I believe this approach will significantly contribute to the efficient 

management of cloud resources. 

VI. To develop a fuzzy logic-based cloud brokerage technique to assist users in selecting 

the most suitable cloud service instances by evaluating factors like user needs and 

service characteristics. The study aims to enhance decision-making processes for cloud 

service selection by analyzing multiple scenarios, including static and mobile users, to 

assess the impact of user mobility on service quality and explore the effects of 

implementing a brokerage service that supports service migration, optimizing cloud 

service management in dynamic environments. 

1.3 Dissertation Structure and Organization  

The remaining structure of the dissertation is organized as follows: 

• Chapter 2: Provides an in-depth understanding of cloud service models (IaaS, PaaS, 

SaaS) and deployment models, discussing their importance for informed decision-

making regarding customization, control, and scalability. It also introduces the NIST 

Cloud Computing Reference Architecture and essential characteristics of cloud 

computing systems. 

• Chapter 3: Explores the driving factors behind cloud adoption, emphasizing strategic, 

operational, and financial aspects. It discusses Cloud Adoption Frameworks (CAFs), 

core business benefits (agility, adaptability, security), and financial advantages (cost 

savings, economies of scale). Focuses on best practices for successful cloud adoption, 

including governance, migration, and security. It highlights the benefits of cloud 

platforms, such as agility, business continuity, and economic advantages, alongside the 

importance of security. 
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• Chapter 4: Discusses the estimation of Round-Trip Time (RTT) in cloud computing 

environments using fuzzy logic, focusing on challenges like geographical distance, 

network congestion, and routing policies, with a case study on AWS demonstrating 

improved RTT estimation. 

• Chapter 5: Introduces a fuzzy logic-based SLA classification model, categorizing 

SLAs into 9 levels based on key QoS metrics such as uptime, bandwidth, jitter, and 

RTT, offering a flexible, transparent, and user-friendly method for improved SLA 

selection. 

• Chapter 6: Examines the optimization of fuzzy logic systems for decision-making in 

uncertain environments, presenting a mathematical model using various membership 

functions to categorize input data, with comparisons to traditional fuzzy inference 

systems demonstrating improved performance. 

• Chapter 7: Discusses the Intelligent SLA Selection through the Validation Cloud 

Broker System (IVCBS), focusing on improving cloud computing efficiency through 

optimization algorithms and simulations that show IVCBS outperforms traditional 

methods in response time, processing, and cost reduction. 

• Chapter 8: Explores a broker-driven approach to virtual machine (VM) allocation, 

using fuzzy logic to dynamically adjust resource distribution based on request packet 

sizes. The study demonstrates improved performance and cost efficiency through Cloud 

Analyst simulations. 

• Chapter 9: Presents the design of a fuzzy logic-based cloud broker system that balances 

CSP and customer interests by ranking service instances and users. It optimizes service 

quality and cost through service migration and mobility considerations, with 

simulations showing superior stability, service delay, and cost-effectiveness compared 

to other methods. 

• Chapter 10: presents a comprehensive conclusion of all contributions, outlining three 

key theses under the section "New Scientific Results," which constitute the primary 

objectives of this dissertation. 
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Chapter 2 Cloud Computing  

Chapter 2 provides a comprehensive overview of Cloud Computing Service Models, 

deployment models, and key characteristics. It aims to equip readers with a solid understanding 

of the fundamental approaches and methodologies that underpin cloud computing. The chapter 

explains the distinctions between IaaS, PaaS, and SaaS, helping users select the most 

appropriate model for their specific needs. It also introduces the NIST Cloud Computing 

Reference Architecture, outlining its components and their interactions. Additionally, the 

chapter explores various deployment models, highlighting the trade-offs in control, security, 

cost, and scalability. Furthermore, it emphasizes the key benefits of cloud computing, such as 

on-demand self-service, broad network access, and resource pooling. 

2.1 Cloud Computing Service Models and Offerings  

Choosing the right service model is a critical factor for the successful delivery of cloud-based 

solutions. To make an informed choice, it is essential to understand each service model and the 

division of responsibilities between the cloud service provider and the cloud service consumer 

[23]. Cloud service models include Software as a Service (SaaS), Platform as a Service (PaaS), 

and Infrastructure as a Service (IaaS). SaaS operates on top of PaaS, which, in turn, runs on 

IaaS. In recent years, the number of SaaS offerings has grown significantly, making it 

challenging for consumers to select the best service among those with similar functionalities 

[24]. Each cloud service model provides different levels of customization and ownership, 

depending on the user's needs—ranging from raw computing power to fully developed 

software solutions. The separation of responsibilities and customization options between the 

models varies, offering flexibility to users based on their requirements  . Appendix 1 (Figure 1) 

provides an overview of the NIST Cloud Computing Reference Architecture, which identifies 

the key actors, their activities, and functions in cloud computing. This high-level diagram is 

designed to help users understand the requirements, uses, characteristics, and standards of 

cloud computing [25][26]. Three cloud service models offer abstraction levels to simplify 

system building and deployment [25]. 

2.2.1 Infrastructure as a Service (IaaS) 

Infrastructure as a Service (IaaS) provides virtualized computing resources over the Internet, 

enabling users to manage and control infrastructure components such as servers, storage, and 

networking. The National Institute of Standards and Technology (NIST) defines IaaS as: "The 

capability provided to the consumer is to provision processing, storage, networks, and other 

fundamental computing resources where the consumer is able to deploy and run arbitrary 

software, which can include operating systems and applications. The consumer does not 

manage or control the underlying cloud infrastructure but has control over operating systems, 

storage, and deployed applications and possibly limited control of select networking 

components (e.g., host fi rewalls). "Although the cloud provider is responsible for maintaining 

the underlying hardware, IaaS abstracts many of the tasks associated with managing a physical 

data center—such as handling servers, disc storage, and networking—into a collection of 

services. These services can be accessed and automated through code or web-based 

management consoles. One of the key advantages of IaaS is its on-demand nature. The virtual 
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infrastructure is available when you need it. Users can swiftly set up and launch infrastructure 

components within minutes by calling an application programming interface (API) or utilizing 

a web-based management console. In summary, IaaS offers virtual data center capabilities, 

allowing consumers to focus on building and managing applications rather than dealing with 

the complexities of maintaining physical infrastructure. Infrastructure as a Service (IaaS) 

Offerings: 

i. Compute resources: Virtual machines (VMs), containers, and bare metal servers. 

ii. Storage: Block storage (e.g., AWS Elastic Block Store), object storage (e.g., Amazon 

S3), and file storage. 

iii. Networking: Virtual networks, load balancers, VPNs, and firewalls. 

Infrastructure as a Service (IaaS) Benefits and examples: 

i. Benefits: full control over the infrastructure, the flexibility to scale resources as needed, 

and a pay-as-you-go pricing model. 

ii. Examples: Amazon Web Services (AWS) EC2, Google Compute Engine (GCE), 

Microsoft Azure Virtual Machines (VMs). 

2.1.2 Platform as a Service (PaaS) 

Platform as a Service (PaaS) offers developers a platform to build, run, and manage 

applications without needing to manage the underlying infrastructure. It abstracts the 

complexities of hardware management and provides a development environment with built-in 

tools and services for application creation. According to the National Institute of Standards and 

Technology (NIST), PaaS is defined as: "The capability provided to the consumer is to deploy 

onto the cloud infrastructure consumer-created or acquired applications created using 

programming languages, libraries, services, and tools supported by the provider. The consumer 

does not manage or control the underlying cloud infrastructure, including networks, servers, 

operating systems, or storage, but has control over the deployed applications and possibly 

configuration settings for the application-hosting environment." In essence, PaaS allows 

developers to focus on building and managing their applications, while the cloud provider takes 

care of the infrastructure. Platform as a Service (PaaS) Offerings and: 

i. Development frameworks: Programming languages, development tools, and 

libraries (e.g., Java, Python, Node.js). 

ii. Application hosting: Managed services to run applications without 

infrastructure management. 

iii. Database management: Built-in databases and data services (e.g., MySQL, 

PostgreSQL, NoSQL databases). 

iv. Middleware: Tools for messaging, authentication, and integration. 

Platform as a Service (PaaS) Benefits and examples: 

v. Benefits: 

o Simplifies application development by removing infrastructure concerns. 

o Streamlines workflows with integrated development tools. 
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o Accelerates time-to-market for applications. 

vi. Examples: Google App Engine, Heroku, Microsoft Azure App Service. 

2.1.3 Software as a Service (SaaS) 

Software as a Service (SaaS) delivers fully functional software applications over the Internet, 

allowing users to access the software via a web browser without the need for installation, 

management, or maintenance. SaaS provides a complete application to the consumer, who only 

needs to configure some application-specific settings and manage users. The service provider 

is responsible for handling all aspects of infrastructure, application logic, deployments, and 

overall delivery of the product or service. SaaS solutions are particularly popular for non-core 

functions, enabling companies to avoid the need to support the application infrastructure, 

provide maintenance, or hire staff to manage it. Instead, businesses pay a subscription fee to 

access the service over the Internet via a browser-based interface. NIST defines SaaS as: 

"The capability provided to the consumer is to use the provider’s applications running on a 

cloud infrastructure. The applications are accessible from various client devices through either 

a thin client interface, such as a web browser (e.g., web-based email), or a program interface. 

The consumer does not manage or control the underlying cloud infrastructure, including 

networks, servers, operating systems, storage, or even individual application capabilities, 

except for limited user-specified configuration settings." In summary, SaaS simplifies software 

usage by allowing businesses to focus on utilizing the service rather than managing the 

complexities of the underlying infrastructure. Software as a Service (SaaS)Offerings: 

i. Business applications: Ready-to-use applications for CRM, ERP, collaboration, 

etc. (e.g., Salesforce, Office 365, Google Workspace). 

ii. Industry-specific solutions: Tailored software for specific industries (e.g., 

healthcare, retail, manufacturing). 

iii. Data analytics and visualization tools: SaaS products for data processing and 

visualization. 

Software as a Service (SaaS) Benefits and examples: 

iv. Benefits: 

o No infrastructure or application management required. 

o Automatic software updates and patches. 

o Subscription-based pricing model. 

v. Examples: Dropbox, Slack, Zoom, Google Workspace. 

2.2 Cloud Deployment Models 

Cloud deployment models define how a cloud environment is constructed, who owns it, and 

what its intended purpose is. These models influence the governance, security, cost, and 

accessibility of cloud services. According to NIST, there are four primary cloud deployment 
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models: public clouds, private clouds, community clouds, and hybrid clouds. The classification 

of a cloud deployment model depends on where the infrastructure is located and who controls 

it. Each cloud deployment model is designed to meet different organizational needs. Equally 

important, each model offers a unique value proposition and incurs different costs [27]. 

2.2.1 public cloud 

A private cloud refers to a cloud infrastructure dedicated to a single organization. It can be 

managed either internally or by a third-party provider and may exist on-premises or off-

premises. In this model, the systems and resources that provide the cloud services are housed 

within the organization, which is responsible for managing and administering them. 

Additionally, the organization is responsible for any software or client applications installed 

on end-user systems. Private clouds are typically accessed through the local area network 

(LAN) or wide area network (WAN). Remote users generally have access via the Internet, 

often utilizing a virtual private network (VPN) for secure connections. 

2.2.1.1 Technical Architecture  

i. Shared Resources: Public cloud infrastructure uses virtualization to dynamically 

provision resources from a shared pool, allowing tenants to access and manage services 

through a web browser. 

ii. Elasticity: Cloud elasticity allows real-time scaling of resources like CPU power, 

memory, storage capacity, and bandwidth to respond to unexpected online traffic 

fluctuations, enabling instant adjustments. 

iii. Network Accessibility: IT infrastructure, including servers, networking, and storage, is 

now accessible online via secure connections through Virtual Private Networks or 

encrypted tunnels, replacing the need for in-house management. 

iv. API Accessibility: Public clouds provide RESTful APIs for programmatic resource 

control, integration with services, and low-level access to software inputs, processes, 

and outputs, enabling assistive technologies like screen readers to interact with the 

system. 

v. Self-service: The public cloud offers unlimited scalability and self-service 

provisioning, allowing users to manage resources like instances and storage through 

self-service portals. 

2.2.1.2 Operational Considerations 

i. Cost: Cost management in cloud technology involves optimizing usage and 

efficiency, with the pay-per-use model allowing organizations to pay only for 

resources consumed. 

ii. Security: Users are responsible for securing their data and applications using 

encryption, IAM, and compliance features, ensuring cloud compliance through 

strong practices, regular audits, and continuous monitoring. 

iii. Performance: Public clouds offer geographically distributed data centers, reducing 

latency and improving cloud performance by hosting applications closer to users. 

2.2.2 Private Cloud 
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A private cloud refers to a cloud infrastructure dedicated to a single organization. It can be 

managed either internally or by a third-party provider and may exist on-premises or off-

premises. In this model, the systems and resources that provide the cloud services are housed 

within the organization, which is responsible for managing and administering them. 

Additionally, the organization is responsible for any software or client applications installed 

on end-user systems. Private clouds are typically accessed through the local area network 

(LAN) or wide area network (WAN). Remote users generally have access via the Internet, 

often utilizing a virtual private network (VPN) for secure connections. 

2.2.2.1 Technical Architecture 

i. Single-Tenant Environment: Dedicated to a single organization, offering 

scalability, flexibility, and self-service capabilities while providing enhanced 

control and security. It operates in a single-tenant environment, allowing customers 

to customize software and infrastructure. 

ii. Customization: Private cloud customers can customize servers and software, 

maintain security and access control, and create specialized environments for high-

performance computing, while maintaining control over hardware and software 

configurations. 

iii. Infrastructure: Private cloud architecture, hosted on-premises or off-premises, 

allows organizations to customize their infrastructure using proprietary platforms 

like VMware vSphere, OpenStack, or Hyper-V, allowing resource management as 

a service. 

iv. Automation: Modern private clouds use automation frameworks like Kubernetes 

and OpenShift to improve efficiency and resource management, streamlining 

operations and increasing productivity by automating resource provisioning, 

scaling, and management. 

2.2.2.2 Technical Operational Considerations 

i. Control: Customizing cloud environment offers flexibility, control, and complete 

control over security, performance, and infrastructure, allowing organizations to 

meet specific business needs without sharing resources. 

ii. Security: Private cloud security involves safeguarding data and infrastructure in a 

dedicated, isolated environment, managing threats like breaches and cyberattacks, 

and implementing robust protocols, technologies, data governance policies, 

advanced firewalls, and encryption mechanisms. 

iii. Compliance: Cloud compliance in private cloud environments requires adhering to 

regulatory standards, security protocols, and industry best practices for data 

protection, privacy, and operational integrity, especially in highly regulated 

industries like finance, healthcare, and government. 

viii. Cost: Initial capital expenses can make it costly, so effective cost management is 

essential for optimizing spending over time. By understanding cloud costs and 

exploring various pricing models, organizations can better control expenses and 

ensure cost efficiency. 

2.2.3 Hybrid Cloud 
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The hybrid cloud model combines public and private clouds, enabling organizations to host 

sensitive workloads on private clouds and non-sensitive workloads on public clouds. Data and 

applications can be shared between the two environments, offering the best of both worlds. In 

a hybrid cloud setup, two or more cloud models are used together, but they remain distinct and 

separate, linked through integration. While a hybrid cloud may introduce more complexity to 

the overall environment, it provides greater flexibility in meeting an organization’s specific 

objectives. 

2.2.3.1 Technical Architecture 

i. Integration: Hybrid cloud technical architecture connects public and private clouds 

and on-premises systems for seamless data and workload sharing. It requires cloud 

orchestration tools, APIs, and middleware for efficient workflow management and 

coordination between cloud systems. 

ii. Workload Distribution: Combines public and private cloud environments with on-

premises infrastructure, allowing for flexible workload distribution and seamless 

transitions. This optimizes resource utilization, ensures business continuity, and 

maximizes efficiency in managing diverse business operations.  

iii. Cloud Bursting: A hybrid cloud deployment technique that offloads excess traffic 

from a private cloud to a public cloud when on-premises infrastructure reaches 

capacity limits, enabling organizations to efficiently scale computing resources and 

maintain system reliability during high demand periods. 

iv. Network Management: Integrates on-premises infrastructure with private and 

public cloud services for seamless data transfer and management. Effective network 

management ensures secure connections, optimizes performance and addresses 

security, scalability, and compliance concerns. Strong network connectivity is 

required. 

2.2.3.2 Operational Considerations 

i. Flexibility: Provides operational flexibility by strategically deploying workloads 

across on-premises and cloud environments, safeguarding sensitive data, and 

leveraging scalability and performance benefits. Companies must evaluate specific 

needs for data, location, compliance, and scalability.  

ii. Interoperability: Implementing a hybrid cloud strategy requires data compatibility 

and interoperability between different cloud environments, requiring data migration 

and identifying specific needs. Hybrid cloud management platforms like 

Kubernetes, VMware Tanzu, or Azure Arc help manage resources across 

environments. 

iii. Data Security: Hybrid cloud security combines on-premises and cloud-hosted data 

security, utilizing strong network measures, uniform data governance, and 

software-defined networking. Encrypted data transfer and access control 

mechanisms are crucial for preventing breaches. 

2.2.4 Community Cloud 

A community cloud is a cloud infrastructure shared by several organizations with common 

requirements or purposes. It operates similarly to a private cloud but is used by multiple 
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organizations (a group of tenants) rather than just one. These organizations typically have a 

shared mission or objective and prefer a semi-public cloud environment that offers more 

privacy than a public cloud. In a community cloud, the participating organizations benefit from 

shared resources and responsibilities, allowing them to maintain privacy and security without 

the need for each organization to individually manage and maintain the cloud infrastructure. 

This collaborative approach ensures that the cloud is tailored to the specific needs of the group 

while distributing the maintenance workload across the member organizations. 

2.2.4.1 Technical Architecture 

i. Shared Infrastructure: Community clouds share infrastructure among 

organizations, reducing costs and improving resource utilization. They are often 

tailored to specific industries for privacy, security, and compliance 

requirements. 

ii. Collaboration: A collaborative cloud environment for organizations sharing 

resources and projects and maintaining privacy and compliance standards. It 

requires robust technical architecture, security, scalability, and user 

management. The infrastructure can be hosted on-premises, third-party, or 

distributed across multiple data centers.  

iii. Customization: It can be customized to enhance user experience and align with 

brand identity, offering flexibility in performance, security, compliance, cost, 

and scalability. It can also be tailored to specific regulatory requirements. 

2.2.4.2 Operational Considerations 

i. Cost: Cost management in a community cloud environment optimizes resource 

usage and expenditure, enhancing efficiency and cost control. Shared costs 

make it more cost-effective than private cloud options. 

ii. Governance: Organizations, including IT professionals, must actively evaluate 

governance frameworks for community clouds to ensure compliance with 

regulations and policies. Proper governance strategies for data privacy, security 

management, and service usage are crucial, requiring collaboration on the 

governance model. 

iii. Security: Community cloud resources pose security risks like misconfiguration, 

unauthorized access, and limited visibility. Organizations must implement 

robust measures and manage operations effectively. Coordination of 

governance policies among participating organizations ensures smooth 

collaboration. 

iv. Compliance: Community cloud compliance ensures that shared environments 

comply with regulatory frameworks and standards. It involves continuous 

monitoring, data security, privacy protection, and operational integrity. 

Community clouds streamline compliance across participating entities, 

promoting legal obligations. 

2.3 Characteristics of Cloud Computing 

 Cloud computing systems possess several key characteristics that make them highly promising 

for future IT applications and services. The National Institute of Standards and Technology 
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(NIST) has identified five essential characteristics of cloud computing systems [28], as 

illustrated in Appendix 1 (Figure 2). These characteristics are outlined and described below 

[29]: 

i. On-demand self-service: On-demand self-service allows consumers to 

independently provision computing resources, such as server time and network 

storage, as needed. This process is automatic and does not require human 

interaction with the service provider. Users can access resources like storage, 

processing power, and applications whenever needed, without relying on 

manual intervention from the provider. 

ii. Broad network access: means that cloud capabilities are available over the 

network and can be accessed through standard mechanisms. It supports a variety 

of platforms, including thin and thick clients (e.g., laptops, smartphones, and 

personal digital assistants [PDAs]). This ensures that cloud services are 

accessible anytime and anywhere through common devices such as laptops, 

smartphones, and tablets. 

iii. Resource Pooling and Broad Network Access: Cloud providers pool their 

computing resources to serve multiple consumers using a multi-tenant model. 

In this setup, physical and virtual resources such as storage, processing, 

memory, and network bandwidth are dynamically assigned and reassigned 

based on consumer demand. There is a level of location independence, where 

customers typically do not control or know the exact location of the resources 

but may be able to specify a location at a higher level of abstraction (e.g., 

country, state, or data center). This model enables efficient resource allocation 

while maintaining data and process isolation for different users. 

iv. Rapid Elasticity: Cloud resources offer rapid elasticity, allowing them to be 

quickly scaled up or down to meet the fluctuating demands of users. This 

elasticity ensures cost-effectiveness, as users only pay for what they need. 

Cloud capabilities can be elastically provisioned and released, sometimes 

automatically, enabling rapid scaling in response to demand. To consumers, the 

available resources often appear unlimited, and they can be provisioned in any 

quantity at any time, offering a reassuring level of flexibility and scalability. 

v. Measured Service: Cloud systems use measured services to automatically 

control and optimize resource usage through metering capabilities at various 

levels of abstraction, depending on the type of service (e.g., storage, processing, 

bandwidth, or active user accounts). This enables the monitoring, controlling, 

and reporting of resource consumption, providing transparency for both the 

provider and the consumer. As a result, users can track their resource usage, 

allowing for better cost management and resource optimization. 

 

 

 

 

 

 

 



15 

 

Chapter 3 Adoption and Implementation of Cloud Platforms  

Chapter 3 discusses the main reasons for adopting a cloud platform, including availability in 

cloud adoption, data durability in cloud adoption, virtualization in cloud operations, hardware 

server operation, network architectures for clouds, cloud providers and vendors, SLA 

management in cloud computing, system virtual machines (full virtualization), cost reduction, 

market adaptability, and innovation. It highlights the benefits of cloud adoption, including 

agility, adaptability, redundancy, and data continuity. The chapter also discusses Amazon Web 

Services (AWS), Google Cloud Platform, Microsoft Azure: Cloud Computing Services, the 

economics of cloud adoption, highlighting cost-saving opportunities, and the importance of 

virtualization technology and networking architectures for scalable, cost-effective cloud 

operations. 

3.1 Key Drivers for Cloud Platform Adoption 

Organizations increasingly recognize the need for a strategic cloud adoption plan to effectively 

leverage the advantages of a cloud data platform. Major cloud service providers offer 

comprehensive frameworks to help businesses translate their strategic goals into actionable 

steps, ensuring a structured approach to cloud adoption. Many Cloud Adoption Frameworks 

(CAFs) provide a range of tools and resources, including plan generators, trackers, templates, 

checklists, and readiness assessments. These tools cover critical areas such as environment 

preparation, governance, migration, innovation, management, organization, and security of the 

cloud platform, ensuring organizations follow best practices throughout the adoption process. 

While the benefits of the cloud over on-premise data centers are substantial, much of the focus 

has traditionally been on potential economic gains. However, it is important to note that 

migrating to a public cloud provider does not always guarantee cost savings. In fact, cost 

savings should not be the primary factor driving cloud adoption. Instead, organizations should 

prioritize the cloud's ability to enable or enhance their business objectives 

[30][31][32][33][34][35][27]. 

3.1.1 Enhancing Business Agility 

Business agility refers to an organization’s ability to quickly adapt to changing market 

conditions, customer demands, and emerging opportunities. Cloud platforms are central to 

enabling this agility by providing the tools and flexibility necessary for innovation, scalability, 

and dynamic responses to business needs. Traditional IT infrastructures often require weeks or 

even months to set up, involving tasks such as installing, cabling, configuring, provisioning, 

and testing equipment. In contrast, public cloud providers offer fully operational resources that 

can be automatically and rapidly deployed, making it possible to have a global infrastructure 

up and running within minutes. 

3.1.2 Business Adaptability 

Cloud adoption improves business adaptability by offering flexibility, scalability, and 

improved performance. It enables businesses to adjust resources based on demand, modify 

operations, and experiment with new strategies. Major public cloud providers offer a wide 
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range of services, including AI, machine learning, and big data analytics, ensuring businesses 

can respond quickly to market changes and evolving customer needs. 

3.1.3 Ensuring Business Continuity 

Business continuity in cloud adoption focusses on proactive planning to ensure that critical 

operations can continue during disruptions. This involves creating a cloud-specific business 

continuity plan, implementing disaster recovery measures, and utilizing platform-level 

capabilities to maintain resilience in the cloud environment. In essence, business continuity is 

the ability of an organization to continue operating regardless of external circumstances. When 

migrating to a public cloud infrastructure, business continuity should be a top priority. Key 

areas that contribute to this are: 

3.1.3.1 Cloud Redundancy and Disaster Recovery   

Cloud redundancy involves duplicating physical and virtual cloud resources, as well as backing 

up customer data to ensure continuous service during system failures. When the primary system 

fails, traffic is automatically redirected to a redundant system to maintain operations. Public 

cloud providers offer redundancy at two levels: 

i. Local Redundancy: Duplicates resources within a single data center to protect 

against localized failures. 

ii. Geographical Redundancy: Replicates data across multiple distant data centers, 

ensuring resilience during regional outages. 

While geographical redundancy can be costly to implement independently, many cloud 

providers offer it at no additional cost, making it accessible for businesses. Redundancy is a 

crucial part of disaster recovery strategies, ensuring that systems remain operational during 

events like natural disasters or technical issues. This approach helps prevent data loss and 

downtime, maintaining productivity, especially during outages or remote work. To ensure 

continuous operations, businesses must incorporate redundancy into their cloud strategy and 

regularly assess both their cloud provider’s capabilities and their own continuity plans. 

3.1.3.2 High Availability in Cloud Adoption   

A public cloud provider's level of redundancy is a crucial factor in determining the system's 

availability, which reflects how dependably users can access cloud services from their 

locations. Redundancy ensures that critical systems and data are duplicated across multiple 

environments, safeguarding against outages and disruptions. Most public cloud providers 

guarantee 99.99% availability, or “four nines” of uptime, which translates to approximately 52 

minutes of potential downtime per year. While this level of availability is generally reliable, it 

may not be sufficient for businesses with mission-critical operations that demand near-

continuous uptime. In industries where downtime has significant consequences, such as 

healthcare or autonomous systems, 99.999% (five nines) availability is the more accepted 

standard, equating to less than 5 minutes of downtime annually. 
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3.1.3.3 Data Durability and Integrity   

Data durability refers to the ability of stored data to remain intact, complete, and uncorrupted 

over time, ensuring long-term accessibility. In public cloud infrastructure, data durability is not 

left to chance. It is achieved through extensive replication across multiple locations. For 

example, some cloud providers duplicate data six times across three geographically separate 

regions, ensuring data availability even in the event of localized failures. These extensive 

measures should make you feel secure and well-informed about the data durability in cloud 

adoption. Most public cloud providers offer a durability rate of 99.99999999% (often referred 

to as "eleven nines"). This means that the likelihood of data being lost or inaccessible is 

incredibly small—statistically, only one failure of a few bytes of data is expected to occur over 

thousands or even millions of years. Durability ensures that data remains uncompromised and 

accessible for both consumers and businesses. For consumers, compromised or degraded data 

can negatively affect their experience. For businesses, the integrity of their data is crucial, as 

compromised data can lead to a loss of customer loyalty, damage to reputation, and potential 

revenue loss. Therefore, ensuring high levels of data durability is essential for maintaining trust 

and operational continuity. 

3.2 Security Considerations in Cloud Adoption 

Cloud security attacks often target unknown vulnerabilities in software or hardware, making 

them difficult to detect and mitigate until a security patch is developed and applied. Securing 

IT resources has become more complex than ever. However, by moving to a public cloud 

infrastructure, customers benefit from the shared responsibility model, where security duties 

are divided between the customer and the cloud provider. Cloud providers have dedicated 

security teams, advanced systems, and tools to help protect resources. Many of these security 

tools are readily accessible to customers, allowing them to enhance their defenses. 

Additionally, encryption is available at multiple levels within the provider's infrastructure, 

ensuring robust protection of customer data. 

3.3 Economic Implications of Cloud Computing 

Migrating enterprise IT to a public cloud provider can be highly cost-effective, with some 

organizations reporting savings of 50% or more. This is achieved by replacing capital 

expenditures, such as purchasing hardware and maintaining on-premise resources, with the 

lower operational costs of managing cloud infrastructure. In the cloud, resource capacity is 

flexible, meaning customers only pay for the resources they actually use, which eliminates the 

cost of overprovisioning for occasional peak demands. Cloud economics revolves around two 

key principles: economies of scale and global reach. Cloud providers reduce costs for 

organizations by purchasing computing resources in massive quantities at lower prices, passing 

those savings on to their customers. Additionally, the global reach of cloud providers allows 

them to offer services in multiple regions, further optimizing performance and cost efficiency 

for businesses. 

3.4 Virtualization in Cloud Infrastructure 
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Virtualization is a fundamental technology that enables modern cloud operations by allowing 

functions previously performed by hardware to be handled through software. By using 

virtualization, multiple virtual machines (VMs), or "instances," can run on a single physical 

server, Appendix 2 (Figure 1). In the past, each hardware server typically hosted one or only a 

few web servers, but with virtualization, a single server can host dozens or even hundreds of 

virtual servers. This shift has led to significant cost savings for data centres, as operators can 

perform more tasks with fewer hardware servers, reducing the need for constant hardware 

expansion. Without virtualization, the cloud's cost-effectiveness and scalability would not be 

possible. Virtualization extends beyond computing to other areas, such as web applications, 

databases, and more. One example is data virtualization, a technique that allows users to access 

and query data from multiple sources as though it were a single virtual database. Platforms like 

Denodo facilitate this by enabling users to work with data from different systems without 

needing to move or integrate the data physically. This simplifies data access and management, 

streamlining processes and improving efficiency. 

3.4.1 Fundamentals of Hardware Virtualization 

Before exploring how virtualization is implemented, it is essential to understand the 

fundamental components of a hardware server, Appendix 2 (Figure 2). Similar to workstations 

or laptops, a hardware server consists of key elements such as central processing units (CPUs), 

an operating system (OS), memory, and storage. These components provide the necessary 

infrastructure on which applications can be installed to deliver services to users. 

3.4.2 Hypervisor Technologies in Cloud Environments 

Server virtualization relies on a hypervisor, a software layer that creates and manages virtual 

machines (VMs) by allocating specific hardware resources, such as CPU and memory, to each 

VM. This allocation ensures that each virtual server receives the appropriate resources based 

on its requirements, enabling it to operate independently of the underlying hardware. This 

approach optimizes the use of physical server resources, making the system cost-effective. 

3.4.2.1 Type 1 Hypervisors 

In contrast, Type 1 hypervisors operate directly on the hardware without the need for a host 

operating system, earning them the designation of “bare-metal” hypervisors, Appendix 2 

(Figure 3). These hypervisors enable hardware servers to create and manage dozens, or even 

hundreds, of virtual machines, each capable of running different operating systems from a 

diverse selection. Type 1 hypervisors are widely utilized in large-scale data center 

environments due to their efficiency and scalability. Prominent examples of Type 1 hypervisors 

include Microsoft’s Hyper-V, VMware’s ESXi, and Linux KVM. 

3.4.2.2 Type 2 Hypervisors 

Type 2 hypervisors operate on top of a hardware server's existing operating system, known as 

the host operating system, such as Microsoft Windows or Linux, Appendix 2 (Figure 4). When 

the hypervisor creates a virtual machine (VM), it provides the VM with a separate, scaled-

down operating system known as the guest operating system. Notably, the guest operating 
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system can differ from the host. For example, a VM on a Windows-based hardware server can 

run a Linux operating system. One limitation of Type 2 hypervisors is that they rely on the host 

operating system, which can introduce additional costs, potential performance delays, and the 

need for regular maintenance. As a result, Type 2 hypervisors are less suited for large-scale 

enterprise environments. However, they are adequate for personal or small-scale use, 

particularly when multiple operating systems need to be run on a single machine. Popular 

examples of Type 2 hypervisors include Oracle’s VirtualBox and Microsoft’s Virtual PC. 

3.5 Virtual Machines and Cloud Workloads    

A virtual machine (VM) is a software-based computing resource that simulates a physical 

computer to run programs and deploy applications. It creates a virtual environment where an 

operating system (OS) can be installed and used independently of the main OS on the physical 

computer. This allows the VM to mimic the hardware of the host machine, enabling it to 

function as if it were a completely separate computer with its operating system. There are two 

main users involved in this setup: 

i. Host machine: The physical hardware and main operating system running on the 

computer. 

ii. Guest machine: The virtual machine, which operates with a separate, independent 

guest operating system. 

Virtual machines are classified into two types, each serving distinct purposes: 

i. System virtual machines (full virtualization): These VMs replace a real machine 

and allow multiple virtual machines to coexist on a single physical machine. This 

is made possible by a software layer called a hypervisor, which isolates each virtual 

environment while managing their coexistence on the same hardware. Modern 

hypervisors leverage virtualization-specific hardware, primarily provided by the 

host processor, to optimize performance. 

ii. Process virtual machines (VMs): These VMs are designed to run specific programs 

in a platform-independent environment. Each VM created by the hypervisor 

operates as a self-contained computer with all necessary components, including a 

guest operating system. The hypervisor allocates hardware resources, such as CPUs 

and RAM, to each VM, ensuring that they function independently while sharing the 

same physical resources. Virtual machines efficiently use hardware resources by 

enabling multiple, isolated environments on a single physical machine, with each 

VM running its own OS and applications. 

3.6 Network Architecture in Cloud Computing 

This approach focuses on the data centre network and data centre interconnect network, which 

are crucial areas in cloud computing. The interconnect network connects multiple data centers 

in private, public, or hybrid cloud environments, while the public Internet connects end users 

to public cloud provider data centers [36][37][38][39][40]. 

3.6.1 Data Center Networks   
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A data center network (DCN) is the foundational infrastructure that connects all the physical 

and virtual resources within a cloud service data center. It enables communication between 

servers, storage devices, and other critical components, ensuring seamless operation, efficient 

data flow, and high performance. Cloud providers rely on large-scale data centers to deliver 

scalable services, and these data center networks are designed to connect thousands of servers. 

A well-architected data center network is essential to ensure the scalability, reliability, and 

performance of cloud services, and continuous advancements in network technologies help 

meet the increasing demands of modern cloud-based applications.  Appendix 2 (Figure 5), 

shows a conceptual view of a hierarchical data center network, as well as an example of 

mapping the reference architecture to a physical data center deployment. 

The most common architecture used in DCNs is a hierarchical network design, which is 

composed of three key layers: 

i. Access Layer: This layer provides connectivity for the server resource pool. Server 

density, form factor, and the degree of virtualization are a few variables that affect 

the design of the access layer. Common approaches include: 

• End-of-row (EoR) switches. 

• Top-of-rack (ToR) switches. 

• Integrated switches. 

ii. Aggregation Layer: The aggregation layer consolidates access layer switches, 

facilitating connectivity between servers for multi-tier applications and enabling 

communication across the network with external clients. 

iii. Core Layer: This layer provides high-performance Layer-3 switching, which 

manages IP traffic between the data center and the telecommunications provider's 

Internet edge and backbone. 

In geographically dispersed data centers, the use of Layer-3 Peering Routing is not just 

common, it's crucial. This routing method allows for rapid recovery from link failures and 

shields the control plane from broadcast traffic and Layer-2 network loops, making it an 

essential part of your network design decisions. As cloud-based applications depend heavily 

on the underlying data center network, emerging optical technologies are being adopted to 

improve throughput by dynamically adjusting the physical network topology. While these 

technologies enhance performance, they introduce complexity, restrictions, and overheads 

associated with topology engineering. 

3.6.2 Data Center Interconnect Network 

Data Center Interconnect Networks (DCIN) are designed to link multiple data centers, enabling 

a seamless customer experience for cloud services. Traditional, statically provisioned virtual 

private networks (VPNs) can interconnect data centers and offer secure communication. 

However, these networks often fall short of meeting the dynamic requirements of modern cloud 

services, such as high availability, dynamic server migration, and application mobility. To 

address these needs, DCINs for cloud services have evolved into a specialized class of networks 

based on Layer 2 network extensions across multiple data centers. DCINs support disaster 

avoidance, server migration, high availability, and workload balancing, all while providing the 

flexibility needed for compute elasticity. As the cloud landscape continues to evolve, further 
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research is needed to enhance DCIN performance, particularly in areas like load balancing and 

loop prevention, while ensuring security through encryption. 

3.7 Cloud Service Providers and Vendor Ecosystem  

A cloud vendor is a company that offers cloud-related products, such as software, hardware, 

and services related to cloud infrastructure. They provide a range of solutions, including 

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service 

(IaaS). Examples of prominent cloud vendors include Amazon, Microsoft, Google, IBM, and 

Oracle. A cloud provider, on the other hand, delivers cloud services—primarily IaaS and 

PaaS—to customers over the Internet. Cloud providers own and operate the physical 

infrastructure, such as servers and storage, and give customers on-demand access to these 

resources. While vendors sell cloud products, providers deliver cloud services. Major cloud 

providers include Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform 

(GCP). When selecting a cloud provider or vendor, it is crucial to assess the specific needs of 

your organization. Key factors to consider include: 

i. Budget: Determine the financial feasibility of the solution. 

ii. Security: Evaluate the security features and compliance offered by the provider. 

iii. Scalability: Ensure the solution can grow with your organization’s needs. 

iv. Services and Tools: Review the specific tools, platforms, and services required by 

your business. 

It is also important to recognize that the best provider for one organization may not be the 

best for another, as different companies have varying needs and priorities. To learn more 

about specific providers, organizations can explore documentation, whitepapers, and case 

studies provided by vendors. Additionally, many cloud providers offer free trials, webinars, 

and certification programs to help users make informed decisions [31][42][43]. 

3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing 

In cloud computing, Service Level Agreements (SLAs) are critical for ensuring that service 

providers deliver consistent and reliable services. SLAs establish clear expectations regarding 

performance, availability, and security, while also protecting customers through compensation 

mechanisms in case of service failures. Organizations should thoroughly review and negotiate 

SLAs to ensure they align with their specific business needs and risk management strategies. 

An SLA provides a formal framework that defines the understanding between the service 

provider and the service consumer. It forms the basis for conducting business and maintaining 

a mutually beneficial relationship. Legally, the SLA outlines the terms and conditions that bind 

the service provider to continuously deliver services to the customer. SLAs can be modeled 

using the Web Service-Level Agreement (WSLA) language specification, which, while 

initially intended for web service-based applications, is equally applicable to hosting services. 

Key components of WSLA include service-level parameters, metrics, functions, measurement 

directives, service-level objectives, and penalties [44][45][46]. several characteristics defining 

a proper SLA are listed, namely: 
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i. Attainability is the possibility of meeting the desired level of service. 

ii. Meaningfulness is a property defining that all SLA parts must be relevant to the 

agreement. 

iii. Measurability defines that the level of service provisioning should be measurable 

in an impartial way.  

iv. Controllability specifies that the factors impacting the SLA must be under the 

service provider’s control. 

v. Understandability means that both parties must understand the concepts and 

quantities of the SLA. 

vi. Affordability is a property determining that the SLA should be cost-effective. 

vii. Mutual acceptability is related to the definition of the SLA that should be the result 

of the negotiation between parties. 

There are two types of SLAs from the perspective of application hosting. These are described 

in detail here. 

3.7.1.1 Infrastructure SLA 

In an Infrastructure SLA, the infrastructure provider is responsible for managing and 

guaranteeing the availability of key infrastructure components, such as server machines, power, 

and network connectivity. Enterprises retain control over managing their own applications and 

services that are deployed on these leased server machines. These machines are dedicated to 

individual customers and are isolated from other customers' infrastructure, ensuring privacy 

and security in a dedicated hosting environment. Specific examples of service-level guarantees 

provided by infrastructure providers in such environments are illustrated in Appendix 2(Table 

1). 

3.7.1.2 Application SLA 

In an Application SLA within a co-location hosting model, server capacity is dynamically 

allocated to applications based on their resource needs. Service providers have the flexibility 

to allocate and deallocate computing resources among co-located applications as needed. As 

part of this arrangement, service providers are also responsible for ensuring that the Service 

Level Objectives (SLOs) of their customers' applications are met. For example, an enterprise 

might have an application SLA with a service provider that outlines specific performance 

metrics for one of its applications, as shown in Appendix 2 (Table 2). 

3.8 Amazon Web Services (AWS) 

Amazon Web Services (AWS), launched in 2006 by Amazon, is one of the leading and oldest 

cloud computing platforms. It provides a comprehensive suite of cloud-based services that 

enable businesses to scale, innovate, and operate more efficiently. AWS caters to a wide range 

of computing needs, offering services in computing power, storage, networking, databases, 

machine learning, analytics, the Internet of Things (IoT), mobile computing, and enterprise 

solutions [47]. Since its inception, AWS has been a key player in the cloud computing market. 
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It helps organizations across industries streamline their operations, improve scalability, and 

drive innovation [48]. 

3.8.1 Core Services of AWS  

3.8.1.1 Compute Services (Amazon EC2) 

 Amazon Elastic Compute Cloud enables users to rent virtual servers, known as instances, to 

run applications. EC2 offers flexible configurations, allowing users to customize the amount 

of computing power, memory, and storage based on their specific workload needs. With just a 

credit card, individuals or businesses can access a virtually limitless pool of computing 

resources, renting virtual machines for an affordable hourly rate, making cloud computing 

accessible to a wide range of users [49]. 

3.8.1.2 Storage Solutions (Amazon S3 & EBS) 

Amazon S3 and Amazon Elastic Block Store are two storage solutions designed for businesses. 

S3 is a highly scalable solution that allows businesses to store and retrieve large volumes of 

data over the Internet. It offers multiple storage classes and is ideal for various use cases. EBS, 

on the other hand, provides persistent block storage for use with Amazon EC2 instances, 

offering high-performance and low-latency options. Both solutions offer flexible and efficient 

solutions for managing large-scale storage needs [50]. 

3.8.1.3 Database Services 

AWS offers a comprehensive suite of managed database services to meet the needs of 

various applications: 

i. Amazon Relational Database Service (RDS): RDS provides fully managed 

relational database management services for popular databases such as MySQL, 

PostgreSQL, Oracle, SQL Server, and MariaDB. It automates common 

administrative tasks like backups, scaling, and patching. 

ii. Amazon Aurora: Aurora is a fully managed, high-performance relational 

database compatible with MySQL and PostgreSQL. It offers enhanced 

performance and scalability compared to standard databases. 

iii. Amazon DynamoDB: This is a fully managed NoSQL database solution, 

designed for applications requiring high scalability and low-latency 

performance. 

iv. Amazon Redshift: Redshift is a powerful data warehousing solution optimized 

for big data analytics. It enables organizations to run complex queries efficiently 

across large datasets. 

Together, these services provide flexible and scalable database solutions for both 

relational and NoSQL use cases, as well as specialized services for data warehousing 

and high-performance applications [51]. 

3.8.1.4 Networking Services (Amazon VPC) 
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Amazon Virtual Private Cloud (VPC) enables users to create isolated cloud 

environments within AWS, providing secure communication, networking, and access 

control between cloud resources and on-premises systems. Key components of 

Amazon VPC include: 

i. Network Access Control Lists (ACLs): Stateless, second-level defenses that 

control incoming and outgoing traffic at the subnet level. They operate with 

separate inbound and outbound rules to manage traffic flow. 

ii. Gateways: A gateway is required to connect a VPC to external networks, 

providing connectivity outside the AWS network. 

iii. Route Tables: These contain rules that direct network traffic, specifying how 

traffic is routed from a subnet or gateway to its destination. 

iv. VPC Peering Connections: This feature allows routing traffic between two 

VPCs using private IPv4 or IPv6 addresses, facilitating communication 

between isolated cloud environments. 

These components collectively offer robust networking and security capabilities for 

managing and controlling cloud resources within AWS [52]. 

3.8.1.5 Security and Compliance   

AWS prioritizes security by offering various services to protect infrastructure and customer 

resources. These include AWS Identity and Access Management (IAM), which manages user 

access and permissions, and AWS Key Management Service (KMS), which enforces security 

best practices. AWS Secrets Manager manages sensitive information like API keys and 

database credentials, and AWS Shield protects against Distributed Denial of Service (DDoS) 

attacks. AWS operates under a shared responsibility model, where the provider manages cloud 

infrastructure security while customers secure their data and access. By utilizing these tools 

and following security best practices, organizations can reduce risks and ensure compliance 

with industry regulations [53]. 

3.8.2 AWS Pricing Models 

AWS offers various pricing models to suit organizations' needs, including a pay-as-you-go 

model. This model allows businesses to pay only for the resources they consume, ensuring they 

pay for the services they use [54]. 

i. On-Demand Instances: is a pay-as-you-go pricing model for resources like EC2 

instances or DynamoDB, offering a flat rate without long-term commitments. It is 

suitable for short-term, unpredictable, and pre-production environments with 

unpredictable spikes or uninterrupted runtimes and can be billed in increments of 

one second depending on the service. 

ii. Spot Instances: are Amazon EC2 compute capacity at up to 90% off on-demand 

prices, enabling applications to reduce costs or scale computing capacity. They are 

ideal for fault-tolerant, stateless, and flexible workloads like batch processing, big 
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data, analytics, containerized environments, and high-performance computing. 

They are integrated into multiple AWS services. 

iii. Commitment discounts – Savings Plans: AWS provides savings plans to help users 

reduce costs by committing to a specific amount of resource usage in exchange for 

discounted rates. These plans allow users to commit to hourly spending over one or 

three years, covering AWS Compute services such as Amazon EC2, AWS Fargate, 

and AWS Lambda. The commitment is paid on an hourly basis, with discounts 

applied based on the actual usage. 

iv. Geographic selection: To optimize computing resources, it is important to place 

them closer to users, reducing latency and ensuring compliance with data 

sovereignty requirements. For a global audience, deploying resources across 

multiple locations can minimize costs. AWS cloud infrastructure is organized into 

regions and availability zones, with each region operating under local market 

conditions and varying resource pricing. To estimate the cost of running workloads 

in different regions, users can leverage the AWS Simple Monthly Calculator for 

more accurate budgeting and cost planning. 

v. Third-Party Agreements and Pricing: When utilizing third-party cloud solutions or 

services, it is essential to ensure that pricing structures are aligned with Cost 

Optimization objectives. Pricing should be outcome-based, meaning it scales 

according to the value provided, such as software charging based on the cost savings 

it generates. Agreements that scale with your total bill may not align with cost 

optimization unless they deliver specific outcomes for every component of your 

bill. Ensure that the service pricing includes cost optimization features, which are 

critical for driving operational efficiency and reducing costs. 

3.8.3 AWS Global Infrastructure and Availability   

AWS Regions are geographically separated physical locations, each with multiple isolated 

Availability Zones (AZs) for high fault tolerance, stability, and resilience. This isolation 

prevents the automatic replication of resources across regions, allowing businesses to deploy 

Amazon EC2 instances in locations that best meet their specific needs. Each region consists of 

multiple AZs, each with redundant power, networking, and connectivity, housed in separate 

facilities. This enhances fault tolerance and ensures high availability. By deploying resources 

in different regions, businesses can reduce latency by placing applications closer to their 

geographic locations. The autonomy of each region ensures strong fault isolation and security, 

preventing automatic replication of resources across regions. By leveraging this global 

infrastructure, businesses can optimize performance, comply with local regulations, and 

enhance disaster recovery capabilities, ensuring stability and high availability for their 

applications. [55]. 

3.9 Google Cloud Platform (GCP)  

In April 2008, the Google developer team introduced a closed developer preview of Google 

App Engine, marking their entry into the Platform-as-a-Service (PaaS) market. Over the 

following years, Google steadily expanded its cloud offerings, releasing key services such as 
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Google Cloud Storage in 2010, Compute Engine in 2013, Cloud SQL in 2014, and Kubernetes 

Engine in 2015. This suite of products has enabled the development of cloud-native solutions, 

including machine learning and big data applications. By 2017, Google had established data 

centers across 39 zones in 13 regions, positioning itself as a leader in scalable managed services 

and big data. Google's cloud platform leverages its extensive experience managing services 

like Search and Gmail, offering customers access to many of the same tools used internally. 

This results in a platform known for its scalability and reliability. With services such as 

BigQuery, Bigtable, Cloud Pub/Sub, and Dataflow, Google has made significant strides in the 

data analytics space. Google Cloud Platform (GCP) offers a comprehensive catalog of products 

and services, catering to a wide range of industries and use cases. Core services like Compute 

Engine and Cloud Storage enable teams to build virtually any solution, while specialized 

services such as the Cloud Vision API lower the barrier to solving specific, complex problems. 

Empowering digital innovation with Google Cloud Platform, which offers a wide range of 

cloud services and solutions. This platform enables companies, developers, and organizations 

to leverage Google’s expertise in data management, artificial intelligence, and scalable 

infrastructure to drive growth and innovation [56][57][58][59]. 

3.9.1 Comprehensive Cloud Services Portfolio 

i. Google Cloud Compute Engine (GCE) is a core service offering IaaS for virtual 

machine creation, customization of CPU, memory, and storage, and scalability for 

web applications. 

ii. Storage Alternatives Google Cloud Bigtable is ideal for managing large data sets 

with high throughput and low latency, while Google Cloud Storage offers secure, 

scalable storage for object data. The choice depends on performance or cost 

requirements. 

iii. Data analytics, Google Cloud Platform (GCP) provides Big Query, a serverless data 

warehouse, for efficient data analysis on large datasets. It enables the efficient 

processing of terabytes and petabytes of data in minutes. 

iv. AI and Machine Learning, Google Cloud provides AI and machine learning 

services, including Google Cloud AI and Machine Learning Engine, allowing users 

to create, train, test, monitor, tune, and deploy models, addressing critical business 

challenges and making AI more accessible. 

v. Internet of Things (IoT) and Networking, Google Cloud Platform (GCP) is a robust 

IoT platform with strong networking infrastructure. It ensures seamless 

connectivity and scalability for large-scale deployments and offers services like 

Dedicated Interconnect, Partner Interconnect, and Cloud VPN. 

vi. Serverless Computing, Google Cloud Platform (GCP) provides serverless 

computing services like Google Cloud Functions and Google App Engine. These 

services enable developers to build and deploy applications without managing 

infrastructure, enhancing speed and scalability. 

3.9.2 Performance and Scalability 
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i. Global Network Infrastructure, Google Cloud Platform (GCP) utilizes a global 

network infrastructure with strategically located data centers for low latency, high 

availability, cost-efficiency, and energy-efficient operations, enhancing its appeal 

for sustainable cloud computing solutions. 

ii. Auto-Scaling, Google Cloud Platform (GCP) utilizes Google Kubernetes Engine 

(GKE) for auto-scaling, a feature that dynamically adjusts node pool size based on 

workload demands. This optimizes performance and resource utilization, enabling 

applications to handle fluctuating traffic efficiently.  

3.9.3 Industry Adoption and Use Cases 

i. Media and Entertainment, Google Cloud Platform (GCP) is a crucial tool in the 

media and entertainment sector. It offers scalable infrastructure and innovative 

solutions for content delivery, streamlining operations, reducing costs, and 

enhancing audience engagement, thereby transforming global audience 

interactions. 

ii. Healthcare and Life Sciences, Google Cloud Platform (GCP) significantly impacts 

healthcare and pharmaceutical industries by facilitating genomics research, data 

processing, and secure storage. It facilitates digital transformation, enhances data 

analytics, and drives advancements in biotech and life sciences. 

iii. E-commerce and retail, Google Cloud Platform (GCP) significantly impacts 

healthcare and pharmaceutical industries by facilitating genomics research, data 

processing, and secure storage. It facilitates digital transformation, enhances data 

analytics, and drives advancements in biotech and life sciences. 

3.9.4 Compute Engine Resources: Regions and Zones 

Google Cloud Compute Engine resources are distributed across multiple locations worldwide, 

organized into regions and zones. A region is a specific geographical area where resources can 

be hosted, and each region is composed of at least three zones. Zones are individual data centers 

within a region, and resources such as virtual machine instances or zonal persistent disks are 

referred to as zonal resources. Distributing resources across different zones within a region 

enhances fault tolerance by isolating them from infrastructure failures, such as hardware or 

software issues, in a single zone. To achieve even greater resilience, deploying resources across 

multiple regions offers a higher degree of failure independence. Regions consist of multiple 

zones connected by high-bandwidth, low-latency networks, ensuring fast communication 

between zones. When deploying fault-tolerant, high-availability applications, it is essential to 

choose regions and zones that best suit your specific requirements. All Compute Engine 

resources are categorized as global, regional, or zonal. Regional resources are accessible only 

within the same region, providing efficient resource sharing across zones within that region. A 

placement policy governs the proximity of virtual machines (VMs) to each other, helping to 

minimize the effects of host system failures or network latency, further enhancing performance 

and reliability [60]. 

3.9.5 GCP Pricing Models 
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Google Cloud provides several pricing models to suit different organizational needs, 

including: 

i. Pay-as-you-go: Google Cloud offers a pay-as-you-go, on-demand pricing model, 

which is ideal for users who expect intermittent cloud usage. This model provides 

flexibility by allowing you to add or remove services as needed, with charges based 

on actual usage and no upfront costs. However, this flexibility comes at a higher 

price, making pay-as-you-go the most expensive option on a per-hour basis. 

ii. Long-term reservations: Also known as Committed Use, offer significant discounts 

for committing to resource usage over a period, typically one or three years. This 

pricing model is ideal for organizations planning to use the cloud long-term and 

willing to make an upfront commitment. By choosing Committed Use, users can 

achieve substantial savings—up to 70% on Compute Engine—compared to the pay-

as-you-go model. These long-term pricing terms allow for greater cost efficiency 

over time, making it a cost-effective option for consistent cloud usage. 

iii. Free tier: The free tier of Google Cloud Platform (GCP) allows users to explore 

various services and resources at no cost but with limited capacity. This tier 

provides ongoing access to a predefined set of resources, enabling users to 

familiarize themselves with Google Cloud products while staying within specific 

usage limits. Unlike the time-limited free trial, which offers broader access to 

services for new users, the free tier is continuously available to all users. 

Additionally, Google Cloud offers "always free" services for organizations with low 

usage requirements. New customers also receive $300 in credits, which can be 

applied to any Google Cloud services or products during the initial trial period. 

When choosing the most suitable model, organizations should consider their budget 

and computing requirements. Key factors that influence Google Cloud costs include 

compute, storage, network, SQL, and serverless pricing. These elements should be 

carefully evaluated when selecting the appropriate pricing structure [61]. 

3.10 Microsoft Azure: Enterprise Cloud Solutions  

Microsoft Azure, launched in 2008, is a rapidly growing cloud platform offering a wide range 

of services across various categories, including AI, Machine Learning, Analytics, Blockchain, 

Compute, Containers, Serverless Computing, Databases, Developer Tools, DevOps, Identity 

Management, IoT, Networking, Security, Storage, Web Services, and Windows Virtual 

Desktop. Azure's seamless integration with Microsoft products and comprehensive intelligent 

services make it an attractive and flexible solution for organizations of all sizes. With 95% of 

Fortune 500 companies using its services, Azure's extensive service offerings are highly 

customizable and can be easily integrated with external solutions [62]. 

3.10.1 Compute Services in Azure 

i. Azure Virtual Machines (VMs) provide on-demand, scalable computing resources, 

enabling users to run various operating systems without physical hardware. Available 

in four types—standard, preset, Azure Arc VMs, and private VMs via Azure VMware 
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Solution (AVS)—VMs can be deployed across 60+ regions with a 99.99% SLA. Users 

can choose between uniform orchestration for stateless workloads or flexible 

orchestration for stateful workloads. Azure’s shared responsibility model ensures 

security through features like trusted launch, confidential VMs, firewalls, disc 

redundancy, load balancing, and identity management. With a 99.9999999999% 

durability guarantee and zone-redundant storage, Azure VMs offer flexibility, security, 

and reliability for diverse workloads [63]. 

ii. Azure App Service is a powerful Platform-as-a-Service (PaaS) from Microsoft that 

enables developers to easily build, deploy, and scale web applications, REST APIs, and 

mobile backends. It supports multiple programming languages, including .NET, Java, 

Node.js, PHP, and Python, while automatically managing OS and framework updates. 

With seamless DevOps integration, it connects with platforms like Azure DevOps, 

GitHub, and Docker Hub for continuous deployment. It offers global scalability, high 

availability, and built-in security features while adhering to standards like SOC and 

PCI, thanks to Azure's robust infrastructure. This makes Azure ideal for secure, flexible, 

and scalable cloud application deployment [64]. 

iii. Azure Kubernetes Service (AKS) is a fully managed service by Microsoft Azure that 

simplifies the deployment, management, and scaling of containerized applications. 

AKS enables organizations to use Kubernetes for container orchestration without 

requiring deep platform expertise, as Azure handles operational overheads like health 

monitoring, maintenance, and security, ensuring faster application delivery. Kubernetes 

(K8s) is an open-source system that automates deployment, load balancing, and self-

healing for containerized applications, offering strong scalability. K3s is a lightweight 

Kubernetes version designed for resource-constrained environments, while K0s 

simplifies Kubernetes cluster management with features like Role-Based Access 

Control (RBAC), security policies, and micro-VM support [65]. 

3.10.2 Azure Storage Solutions 

i. Azure Blob Storage is a cloud-based solution from Microsoft Azure designed for 

storing large amounts of unstructured data, such as text or binary files. It offers 

scalability, allowing data of any size to be stored, and includes cost optimization 

through various storage tiers (Hot, Cool, and Archive). Ideal for storing images, videos, 

backups, and log files, Azure Blob Storage ensures global accessibility via 

HTTP/HTTPS and integrates seamlessly with other Azure services. Security features 

include encryption at rest and in transit, role-based access control (RBAC), and shared 

access signatures. It supports two types of blobs: block blobs for large files and page 

blobs for disk storage [66]. 

ii. Azure offers comprehensive solutions for high-performance computing (HPC) 

workloads through its HPC-optimized virtual machine series, including the H-series 

and N-series, which feature high-performance CPUs and NVIDIA GPUs. To meet data 

storage needs, Azure Blob Storage and Azure Files provide scalable, reliable options. 

Azure Cycle Cloud facilitates the management of HPC and big data clusters. For Azure 

Virtual Machines, Azure Disc Storage provides high-performance block storage with 
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various managed disc types to suit different workloads. With 99.999% availability and 

integrated security features, Azure's disc solutions enhance the reliability and 

scalability of applications while supporting extensive VM deployments [67]. 

iii. Azure Files is a managed cloud storage solution that offers file shares via SMB and 

NFS, supports various operating systems, and allows concurrent access. It is serverless, 

scalable, secure, and cost-effective, with different pricing tiers. Azure's services are 

compatible with SOAP, REST, and XML protocols [68]. 

3.10.3 Networking in Azure   

i. Azure Virtual Network (VNet) is a key service in Microsoft Azure. It enables 

private networks, secure deployment, and management of virtual machines and 

services. It also supports communication and traffic control, ensuring seamless 

integration within the cloud environment [69]. 

ii. Azure Virtual WAN is a centralized networking service that simplifies WAN 

management by consolidating networking, security, and routing functions. It offers 

centralized hub connectivity for branch offices, data centers, and Azure regions, 

ensuring efficient and secure connectivity [69]. 

iii. Azure VPN Gateway is a service that provides secure, encrypted communication 

between Azure virtual networks and on-premises locations, ensuring data 

confidentiality and integrity over public networks. It facilitates site-to-site VPNs, 

making it ideal for cross-premises communication [69]. 

3.10.4 Azure AI and Machine Learning 

i. Azure Machine Learning is a Microsoft cloud-based service that provides advanced 

analytics and AI capabilities for various industries. It ensures robust cybersecurity 

measures and a secure, scalable solution for managing cloud-based projects [70]. 

ii. Azure Cognitive Services is a Microsoft cloud-based suite of AI services that integrates 

AI into applications, including natural language processing, speech recognition, and 

computer vision. It integrates with Azure IoT, enhancing insights in the retail and 

healthcare sectors and offering flexibility and scalability [71]. 

iii. Azure Bot Services is a cloud-based platform for creating, managing, and deploying 

enterprise-grade conversational AI bots. It offers an intuitive interface and is flexible, 

allowing users to create chatbots without coding or AI expertise. Microsoft Bot 

Framework provides tools for building intelligent conversational agents and connecting 

them to messaging platforms. It integrates with cognitive services like Watson, LUIS, 

Lex, and Dialog flow, simplifying the creation process and reducing deployment time 

[72]. 

3.10.5 Security and Identity Management in Azure    

i. Azure Active Directory is a cloud-based identity and access management service that 

enables web application authentication, Single Sign-On, and user management. It 

extends on-premises Active Directory (AD) and supports HTTP and HTTPS protocols 

like SAML 2.0, OAuth 2.0, and OpenID Connect. Azure AD offers features like user 
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and group management, self-service password reset, and multi-factor authentication. It 

is free for basic functionality [73]. 

ii. Azure Security Center is a comprehensive security management system that offers 

advanced threat protection across Azure and non-Azure resources. It provides security 

recommendations, continuous monitoring, and compliance management. Single Sign-

On (SSO) offers advantages like strict password policies, reducing password fatigue, 

and enabling quick deactivation of access across multiple systems. However, 

organizations must monitor user sign-on activities to detect potential intrusions [73]. 

3.10.6 Azure Global Geographies and Data Center Locations 

Each Azure geography is meticulously designed to meet specific data residency and 

compliance requirements, ensuring that business-critical data and applications remain close to 

users. These geographies consist of one or more regions, all built on fault-tolerant, high-

capacity networking infrastructure. Many Azure regions also offer availability zones, which 

are physically separated groups of data centres within the same region. These zones are 

connected by a high-performance network with a round-trip latency of less than 2 ms, a key 

factor in ensuring low-latency communication. Availability zones are strategically spaced to 

minimize the impact of local outages or adverse weather conditions while still being close 

enough to maintain fast connections. Each zone operates with independent power, cooling, and 

networking infrastructure, ensuring that if one zone experiences an outage, the remaining zones 

will continue to support regional services, capacity, and high availability. This design helps 

keep data synchronized and accessible during failures. The selection of data centre locations is 

based on a rigorous vulnerability risk assessment. This assessment identifies significant risks 

specific to each data centre and accounts for shared risks between availability zones to enhance 

overall resilience and reliability [74]. 

3.10.7 Azure pricing models 

Azure's pay-as-you-go pricing model charges customers only for the resources they use, but 

these rates are generally higher than reserved pricing. Costs may vary depending on usage 

levels, and billing is based on standard pay-as-you-go rates unless otherwise specified. Azure 

periodically introduces new services, notifying users in advance of any associated fees. 

Customers are only charged for new services if they choose to use them. Any taxes resulting 

from receiving services at no charge are the responsibility of the recipient. Azure offers a free 

tier for new customers, which includes 12 months of access to popular services and 55 

additional free services. New customers also receive a $200 credit for use within the first 30 

days. After 12 months, usage is billed at standard pay-as-you-go rates, although some services 

remain free for as long as the account is active. Microsoft reserves the right to modify or 

discontinue free services at any time. To help reduce costs, Azure offers Reserved Virtual 

Machine Instances, which provide savings of up to 72% compared to pay-as-you-go pricing, 

and Spot Virtual Machines, which offer discounts of up to 90% by using unused compute 

capacity. For the most accurate and current pricing details, users should refer to Azure's official 

pricing page [75]. 
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Chapter 4  Triangular Membership Function-Based Estimation of Round-Trip Time 

(RTT) for Optimal SLA Evaluation 

Chapter 4 significantly contributes to the estimation and optimization of Round-Trip Time 

(RTT) in cloud computing environments, with a specific focus on the impact of geographical 

distances and network conditions. This chapter introduces a novel approach by integrating a 

triangular membership function (MF) within a fuzzy logic framework to enhance the accuracy 

of RTT estimation, addressing the limitations of traditional methods, particularly in time-

sensitive cloud applications. The proposed fuzzy logic-based model incorporates key factors 

influencing RTT, including network congestion, which is evaluated in terms of time 

(milliseconds) and routing policies and analyzed based on distance (kilometers) and geographic 

distances. By integrating these parameters, the model provides a more refined and adaptable 

RTT prediction than conventional estimation techniques, ensuring greater precision in cloud 

performance assessments. Furthermore, the chapter emphasizes the advantages of fuzzy logic-

based RTT estimation in optimizing network performance, enhancing Quality of Service 

(QoS), and ensuring SLA compliance. A comparative analysis of RTT values across 28 AWS 

regions is presented, demonstrating that the fuzzy logic-based system consistently yields more 

precise and lower RTT estimates than traditional measurement methodologies available 

through Websites standard online tools. These findings highlight the effectiveness of fuzzy 

logic in estimating latency and improving SLA evaluation. 

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing 

Traditional cloud computing is primarily used for storing, analyzing, and processing large 

volumes of data. However, it struggles to handle high latency issues in time-critical 

applications, such as computer gaming, e-healthcare, telemedicine, and robot-assisted surgery. 

Network latency, which causes delays in data transmission, is a critical factor for real-time 

applications. Traditional cloud computing methods are often insufficient to meet the stringent 

Quality of Service (QoS) requirements for devices operating in these environments. Challenges 

in calculating and expectation the Round-Trip Time (RTT) further complicate efforts to 

minimize latency when transmitting time-sensitive data in real-time [76]. RTT is a crucial 

determinant of latency in cloud services. Efficient management of RTT can significantly 

enhance QoS by ensuring faster data exchange and reducing response times. This optimization 

is essential for applications dependent on real-time interactions, where latency can drastically 

affect user experience and satisfaction. Ensuring low RTT is also essential for maintaining 

Service Level Agreement (SLA) compliance [77]. Scientists are evaluating cloud infrastructure 

for next-generation applications by analyzing the impact of geographical distance on latency. 

Private network backbones and direct peering agreements have been shown to significantly 

improve latency in cloud environments, reducing the delays experienced by users across 

different regions [78]. One study assessed the performance of the Tahoe Least-Authority File 

System (Tahoe-LAFS) by comparing its write operations on community network clouds and 

the Azure commercial cloud platform. The results revealed that read operations outperform 

write operations on Azure due to the platform’s network homogeneity, highlighting the 

performance differences between community and commercial clouds [79]. In the pursuit of 

optimizing resource management and reducing communication costs, two approaches—queue-
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based dynamic resource allocation and spatial resource partitioning—were evaluated for their 

impact on latency, throughput, fairness, and latency fairness. The findings show that queue-

based dynamic technology outperforms spatial partitioning in terms of latency reduction and 

overall performance [80]. Data center networks are also evolving, with line rates increasing to 

200Gbps to support NVMe and distributed machine learning (ML) applications. However, this 

advancement leaves room for imperfect control decisions. To address this, the Bolt system was 

developed, founded on three core ideas: (i) Sub-RTT Control (SRC), which reacts to congestion 

faster than traditional RTT control loop delays; (ii) Proactive Ramp-Up (PRU), which 

anticipates future flow completions to quickly utilize released bandwidth; and (iii) Supply 

Matching (SM), which explicitly matches bandwidth demand with supply to maximize 

utilization. Bolt has been shown to reduce latency and improve flow completion times while 

maintaining near line-rate utilization, even at 400Gbps [81]. Cloud applications often operate 

exclusively on the servers provided by cloud service providers, accessible through a simple 

web browser or similar client interface. For example, Amazon Web Services (AWS) offers 

widely used business applications that are hosted on its servers and accessed online. AWS has 

demonstrated this by providing scalable infrastructure to accommodate various enterprise 

needs, further illustrating the potential impact of cloud computing [82]. Similar to how most 

people today opt to rent homes rather than build them, the future of computing may see 

organizations favoring scalable and reliable cloud providers instead of constructing their own 

IT infrastructures. This shift would significantly reduce the risks and costs associated with 

launching new applications and services, as cloud providers offer ready-made platforms for 

deployment [83]. The widespread enthusiasm for cloud computing has led to a surge of 

discussions surrounding network availability, reliability, and latency within cloud 

environments. Despite these discussions, there is a noticeable lack of empirical measurement 

studies that validate these claims. Specifically, there is a gap in research comparing networking 

performance metrics, such as RTT, with the actual RTT experienced by web hosting services 

across different geographical regions. This gap highlights the need for more comprehensive 

studies to better understand and address the challenges related to RTT and latency in cloud 

computing [76]. As a result, our research endeavors to assess the performance of networking 

services under varying load conditions to determine the validity of the hype generated around 

cloud computing. We approach the assessment of network availability from two broad 

perspectives: firstly, by computing network based RTT through ping tests to evaluate 

connectivity, and secondly, by adopting a mathematical respective with RTT approach to verify 

the scalability and performance claims made by cloud service providers [82]. To gain a deeper 

understanding of these aspects, we employ a fuzzy logic system incorporating three triangular 

membership functions for two input parameters: (distance) and (network congestion). This 

system enables the measurement of service performance concerning the expected optimal 

Round-Trip Time (RTT). The study is conducted within the Amazon Web Services (AWS) 

platform, where performance is evaluated based on the interaction between the sender and 

receiver when retrieving cloud services. RTT values are categorized into three distinct classes: 

small RTT (RTT < 100 ms), medium RTT (100 ms < RTT < 200 ms), and large RTT (RTT > 

250 ms). Following this classification, a comparative analysis is performed between the 

expected RTT values obtained using the triangular membership function in the fuzzy logic 

system and the actual RTT values provided by Amazon Web Services. The findings indicate 



34 

 

that the fuzzy logic-based approach for RTT estimation yields more accurate and predictable 

results than those promoted by AWS. For further investigation, ping tests were employed to 

analyze variations while accounting for inter-region distances and network latency. This 

method provides a practical solution to the first challenge identified in this study: enhancing 

cloud service management and selection. By integrating fuzzy logic-based SLA optimization, 

users can make informed decisions regarding cloud service selection based on their geographic 

proximity to AWS regions, ultimately improving service performance and efficiency. This 

contribution facilitates the analysis and evaluation of additional Quality of Service (QoS) 

criteria in both computing and networking, which will be examined in detail in the subsequent 

chapter. Furthermore, the fundamental principles underlying the fuzzy logic technology 

employed in this study will be systematically presented and discussed throughout this 

dissertation in a structured and sequential manner. 

4.2 Challenges in Estimating RTT in Cloud Environments 

Accurately estimating RTT in cloud environments presents a range of challenges due to the 

complex, dynamic nature of modern cloud architectures. 

4.2.1 Geographical Distance 

Cloud data centers are distributed globally, and the physical distance between nodes, such as 

between locations i and j, can introduce significant delays in data transmission. For example, 

transcontinental communications between data centers in Europe and Asia often experience 

higher Round-Trip Time (RTT) due to the long distances involved. The geographical 

separation between the sender and receiver plays a crucial role in network performance, 

particularly in terms of latency. As the distance increases, data transmission delays grow, which 

can have a substantial impact on time-sensitive applications that require real-time data 

exchange. This underscores the importance of optimizing routing and data transmission 

strategies to minimize the negative effects of geographical distance on network performance 

[84].  

4.2.2 Network Congestion 

As cloud networks continue to expand, network congestion becomes a growing concern, 

leading to variable delays in data transmission. In multi-tenant environments, where multiple 

clients share network resources, this competition can result in unpredictable fluctuations in 

Round-Trip Time (RTT). A key issue often cited is the effect of out-of-order packet arrivals on 

the performance of TCP (Transmission Control Protocol). These out-of-order arrivals are 

typically interpreted as a sign of network congestion, causing the receiver to generate duplicate 

acknowledgements. This, in turn, prompts the sender to react as if packets were lost, triggering 

spurious retransmissions and unnecessary reductions in the sending rate. When it comes to flow 

control, the combination of traffic from multiple servers can exceed the capacity available at 

the destination server, further intensifying network congestion. This congestion can also spill 

over, affecting traffic to neighboring servers and exacerbating overall network performance 

issues. Therefore, the management of congestion and the optimization of traffic flow are crucial 

to ensuring stable and efficient cloud network operations [85][86]. 
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4.3 Transmission Performance Evaluation in Cloud Computing 

The Internet serves as a foundational component of computational technologies, facilitating 

extensive data generation that is stored on servers or within cloud infrastructures. The processes 

of data migration and transfer are integral to maintaining system integrity, ensuring 

consistency, and implementing essential security and load-balancing mechanisms. Among the 

key metrics for assessing transmission performance in network communications is Round Trip 

Time (RTT), which quantifies the duration required for a signal to travel from the source to the 

destination and return. RTT is widely utilized to evaluate the efficiency and Quality of Service 

(QoS) across diverse network environments, including cellular networks, Internet of Things 

(IoT) systems, and traditional Internet-based frameworks [87]. RTT analysis is particularly 

significant in network optimization, as it aids in diagnosing transmission delays and enhancing 

end-to-end communication performance. Moreover, RTT plays a pivotal role in congestion 

control protocols, such as TCP BBRv3, which is designed to optimize bandwidth utilization 

and ensure fairness in networks exhibiting variable RTT values. Within IoT environments, 

RTT is assessed alongside other key performance indicators, including power consumption, to 

enhance data transmission reliability. The integration of RTT-based optimizations enables 

cloud service providers to maintain high levels of performance and reliability while 

simultaneously reducing their environmental impact [88]. Cloud computing systems are 

subject to performance evaluations, generally categorized into resource assessments and 

network infrastructure assessments. Resource assessments focus on analyzing the 

computational performance of cloud applications, particularly concerning the hardware and 

virtualized environments that support these applications. Each cloud service provider employs 

distinct criteria for measuring CPU utilization. For instance, Google App Engine assesses 

resource consumption based on "Megacycles used," whereas Amazon EC2 evaluates 

performance in terms of deployment duration and instance utilization. Conducting such 

assessments typically requires root-level access permissions, limiting them to cloud providers 

or certified third-party evaluators [89]. 

4.4 Intelligent Systems and Network Service Prediction 

Intelligent systems encompass a diverse range of computational techniques derived from 

artificial intelligence (AI) research, including fuzzy logic, neural networks, and genetic 

algorithms [90]. Among these approaches, fuzzy logic provides a powerful framework for 

managing uncertainty and imprecision, making it particularly effective for solving complex 

problems where traditional binary logic falls short. By incorporating partial truth values, fuzzy 

logic facilitates human-like decision-making in ambiguous situations, which is essential for 

applications such as control systems, decision-making processes, and pattern recognition. 

Fuzzy logic plays a crucial role in intelligent systems due to its capability to process uncertain, 

imprecise, and vague data. Unlike conventional logic systems that rely on absolute true or false 

values, fuzzy logic allows for degrees of truth, mimicking human reasoning and improving 

adaptability in dynamic environments. A fundamental aspect of fuzzy logic is the fuzzy 

linguistic approach, which utilizes linguistic variables to represent qualitative system attributes. 

This methodology is particularly beneficial for ill-defined or highly complex scenarios, 

enhancing flexibility and adaptability in intelligent problem-solving [91]. Additionally, fuzzy 
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reasoning aids in system behavior analysis, allowing for interpolation between input and output 

conditions, simplifying complexity management, and supporting induction-based learning—a 

critical feature for addressing intricate computational challenges. Ensuring balanced 

uncertainty is essential for optimizing model performance in such systems, particularly in 

server management and task distribution, which are fundamental to the efficient operation of 

service-based infrastructures. In cloud computing and networking, fuzzy logic plays a key role 

in addressing complex challenges such as network delay estimation, which is critical for 

accurately predicting task completion times and optimizing cloud resource allocation 

[90][92][93]. Empirical studies and simulations have demonstrated that fuzzy logic-based 

decision-making models operate effectively in uncertain environments, offering high precision 

in estimating network delays within cloud-based infrastructures. In virtualized cloud 

environments, where applications primarily run on virtual machines (VMs), fuzzy logic 

enhances system reliability by predicting potential failures and implementing proactive 

mitigation strategies. Given the complexity and dynamic nature of cloud infrastructures, 

adopting flexible and adaptive methodologies is essential for effective management. By 

providing a structured decision-making framework, fuzzy logic enables systems to efficiently 

handle uncertainty, ultimately enhancing efficiency, reliability, and resilience in cloud-based 

operations [94][95]. 

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic 

4.5.1 Experimental Testing Model Determination 

Several techniques are utilized to calculate Round-Trip Time (RTT) in network environments, 

each offering varying levels of accuracy and application. One widely used method is the Ping 

Test, which serves as a rapid and reliable tool for assessing network performance and 

connection quality. This technique measures the latency in milliseconds between a user's 

device and a specified remote server. The RTT value is significantly influenced by the 

geographical distance to the server, with greater distances typically resulting in higher RTT 

values. A stable network connection is indicated by a consistently straight horizontal line on a 

ping test chart, whereas fluctuations in RTT may signal network instability or congestion [96].  

Another method for calculating Round-Trip Time (RTT) involves mathematical modeling 

techniques implemented within network infrastructures. In this context, network performance 

metrics are derived by measuring transactions, defined as client requests followed by server 

replies, including TCP and UDP flows. Each read and write transaction between client and 

server is timed, providing essential data for RTT calculation. Typically, network appliances, 

such as Exinda devices (https://docs.exinda.com/), are strategically placed between the client 

and server to facilitate precise measurement. These devices timestamp each intercepted packet 

with high-resolution nanosecond accuracy. Since the initial packet transmission from the client 

is unknown, RTT is calculated by summing the server-side RTT (from appliance to server and 

back) and the client-side RTT (from appliance to client and back). With increasing packets 

traversing the Exinda appliance, RTT estimations become more accurate by continuously 

averaging newly captured data. Consequently, RTT provides a reliable measure of the time 

required for a minimal packet to travel through the network and receive acknowledgment, 

improving progressively with ongoing data accumulation. 

https://docs.exinda.com/
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 [97][98]. The methodology for calculating RTT, along with its visual representation and 

governing equations, is depicted in Appendix 3 (Figure 1), which provides a diagrammatic 

illustration of the RTT computation process. In this study, the ping technique was employed to 

assess the connectivity between the sender and receiver, enhancing the accuracy of the analysis 

and enabling precise tracking of the connection process between network nodes within the 

AWS computing environment. Appendix 3: 0.2 Figure 2. Ping testing process. A sample of the 

results obtained from the ping testing process was presented to verify the integrity of the 

connection and establish a reliable link between the user and the endpoint. This verification 

was performed across all selected servers in this study to ensure network stability and 

performance. 

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS 

Regions 

In this study, data was systematically extracted to include the names of 28 AWS regions where 

data centers are located, along with relevant details necessary for conducting a comprehensive 

communication and connection assessment. These regions were considered as Amazon’s 

endpoints or receivers, facilitating the evaluation of network performance across different 

geographical locations. To conduct this analysis, the AWS latency testing platform 

(https://aws-latency-test.com/) was utilized to measure network latency between the sender and 

AWS endpoints. Additionally, the Haversine formula was applied to determine the latitude and 

longitude of each endpoint. The Haversine formula, commonly used in navigation and 

geospatial analysis, calculates the great-circle distance between two points on a sphere based 

on their geographic coordinates. This approach enabled precise estimation of the physical 

distance between the sender and AWS data centers. The sender's location was identified as Kut, 

Muhafazat Wasit, Iraq (IQ), with an IP address of 37.236.213.12 and geographical coordinates 

of latitude 32.6024 and longitude 45.7521, The primary objective was to analyze and extract 

the precise distance between the sender and all AWS regions across multiple continents, 

Appendix 3 ( Figure 3, Table 1 ).This geospatial analysis facilitated a better understanding of 

network performance, enabling a more accurate evaluation of latency and connectivity between 

cloud service users and data centers worldwide. 

4.5.3 Fuzzy Logic Framework 

 4.5.3.1 Design System 

The proposed model employs a triangular membership function [99], formulated in Equation 

(4.1), to convert crisp values into fuzzy sets. This function is defined by a vector "d" and three 

scalar parameters: l, m, and n. The MATLAB Fuzzy Logic Designer tool was utilized to 

develop the model, as depicted in Figure 4.1, the model integrates two input parameters, as 

detailed in Appendix 3 (Figures 4 and 5). The model utilizes three triangular membership 

functions for each input parameter. 

 

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑑(𝑑: 𝑙,𝑚, 𝑛) = {

0, 𝑑 < 1
𝑑 − 𝑙/𝑚 − 𝑙, 𝑙 ≤ 𝑑 ≤ 𝑚
𝑛 − 𝑑/𝑛 −𝑚,𝑚 ≤ 𝑑 ≤ 𝑛

0, 𝑛 ≤ 𝑑

}                              (4.1) 

https://aws-latency-test.com/
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FIGURE 4.1. PROPOSED MODEL DESIGN. 

 

1) Input Variables Definition 

• Distance: 

Small: [0, 862.94, 4516]; Medium: [2689, 8170, 11824]; Long: [9997, 15478, 

15478.65] 

• Network Congestion: 

Light: [0, 3, 6]; Average: [3, 6, 8]; Peak: [7, 14, 23.59]. 

2) Output Variables Definition 

The expected Round-Trip Time (RTT-Expectation) output is defined in Appendix 

(Figure 7) as follows: 

RTT1: [0, 0, 25]; RTT2: [10, 50, 75]; RTT3: [50, 100, 125]; RTT4: [100, 150, 175]; 

RTT5: [150, 175, 200]; RTT6: [175, 200, 250]; RTT7: [200, 250, 325]; RTT8: [250, 

325, 350]; RTT9: [325, 430, 500]. 

In total, nine triangular membership functions were employed for the output, Appendix 3 

(Figure 6)., in accordance with fuzzy logic system standards (3 × 3) rules, as depicted in 

Appendix 3 (Figure 7). 

3) Fuzzy Rule Base System 

The fuzzy inference system applies the following rule base to determine the expected 

RTT based on distance and network congestion levels: 

 

• If distance is small and network congestion is light, then RTT-Expectation is 

RTT1. 

• If distance is small and network congestion is average, then RTT-Expectation is 

RTT2. 
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• If distance is small and network congestion is peak, then RTT-Expectation is 

RTT3. 

• If distance is medium and network congestion is light, then RTT-Expectation is 

RTT4. 

• If distance is medium and network congestion is average, then RTT-Expectation is 

RTT5. 

• If distance is medium and network congestion is peak, then RTT-Expectation is 

RTT6. 

• If distance is long and network congestion is light, then RTT-Expectation is 

RTT7. 

• If distance is long and network congestion is average, then RTT-Expectation is 

RTT8. 

• If distance is long and network congestion is peak, then RTT-Expectation is 

RTT9. 

4.5.3.2 Description of the Proposed Model 

The fuzzy logic system designed for estimating Round-Trip Time (RTT) comprises four 

integral components: fuzzification, inference engine, knowledge base, and defuzzification. The 

fuzzification process transforms precise numerical inputs into fuzzy sets using linguistic 

variables, effectively managing uncertainty and variability inherent in network conditions. The 

inference engine utilizes a defined set of fuzzy rules to process these input fuzzy sets, 

generating output fuzzy sets that determine RTT estimations. The knowledge base includes a 

rule base of conditional (if-then) rules and a database of membership functions specifying fuzzy 

sets for various network parameters. Finally, defuzzification converts fuzzy output values back 

into precise numerical values, yielding practical RTT estimates suitable for network 

performance decisions [100]. By leveraging these components, fuzzy logic offers an adaptive 

and intelligent approach to RTT estimation, superior to traditional deterministic methods, 

especially in handling unpredictable network fluctuations. The structured methodology ensures 

accurate transformation of raw data into meaningful RTT predictions, enhancing evaluation 

precision and network adaptability. In the fuzzification stage, crisp numerical inputs such as 

Distance (measured in kilometers, indicating geographical separation between sender and 

receiver) and Network Congestion (measured in milliseconds, representing network traffic 

intensity and its impact on latency) are translated into linguistic terms mapped onto fuzzy sets 

using triangular membership functions. Following fuzzification, the system applies nine 

comprehensive if-then fuzzy rules, enabling dynamic adaptation to varying network conditions. 

The fuzzy outputs derived from the inference process are subsequently converted into precise 

numerical values through defuzzification using the centroid defuzzification method, also 

known as the center of gravity (COG) method. This technique ensures realistic and weighted 

RTT estimates that accurately reflect real-world network conditions, significantly enhancing 

reliability, precision, and interpretability, thereby optimizing Quality of Service (QoS) and 

ensuring compliance with Service Level Agreements (SLAs) in cloud computing and network 

management contexts. Figure 4.2 presents a surface viewer of the proposed fuzzy logic system, 

illustrating the relationship between distance, network congestion, and the expected Round-

Trip Time (RTT). The X-axis represents the geographical distance (in kilometers) between the 

service consumer and the cloud data center, ranging from 0 km to approximately 15,478 km, 

thereby covering local, regional, and global communication scenarios. The Y-axis corresponds 

to the network congestion level, mapped linguistically as Light, Average, and Peak, and 

modeled over a 24-hour time scale to reflect hourly fluctuations in network load. The Z-axis 

indicates the expected RTT, measured in milliseconds, and the estimated delay for a data packet 
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to travel from the user to the cloud and back. RTT values range from 0 ms to 500 ms, where 

higher values signify network performance degradation. The surface behavior shows that the 

RTT remains minimal at short distances and under light congestion conditions (e.g., RTT1: 25 

ms). As the distance increases or the network congestion becomes more intense, the RTT 

values rise accordingly, aligning with intermediate fuzzy rule outputs such as RTT2 through 

RTT8. Under long-distance communication and peak congestion scenarios, the model 

estimates the highest RTT values (e.g., RTT9: 500 ms), which may indicate potential service 

delays or connection timeouts. The system employs triangular membership functions for all 

inputs and outputs and is governed by nine fuzzy rules defining how input combinations 

translate into RTT classifications. For instance, a rule such as “If Distance is Long and 

Congestion is Peak, then RTT is Very High (RTT9)” exemplifies the model’s logic structure. 

The inference engine processes these rules to produce fuzzy output sets, which are then 

translated into precise RTT estimates through defuzzification using the Centroid (Center of 

Gravity) method, resulting in realistic and actionable RTT values that enhance network 

performance assessment and SLA compliance. 

 

 

FIGURE 4.2 SURFACE VIEWER OF RTT ESTIMATION BASED ON DISTANCE AND 

NETWORK CONGESTION USING FUZZY LOGIC. 

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and 

Discussion 

The proposed model was rigorously tested to ensure its accuracy and adherence to established 

standards. The primary objective of this evaluation was to validate the model's reliability in 

estimating Round-Trip Time (RTT) by simulating real-world conditions. One of the critical 

aspects of this assessment involved verifying communication between two points on a network, 

specifically between a sender located in Kut, Iraq, and recipients across all AWS geographical 

regions. This verification, conducted using the ping tool, ensured the integrity and 

responsiveness of the network connection. Additionally, since RTT is influenced by factors 

such as geographical distance, network congestion, and peak cloud service usage, the distance 

between the sender and receiver was precisely calculated to account for its impact on RTT 

fluctuations. Following the implementation of the proposed system, the model successfully 
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extracted and estimated RTT over 24 hours, capturing its variations across different congestion 

levels. The results demonstrated that during low congestion periods—typically corresponding 

to off-peak hours when cloud service and network traffic are minimal—the estimated RTT 

remained significantly low. Conversely, during moderate congestion periods, which generally 

coincide with regular business hours in companies and organizations, RTT values exhibited a 

gradual increase. The model also effectively estimated RTT under peak congestion conditions, 

representing the highest levels of cloud service utilization. Unlike conventional cloud service 

providers, such as Amazon Web Services (AWS), which often display a single, static RTT 

value, the proposed model offers a dynamic and comprehensive RTT estimation. This approach 

enhances user confidence by providing a more detailed representation of RTT fluctuations, 

allowing users to make more informed decisions regarding their network performance. Table 

4.1, presents details of the calculated distances between the sender and each recipient region, 

the RTT values reported by AWS, and the detailed RTT estimates generated by the proposed 

model. Furthermore, the results indicate that RTT1 to RTT3 correspond to optimal network 

performance, characterized by minimal latency and efficient data transmission. Conversely, 

RTT9 signifies severe network degradation, which may result in connection termination due to 

excessive delays. Intermediate RTT values, ranging from RTT4 to RTT8, reflect progressive 

performance deterioration, where users experience increased latency, extended page load 

times, and diminished service quality. Each estimated RTT result in the proposed system is 

labeled accordingly, allowing users to identify the most suitable geographic region based on 

their network requirements. 

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS 

Cloud Services and SLA Optimization 

This research introduces a novel fuzzy logic-based model for accurately estimating Round-Trip 

Time (RTT) in Amazon Web Services (AWS) cloud environments. The primary objective is 

to enhance the precision of RTT predictions by incorporating multiple network parameters, 

notably distance and network congestion, into a rule-based fuzzy inference framework. 

Compared to traditional RTT calculation methods, this proposed model provides a more 

detailed, dynamic, and adaptable assessment, enhancing user decision-making when selecting 

Service Level Agreements (SLAs) from cloud providers. AWS supports RTT measurements 

through various diagnostic tools, including ping and traceroute, which transmit Internet Control 

Message Protocol (ICMP) echo request packets to a specified destination and measure the 

elapsed time until their return. AWS documentation describes the process of RTT measurement 

using the ping command, involving the execution of the 'ping' command followed by the target 

IP address or hostname within a command prompt. Each executed ping transmits data packets 

and records individual RTT values. It is important to recognize that RTT measurements may 

vary due to fluctuating network conditions and the inherent limitations of diagnostic tools, 

posing significant challenges in accurately estimating RTT. This study emphasizes the critical 

importance of precise RTT estimation in ensuring optimal Quality of Service (QoS) within 

cloud computing contexts, particularly for applications sensitive to latency. The model 

effectively categorizes RTT into various performance levels using triangular membership 

functions, enabling detailed network efficiency analysis. Additionally, the model accounts for 

RTT variability across different congestion levels, differentiating optimal network conditions, 

moderate degradation, and severe latency issues, potentially resulting in connection 

disruptions. A significant contribution of this research is the comparative evaluation between 
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the proposed fuzzy logic model and RTT values provided by AWS. While AWS typically 

offers static RTT measurements, the proposed system dynamically estimates RTT variations 

throughout daily periods, providing more realistic and context-sensitive insights into network 

performance. This feature empowers users to make informed choices when selecting cloud 

service regions that match their specific networking and computational requirements. 

Furthermore, this work addresses the challenges associated with the availability and reliability 

of critical network metrics, particularly RTT, essential for cloud-based service performance. 

Future sections of this thesis will explore additional network performance indicators, such as 

uptime, downtime, jitter, packet loss, and bandwidth, aiming for 99.99% reliability. The 

developed fuzzy logic-based RTT estimation model represents a robust, scalable, and 

intelligent tool for cloud service selection, significantly improving network performance 

monitoring and resource allocation. By incorporating fuzzy inference techniques, the model 

enables more accurate, adaptive, and real-time RTT predictions, thus enhancing reliability and 

operational efficiency in contemporary cloud computing infrastructures. 

Table 4.1 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT) 

Measurements. 

NO 

Computed 

Distance 

Between the 

Sender and 

Receiver(km) 

Amazon 

(RTT) 

(ms) 

During 

Daytime 

Estimated Latency Values in the Proposed RTT 

Classifications During Daytime Hours(ms) 

Light congestion Average 

congestion 

Peak 

congestion 

1 862.94 62 9 45 92 

2 1234.23 50 9 45 92 

3 3089.72 361 30 65 110 

4 3428.79 88 50 86 128 

5 3525.01 100 57 92 134 

6 3601.23 102 62 97 138 

7 3607.54 113 62 97 139 

8 4009.87 115 93 127 166 

9 4202.65 112 110 144 181 

10 4238.49 127 113 147 184 

11 4682.33 138 142 175 208 

12 5981.25 388 142 175 208 

13 6012.87 212 142 175 208 

14 6789.34 347 142 175 208 

15 7056.22 339 142 175 208 

16 7289.64 369 142 175 208 

17 7435.78 414 142 175 208 

18 7832.90 426 142 142 208 

19 8053.21 374 142 142 208 

20 8923.45 181 142 142 208 

21 10023.67 172 143 143 210 

22 10289.47 198 155 155 232 

23 12345.89 279 258 258 418 

24 12678.56 242 258 258 418 

25 13756.90 390 258 258 418 

26 14321.76 427 258 258 418 
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27 14989.34 266 258 258 418 

28 15478.65 300 258 258 418 
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Chapter 5 Quality of Service (QoS) Availability Assessment for Optimal SLA Selection 

This chapter presents a significant advancement in cloud computing service selection by 

introducing a fuzzy logic-based classification model for evaluating Quality of Service (QoS) 

levels. The proposed method enhances user decision-making by enabling the confident 

selection of the most appropriate Service Level Agreement (SLA), thereby improving the 

accuracy and reliability of cloud service utilization. Building upon the Round-Trip Time (RTT) 

estimation framework discussed in the previous chapter, this model expands the analysis to 

encompass a comprehensive set of quality-of-service parameters. It systematically evaluates 

computing and networking metrics, including virtual CPU (vCPU), RAM, storage, bandwidth, 

delay, jitter, and packet loss. The model categorizes SLAs into nine distinct service availability 

levels, ranging from 90% to 99%. It organizes them into structured tiers, beginning with entry-

level agreements such as Normal SLA and Bronze SLA, culminating in the highest reliability 

classification under the Gold SLA. This granular classification framework empowers users to 

align SLA selection with their specific performance and reliability requirements. By leveraging 

fuzzy logic principles, the model supports a more adaptive SLA selection process, dynamically 

aligning service guarantees with real-world user demands and fluctuating network conditions. 

This approach enhances quality of service by increasing the precision and reliability of SLA 

classification, particularly benefiting users with high availability and performance needs. It 

also facilitates intelligent cloud service provisioning by enabling responsive adjustments to 

variations in service quality. Overall, the proposed model establishes a robust foundation for 

SLA optimization, contributing to improved network efficiency, more effective resource 

management, and greater reliability across modern cloud computing environments. 

5.1 Evaluating QoS metrics for determining SLA  

Cloud computing represents a transformative paradigm in networking, enabling seamless, real-

time access to a range of computing resources, including applications, servers, storage, 

services, and networks, without the need for upfront infrastructure investment. This model 

provides users significant scalability and flexibility, allowing them to pay only for the resources 

they consume. As a result, cloud computing facilitates the convergence of global data and 

service accessibility from any location at any time. Cloud infrastructure typically offers three 

primary service models: Software as a Service (SaaS), Platform as a Service (PaaS), and 

Infrastructure as a Service (IaaS). Service providers deliver these models reliably and cost-

effectively, earning user trust [101]. As cloud computing becomes increasingly ubiquitous 

across desktop and mobile platforms, new challenges have emerged for providers and users. 

The growing user base and rising storage demands have intensified concerns surrounding data 

privacy and system security [102]. Although cloud providers offer a broad array of services, a 

significant issue remains the lack of transparent guarantees regarding availability, uptime, and 

downtime as specified in Service Level Agreements (SLAs) [103]. In addition, network 

performance indicators—such as throughput, round-trip time (RTT), jitter, and packet loss—

are also critical to overall service availability [104]. These technical parameters are essential 

for meeting user expectations but are often presented in complex or unclear ways. Therefore, 

understanding the SLA decision framework is essential for ensuring timely and cost-effective 

service delivery. Users must ensure that cloud providers offer comprehensive guarantees 

regarding networking QoS metrics (e.g., bandwidth, RTT, jitter, and packet loss) and 

computing QoS metrics (e.g., uptime and downtime). Before adopting cloud services, 
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customers must conduct detailed assessments and maintain clear communication with 

providers to establish reliable SLA terms. A trustworthy relationship between provider and 

customer hinges on this clarity. Moreover, defining guarantees in a cloud environment entails 

identifying key performance indicators such as task execution speed and responsiveness. Cloud 

providers must demonstrate transparency in their service offerings through detailed 

documentation, SLA disclosures, and performance metrics. Significantly, validation of SLA 

commitments operates within the shared responsibility model, wherein accountability is 

distributed between the cloud provider and the customer [105]. The Shared Responsibility 

Model is a foundational framework for cloud security and compliance. It delineates 

responsibilities for various components of the cloud environment, including hardware, 

infrastructure, endpoints, data, configurations, operating systems, network controls, and access 

management. This model clearly establishes the boundary between cloud providers' obligations 

and those of the customers. Irrespective of the chosen service model—be it IaaS, PaaS, or 

SaaS—the shared responsibility framework applies universally [106].  However, the increasing 

complexity and variability of component-level services present additional challenges in SLA 

selection. Existing selection methods are generally limited to formal service attributes and fail 

to accommodate unquantifiable user preferences or subjective opinions. Many web interfaces 

only allow customers to select pre-configured service packages without explicitly articulating 

the guarantees these packages offer. The key challenge lies in capturing and expressing 

consumer preferences, which often involve abstract and non-measurable factors, and 

incorporating them into the decision-making process for optimal service selection [107]. To 

address these limitations, this research proposes a service selection mechanism that integrates 

users' subjective judgments into SLA decision-making. By allowing users to express qualitative 

preferences—referred to as "human opinions"—for each service requirement, the model 

ensures alignment between selected services and individual user expectations. In SLA 

selection, a comprehensive understanding of Quality of Service (QoS) is vital, as QoS 

parameters are closely linked to user needs and application demands [108]. Accordingly, this 

study introduces a fuzzy logic-based QoS classification model designed to support efficient 

and practical SLA selection. The model systematically categorizes SLAs into nine distinct 

availability levels, ranging from 90% to 99%, reflecting the diverse needs of cloud users. This 

classification incorporates both computing QoS metrics—such as vCPU, RAM, and storage—

and networking QoS metrics, including bandwidth, jitter, RTT, and packet loss. By integrating 

these parameters, the model facilitates a comprehensive evaluation of service quality, thereby 

enabling informed SLA selection. The proposed model enhances user empowerment by 

enabling informed decisions based on specific application requirements, budget constraints, 

and desired QoS guarantees. For instance, users with minimal computing demands, such as 

those using basic office applications, may select entry-level service tiers. Conversely, users 

engaged in activities like virtual conferencing may require enhanced service levels, while high-

performance users, such as gamers or professionals working in video editing or scientific 

computation, may necessitate premium gold-tier services. The motivation for this research 

arises from the observed lack of clarity and interpretability in SLA representations provided by 

major cloud platforms. Leading providers such as AWS and GCP present SLA terms that are 

often difficult for users to interpret. For example, AWS specifies uptime guarantees ranging 

from 99.0% to 99.95%, while GCP offers guarantees for single-instance services at or above 
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99.95% uptime. Given the range of computing and networking services offered at varying price 

points, a transparent classification model is needed to assist users in navigating service 

availability levels. The fuzzy logic-based model presented in this study addresses this need by 

providing a systematic classification of SLA options. By organizing SLAs into structured 

tiers—ranging from Normal and Bronze to premium Gold levels—the model improves clarity, 

enabling users to make strategic choices that optimize cost-efficiency, performance, and 

reliability. Additionally, it incorporates user-defined qualitative factors, making the SLA 

selection process more adaptive and personalized. Ultimately, this model supports better 

resource allocation, enhances service performance, and boosts confidence in decision-making 

within modern cloud computing environments. 

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis 

Patel et al. [109] propose an architecture for managing cloud Service Level Agreements (SLAs) 

using the Web Service Level Agreement (WSLA) specification, distinguishing their approach 

by presenting three core WSLA services that facilitate cloud SLA automation. Their method 

also incorporates trusted third parties to enhance security within the SLA process. Similarly, 

Alhamad et al. [110] outline essential criteria for formulating SLAs across service models, 

including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a 

Service (SaaS). They emphasize specific factors for IaaS, such as boot time, scale-

up/downtime, and response time, as critical components of effective SLA design. Building on 

the work of Alhamad and Baset, Qiu et al. [111] analyze 29 SLAs from various public cloud 

services, including 17 IaaS SLAs, identifying commonly mentioned attributes and significant 

gaps that impact the relationship between cloud providers and consumers. They note that many 

SLAs lack specific provisions concerning customer data, including security, privacy, 

protection, and backup policies, even as availability is consistently guaranteed. However, Qiu 

et al. also highlight a lack of detailed commitments on availability and penalties, suggesting a 

need for greater clarity and accountability in SLA agreements. As the demands of network 

applications evolve, the focus has shifted to include factors such as media quality, interactivity, 

and responsiveness, leading to a broader definition of Quality of Experience (QoE). In 

telecommunications networks, QoE considers user satisfaction, expectations, and enjoyment 

[112]. In a related study, Baset [113] examines SLAs across five IaaS and PaaS providers, 

focusing on compute and storage services. Baset’s framework dissects SLAs into various 

components, facilitating comparisons between providers and aiding them in defining clear, 

comprehensive SLAs. In line with Baset’s approach, this study focuses on availability and 

provides a detailed classification of provider commitments to service availability. Expanding 

on SLA methodology, Godhrawala and Sridaran [114] propose a service-oriented architecture 

(SOA) that leverages a machine learning-based Apriori algorithm to connect quality of service 

(QoS) metrics, enhancing SLA strength and simplifying resource management. This approach 

improves SLA definitions, facilitates QoS management, reduces costs, and optimizes revenue. 

Akbari-Moghanjoughi et al. [115] underscore the importance of SLAs in managing service 

demands within ICT networks. Their survey reviews the current state of SLA establishment, 

deployment, and management, covering core concepts, methodologies, and challenges. The 

study also emphasizes the need to go beyond traditional networking by linking each Service 

Level Objective (SLO) to relevant service domains, with the ultimate goal of developing a 

comprehensive methodology for effective SLA definition, establishment, and deployment. 
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Finally, Saqib et al. [116] address the limitations of conventional traffic classification, 

advocating for adaptive solutions in response to evolving traffic patterns. They introduce a 

framework to quantify SLA violations and an economic model to assess profitability impacts. 

Their study suggests adaptive ML techniques to sustain classification accuracy over time. It 

concludes that an adaptive traffic classifier can mitigate penalties, optimize resources, and 

uphold SLA integrity, offering network operators a robust approach to managing traffic 

dynamics. 

5.3 Understanding Availability  

When a failure lasts more than a few seconds, it can disrupt not only individual user requests 

but also subsequent retries. If repeated attempts fail, the issue is considered a service outage, 

impacting availability metrics. Prolonged disruptions may eventually lead users to abandon 

access attempts, marking the service as unavailable. In complex systems, outages are classified 

as either service impact outages or network element impact outages. Service impact outages 

directly affect end-user access and are visibly disruptive. In contrast, network element impact 

outages involve failures within a network component that could impact service depending on 

redundancy and recovery time. High-availability systems must distinguish between these types 

to effectively monitor downtime and ensure backup resources are in place. Suppose a second 

failure occurs before resolving a network element outage. In that case, a prolonged service 

impact outage may result, emphasizing the need for robust redundancy and quick recovery to 

maintain consistent service availability [117][118]. The following criteria are commonly used 

to classify and rank availability [117]. In practical scenarios, cloud availability calculation 

necessitates consideration of additional elements, such as: 

                            𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
                                  (5.1) 

Availability is a critical metric in cloud computing, quantified as a percentage representing the 

ratio of system uptime to total operational time. Uptime denotes the total duration for which a 

system or service is expected to remain operational, whereas Downtime refers to periods of 

inoperability. By incorporating these variables into the standard availability formula, 

availability can be expressed either as a ratio or as a percentage, providing a standardized 

measure of service reliability. Cloud service providers prioritize high availability to ensure 

continuous access to applications and data, thereby minimizing service disruptions. Service 

Level Agreements (SLAs) define and guarantee a specific percentage of uptime, reflecting the 

provider's commitment to service reliability. Service outage, commonly referred to as 

downtime, is determined by subtracting the uptime percentage from 100%, thereby quantifying 

the proportion of time during which the service remains unavailable. The availability 

commitment represents the extent to which cloud providers assure service availability, often 

serving as a key differentiator in cloud service offerings. It is important to note that reliability 

is either conceptually like or a broader construct encompassing service availability [119]. 

Among surveyed SLAs, providers generally express their commitment in terms of availability 

rate [120]. Highly available systems, particularly those used in telecommunications and critical 

cloud services, are expected to meet a minimum of 99.999% availability, commonly referred 

to as the "five-nines" (5–9s) reliability standard. Appendix 4 (Table 1) illustrates the maximum 

allowable downtime for various levels of availability commitment across different operating 

intervals. For example, a system adhering to the 5–9s standard permits only 5 minutes and 15 
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seconds of downtime over a full year of continuous operation [121]. Such stringent availability 

requirements are fundamental in ensuring uninterrupted service delivery, particularly in 

mission-critical cloud-based infrastructures. 

5.3.1. Measurement Period 

The Measurement Period refers to the timeframe in which cloud providers calculate their 

services' availability. There are two common forms: the billing month and the calendar month. 

The commitment level of cloud providers can vary depending on the length of the measurement 

period. Suppose the measurement period is set to one year. In that case, cloud providers can 

perform inconsistently for a few months while maintaining stability for the rest, still fulfilling 

the overall availability requirement. On the other hand, a measurement period of one month 

necessitates that providers consistently maintain stable and available services every month 

[122]. 

5.3.2 Accuracy in Service Provision 

Accuracy in service provision is the extent to which cloud providers classify failed services as 

unavailable, varying by component, such as virtual machines, hosts, or entire Availability 

Zones. Amazon EC2, for example, considers an outage only if multiple Availability Zones lose 

connectivity, while Aliyun Cloud treats any instance downtime as unavailable. To improve 

cloud system dimensioning, analytical and simulation models at the IaaS level are employed. 

These models account for the heterogeneous nature of cloud systems and physical server 

limitations. By using analytical tools, they approximate real traffic and calculate request loss 

probability, offering a reliable means to evaluate service availability and optimize resource 

allocation [120][123]. 

5.3.3 Time-Based Accuracy in Availability 

The accuracy in Time provision, refers to the unit of downtime used in the measurement period. 

Currently, three types of unit downtime are prevalent: 1 minute, 5 minutes, and half an hour. 

The way downtime is handled varies among cloud providers. Sometimes, if the downtime does 

not align perfectly with the time granularity, certain clouds may exclude those periods from 

the total service downtime calculation. On the other hand, other providers would include such 

periods in the calculation. For example, consider a cloud service experiencing a downtime of 

7 minutes with a time granularity of 5 minutes. In this scenario, the eventual downtime is either 

5 minutes or 10 minutes, depending on the specific policies adopted by the cloud provider. This 

difference in handling time granularity becomes more pronounced when using more extended 

periods, such as half an hour, and can significantly impact the availability calculation [120]. 

define availability as: 

                                                 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅
                                          (5.2) 

MTTF represents the mean-time-to-failure, and MTTR denotes the mean-time-to-recovery. 

This measure is based on the duration when the system is either up or down, which holds 

significance for users. Consequently, it is unsurprising that several cloud providers, such as 

Microsoft's Office 365, employ this measure. Uptime corresponds to the time between failures, 

while downtime refers to the time taken to recover from a failure [121]. 
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5.3.4 Exclusions in Availability Calculations 

Exclusions refer to scenarios not considered when determining whether cloud services are 

available. Several events are not considered while calculating availability. In most cases, 

occurrences of natural disasters, regularly scheduled maintenance, network outages that occur 

beyond the demarcation point of the cloud provider, and internet attacks are excluded from 

coverage under this policy. Because these occurrences are deemed extraordinary and transient, 

they are not factored into the calculation of the availability of cloud services.is done because it 

is possible that they do not reflect the typical service performance of the provider [124]. 

5.4 Availability in Computing and Networking Environment 

In cloud computing, ensuring the availability of critical resources such as virtual CPUs 

(vCPUs), RAM, and storage is essential for maintaining a reliable and efficient computing 

environment. The availability of these resources is governed by multiple factors, including 

performance, scalability, fault tolerance, Service Level Agreement (SLA) guarantees, 

elasticity, monitoring, and security. Performance optimization is a crucial aspect of cloud 

computing, requiring resource availability to be adaptable to workload fluctuations. Efficient 

allocation of vCPUs is necessary to meet processing power demands, while RAM provisioning 

must be adequate to support memory-intensive applications and large-scale datasets. Similarly, 

storage infrastructure, particularly high-performance options such as solid-state drives (SSDs), 

must be capable of seamlessly accommodating growing data volumes. These performance 

criteria directly impact the expected availability of vCPU, RAM, and storage, establishing clear 

reliability benchmarks for cloud service users. To enhance service resilience, cloud providers 

must implement availability strategies that encompass network monitoring, fault tolerance, and 

proactive system management. Network monitoring has evolved from basic connectivity 

checks to sophisticated analytical techniques leveraging big data, machine learning, and 

artificial intelligence (AI). These advanced approaches enable the optimization of network 

traffic flow, improved efficiency, and enhanced security by predicting and mitigating potential 

disruptions. Service Level Agreements (SLAs) serve as contractual frameworks that define 

performance metrics and ensure compliance with predefined quality standards. Key SLA 

parameters, including delay, jitter, packet loss, and bandwidth, play a critical role in 

maintaining optimal network performance. These metrics facilitate the identification of 

network inefficiencies, enabling cloud service providers to address issues that may impact 

overall system productivity and user experience. The assessment of core performance metrics 

provides valuable insights into network efficiency and availability, allowing for continuous 

improvement and the prevention of service degradation. By incorporating these availability 

and performance criteria, cloud providers can offer resilient, high-performance services that 

meet user expectations for reliability, scalability, and security in modern cloud computing 

infrastructures [120][123][125]. 

5.4.1 Bandwidth Considerations 

The bandwidth (BW) of a channel refers to the amount of data that can be transmitted per unit 

time, typically measured in bits per second. However, its interpretation varies depending on 

the context and underlying parameters [126]. One common definition equates bandwidth with 

a path's capacity. For an end-to-end path composed of n sequential links indexed by i = 1,.., n, 

the path capacity C* is determined by the link with the smallest transmission capacity: 
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                                                                           𝐶∗ =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
𝐶𝑖                                               (5.3)

Here, 𝐶𝑖 is the capacity of link i. The links where this minimum is attained—i.e., those 

satisfying  𝐶𝑖 = 𝐶
∗ are referred to as the narrow links or bottlenecks of the path. There may be 

multiple such links. Let iK denote the K-th index such that  𝐶𝑖𝑘=𝐶∗ . In this context, k indexes 

the set of links that constitute the bottlenecks. Alternatively, bandwidth may refer to available 

bandwidth, which is the unused portion of the link's capacity at a given time t. It complements 

the utilized bandwidth, expressed by the utilization factor: 𝑢𝑖
𝑡  ∈ [0,1] for each link. The 

instantaneous available bandwidth of the path is defined as: 

                                      𝐴𝑡
∗ =

𝑚𝑖𝑛
𝑖 = 1, . . , 𝑛

[𝐶𝑖  . (1 − 𝑢𝑖
𝑡 )]                                                  (5.4) 

In this formulation, the link iK  such that  𝐴𝑖𝐾= 𝐴𝑡
∗ is referred to as the tight link, representing 

the current performance bottleneck under existing traffic conditions. To account for temporal 

variation, the available bandwidth is often averaged over a time interval [t, t + τ], yielding: 

                          𝐴∗(𝑡, 𝑡 + 𝜏) =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
[𝐶𝑖  . (1 − 𝑢𝑖(𝑡, 𝑡 + 𝜏))]                                  (5.5) 

Where 𝑢𝑖(𝑡, 𝑡 + 𝜏) is the average utilization of link i over the interval. This averaged metric 

offers a more stable and meaningful reflection of path availability, particularly in dynamic or 

congested network environments. The bulk transfer capacity (BTC) refers to the upper limit of 

data transmission per unit of time achievable by a congestion management method, such as 

TCP, when implemented within a protocol. The statistic in question is influenced by various 

elements [127], including the quantity of concurrent TCP sessions and conflicting traffic from 

the User Datagram Protocol (UDP), among other variables. In order to conduct measurements 

of body weight (BW), two approaches can be employed: an active method or a passive 

approach. The efficacy of active techniques is influenced by the choice of transport protocol, 

resulting in potential variations in the reported parameters of measurements. For instance, the 

utilization of the packet train technique [127], which employs UDP, enables precise 

determination of the path's capacity C*. Conversely, estimations of the BTC can be obtained 

by measurements conducted with TCP traffic. Passive techniques are dependent on the 

monitoring of bandwidth utilization by applications or hosts, thereby accounting for the number 

of transmitted bytes within a specific time frame. Absolute thresholds are not that helpful, but 

when the client detects bandwidth is low (< 100 Kbps) audio quality can easily be impacted by 

other applications or network congestion.  

5.4.2 Network Latency and Delay   

Network delay, also known as latency, is a key metric for assessing network performance. It 

measures the time required for a data packet to travel from its source to its destination and back, 

a duration referred to as Round Trip Time (RTT) and typically measured in milliseconds (ms). 

High latency can cause significant communication delays, impacting the performance of 

applications that rely on real-time interaction, such as video conferencing and online gaming. 

Factors affecting network delay include the distance between endpoints, network congestion, 

and the quality of network equipment [128]. The delay can be calculated using the following 

equation: 
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                                 𝐷𝑒𝑙𝑎𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
                                             (5.6) 

5.4.3 Network jitter 

Network jitter, defined as the variation in time delay between data packets as they traverse a 

network, often leads to irregular arrival times that can cause lag, buffering, and reduced quality 

in real-time applications such as video conferencing, online gaming, and calls. High jitter is 

typically caused by varying traffic loads and frequent packet collisions (network congestion), 

which can lower Quality of Service (QoS) levels. Contributing factors include network 

congestion, where heavy traffic delays packets as they compete for bandwidth; poor hardware 

performance from outdated or malfunctioning equipment; and insufficient packet 

prioritization, where important packets are not given precedence [129]. The Network jitter can 

be calculated using the following equation: 

                                           𝑗𝑖𝑡𝑡𝑒𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
                                                      (5.7) 

5.4.4 Packet Loss 

Network packet loss, occurring when data packets fail to reach their destination, can lead to 

slow internet speeds, buffering, and lag in applications like streaming, gaming, and video calls. 

Causes include network congestion, hardware issues (faulty routers or cables), Wi-Fi 

interference, software bugs, ISP issues, and bit errors due to hardware malfunctions or random 

noise in wireless communications. Packet loss measurement for UDP traffic often uses 

protocols like Q4S or IPPM, which track sequence numbers to gauge reliability. Solutions 

include restarting routers and devices, checking connections, switching to wired setups, 

reducing network load, updating firmware and drivers, minimizing router interference, 

adjusting Quality of Service (QoS) settings, and contacting the ISP for unresolved issues  [129]. 

The Network packet loss can be calculated using the following equation: 

      𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =  
𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡
  ∗ 100              (5.8) 

5.5 Methodology for SLA Assessment and Optimization 

5.5.1 Proposed Framework for SLA Selection 

A fuzzy logic-based service guarantee model is proposed to enhance the assurance of Service 

Level Agreements (SLAs) within cloud computing environments (see Figure 5.1). The model 

employs Quality of Service (QoS) availability metrics as input variables to the fuzzy logic 

system, effectively capturing customer preferences, service requirements, and performance 

expectations. By systematically classifying QoS availability, the model facilitates a precise and 

context-aware evaluation of service reliability. The classification framework defines distinct 

SLA tiers based on availability levels: Normal SLA (90%–92%), Bronze SLA (93%–95%), 

Silver SLA (96%–97%), and Gold SLA (98%–99%). This categorization provides a clear and 

structured mechanism for SLA differentiation. The model ensures input consistency by 

validating that both QoS-computing and QoS-networking parameters are evaluated over the 

same domain, defined within the universe of discourse spanning from 90% to 100%. Appendix 
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4 (Table 2) presents the detailed definition of this domain, which serves as a reference for both 

input categories. The proposed model integrates two sets of input variables into the fuzzy logic 

system: QoS-computing parameters—including virtual CPU (vCPU), memory (RAM), and 

storage capacity—and QoS-networking parameters, such as bandwidth, delay, jitter, and packet 

loss. These inputs collectively enable a comprehensive classification of cloud services. The 

methodology for estimating QoS availability and its incorporation into the fuzzy inference 

process is further detailed in Table 5.2. To establish a granular and structured representation of 

QoS availability levels, a systematic approach is adopted to define the progression of values 

within the universe of discourse. This sequence begins with an initial increment of 

approximately 0.09999, with each subsequent increment decreasing by 0.00001. The result is 

a smoothly increasing, non-linear sequence that converges toward a high-precision endpoint at 

99.999%. The mathematical formulation governing this progression is defined in Equation 

(5.9): 

         An=  90 + (𝑛 − 1). (0.09999 − (𝑛 − 1). 0.00001)                                                   (5.9) 

• An is the nth  availability level in the sequence. 

• n is the index of the term ranging from 1 to 101 (for n=1, the first term A1 is 90). 

The equation initiates the sequence with a maximum increment of 0.09999, which then 

decreases linearly by 0.00001 per term. This formulation generates a precisely calibrated, non-

uniform stepwise scale, making it particularly suitable for applications such as service level 

classification, where fine-grained availability tiers are necessary. 

• Strengths of the Equation: When n=1: 

         A1=  90 + 0. (0.09999 − 0.  0.00001)   =90, which correctly sets the starting point. 

• Controlled Increment: The term: 

(0.09999 − (𝑛 − 1).  0.00001)    
When n=101: 

         A101=  90 + 100. (0.09999 − 100 .  0.00001)    

                =90 + 100. (0.09999 − 0.001)    
                =90 + 100 . 0.09899 = 99.999  

Furthermore, to express the output fuzzy logic-based SLA availability, the model considers 

uptime and corresponding downtime for a given period (e.g., daily, weekly, monthly, or 

yearly), based on the input QoS availability to the fuzzy logic system. The general equations 

for calculating uptime and downtime are formulated as follows: 

             𝑈𝑝𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 ×  𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒                             (5.10) 

            𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × (1 − 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)                  (5.11) 
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FIGURE 5.1 PROPOSED SLA GUARANTEE MODEL. 

The detailed results of these calculations are presented in Appendix 4 (Table 3), offering a 

comprehensive analysis of service availability and performance assurance in cloud computing 

environments. By integrating fuzzy logic principles, this model provides a structured, scalable, 

and intelligent framework for SLA classification, ensuring an optimized and adaptive cloud 

service selection process. 

Table 5.2 QoS Network and Computing Metrics Availability. 

QoS Network Metrics Availability 

B
an

d
 

w
id

th
 

BW <500 Mbps [90% - 92%] 

500 Mbps <= BW <1Gbps [93% - 95%] 

1Gbps <= BW =<2.5Gbps [96% - 97%] 

BW >2.5Gbps [98% - 99.999] 

R
o
u
n
d
 

T
rip

 

T
im

e 

(R
T

T
) 

RTT > 500 ms [90% - 92%] 

250< RTT<=500 ms [93% - 95%] 

100 < RTT<=250 ms [96% - 97%] 

1<RTT<=100 ms [ 98% - 99.999] 

jitter 

35<= Jitter <=45 ms [90% - 92%] 

25< Jitter <=35 ms [93% - 95%] 

15< Jitter <=25 ms [96% - 97%] 

1< Jitter <=15 ms [ 98% - 99.999] 

P
ack

et 

lo
ss 

10 < Packet loss <=25 ms [90% - 92%] 

5 < Packet loss <=10 ms [93% - 95%] 

1 < Packet loss <=5 ms [96% - 97%] 

0< Packet loss <=1 ms [ 98% - 99.999] 

QoS Computing Metrics Availability 

v
C

P
U

 

1< VCPU <=2 [90% - 92%] 

2< VCPU <=16 [93% - 95%] 

16< VCPU <=64 [96% - 97%] 

64< VCPU <=192 [ 98% - 99.999] 

R
A

M
 

4< RAM <=8 GB [90% - 92%] 

8< RAM <=64 GB [93% - 95%] 

64< RAM <=256 GB [96% - 97%] 

256< VCPU <=768 GB 

 
[ 98% - 99.999] 
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1< Storage <=2 GB [90% - 92%] 

2< Storage <=12 GB [93% - 95%] 

12< Storage <=32 GB [96% - 97%] 

32< Storage <=88 GB [ 98% - 99.999] 

5.5.2 Fuzzy Logic-Based Methodology for QoS Evaluation 

5.5.2.1 Key Input Parameters 

Fuzzification is a foundational process in fuzzy logic systems through which crisp numerical 

inputs are converted into fuzzy sets characterized by linguistic variables, terms, and 

corresponding membership functions [98]. This transformation enables the system to represent 

imprecise or uncertain information, supporting more flexible, adaptive, and human-like 

reasoning in decision-making contexts. The input parameters for the model were designed 

using the Fuzzy Logic Designer, following the same methodological framework introduced in 

Chapter 4. However, the division of the universe of discourse in this chapter has been modified 

to suit the specific primitives and structural requirements of the model developed herein. 

Through this approach, the model systematically converts crisp QoS input values into fuzzy 

sets, allowing for the nuanced evaluation of computing and networking resource availability. 

These fuzzy sets serve as the basis for inferring the final Service Level Agreement (SLA) 

classification, thus supporting the accurate and optimized categorization of service levels. The 

first input to the fuzzy logic system corresponds to QoS-computing availability. This input is 

defined over a universe of discourse ranging from 90% to 100% and is represented using three 

triangular membership functions, structured as follows: 

• Light Availability: [90, 90, 95] 

• Middle Availability: [90, 95, 100] 

• High Availability: [95, 99.999, 100] 

The second input to the fuzzy logic system is QoS-networking availability, which reflects the 

availability of networking resources. Like the QoS-computing input, this parameter is defined 

over a universe of discourse spanning from 90% to 100% and is represented using three 

triangular membership functions, structured as follows: 

• Low Availability: [90, 90, 95] 

• Average Availability: [90, 95, 100] 

• Top Availability: [95, 99.999, 100] 

By integrating these membership functions, the fuzzy logic system systematically evaluates 

availability conditions for both computing and networking resources. This structured approach 

enhances the model's ability to classify SLAs, ensuring that cloud service consumers receive 

accurate, reliable, and context-aware service guarantees tailored to their specific needs. 

5.5.2.2 Implementation of FIS and Defuzzification  for SLA Analysis 

To achieve an accurate and adaptive Service Level Agreement (SLA) classification, the 

proposed model implements a Mamdani fuzzy inference system, utilizing three membership 
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functions for the first input (QoS-computing) and three membership functions for the second 

input (QoS-network). Given this structure, the model requires 3 × 3 inference rules, ensuring a 

comprehensive decision-making process by considering all possible input-output relationships. 

i. Fuzzy Inference Rules 

Fuzzy inference rules play a critical role in fuzzy logic systems, using IF...THEN conditions to 

interpret input values and generate corresponding decisions. These rules effectively handle 

uncertain or imprecise information, transforming crisp input values into fuzzified outputs, 

which are then utilized for intelligent decision-making [98]. The model employs the following 

fuzzy rule base: 

1. If (QoS-computing is Light) and (QoS-network is Low), then (SLA-level is Normal-

SLA1). 

2. If (QoS-computing is Light) and (QoS-network is Average), then (SLA-level is 

Normal-SLA2). 

3. If (QoS-computing is Light) and (QoS-network is Top), then (SLA-level is Normal-

SLA3). 

4. If (QoS-computing is Middle) and (QoS-network is Low), then (SLA-level is Bronze-

SLA1). 

5. If (QoS-computing is Middle) and (QoS-network is Average), then (SLA-level is 

Bronze-SLA2). 

6. If (QoS-computing is Middle) and (QoS-network is Top), then (SLA-level is Bronze-

SLA3). 

7. If (QoS-computing is High) and (QoS-network is Low), then (SLA-level is Silver-

SLA1). 

8. If (QoS-computing is High) and (QoS-network is Average), then (SLA-level is Silver-

SLA2). 

9. If (QoS-computing is High) and (QoS-network is Top), then (SLA-level is Gold-

SLA9). 

This rule base ensures that SLA classification is performed systematically, considering 

both computing resource availability (vCPU, RAM, and Storage) and networking 

parameters (bandwidth, delay, jitter, and packet loss). 

ii. System Outputs 

Once the fuzzification and inference process is completed, the final step involves 

defuzzification, which converts fuzzy outputs into precise (crisp) values. This 

transformation is crucial for practical decision-making, as it provides a definitive SLA 

classification. The proposed model utilizes the centroid method of defuzzification, a 

widely adopted mathematical technique in fuzzy logic systems [130]. The 

defuzzification process in this model applies triangular membership functions to 

classify SLAs based on a universe of discourse ranging from 90 to 100. The SLA 

classification follows nine membership functions, as described below: 

1) Normal-SLA1: [90, 90, 91] 

2) Normal-SLA2: [90, 91, 92] 

3) Normal-SLA3: [91, 92, 93] 

4) Bronze-SLA1: [92, 93, 94] 

5) Bronze-SLA2: [93, 94, 95] 
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6) Bronze-SLA3: [94, 95, 96] 

7) Silver-SLA1: [95, 96, 97] 

8) Silver-SLA2: [96, 97, 98] 

9) Gold-SLA9: [97, 99.999, 100] 

The model enables precise classification of QoS availability by implementing a fuzzy 

logic system, ensuring that cloud service consumers receive context-aware and reliable 

SLA commitments aligned with their specific computing and networking requirements. 

5.6 Experimental Evaluation  

The proposed model was extensively analyzed within the MATLAB environment to assess its 

effectiveness in evaluating Service Level Agreement (SLA) classifications based on Quality of 

Service (QoS) parameters for computing and networking resources. The model was designed 

to process customer preferences by computing the availability ratio of virtualized computing 

resources—such as vCPU, RAM, and storage—alongside network resources, including 

bandwidth, delay, jitter, and packet loss. By integrating these metrics into a Fuzzy Logic-based 

framework, the model systematically classified services into multiple SLA categories to 

provide a granular and data-driven approach to service selection. The Fuzzy Logic inference 

system extracted results according to predefined conditions and criteria, which were 

established during the model design phase. These results were systematically categorized into 

multiple SLA levels based on their corresponding availability ratios. The classification 

hierarchy begins with the Normal SLA tier, which includes Normal-SLA 1, Normal-SLA 2, 

and Normal-SLA 3; as availability conditions improve based on input classifications and the 

selected fuzzy inference rules, the model sequentially transitions into the Bronze SLA tier, 

which consists of, Bronze-SLA 1, Bronze-SLA 2, Bronze-SLA 3, In each classification level, 

the availability percentage progressively increases according to the pre-established input 

classification rules, ensuring a systematic and logical increase in service quality. Following 

this, the model advances to the Silver SLA tier, which further refines the service levels with 

improved availability metrics, Silver-SLA 1, Silver-SLA 2; at the highest tier, the Gold SLA 

classification represents the most optimal service category, characterized by the highest levels 

of availability and reliability, suitable for mission-critical applications requiring minimal 

downtime. The classification hierarchy, As illustrated in Figure 5.2, the model dynamically 

adjusts service availability ratios in response to varying QoS computing and networking inputs. 

This structured classification enables cloud consumers to identify and select the most suitable 

SLA level based on their specific performance requirements and budgetary constraints. 

Additionally, Table 5.3 presents a detailed explanation of the fuzzy input-output mappings and 

their corresponding SLA guarantees, showcasing the effectiveness of the proposed system 

implementation. 
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FIGURE 5.2 RESULTS OF THE PROPOSED MODEL. 

Table 5.3 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees. 

No 

 

First input 

(Computing) 

Second input 

(Networking) 
Output SLA Guarantees 

1 90 90 90.333 SLA-Normal1 (90%) 

2 90.09999 90.09999 90.467 SLA-Normal1 (90%) 

3 90.19998 90.19998 90.592 SLA-Normal1 (90%) 

4 90.29997 90.29997 90.708 SLA-Normal1 (90%) 

5 90.39996 90.39996 90.816 SLA-Normal1 (90%) 

6 90.49995 90.49995 90.916 SLA-Normal1 (90%) 

7 90.59994 90.59994 91.010 SLA-Normal1 (90%) 

8 90.69993 90.69993 91.098 SLA-Normal1 (90%) 

9 90.79992 90.79992 91.181 SLA-Normal1 (90%) 

10 90.89991 90.89991 91.259 SLA-Normal1 (90%) 

11 90.9999 90.9999 91.333 SLA-Normal2 (91%) 

12 91.09989 91.09989 91.402 SLA-Normal2 (91%) 

13 91.19988 91.19988 91.468 SLA-Normal2 (91%) 

14 91.29987 91.29987 91.530 SLA-Normal2 (91%) 

15 91.39986 91.39986 91.589 SLA-Normal2 (91%) 
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16 91.49985 91.49985 91.645 SLA-Normal2 (91%) 

17 91.59984 91.59984 91.699 SLA-Normal2 (91%) 

18 91.69983 91.69983 91.749 SLA-Normal2 (91%) 

19 91.79982 91.79982 91.798 SLA-Normal2 (91%) 

20 91.89981 91.89981 91.844 SLA-Normal2 (91%) 

21 91.9998 91.9998 91.888 SLA-Normal3 (92%) 

22 92.09979 92.09979 91.931 SLA-Normal3 (92%) 

23 92.19978 92.19978 91.971 SLA-Normal3 (92%) 

24 92.29977 92.29977 92.010 SLA-Normal3 (92%) 

25 92.39976 92.39976 92.047 SLA-Normal3 (92%) 

26 92.49975 92.49975 92.083 SLA-Normal3 (92%) 

27 92.59974 92.59974 92.122 SLA-Normal3 (92%) 

28 92.69973 92.69973 92.163 SLA-Normal3 (92%) 

29 92.79972 92.79972 92.205 SLA-Normal3 (92%) 

30 92.89971 92.89971 92.249 SLA-Normal3 (92%) 

31 92.9997 92.9997 92.296 SLA-Bronze1 (93%) 

32 93.09969 93.09969 92.344 SLA-Bronze1 (93%) 

33 93.19968 93.19968 92.395 SLA-Bronze1 (93%) 

34 93.29967 93.29967 92.448 SLA-Bronze1 (93%) 

35 93.39966 93.39966 92.503 SLA-Bronze1 (93%) 

36 93.49965 93.49965 92.562 SLA-Bronze1 (93%) 

37 93.59964 93.59964 92.623 SLA-Bronze1 (93%) 

38 93.69963 93.69963 92.688 SLA-Bronze1 (93%) 

39 93.79962 93.79962 92.756 SLA-Bronze1 (93%) 

40 93.89961 93.89961 92.828 SLA-Bronze1 (93%) 

41 93.9996 93.9996 92.904 SLA-Bronze2 (94%) 

42 94.09959 94.09959 92.984 SLA-Bronze2 (94%) 

43 94.19958 94.19958 93.070 SLA-Bronze2 (94%) 

44 94.29957 94.29957 93.161 SLA-Bronze2 (94%) 

45 94.39956 94.39956 93.257 SLA-Bronze2 (94%) 

46 94.49955 94.49955 93.360 SLA-Bronze2 (94%) 

47 94.59954 94.59954 93.470 SLA-Bronze2 (94%) 

48 94.69953 94.69953 93.588 SLA-Bronze2 (94%) 

49 94.79952 94.79952 93.715 SLA-Bronze2 (94%) 

50 94.89951 94.89951 93.851 SLA-Bronze2 (94%) 

51 94.9995 94.9995 93.999 SLA-Bronze3 (95%) 

52 95.09949 95.09949 94.172 SLA-Bronze3 (95%) 

53 95.19948 95.19948 94.332 SLA-Bronze3 (95%) 

54 95.29947 95.29947 94.481 SLA-Bronze3 (95%) 

55 95.39946 95.39946 94.620 SLA-Bronze3 (95%) 

56 95.49945 95.49945 94.749 SLA-Bronze3 (95%) 

57 95.59944 95.59944 94.870 SLA-Bronze3 (95%) 

58 95.69943 95.69943 94.983 SLA-Bronze3 (95%) 

59 95.79942 95.79942 95.090 SLA-Bronze3 (95%) 

60 95.89941 95.89941 95.190 SLA-Bronze3 (95%) 

61 95.9994 95.9994 95.285 SLA-Silver1 (96%) 

62 96.09939 96.09939 95.374 SLA-Silver1 (96%) 

63 96.19938 96.19938 95.459 SLA-Silver1 (96%) 
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64 96.29937 96.29937 95.539 SLA-Silver1 (96%) 

65 96.39936 96.39936 95.615 SLA-Silver1 (96%) 

66 96.49935 96.49935 95.687 SLA-Silver1 (96%) 

67 96.59934 96.59934 95.755 SLA-Silver1 (96%) 

68 96.69933 96.69933 95.821 SLA-Silver1 (96%) 

69 96.79932 96.79932 95.883 SLA-Silver1 (96%) 

70 96.89931 96.89931 95.942 SLA-Silver1 (96%) 

71 96.9993 96.9993 95.999 SLA-Silver2(97%) 

72 97.09929 97.09929 96.054 SLA-Silver2(97%) 

73 97.19928 97.19928 96.106 SLA-Silver2(97%) 

74 97.29927 97.29927 96.155 SLA-Silver2(97%) 

75 97.39926 97.39926 96.203 SLA-Silver2(97%) 

76 97.49925 97.49925 96.249 SLA-Silver2(97%) 

77 97.59924 97.59924 96.305 SLA-Silver2(97%) 

78 97.69923 97.69923 96.364 SLA-Silver2(97%) 

79 97.79922 97.79922 96.425 SLA-Silver2(97%) 

80 97.89921 97.89921 96.488 SLA-Silver2(97%) 

81 97.9992 97.9992 96.555 SLA-Gold (98%) 

82 98.09919 98.09919 96.624 SLA-Gold (98%) 

83 98.19918 98.19918 96.697 SLA-Gold (98%) 

84 98.29917 98.29917 96.773 SLA-Gold (98%) 

85 98.39916 98.39916 96.853 SLA-Gold (98%) 

86 98.49915 98.49915 96.936 SLA-Gold (98%) 

87 98.59914 98.59914 97.024 SLA-Gold (98%) 

88 98.69913 98.69913 97.117 SLA-Gold (98%) 

89 98.79912 98.79912 97.215 SLA-Gold (98%) 

90 98.89911 98.89911 97.318 SLA-Gold (98%) 

91 98.9991 98.9991 97.427 SLA-Gold (99%) 

92 99.09909 99.09909 97.543 SLA-Gold (99%) 

93 99.19908 99.19908 97.665 SLA-Gold (99%) 

94 99.29907 99.29907 97.795 SLA-Gold (99%) 

95 99.39906 99.39906 97.934 SLA-Gold (99%) 

96 99.49905 99.49905 98.081 SLA-Gold (99%) 

97 99.59904 99.59904 98.239 SLA-Gold (99%) 

98 99.69903 99.69903 98.408 SLA-Gold (99%) 

99 99.79902 99.79902 98.590 SLA-Gold (99%) 

100 99.89901 99.89901 99.899 SLA-Gold (99%) 

101 99.999 99.999 99.999 SLA-Gold (99%) 

 

The inputs for QoS availability—both for computing and networking—are inherently 

continuous variables. However, Table 5.3 is not intended to serve as a discrete or static 

"lookup" table. Instead, it presents a sampled output from the continuous fuzzy mapping 

function that is defined and implemented via our Mamdani-type fuzzy inference system (FIS). 

As detailed in Section 5.5.2.1 of the manuscript, both QoS-Computing and QoS-Networking 

availabilities are fuzzified using triangular membership functions over a continuous universe 

of discourse ranging from 90% to 100%. These inputs are then processed using a fuzzy rule 

base (outlined in Section 5.5.2.2) consisting of 9 inference rules. The output SLA classification 
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is derived through fuzzy reasoning and defuzzification (via the centroid method), producing a 

continuous mapping function from input QoS metrics to a numerical SLA guarantee level. 

Table 5.3 merely illustrates a dense sampling from this function, incremented using a 

mathematically defined non-linear progression (as explained in Equation 5.9), for 

demonstration and analysis purposes. These values are generated from a MATLAB simulation 

and demonstrate how the fuzzy model transitions through SLA categories (Normal, Bronze, 

Silver, and Gold) as input availabilities gradually increase. Therefore, while Table 5.3 may 

appear tabular, it is a result of a continuous fuzzy mapping, not a discrete mapping in the 

classical sense. 

5.7 Summary of the SLA selection Model 

One of the central contributions of the proposed model lies in its ability to align user 

preferences with optimal SLA classifications in real-time dynamically. The system effectively 

accommodates the inherent uncertainties in computing and networking performance by 

applying fuzzy logic principles, enabling a more adaptive and responsive approach to SLA 

selection. This intelligent mechanism surpasses traditional, static SLA models defined solely 

by service providers, offering enhanced flexibility and personalization. Furthermore, the model 

introduces a structured method for calculating and classifying availability ratios, equipping 

Cloud Service Providers (CSPs) with a systematic framework for delivering tiered service 

offerings tailored to individual user requirements. Unlike conventional frameworks that depend 

on fixed SLA definitions, the proposed approach enables dynamic SLA mapping, ensuring 

more responsive and context-aware service delivery. The experimental analysis provides 

compelling evidence of the model's practical relevance. A comprehensive simulation in 

MATLAB was conducted using over 100 paired input values representing computing and 

networking QoS availability. The fuzzy inference system generated output SLA classifications 

that followed a consistent, continuous gradient aligning with widely recognized SLA tiers such 

as SLA-Normal, Bronze, Silver, and Gold, as detailed in Table 5.3. For instance, the model 

produced granular availability scores, including 90.333%, 91.333%, 92.296%, 95.999%, and 

99.999%, each accurately mapped to the corresponding SLA category. These classifications 

are consistent with publicly published SLA policies by providers such as AWS EC2, which 

outline guarantees for availability levels such as 99.5% and 99.99%. The output labels assigned 

by the fuzzy system (e.g., SLA-Bronze3 for the availability of 95.999%) closely mirror the 

expected service levels defined by industry standards. This correlation affirms the model's 

classification accuracy and real-world applicability, positioning it as a robust decision-support 

tool for SLA compliance assessment in cloud environments.  Building on these results, our 

focus shifts to enhancing decision-making accuracy, which is addressed further in this study's 

next contribution. This next step involves refining fuzzy logic systems through optimization 

techniques to improve decision-making in complex systems. We aim to develop adaptive fuzzy 

logic models for efficient cloud service management and SLA optimization, tackling the 

challenges identified in this thesis. 
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Chapter 6 Enhanced Decision-Making in Uncertain Domains  

Chapter 6 presents an advanced mathematical methodology designed to facilitate decision-

making in uncertain environments. The primary contribution of this chapter is the formulation 

of an optimized strategy for the selection and implementation of fuzzy membership functions. 

Notably, the novelty of this approach is explicitly situated in the methodological innovations 

rather than the mere act of classifying input values. Specifically, the introduced mathematical 

model integrates systematic, optimized algorithms for efficiently computing membership 

degrees. Unlike traditional fuzzy logic approaches that rely heavily on predefined, static 

membership functions—such as standard triangular, trapezoidal, or Gaussian forms, typically 

defined manually or through heuristic adjustments—the proposed methodology utilizes 

structured mathematical optimization techniques. This allows for dynamic, precise 

classification of crisp input values into appropriate fuzzy sets, significantly enhancing accuracy 

and computational efficiency. The distinctiveness of this model arises from its structured 

mathematical optimization approach, systematically refining the process of classifying crisp 

inputs into fuzzy sets. Doing so achieves greater precision and computational efficiency than 

conventional methods reliant on heuristics or manual adjustments. This model explicitly 

incorporates optimization algorithms to streamline and enhance the calculation of membership 

degrees via three specialized algorithms, each analogous to traditional fuzzy logic membership 

functions, namely triangular, trapezoidal, and Gaussian. A significant aspect of the proposed 

approach lies in its independence from conventional fuzzy logic implementations that 

frequently depend on specialized fuzzy logic software, such as MATLAB's Fuzzy Logic 

Toolbox or other simulation frameworks. Traditional methods typically involve specific 

software dependencies, plugins, or graphical tools to define membership functions and 

inference mechanisms, limiting their adaptability and operational efficiency in varied 

computational contexts. In contrast, the proposed method introduces a simplified, 

mathematically driven, and tool-independent model that does not necessitate external fuzzy 

logic software or environment-specific configurations. The advantage of this independence 

manifests in broader applicability, simplified integration processes, and reduced computational 

requirements. Due to its inherent simplicity, computational efficiency, and high adaptability, 

the proposed method exhibits substantial potential across diverse artificial intelligence 

applications, eliminating the necessity for complex adaptive systems or specialized software 

environments. This simplified mathematical framework ensures faster and more accurate 

classification of input values, effectively reducing computational overhead and enhancing 

operational performance in practical artificial intelligence deployments. 

6.1 Overview of Decision-Making Challenges  

Fuzzy logic has become a cornerstone of intelligent control systems, seamlessly integrating 

with advanced methodologies such as neural networks and genetic algorithms. It is widely 

applied to interpret, analyze, and resolve the inherent ambiguities associated with complex 

human-centric needs and challenges. Its unique ability to handle imprecise and uncertain data 

through fuzzy sets and rules positions it as a powerful tool for decision-making in dynamic and 

intricate systems. The core processes of fuzzy logic—fuzzification, inference (driven by IF-

THEN rules and an extensive knowledge base), and defuzzification—facilitate the conversion 

of vague inputs into precise, actionable outputs, ensuring effective and reliable system 

performance. This capability supports the suitability of robust control and decision-making 

across various applications. Integrating fuzzy logic with adaptive systems enhances its 
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flexibility and optimization capabilities, making it indispensable in robotics, industrial 

automation, and artificial intelligence (AI) domains. These fields frequently encounter 

inaccuracies from sensor data or other unpredictable inputs, whereas fuzzy logic systems 

demonstrate exceptional efficiency and reliability. The Mamdani fuzzy logic system is widely 

favored among the many fuzzy logic approaches for its straightforward structure and 

interpretability. In electric drive systems, fuzzy logic has been employed to develop an adaptive 

proportional-integral (PI) speed controller for vector control of induction motors (IM) [131]. 

This controller uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) to optimize control 

gains, ensuring resilience against parametric variations. Validation through MATLAB-

Simulink simulations demonstrated its robust performance and suitability for enhancing 

electric drive reliability. In agriculture, fuzzy logic has addressed environmental uncertainty. 

For instance, a wheeled robot with a microcontroller was developed for autonomous pesticide 

spraying, achieving high decision-making accuracy in weed identification despite challenging 

environmental conditions [132]. Hydraulic systems have also benefited from fuzzy logic. 

Researchers proposed a discrete-time switching controller strategy for pumping stations, 

integrating fuzzy-PD or fuzzy-PID controllers with PI controllers. A fuzzy supervisor 

facilitates controller switching, ensuring robustness, stability, and asymptotic error correction 

[133]. In high-performance electric motor applications, integrating Model Reference Adaptive 

Systems (MRAS) with fuzzy logic has significantly improved rotor speed and resistance 

estimation in induction motors. The study "High-Performance Control of IM using MRAS-

Fuzzy Logic Observer" highlights this advanced control strategy's effectiveness in high-

demand environments [134]. Further advancements include a method for simultaneously 

estimating rotor resistance and speed using two independent adaptive observers alongside a 

streamlined algorithm for optimal controller gains [135]. The adaptability of fuzzy logic 

extends to managing ambiguity and vagueness, which occur when boundaries and alternatives 

are unclear. By employing fuzzy numbers and membership functions, fuzzy logic offers a 

structured approach to handling uncertainty, surpassing traditional Boolean logic [136][137]. 

This flexibility allows fuzzy logic systems to adapt to tasks such as navigation, object handling, 

and decision-making in uncertain environments, enabling human-like control in artificial 

intelligence (AI) systems [138][139]. Classical information theory reduces uncertainty by 

increasing information; however, fuzzy logic uses membership functions to quantify degrees 

of association between inputs and sets within a universe discourse. These functions form the 

backbone of fuzzy logic systems, linking input values to degrees of membership and enabling 

approximate reasoning in complex scenarios [140][141][142]. Optimization algorithms 

enhance fuzzy logic by refining membership functions and improving actuator precision and 

control, especially in autonomous systems [143]. The development of fuzzy logic systems 

hinges on constructing fuzzy partitions and defining the shape and number of membership 

functions (MFs). These MFs are essential as they quantify the degree to which a specific input 

belongs to a fuzzy set. Expert knowledge is pivotal in this process, guiding the selection and 

parameterization of appropriate MFs. Optimizing these systems minimizes reliance on 

subjective trial-and-error approaches, thereby enhancing the accuracy of input/output 

mappings [144]. Membership functions are fundamental to representing the degree of 

membership for each variable, serving as critical inputs for the inference rules that drive system 

functionality [145]. Building upon the findings of our previous contribution, this study seeks 

to enhance further the accuracy and robustness of the proposed classification approach. This 

section provides a detailed exposition of the mathematical methodology, which centers on 
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applying three specialized classification algorithms. These algorithms operate analogously to 

the membership functions used in the Mamdani fuzzy logic system. The core of this approach 

is a novel mathematical model designed to systematically classify crisp input values into their 

appropriate fuzzy sets, thereby enhancing the accuracy of membership degree computations. 

Optimization techniques refine these computations through three distinct algorithms, 

corresponding to triangular, trapezoidal, and Gaussian membership functions. The model was 

implemented in MATLAB and evaluated using a dataset of 10000 user task size entries with 

varying magnitudes. The primary objective was to assess the performance of the proposed 

algorithms in categorizing task sizes into three predefined classes: Small, Medium, and Big. A 

comparative analysis with the Mamdani fuzzy logic system demonstrated that the proposed 

model produces classification results that are either equivalent to or slightly more precise than 

those generated by Mamdani’s approach, particularly regarding numerical accuracy. These 

findings validate the proposed method as a viable and competitive alternative to Mamdani’s 

model for classification tasks. Additionally, the mathematical simplicity and independence of 

the proposed model from simulation environments or third-party tools, such as dynamic-link 

libraries (DLLs), software extensions, or external simulation frameworks, make it particularly 

suitable for broader deployment in artificial intelligence applications. This is especially 

advantageous in contexts where tool-dependent environments are unavailable or impractical. 

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making 

Fuzzy logic systems have become influential in decision-making, particularly in uncertain 

contexts. They offer flexibility and approximate reasoning; however, the literature points to 

challenges such as the complexity of fuzzy rule formulations and computational inefficiencies. 

These challenges underscore the need for further optimization to enhance the applicability and 

effectiveness of fuzzy logic across various fields.  In his seminal work on fuzzy sets, Zadeh 

defined a fuzzy set as "a class of objects with a continuum of grades of membership," where a 

membership function assigns each object a grade ranging from zero to one. This work extends 

traditional notions such as inclusion, union, intersection, and complement to fuzzy sets, 

establishing various properties within this context. Notably, Zadeh also proved a separation 

theorem for convex fuzzy sets without requiring the sets to be disjoint [146]. Building on this 

foundation, researchers expanded fuzzy set theory by exploring its theoretical underpinnings 

and practical applications in managing uncertainty and imprecision across various domains 

[147]. However, these approaches often overlook the computational inefficiencies that arise 

when applying fuzzy logic in real-world decision-making scenarios. Recent advancements 

have attempted to address these inefficiencies. For instance, researchers have proposed a novel 

approach to healthcare decision-making that integrates fuzzy logic with machine learning 

[148]. This hybrid model aims to improve diagnostic accuracy and resource utilization, 

particularly when dealing with incomplete and uncertain data, thus addressing traditional 

inefficiencies.  However, it has faced criticism for relying on subjective inputs, which can 

introduce biases and affect the consistency of outcomes [149].  Moreover, researchers have 

highlighted limitations in the fuzzy linguistic approach, particularly regarding information loss 

during fusion processes. They propose a 2-tuple model to enhance precision and extend 

aggregation operators [150], although its complexity continues to pose challenges for 

practitioners, making implementation cumbersome [151].  Further research has discussed 

adaptive fuzzy systems, which show promise but frequently experience stability issues [152], 
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leading to inconsistent decision-making in dynamic environments [153]. The Mamdani fuzzy 

inference model, while foundational, is often critiqued for its limited robustness under varying 

conditions [154]. Although recent studies have sought to enhance this model's applicability, 

challenges persist in managing time-sensitive decisions effectively [155]. Additionally, the 

researchers provided extensive insights into fuzzy systems but focused primarily on theoretical 

aspects [156], which hinders practical application and adoption by industry practitioners [157]. 

Doong et al. explored fuzzy risk assessment in engineering [158], yet their approach does not 

adequately address the interactions among risk factors, potentially oversimplifying complex 

decision-making contexts [159]. In the context of business applications, researchers reviewed 

fuzzy decision-making [160], underscoring the pressing need for improved methodologies to 

handle severe uncertainties, particularly when data is sparse or incomplete [161]. Lastly, the 

integration of fuzzy logic with genetic algorithms has been explored [162]. However, this 

approach often struggles with computational efficiency and convergence issues, complicating 

its practical use in real-time decision-making scenarios [163].  In summary, the literature 

underscores significant gaps in the application of fuzzy logic systems within uncertain 

domains, highlighting the need for optimized methodologies to enhance robustness, efficiency, 

and applicability in decision-making processes. This study aims to address these critical gaps 

by focusing on accurately determining the degree of membership of input elements and their 

association with the most appropriate membership functions. The proposed mathematical 

model seeks to improve fuzzy logic systems' capacity to handle uncertainty and make accurate 

decisions by refining the process of selecting the best membership function and aligning it with 

closely related decisions. 

6.3 Background of Fuzzy Logic System 

6.3.1 Core Principles of Fuzzy Logic Systems 

Fuzzy logic is a form of many-valued logic that deals with approximate rather than fixed and 

exact reasoning. Unlike traditional binary logic, which operates with true or false values, fuzzy 

logic allows for a range of values between 0 and 1, which makes it particularly useful for 

handling the concept of partial truth. This approach is often referred to as "computing with 

words" because it can model the way humans think and reason with imprecise information 

[164] [165]. Figure 6.1 depicts the architecture of a fuzzy logic system. 
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FIGURE 6.1 ARCHITECTURE OF A FUZZY LOGIC SYSTEM. 

6.3.1.1 Fuzzy System Basics 

6.3.1.1.1 Crisp Input Processing 

In fuzzy logic, a crisp set refers to a set in which each element has a membership value that is 

strictly either 0 or 1, signifying complete exclusion or inclusion. This differs from fuzzy sets, 

where membership values can vary continuously between 0 and 1, enabling partial 

membership. In a crisp set, individuals are categorized into two distinct groups: members, who 

belong unequivocally to the set, and non-members, who are definitively excluded. Crisp sets 

adhere to classical binary logic, emphasizing a clear and absolute boundary for set membership. 

The indicator function for a crisp set, A, where elements in the set are assigned a value of 1 

and those outside the set are assigned a value of 0, can be expressed as: 

  𝜇𝐴(𝑥) ={
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

                                                             (6.1) 

6.3.1.1.2 Fuzzification Process 

Fuzzification inference is a process that converts input data into fuzzy sets, which are 

subsequently used to generate outputs based on a predefined set of rules, typically expressed 

in the "IF…THEN" format. This process plays a vital role in fuzzy inference systems, 

facilitating the transformation of uncertain or imprecise information into structured, actionable 

outcomes for decision-making [166].  

6.3.1.1.3 Inference Engine 

An inference engine is a critical component of an expert system, employing logical rules to 

derive information or make decisions based on a knowledge base. It maps fuzzified inputs 

(obtained through the fuzzification process) to the rule base, generating fuzzified outputs for 

the applicable rules. The fuzzy inference engine follows a structured process comprising 

several key steps. Initially, it performs rule matching by identifying relevant rules from the 

knowledge base and comparing the input data to the conditions specified in each rule. Once the 

relevant rules are identified, the engine evaluates the degree of truth for each rule, determining 

the extent to which the input satisfies the conditions. Subsequently, it aggregates the 
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conclusions derived from the matched rules by combining their outputs to generate a coherent 

decision or conclusion. This process is iterative, with the engine continuously applying rules 

and updating the knowledge base until a solution is achieved or no further rules apply. This 

systematic approach enables the fuzzy inference engine to handle complex and dynamic 

scenarios effectively. Inference engines are widely used in artificial intelligence applications, 

including diagnostic systems, recommendation systems, and other decision-making tasks 

[167]. 

6.3.1.1.4 Fuzzy Rule Base 

A fuzzy rule base is a set of fuzzy rules that describe the relationship between input variables 

and output results in a fuzzy logic system. These rules, often derived from linguistic 

expressions, characterize the dynamic behaviour of the system. Each rule consists of an 

antecedent (the "IF" part) and a consequent (the "THEN" part) based on the knowledge and 

expertise of a domain expert. Fuzzy rules generally follow the format:  

𝒊𝒇 → 𝒂𝒏𝒕𝒆𝒄𝒆𝒅𝒆𝒏𝒕(𝒔)  𝒕𝒉𝒆𝒏  𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕(𝒔) 

Enabling the system to infer outputs under various input conditions. These rules are crucial for 

managing uncertainty and imprecision in control algorithms within systems [168][169]. 

6. 3.1.1.5 Defuzzification Process 

Defuzzification is the final step in a fuzzy system and is responsible for converting the fuzzy 

output generated by the inference engine into a precise numerical value. This process translates 

the fuzzy set produced during inference into a specific, actionable numerical value suitable for 

decision-making or control applications. Standard defuzzification techniques, such as the 

Centre of Gravity (COG) method illustrated in equation 6.2, derive a crisp result by calculating 

a representative value from the combined fuzzy sets generated by multiple rules. This step 

ensures the system's outputs are interpretable and practical for real-world implementation 

[170].  

𝑍 = ∑ (𝜇𝑖 
𝑛
𝑖=1 𝛽𝑖)/∑ 𝜇𝑖

𝑛
𝑖=1                                                                           (6.2) 

Z: The crisp output (defuzzified value); 𝜇𝑖  : The membership degree of the fuzzy set for the 𝑖-
th rule; 𝛽𝑖 : The representative value (often the centroid) of the output fuzzy set for the 𝑖-th 

rule.; n: The total number of rules in the system. 

6.3.2 Membership Functions and Their Significance 

The membership function is a core concept in fuzzy logic. It quantifies the degree of belonging 

of a given input to a fuzzy set. Mapping inputs to values from 0 to 1 provides a nuanced 

representation of uncertainty and partial truth, enabling more flexible and accurate modelling 

than traditional binary logic. The function adheres to specific constraints and has a range of [0, 

1]. For every x ∈ X, μ _A(x) must be unique [171]. In this study, have selected three widely 

used membership functions recognized as essential in fuzzy logic systems: triangular, 

trapezoidal, and Gaussian. 

6.3.2.1 Triangular Membership Function 
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triangular membership function can be represented by the parameters {a, b, c}. As referenced 

in the previous sections. 

6.3.2.2 Trapezoidal Membership Function 

fuzzy trapezoidal MF is defined by the parameters {a, b, c, d} as in equation (6.3). 

                                                  𝜇𝐹 =

{
 
 

 
 

0;   𝑥 ≤ 𝑎
𝑥−𝑎
𝑏−𝑎

  ;𝑎< 𝑥 <𝑏

1; 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥
𝑑−𝑐

 ;   𝑐< 𝑥 <𝑑

0; 𝑥 ≥ 𝑑

                                                                          (6.3) 

6.3.2.3 Gaussian Membership Function 

A fuzzy Gaussian membership function uses the Gaussian distribution to measure membership 

levels within a fuzzy set. It creates bell-shaped curves that manage uncertainty and vagueness. 

The function provides a continuous range of membership values between 0 and 1. The general 

formula for a fuzzy Gaussian membership function is: 

                          𝜇𝐴(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)2

                                                  (6.4) 

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains  

The max-min compositional Mamdani fuzzy logic inference method employs a classification 

approach that integrates IF-THEN conditions with AND (fuzzy t-norm) and OR (fuzzy s-norm) 

operators to categorize and filter input values based on their compatibility with specific 

functions. In the max-min compositional Mamdani method the t-norm selects the minimum 

degree of membership among comparable values, while the s-norm selects the maximum 

degree of membership. In this framework, every value within the universe of discourse is 

associated with a distinct degree of membership function, irrespective of its membership in 

other functions.  This attribute empowers our proposed method to gauge the membership level 

of a value across all relevant membership functions within the problem-solving model. It 

facilitates the assessment of a value's impact on the environment in connection with the 

decision-making process, have drawn upon mathematical principles embodied by the following 

equations and principles: 

6.4.1 Mathematical Formulation for Algorithms 1 and 2 

The general equation for a straight line is expressed as in equation (6.5). 

y=mx+c                                                                      (6.5) 

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used 

equation form for a straight line in geometry. However, the straight-line equation can be 

presented in various forms, including point-slope. The equation of a straight line with a slope 

'm' that passes through a specific point (x1, y1) is derived using the point-slope form, which is 

expressed as in equation (6.6). 

                     y-y1=m(x-x1)                                                           (6.6)   

Where (x, y) denotes an arbitrary point on the line. The absolute value parent function is 
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represented as: 

𝑓(𝑥) = |𝑥|                                                                       (6.7) 

It is defined as:                       𝑓(𝑥) = {

𝑥, 𝑖𝑓  𝑥 > 0
0, 𝑖𝑓  𝑥 = 0
−𝑥, 𝑖𝑓 𝑥 < 0

                                                        (6.8) 

The stretching or compressing of the absolute value function 𝑦 = |𝑥|  is defined by the 

function 𝑦 = 𝛼|𝑥|  where  𝛼 is a constant. The graph opens if 𝛼 > 0 and opens down when 𝛼 < 

0. In a more general context, the equation for an absolute value function takes the form: 

               𝑦 = 𝛼|𝑥 − ℎ| + 𝑘                                                 (6.9) 

                 𝛼 =
𝑦2−𝑦1

𝑥2−𝑥1
                                                             (6.10) 

Here,  ℎ  signifies the horizontal translation, and  𝑘  represents the vertical translation [163]. 

6.4.2 Mathematical Formulation for Algorithm 3 

The Gaussian random variable is the most utilized and highly significant when investigating 

random variables. A Gaussian random variable is characterized by a probability density 

function (PDF) that can be expressed in a general form. 

                 𝑓𝑋(𝑥)=
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2
)                                                     (6.11) 

   𝜎 = √
∑(𝑥𝑖−𝑥)̿̿ ̿

2

𝑛−1
                                                                (6.12) 

The PDF of the Gaussian random variable has two parameters, 𝑚 and 𝜎, which have the 

interpretation of the mean and standard deviation (𝜎), respectively. The parameter 𝜎2 is 

referred to as the variance [172] [173]. 

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain 

Domains 

The proposed methodology introduces a rigorous mathematical framework for categorizing 

inputs within a defined universe of discourse, facilitating precise and efficient determination 

of membership function levels. This approach incorporates three distinct algorithms derived 

from the mathematical formulations central to this study. The first algorithm enhances the 

construction of precise triangular membership functions, while the second refines the formation 

of trapezoidal membership functions. Additionally, the third algorithm optimizes the 

generation of Gaussian membership functions. At its core, this method employs a robust 

mathematical model that simplifies the computation of membership degrees, resulting in 

significantly improved processing speed compared to traditional methods such as the Mamdani 

fuzzy logic system. An inherent strength of this approach lies in its systematic classification of 

input values based on specific membership functions. By effectively addressing issues of 

ambiguity and uncertainty, the methodology ensures a more accurate determination of 

membership degrees, thereby supporting enhanced decision-making outcomes. Appendix 5 

provides detailed explanations and illustrative examples validating the effectiveness of these 

algorithms. 

 

Algorithm 1: Input Partitioning and Membership Classification as similar work as Triangular MF 
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Input: 
• V: Set of input values representing the universe discourse variables. 

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated. 

Output : 

• A collection of Triangular Membership Functions (MF) and their corresponding degrees for each input 

value 𝑉. 

Procedure: 

1. Initialization: 

• Max(Vi)  max(Vi) // Calculate the maximum value of sets V in the universe discourse. 

2. Parameter Value Calculation: 

• PV1 (Max(Vi)/n)  // Determine the first parameter value. 

• PVn  n × PV1   // Compute the last parameter value. 

3. 3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1:if  Vi ≥0 and Vi ≤ PV1 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) //Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) // Determining the degree of element in the 

remaining MF domain. 

• Case 2: if  Vi ≥ PV1 and Vi ≤ PV2 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF1 and Subsequent it, as MF2. 

α (Vi−PV2) // Define the alpha variable. 

MF2 (
−1

𝑃𝑉2−𝑃𝑉1
) × (|𝛼| + 1)  

// Compute the degree of element affiliated with both domains MF2 and previous it, as MF1. 

Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

• Case 3: if Vi ≥ 𝑃𝑉𝑛 − 1 and Vi ≤ PVn  

MFm((
1

𝑃𝑉𝑛−𝑃𝑉𝑛−1
) × (𝑉𝑖 − 𝑃𝑛 − 1); Output (MFm, Degree (Vi)) 

// Calculate Membership Function m. 

Output (MF1,MF2,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

4.End of Algorithm 1 

 

Algorithm 2: Input Partitioning and Membership Classification as similar work as Trapezoidal MF 
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Input: 

• V: Set of input values representing the universe discourse variables. 

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated. 

Output : 

• A collection of trapezoidal Membership Functions (MF) and their corresponding degrees for each 

input value 𝑉. 

Procedure: 

1. Initialization: 

• Max (Vi)max (Vi) // Calculate the maximum value from the sets V. 

2. Parameter Value Calculation: 

• PV1(Max (Vi)/n) // Determine the first parameter value. 

• PVn  n×PV1  

// Compute the last parameter value. 

3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1: if Vi ≥0 and Vi ≤ PV1 

Degree (Vi) 1; Output  (MF1, Degree (Vi)) // Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions 

• Case 2: if  Vi ≥ PV1 and Vi ≤ PV2 

MF1  (((
−𝑉𝑖

𝑃𝑉2
) – PV1

 )) +1; Output  (MF1, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF1 and Subsequent it, as MF2. 

o α(Vi−PV2) // Define the alpha variable; MF2  (((
−1

𝑃𝑉2−𝑃𝑉1
)) × (abs(α))) +1 

o Output  (MF2, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF2 and previous it, as MF1. 

o Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

• Case 3: if Vi ≥PVn-1 and Vi ≤ PVn  

o Degree (Vi) 1 

o Output (MFm, Degree (Vi)) 

// Calculate Membership Function m. 

o Output(MF1,MF2,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

4)End of Algorithm 2 

 

Algorithm 3: Input Partitioning and Membership Classification as similar work as Gaussian MF 

Input: 

• V: Set of input values representing the universe discourse variables. 

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated. 

Output : 

• A collection of Gaussian Membership Functions (MF) and their corresponding degrees for each input 

value 𝑉. 

Procedure: 

1. Initialization: 

• Max (Vi)max (Vi) // Calculate the maximum value from the sets V. 

• 𝝈16339 //Define standard deviation of the Gaussian MF. 

1. Parameter Value Calculation: 

PV10; PV2MAX(Vi)/2; PVn   MAX(Vi); MF1 centerPV1; MF2 CenterPV2; MFm 

CenterPVn 

2. Iterate Over Each Input Value Vi in the Set of Parameter Values: 
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for each Vi ∈ V: 

• Case 1: if  Vi ≥0 and Vi ≤ PVn 

MF1 EXP (-((Vi – PV1 )2) /(2* 𝜎 2)); Output  (MF1, Degree (Vi)) 

// Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

• Case 2: MF2EXP (-((Vi – PV2 )2) /(2* 𝜎 2)) 

Output  (MF2, Degree (Vi)) // Compute Membership Function 2. 

Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions 

• Case 3: MFm EXP (-((Vi – PVm )2) /(2. 𝜎 2)) 

Output  (MFm, Degree (Vi)) // Compute Membership Function m. 

Output (MF1,MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership functions. 

4.End of Algorithm 3 

6.5 Experimental Results and Analysis 

 Our proposed method has been applied to a dataset comprising over 10,000 user tasks of 

varying sizes, which was extracted from the Parallel Workloads Archive. This archive is a 

comprehensive repository that contains detailed logs of job-level usage data from large-scale 

parallel supercomputers, clusters, and grids. The logs encompass crucial information about the 

size of user tasks, which can vary significantly depending on the specific workload and system 

specifications. Given that each user base requests the cloud environment to perform its tasks, 

the data size is measured per request. For further specifics regarding user task sizes, you can 

explore the raw workload logs and models available on the Parallel Workloads Archive website 

at https://www.cs.huji.ac.il/labs/parallel/workload/. In our work. These task sizes are generally 

random and unstructured, encompassing "small," "medium," and big" The recorded data 

consists of task sizes measured in bytes, ranging from a minimum of 0 to a maximum of 67170 

bytes. This wide range reflects the diverse nature of user activities. The data were obtained 

directly from the database in their original form without preprocessing. Appendix 6 (Figure 1). 

depicts the database titles selected for the work. The task column data, specifically identified 

and prepared for analytical purposes, was systematically extracted from the database to serve 

as the foundation for the subsequent experimentation, Appendix 6 (Figure 2), shows the tasks 

before classifying. Operations using the MATLAB® (R2018b) software [174]. This program 

was selected due to its robust computational capabilities, enabling precise mathematical 

analysis, data manipulation, and visualization. The processing steps included data filtering and 

targeted analysis to derive meaningful insights and ensure the integrity of the results. 

6.5.1 Determine the Degree of Membership as The Triangular Membership Function 

In this context, tasks are classified by size using the proposed method, as outlined in Section 

4. To demonstrate this, determine the degree of membership through the triangular membership 

function by applying the first algorithm to values within the universe discourse. The 

implementation results are systematically illustrated to demonstrate the classification processes 

based on fuzzy logic principles. Figure 6.2 presents a classified single triangular membership 

function, showcasing the initial classification structure with a single membership function type 

for clarity and precision.   

https://www.cs.huji.ac.il/labs/parallel/workload/
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FIGURE 6.2 CLASSIFY SINGLE TRIANGULAR MF. 

Figure 6.3 extends this analysis by depicting the classification of all nested membership 

functions, emphasizing the hierarchical arrangement and interactions between multiple 

membership functions within the system. In contrast, Appendix 6 (Figure 2), demonstrates the 

classification of the membership function achieved through the application of the Mamdani 

fuzzy logic system, which integrates fuzzy rules and inference mechanisms to produce 

comprehensive and interpretable classification results. These figures collectively highlight the 

progressive refinement of membership function classification, illustrating the effectiveness of 

fuzzy logic systems in managing uncertainty and delivering accurate outcomes. 

 

 

FIGURE 6.3 CLASSIFY ALL TRIANGULAR MF. 

6.5.2 Determine the degree of membership as the trapezoidal membership function 

In this context, tasks are classified based on their size using the proposed method, as outlined 

in Section 4. The classification process is achieved by determining the degree of membership 

through the implementation of a trapezoidal membership function. This function is applied 

using the second algorithm, which assigns membership values to data points within the defined 

universe discourse, ensuring a systematic and accurate task classification. The results of this 

implementation are illustrated in Figures 6.4 and 6.5. Figure 6.4 presents the classification of 

a single trapezoidal membership function, while Figure 6.5 depicts the classification of all 

trapezoidal membership functions, demonstrating the effectiveness of the second algorithm in 
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assigning precise membership values. In contrast, Appendix 6 (Figure 3), presents the 

corresponding Mamdani system membership functions, showcasing the fuzzy inference 

process and its integration into the classification framework. This detailed analysis highlights 

the significance of the proposed method and algorithms in accurately determining membership 

degrees, thereby enabling a precise and meaningful classification of tasks within the system. 

 

FIGURE 6.4 CLASSIFY SINGLE TRAPEZOIDAL MF. 

 

 

FIGURE 6.5 CLASSIFY ALL TRAPEZOIDAL MF. 

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function 

In this context, tasks are classified based on their size using the proposed method, as outlined 

in Section 4. To demonstrate the effectiveness of this approach, the degree of membership is 

determined using the Gaussian membership function by implementing the third algorithm on 

values within the defined universe discourse. The Gaussian membership function, chosen for 

its smooth and continuous nature, ensures precise membership value assignment, facilitating 

accurate classification of task sizes. The results of this implementation are presented as follows: 

Figure 6.6 illustrates the classification using a single Gaussian membership function, providing 

a clear and focused representation of membership values for task sizes. Figure 6.7 expands on 

this by presenting the classification of all Gaussian membership functions simultaneously, 

showcasing the system's ability to handle multiple overlapping membership functions 

effectively. In contrast, Appendix 6 (Figure 4), depicts the classification results using the 
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Mamdani fuzzy system membership functions, highlighting the integration of fuzzy inference 

rules with membership functions to produce comprehensive, interpretable, and consistent 

outcomes. These results collectively validate the robustness and flexibility of the proposed 

method, demonstrating the precision of Gaussian membership functions and the effectiveness 

in managing uncertainty and enhancing task size classification. 

 

FIGURE 6.6 CLASSIFY SINGLE GAUSSIAN MF. 

 

FIGURE 6.7 CLASSIFY ALL GAUSSIAN MF. 

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed 

Mathematical Model 

This study introduces a significant theoretical advancement in intelligent decision-making 

systems through a refined framework for fuzzy logic membership functions (Triangular, 

Trapezoidal, and Gaussian). This study introduces algorithms for systematically classifying 

input values into fuzzy sets using mathematical methods analogous to standard fuzzy 

membership functions (triangular, trapezoidal, and Gaussian). These algorithms are integrated 

within a robust mathematical framework, providing an alternative to the heuristic or manually 

tuned fuzzy partitions typically employed in Mamdani-based inference systems. The proposed 

model demonstrates a novel application of standard fuzzy classification algorithms integrated 

within an optimized mathematical framework, specifically triangular, trapezoidal, and 

Gaussian membership functions. This innovative integration enhances fuzzy partitions' 

precision, computational efficiency, and systematic adaptability compared to conventional 

heuristic-based methods.  The algorithms are capable of systematic input classification within 

the universe of discourse and precise computation of membership degrees. These algorithms 
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are grounded in robust mathematical formulations: Triangular membership functions utilize 

point-slope line equations, Trapezoidal functions employ linear interpolation techniques, and 

Gaussian functions are based on probabilistic Gaussian distribution functions. Together, they 

replicate and enhance the behavior of traditional membership functions while significantly 

reducing computational overhead. The integration of these analytical methods offers 

substantial benefits. The proposed algorithms maintain the interpretability of classical fuzzy 

logic systems while enhancing scalability, computational efficiency, and precision—qualities 

critical for modern intelligent applications. Moreover, the framework reduces dependency on 

simulation programs and environments, minimizing the need for extensive storage space, 

processors, and office software functions. To evaluate the effectiveness of the proposed model, 

a comparative validation study was conducted using ten representative input samples 

strategically selected from the universe of discourse. Each input underwent analysis to 

determine its membership degrees across all relevant functions, with outputs outside the input 

range assigned zero membership degrees. Results from the proposed mathematical model are 

detailed in Table 6.1, juxtaposed with outcomes from the classical Mamdani approach in Table 

6.2, facilitating direct performance comparison. To further validate the robustness of the 

proposed method, a comprehensive validation study was conducted using 10,000 input samples 

representing a wide range of task sizes. The proposed framework exhibits superior adaptability 

and precision compared to the classical Mamdani system, particularly in managing complex 

and uncertain inputs. This thorough evaluation reaffirms the method's robustness, 

computational efficiency, and improved accuracy, thereby significantly contributing to the 

advancement of intelligent fuzzy classification systems. 

Table 6.1 Results of the Proposed Method Applied to Selected Samples. 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499091856 0.001816287 0 
17129 0.489980646 0.020038708 0 
17361 0.4830728 0.033854399 0 
17579 0.476581807 0.046836385 0 
25978 0.226499926 0.547000149 0 
26931 0.198124163 0.603751675 0 
28842 0.141223761 0.717552479 0 
31475 0.062825666 0.874348668 0 
33565 0.000595504 0.998808992 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182 0.500818818 0 
21582 0.393479232 0.606520768 0 
23875 0.222792914 0.777207086 0 
25331 0.114411195 0.885588805 0 
26846 0.001637636 0.998362364 0 
46120 0 0.566919756 0.433080244 
45451 0 0.616718773 0.383281227 
44329 0 0.700238202 0.299761798 
42852 0 0.810183117 0.189816883 
40336 0 0.997469108 0.002530892 

Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.120934543 0.000213895 
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Table 6.2 Results of the Traditional Method Applied to Selected Samples.                                                                                        

6.6 Summary  

This chapter introduced and validated a novel mathematical framework designed to enhance 

decision-making under uncertainty by providing precise fuzzy classification. The primary 

contribution lies in systematically classifying input values into predefined fuzzy sets—

specifically, triangular, trapezoidal, and Gaussian membership functions—to significantly 

enhance accuracy and computational efficiency in determining membership degrees. The 

developed methodology integrates three optimized algorithms mathematically aligned with 

1 0.999999998 0.120949757 0.000213949 
10090 0.826402652 0.355634634 0.002238294 
32026 0.146469985 0.995458374 0.098946015 
49791 0.009627715 0.611475933 0.567984183 
54045 0.004209592 0.456574063 0.724241188 
61138 0.000911417 0.241274197 0.934125619 
64852 0.000379417 0.160259114 0.989987311 
65069 0.000359903 0.156223736 0.991766863 
67170 0.000213895 0.120934543 1 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499076941,400667 0.001846117,1986660315 0 
17129 0.489965459,74273464 0.020069080,51453073 0 
17361 0.483057408,28966176 0.033885183,420676514 0 
17579 0.476566222,01048116 0.046867555,979037634 0 
25978 0.226476893,75893282 0.547046212,4821344 0 
26931 0.198100285,8504 0.603799428,2991901 0 
28842 0.141198189,61410197 0.717603620,7717961 0 
31475 0.062797760,83849452 0.87440447,83230109 0 
33565 0.000565745,5931395903 0.998868508,8137208 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182,07533124 0.500818817,9246688 0 
21582 0.393479231,7999107 0.606520768,2000894 0 
23875 0.222792913,50305197 0.777207086,496948 0 
25331 0.114411195,47417002 0.885588804,52583 0 
26846 0.001637635,849337502 0.998362364,1506625 0 
46120 0 0.783443757,9096255 0.216556242,0903744

4 
45451 0 0.808345120,2263083 0.19165487,97736916

7 
44329 0 0.850107943,1251396 0.149892056,8748604

3 
42852 0 0.905084493,4117472 0.094915506,5882528 
40336 0 0.998734459,9121566 0.001265540,0878433

707 
Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.122 0.0002 
1 1 0.122 0.0002 
10090 0.8418 0.7201 0.0053 
32026 0.2931 0.996 0.1097 
49791 0.0304 0.5364 0.7211 
54045 0.0124 0.2917 0.8431 
61138 0.0028 0.1097 0.9959 
64852 0.0011 0.0566 0.9881 
65069 0.0010 0.0532 0.9926 
67170 0.0002 0.1218 1 
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traditional fuzzy logic membership functions. These algorithms facilitate systematic input 

partitioning and precise computation of membership degrees, ensuring clear differentiation 

among distinct membership levels (small, medium, and big). Compared to traditional Mamdani 

fuzzy inference systems, our approach delivers more accurate, computationally efficient, and 

robust results while preserving interpretability and simplicity crucial for broad practical 

adoption. Extensive validation using over 10,000 user-task-size samples confirmed that the 

proposed algorithms consistently match or surpass the performance of the traditional Mamdani 

method. Our model efficiently manages distinct and overlapping fuzzy set classifications, 

underscoring improved flexibility and precision. 

The main contributions of this chapter include: 

i. A novel mathematical model enables precise input classification through triangular, 

trapezoidal, and Gaussian membership functions. 

ii. Algorithmic innovation through developing three original algorithms leveraging 

rigorous mathematical formulations to optimize fuzzy classification. 

iii. Enhanced computational efficiency, significantly reducing computational overhead 

without compromising accuracy or interpretability. 

iv. A robust comparative analysis demonstrates the proposed methodology's superior 

flexibility and effectiveness against traditional Mamdani-based fuzzy logic systems. 

The demonstrated effectiveness of this methodology highlights its potential applicability across 

diverse artificial intelligence domains, notably in QoS categorization. Looking ahead, this 

chapter establishes a foundational model beneficial for future research endeavors, especially in 

real-time decision-making contexts requiring high precision and scalability, such as healthcare 

diagnostics, financial forecasting, and cloud computing environments. Future work will expand 

this methodology's application within the Intelligent Validation Cloud Broker System 

(IVCBS), directly addressing QoS scalability and classification accuracy challenges and 

further validating the model’s suitability in practical, real-world decision-making scenarios.  
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Chapter 7  Intelligent Validation Cloud Broker System 

Chapter 7 contributes to the Intelligent Validation Cloud Broker System (IVCBS), which 

enhances SLA selection. Classifying virtual machine resources and user request sizes with an 

algorithm works like the work of a trapezoidal membership function, improves decision-

making, reduces data centre processing time, and lowers VM costs. Simulations show that 

IVCBS, using the "Optimize Response Time" policy, outperforms traditional methods in 

response time, VM cost, and energy efficiency. This system also reduces data transfer costs 

and enhances power usage efficiency by improving data center request servicing times, offering 

a more efficient and cost-effective approach to cloud resource management. 

7.1 Overview of SLA Selection and the IVCBS Framework 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction. This cloud model promotes availability and is composed of five 

essential characteristics, three service models, and four deployment models [170]. Cloud users 

can access the key elements of the underlying architecture, such as Broad network access, which 

allows services to be consumed from anywhere; on-demand self-service, which enables usage 

when desired; resource pooling and virtualization, which combine infrastructure, platforms, and 

applications; rapid elasticity, which allows for horizontal scalability with pooled resources; and 

measured service charges based on consumption [171]. The services of cloud computing are 

broadly divided into three categories: Infrastructure-as-a-Service (IaaS), which is the delivery of 

huge computing resources, such as the capacity of processing, storage, and network., Platform-

as-a-Service (PaaS) supports a set of application program interfaces to cloud applications. Well-

known examples are Amazon Web Services, Google App Engine, Microsoft’s Azure Services 

Platform, and Software-as-a-Service (SaaS), which replace the applications running on PCs. 

There is no need to install and run the special software on your computer if you use the SaaS 

[172]. The dynamic nature of cloud computing necessitates efficient resource allocation, which 

can be challenging due to potential resource shortages and conflicting interests between cloud 

service providers (CSPs) and cloud service users (CSUs). Service-level Agreement (SLA) 

negotiations can mitigate these issues, and the proposed broker-based mediation framework 

optimizes these negotiations [173]. Cloud brokerage enhances service availability. Traditional 

brokers face limitations in ensuring service trust and outcomes. An intelligent cloud broker 

overcomes these limitations by validating and verifying service trust through factors like 

response time, sustainability, and accuracy. It also incorporates customer feedback and maps 

services from a service collection repository, outperforming traditional models in recommending 

services to cloud users [174]. Selecting the most suitable resources to meet diverse user demands 

is a significant research challenge. Quality of Service (QoS) parameters play a crucial role in 

ranking these resources. This study proposes using fuzzy logic to handle uncertainties in QoS 

attribute weights and pre-classify resources, reducing computational costs [175]. Fuzzy logic-

based optimization algorithms present Fuzzy-RLVMrB and Fuzzy-MOVMrB, designed to 

balance horizontal and vertical loads across physical machines (PMs) by managing processor, 

bandwidth, and memory resources. Simulations demonstrate that these algorithms excel in load 
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balancing and energy efficiency compared to other methods [176]. Performance and Resource-

Aware Virtual Machine Selection using Fuzzy in Cloud Environment (PRSF) develops a virtual 

machine selection policy to optimize CPU resource utilization and minimize migration counts. 

Utilizing the Mamdani fuzzy controller, the PRSF policy enhances decision-making for VM 

selection, leading to decreased energy consumption and reduced migration events [177]. 

Furthermore, there are cloud simulators for creating and testing different cloud applications. 

These simulators are based on parameters like programming languages, availability, and SLA 

support. The analysis considers CloudSim to be the most effective and efficient simulator [178]. 

Simultaneously, Cloud Analyst is a simulation tool extended from CloudSim. Load balancing is 

a major challenge in the cloud, where resources have to be directed to their respective servers so 

that the whole system works efficiently by distributing the workload efficiently. Compare the 

average response times of the six load balancing algorithms, like Round-Robin, by using a cloud 

analyst tool to perform a thorough comparative study along with three service broker policies, 

like optimizing response time, to find out which is the best [179].  Resource stalemates can occur 

during resource allocation. The currently available algorithms, such as Min-Min and Min-Max, 

have issues with overhead, hunger, and deadlock. A solution to some of these problems has been 

proposed that decreases the amount of time required to respond while simultaneously increasing 

the cloud's overall efficiency [180].  Building upon the methodologies discussed in prior studies, 

which focus on enhancing decision-making accuracy, this research advances solutions to the 

identified challenges within this thesis. The study introduces the "Intelligent Validation Cloud 

Broker System," aimed at optimizing the allocation of AWS-EC2 resources based on user 

demands. Key AWS-EC2 specifications, such as VCPUs, RAM, storage, and bandwidth, 

collectively influence VM costs, power consumption, and processing times, impacting user 

confidence and decision-making in selecting Service Level Agreements (SLAs) that align with 

budgetary and performance needs. The study addresses a scenario involving one million 

customers entering a cloud environment, each presenting varying demands, utilizing real-world 

data from diverse datasets, with a particular emphasis on 11 types of AWS-General Purpose EC2 

Instances. Employing MATLAB, an algorithm was developed to classify and organize EC2 

resources. Furthermore, user demand sizes were categorized using a proposed mathematical 

model employing five membership functions: Poor, Fair, Good, Very Good, and Excellent, 

structured like the Trapezoidal Membership Function. This framework assigns membership 

degrees to respective values, ensuring robust categorization of EC2 resources and user demands. 

The term "membership score" introduced in this chapter is intentionally defined as a binary value 

(1 or 0). It does not replace the concept of continuous membership degrees; it serves specifically 

as a validation and decision-making criterion within our proposed Intelligent Validation Cloud 

Broker System (IVCBS). The IVCBS utilizes a two-stage approach: in the first stage (fuzzy 

classification), it employs an intelligent mathematical model analogous to trapezoidal 

membership functions to classify input values and compute their continuous membership 

degrees, reflecting the extent of resource compatibility on a scale from 0 to 1. In the second stage 

(validation and allocation), it adopts a binary "membership score" (1 or 0) to make crisp decisions 

on resource allocation based strictly on whether the computed fuzzy membership value meets a 

predetermined threshold. This binary criterion ensures simplicity and operational efficiency by 

eliminating the need to manage intermediate fuzzy values during resource allocation. 

Specifically, if the computed fuzzy membership value exceeds the predefined threshold, the 
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decision to allocate the resource is validated (membership score = 1); otherwise, the allocation is 

disregarded (membership score = 0). Thus, although continuous membership values derived from 

trapezoidal membership functions effectively capture nuanced, fuzzy categorizations of 

resources and user requests, the IVCBS strategically converts these continuous values into binary 

membership scores for practical real-time cloud resource allocation. Consequently, the system 

effectively integrates fuzzy logic principles for initial classification and categorization with crisp 

decision-making, ensuring efficient, straightforward, and transparent resource validation and 

allocation. However, the proposed algorithm categorizes AWS EC2 cloud computing resources 

and user request sizes based on linguistic variables, where a membership score of 1 denotes the 

highest relevance. This score serves as a validation criterion through broker validation processes. 

For example, CPU resources falling within specified values (vCPU: 1, 2, 4) are classified as 

'Poor' according to the algorithm, driven by their membership score 1, aligning firmly with the 

'Poor' membership function. Similarly, user request sizes categorized within ranges (3, 5, 10) MB 

also receive a membership score of 1, confirming their classification within the 'Poor' category. 

This systematic approach extends across all data in the 'Poor' membership function domain, 

maintaining the same principle for the remaining four membership functions, focusing 

exclusively on values assigned a score of 1. Subsequently, the second algorithm, the matching 

algorithm, plays a pivotal role in the broker validation process by verifying whether all system 

metrics attain a membership score of 1. VM-EC2 resources are allocated to execute user requests 

when this condition is met. Conversely, if the score is 0, the matching process is disregarded. 

This streamlined methodology ensures efficient allocation of VM-EC2 resources based on 

validated criteria. The matching process validates all values derived from the algorithm, ensuring 

that each classification scenario defined by the five membership functions, whether for EC2 

criteria or user request sizes, achieves a score of 1. Upon validation, the broker initiates the 

allocation process, assigning an EC2 VM to execute user requests effectively. Expanding the 

scope, the study distributes user requests across data centers in six geographic regions (North 

America (R0), South America (R1), Europe (R2), Asia Pacific (R3), Africa (R4), and Australia 

(R5)). It compares the performance of the traditional method with the Intelligent Validation 

Cloud Broker System (IVCBS). Using Cloud Analyst tools, two distinct broker policies were 

evaluated: the Optimize Response Time Policy, directing requests globally, and the Dynamic 

Reconfigure with Load Service Broker Policy, routing requests within users' regions. Across 11 

scenarios involving one million users, simulations across 31 AWS data centers demonstrated the 

superiority of IVCBS, particularly with the Optimize Response Time policy, over the Dynamic 

Reconfiguration with Load policy. IVCBS consistently exhibited superior performance metrics, 

including overall response time, processing efficiency, total VM cost, and Data Center Request 

Servicing Times, highlighting its efficacy in enhancing cloud computing efficiency across 

diverse global environments. 

7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making 

If Cloud computing delivers computing resources via a network as a service. With the fast 

adoption of this emerging technology in practical scenarios, understanding how to assess its 

performance and security challenges has grown increasingly significant. Nowadays, modelling 

and simulation technology is a valuable and potent resource among cloud computing 
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researchers to tackle these issues [181]. Qazi et al. [2] examine SLA methodologies in cloud 

computing, detailing their taxonomy, challenges in QoS management, evaluation metrics, and 

design goals. It also highlights open research areas, guiding future development for enhanced 

service delivery and CSP-CSU accountability. Chauhan et al. [182] emphasized the role of 

cloud brokers within an interconnected cloud computing framework. Their study explored the 

advantages and limitations of cloud brokers, focusing on aspects like pricing, optimization, 

trust, and Quality of Service (QoS). Being a survey, the paper provides in-depth discussions to 

enhance the comprehension of cloud brokers in multi-cloud environments. Yao et al. Ahmad 

et al. [183] introduce the Cost Optimization based on Task Deadline (COTD) algorithm for 

cloud and fog services, aiming to reduce costs by 35% without compromising response times. 

Tested with Cloud Analyst, COTD outperforms existing routing strategies, offering efficient 

real-time decision-making for service providers. [184] detailed the diverse roles played by 

cloud service brokers, including intermediation, aggregation, arbitration, integration, and 

customization. Therefore, the process of delivering services is a collaborative effort involving 

cloud service providers, cloud service brokers, and customers. Any issues arising within any 

of these parties will undoubtedly impact the broker's performance. Cinar et al. [185] aim to 

bolster security and compliance in multi-cloud environments by leveraging sophisticated 

encryption and IAM strategies and legal insights. They underscore the role of cloud service 

brokers in applying best practices to overcome challenges posed by technology adoption and 

regulatory intricacies. Petcu [186] tackled the interoperability issue among cloud services, 

highlighting the challenge posed by vendor lock-in and the necessity to integrate different 

clouds to meet user needs. Despite the existence of hybrid clouds, linking multiple cloud 

services is crucial for enhancing performance and user satisfaction. The authors suggested a 

strategy to enable portability and interoperability across various cloud providers. However, this 

proposal lacks a detailed practical method for addressing the interoperability challenges among 

cloud service providers. Chafai et al. [187] This paper proposes a performance evaluation 

model for federated clouds using an open Jackson network, focusing on service diversity and 

user demand to improve system design. Calheiros et al. [188] explored the constraints a solitary 

cloud provider faces in service delivery.   They noted that with the rising demand for services, 

current methods fell short regarding Service Level Agreements (SLA) and Quality of Service 

(QoS). The authors introduced an inter-cloud framework that leverages agents to address these 

issues. These agents publish, discover, and deliver services to cloud users under agreed-upon 

SLAs.  Nonetheless, the paper does not cover the decision-making strategies for purchasing 

and selling services.  Al-E'mari et al. [22] This article evaluates Cloud Service Broker policies 

for Cloud Datacenter selection, highlighting their role in enhancing cloud computing efficiency 

and addressing challenges to improve Quality-of-Service standards and decision-

making.Ahmed I. El Karadawy et al. [189] conducted a detailed examination of the cloud 

analyst simulator, focusing on different load balancing (LB) algorithms and service broker 

policies. They specifically evaluated three unique LB algorithms: Round Robin (RR), throttled, 

and Equally Spread Current Execution (ESCE). Sunny Nandwani et al. [190] examined various 

service broker policies and load balancing (LB) algorithms. They compared these LB 

algorithms across different service broker policies and conducted simulations using cloud 

analysts to evaluate the performance of existing algorithms. This comparison was based on 

various metrics to assess their effectiveness. 
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7.3 Proposed System  

The proposed study centers on intelligently identifying cloud services through rigorous 

validation. This process ensures uniform attainment of a value of 1 across all outcomes from 

the classification algorithm, applicable to resource allocation and user request sizes, as 

discussed earlier. By maintaining this consistent criterion, the study assures the reliability and 

accuracy of the classification algorithm's outputs, thereby optimizing resource management 

and enhancing service efficiency in cloud computing environments. This systematic and 

uniform validation approach highlights its critical role in achieving precise identification of 

high-quality cloud services. Figure 7.1 depicts the proposed system. 

7.3.1 Extraction information Factors from AWS Cloud Environment 

Within the AWS cloud environment, users have access to a variety of service instance types, 

including General Purpose (https://aws.amazon.com/ec2/instance-types/),Compute Optimized, 

Memory-Optimized, Accelerated Computing, and Storage-Optimized, all falling under the 

broad category of 'XaaS' (Anything as a Service). This study will concentrate on general-

purpose EC2 instance types tailored to meet user requirements. General-purpose EC2 instances 

are strategically deployed across 31 AWS data centers in six geographic 

regions(https://aws.amazon.com/about-aws/global-infrastructure/regions_az/), ensuring 

robust global infrastructure and service availability. 

7.3.2 AWS General-Purpose Instance Types 

Amazon Web Services (AWS) boasts 212 types of EC2 general-purpose instances, meticulously 

designed to balance computing, memory, and networking resources. These versatile instances 

excel at diverse workloads, making them ideal for applications requiring equal resource 

distribution, such as web servers and code repositories [191]. By sharing certain standardized 

features, these EC2 instances are grouped into 11 categories based on similarities in their 

specifications. Tables 7.1 and Appendix 7 (Table 1), highlight the adopted AWS-EC2 families' 

specifications. while Appendix 7 (Table 2), lists the actual on-demand cost of each EC2 device, 

as indicated on AWS's official pricing page (https://aws.amazon.com/ec2/pricing/on-demand/). 

Table 7.2 displays the number of customers entering the cloud for each scenario and the sizes of 

their requests. 

https://aws.amazon.com/ec2/instance-types/),Compute
https://aws.amazon.com/ec2/pricing/on-demand/
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FIGURE 7.1 INTELLIGENT VALIDATION CLOUD BROKER SYSTEM FRAMEWORK. 

 Table 7.1 AWS-General purpose instance features. 

AWS-General-Purpose series Attributes and specs 
EC2- Series VCPU RAM 

GB 
Storage 
GB 

Bandwidth 
Gbps 

VCPU-clock 
speed 
GHz 

M6g.medium 1 4 1 2 2  
M6g.Large 2 8 2 4 2  
M6g.Xlarge 4 16 4 8 2.4  
M5.2XLarge 8 32 8 10 2.5  
M5.4XLarge 16 64 12 12 2.5  
M6gd.8XLarge 32 128 16 14 2.5  
M6gd.12XLarge 48 192 24 16 2.7  
M6g.metal 64 256 32 18 2.7  
M5d.metal 96 384 48 24 3.4  
M6i.metal 128 512 64 30 3.4  
M6a.metal 192 768 88 40 3.4  

7.3.3 Theoretical Framework and Methodology 

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System 

(IVCBS) 

In cloud computing, "intelligence" signifies the deployment of sophisticated algorithms and 

decision-making techniques that emulate human cognitive abilities like learning, reasoning, and 

problem-solving [192]. In the Intelligent Validation Cloud Broker System (IVCBS), this 

intelligence is utilized through optimization algorithms rooted in a mathematical model 

influenced by the trapezoidal membership function. Implementing this model generates 

membership scores of 1 and 0 for the input values across all proposed membership functions 

within the system's universe of discourse. This approach significantly improves service level 

agreement (SLA) selection and enhances overall system efficiency. 
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Table 7.2 Cloud users and sizes of their requests. 

Cloud users User request 
Scenario 
number 

 

Total 

number of 

users 

SaaS Size 

1 1000,000 App1 3 MB 

2 1000,000 App2 5 MB 

3 1000,000 App3 10 MB 

4 1000,000 App4 35 MB 

5 1000,000 App5 70 MB 

6 1000,000 App6 105 MB 

7 1000,000 App7 140 MB 

8 1000,000 App8 750 MB 

9 1000,000 App9 1500 MB 

10 1000,000 App10 2250 MB 

11 1000,000 App11 3000 MB 

Our method provides adaptability and utility, making it a valuable tool for scientists and 

researchers facing decision-making in ambiguous situations that require precise and 

comprehensive insights. It facilitates the assessment of a value's impact on the environment in 

connection with the decision-making process. Figure 7.2 demonstrates how the mathematical 

approach closely reflects the characteristics of a trapezoidal membership function, particularly in 

determining and generating degrees of membership or belonging. The equations and concepts 

presented in this figure provide the foundation for the outcomes produced by the algorithms 

detailed in Table 7.3. The behavior of the mathematical model as a membership function, which 

classifies and assigns membership levels to input values within the proposed system, can be 

effectively illustrated using equations that relate to point-slope lines and absolute values, as 

discussed in Chapter Six. 

𝑦 = 𝑚𝑥 + 𝑐                                                                           (7.1) 

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used 

equation form for a straight line in geometry. However, the straight-line equation can be 

presented in various forms, including point-slope.  

The equation of a straight line with a slope 'm' that passes through a specific point (x1, y1) is 

derived using the point-slope form, which is expressed as: 

                                                        𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)                                                       (7.2) 

 

In this equation, (x, y) denotes an arbitrary point on the line [140][164]. The mathematical model 

employed in the IVCBS is classifies and arranges virtual machine (VM) resources (e.g., VCPU, 

RAM, Storage, Bandwidth) and user request sizes. This model defines mathematical functions 

(Poor, Fair, Good, Very Good, and Excellent) similar to the trapezoidal membership function. 

These functions are used to classify and determine the membership degree for each input value 

within the discourse universe, evaluating the suitability of EC2 selections that adapt to client 

SLA criteria. The classification outcomes directly influence the decision-making process for 

validating the broker mechanism. A result of (1) indicates an effective decision, while (0) 

suggests exclusion. This section introduces a novel model to explore the intelligent features 
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integrated into the Intelligent Validation Cloud Broker System (IVCBS). It focuses on the 

intricate management of VCPU resources, using them as a key example. This rigorous method 

is consistently applied to all VM-EC2 resources and user request sizes, ensuring SLA-level 

classification uniformity and reliability. The MATLAB script demonstrates how this approach 

reinforces the consistency of resource allocation within the system. Furthermore, to illustrate the 

alignment of the mathematical model with the proposed membership functions, this approach 

has been integrated into the discussion on initializing and visualizing the membership function, 

as depicted in Appendix 7 (Figures 1 and 2). 

 

 

FIGURE 7.2 FUZZY PARTITION USING INTELLIGENT MATHEMATICAL MODEL. 

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation Cloud 

Broker System (IVCBS) 

This section addresses the handling of ten user-base requests, employing the round-robin 

algorithm to evenly distribute workloads across virtual machine clusters. It introduces a set of 

equations that form the mathematical basis for estimating the time required to process a given 

task. As previously discussed, our framework utilizes 31 individual VMs linked to 31 data 

centers, spread across six geographical areas and categorized based on 11 clustering factors. The 

rationale for using a single VM from each AWS-supported data center is to harness suitable 

computing resources that align with the demand of user requests. This strategy aims to achieve 

cost efficiency, enhance processing speed, reduce energy consumption, and ensure the 

availability of additional computing resources to handle other users' requests consistently. To 

operationalize this concept, applied the CloudAnalyst tool under a designated service broker 

policy in two distinct scenarios (optimizing response time and dynamically reconfiguring based 

on load).   

 Eq. (7.3) is given by n as the number of sets for the load (L) or requests that need to be 

scheduled to servers. 

                                                            𝐿 = {𝐿1  , 𝐿2   , 𝐿3  , … , 𝐿𝑛  }                                                    (7.3) 

This equation is coherent in indexing because it uses sequential indices 1,2,3,…,n to denote 

each element Li  The indexing starts from 1 and progresses sequentially up to n. 
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Eq. (7.4) DC represents a set of data centers, with dc1,dc2,dc3,…,dck denoting each data center 

indexed from 1 to k. 

                                                  DC = {dc1  , dc2  , dc3  , … . , dck}                                                    (7.4) 

This equation is coherent as well. It uses indices 1,2,3,…,k to denote each data center dci. 

Similar to Equation (7.3), the indexing starts from 1 and proceeds sequentially up to k, 

maintaining a consistent and logical index structure. 

The following equation (7.5) For each data center dci, there is a single virtual machine VMi 

associated with it. 

                                                                       dci = {VMi}                                                                   (7.5) 

This equation introduces i as the index for virtual machines within each data center dci. It is 

coherent because it specifies that dci has exactly one virtual machine VMi, ensuring clarity 

and specificity in indexing. 

Eq. (7.6)  𝐷𝐶𝑠𝐿  represents the load of each virtual machine VMi in the data centers. 

                                            DCsL = {VM1 L  , VM2L , VM3 L , … , VMk L}                                  (7.6) 

This equation uses i from 1 to k to denote each virtual machine VMi and its associated load L. 

The indexing is coherent as it sequentially lists VMiL for each virtual machine within the data 

centers. 

Eq. (7.7) This equation indicates that the load L of each virtual machine VMi in the data centers 

1,2,…,k is approximately equal. It uses i from 1 to k to represent each virtual machine VMi. 

                                                VM1  L ≈  VM2  L ≈ VM3  L,… , VMk  L                                           (7.7) 

Eq. (7.8) t0 calculates the time required to allocate all tasks L to each virtual machine VMi, 

where τ0i, represents the time τ0 required to execute each task Li. 

                                     t0 =∑τ0𝑖

𝑛

𝑖=1

                                                                     (7.8) 

Where  

i: Represents the index for tasks, consistent with Equation (7.3) where Li denotes each task or 

load. 

Eq.(7.9) This equation defines VM as a set containing k virtual machines within a specific data 

center. It describes how, when multiple virtual machines are available (denoted by k), all tasks 

can be evenly distributed among them for execution. This equation clarifies the method of task 

distribution across multiple virtual machines, highlighting the shared allocation approach in 

cloud computing environments. 

                                 VM = (VM1  , VM2 ,VM3 ,… , VMk ,)                                   (7.9) 
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Eq. (7.10) shows that the total execution time T0 is the sum of the execution times Ti for each 

task i executed on the total number of virtual machines n in the data center: 

                                    T0 =∑T𝑖

𝑛

𝑖=1

                                                                     (7.10) 

This equation indicates that T0 represents the cumulative execution time across all tasks 

executed on n virtual machines within the specific data center. 

Classification Algorithm 

 

Inputs: Parameter Value (PV)set= {PV1, PV2,,,PV11} 

Output=Classification with order Parameter Values. 

//Compute the level for each input parameters. 

1.For each input value (V) from input parameter value set 

2.IF (V >=PV1 and V <=PV2) 

3.MF1   (((-1/PV1-PV2)) *((V-PV2))) +1) 

//MF: Membership Functions 

4.Output  (Poor, MF1) 

5.Output  ((Fair, Good, V. Good, Excellent),0) 

6.End 

7.IF(V>PV2 and V<=PV3) 

8.MF1  1 

9.Output (Poor, MF1) 

10.Output ((Fair, Good, V. Good, Excellent),0)  

11.End  

12.IF (V>PV3 and V<=PV4) 

13.MF1 (((-1/(PV4-PV3)) *((V-PV3))) +1) 

14.Output (Poor, MF1) 

15.Output ((Good, V. Good, Excellent),0) 

16.MF2 (((-1/PV3-PV4)) *((V-PV4))) +1) 

17.Output (Fair, MF2) 

18.Output ((Good, V. Good, Excellent),0) 

19.End 

20.IF(V>PV4 and V<=PV5) 

21.MF21 

22.Output (Fair, MF2) 

23.Output ((Poor, Good, V. Good, Excellent),0) 

24.End 

25.IF(V>PV5 and V<=PV6) 

26.MF2 (((-1/(PV6-PV5)) *((V-PV5))) +1) 

27.OutputçFair, MF2) 

28.Output ((Poor, V. Good, Excellent),0) 

29.MF3 (((-1/PV5-PV6)) *((V-PV6))) +1) 

30.Output (Good, MF3) 

31.Output ((Poor, V. Good, Excellent),0) 

32.End 

33.IF (V>PV6 and V<=PV7) 

34.MF31 

35.Output(Good, MF3) 
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36.Output ((Poor, Fair, V.Good, Excellent),0) 

37.End 

38.IF (V>PV7 and V <=PV8) 

39.MF3 (((-1/(PV8-PV7)) *((V-PV7))) +1) 

40.Output (Good, MF3) 

41.Output (Poor, Fair, Excellent),0) 

42.MF4 (((-1/(PV7-PV8)) *((V-PV8))) +1) 

43.Output (V. Good, MF4) 

44.Output(Poor, Fair, Excellent,0) 

45.End  

46. IF (V>PV8 and V<=PV9) 

47. MF41 

48.Output(V. Good, MF4) 

49.Output ((Poor, Fair, Good, Excellent),0) 

50.End 

51.IF (V>PV9 and V<=PV10) 

52.MF4 (((-1/(PV10-PV9)) *((V-PV9))) +1) 

53.Output (V. Good, MF4) 

54.Output ((Poor, Fair, Good),0) 

55.MF5 (((-1/(PV9-PV10)) *((V-PV10))) +1) 

56.Output (Excellent, MF5) 

57.Output ((Poor, Fair, Good),0) 

58.End 

59.IF (V>PV10 and V<=PV11) 

60.MF51 

61.Output (Excellent, MF5) 

62.Output (Poor, Fair, Good, V.Good),0) 

63.End 

64.End  

 

 

Matching Algorithm 

 

1.IF Output (Poor, PV1) 

2.Assign: User base Request (App1)   M6g.medium 

3.End 

4.IF Output (Poor, PV2) 

5.Assign: User base request (App2)   M6g.large 

6.End 

7.IF Output (Poor, PV3) 

8.Assign: User base request (App3)   M6g.XLarge 

9.End 

10.IF Output (Fair, PV4) 

11.Assign: User base request (App4)   M5.2XLarge 

12.End 

13.IF Output (Fair, PV5) 

14.Assign: User base request (App5)   M5.4XLarge 

15.End 

16. IF Output (Good, PV6) 
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17.Assign: User base request (App6)   M6gd.8XLarge 

18.End 

19.IF Output (Good, PV7) 

20.Assign: User base request (App7)   M6gd.12XLarge 

21.End 

22.IF Output (V. Good, PV8) 

23.Assign: User base request (App8)  M6g.metal 

24.End 

25.IF Output (V. Good, PV9) 

26.Assign: User base request (App9)  M5d.metal 

27.End 

28.IF Output (Excellent, PV10) 

29.Assign: User base request (App10)  M6i.metal 

30.End 

31.IF Output (Excellent, PV11) 

32.Assign: User base request (App11) M6a.metal 

33.End 

 

7.3.3.3 Cloud Analyst Simulation Framework 

This framework extends the CloudSim simulator with new capabilities, allowing for the 

analysis of performance and costs associated with large, geographically dispersed cloud 

systems under extensive user workloads and various parameters. It offers a user-friendly 

graphical interface and the ability to customize settings for any geographically distributed 

system, including hardware configurations like storage, CPU, main memory, and bandwidth. 

The results of simulations are provided in charts and tables, detailing aspects such as cost, 

response time, data center processing time, and data center load, among others [193]. Figure 

7.3 depicts the cloud analyst model. 

 

FIGURE 7.3 CLOUD ANALYST MODEL. 

7.3.3.4 Round Robin Algorithm  

The round-robin algorithm, known for its simplicity, is popular among load-balancing 

mechanisms. It evenly distributes the workload by cyclically rotating through each server in 

sequence. This method effectively manages the queues within load-balancing systems by 

assigning turns to each virtual server, ensuring a systematic distribution cycle. The process 

operates on a fixed time allocation known as the time quantum, the designated duration for a 

process's execution within the system or for processing queued data. This approach is notably 

equitable, as it does not prioritize any process over others; each receives an equal time allotment, 

calculated as (1/n), where n represents the number of processes in the queue. Thus, the wait time 
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for any process is limited to (n-1) times the quantum length, q, ensuring a fair and efficient 

distribution of processing time [194] [195]. 

7.3.3.5 Service Brokering Strategies  

The role of a service broker is essential for determining the appropriate data center to satisfy 

customer needs and for orchestrating the data exchange between consumers and data centers 

[196]. This intermediary position enhances the connection between customers and cloud 

service providers [197]. Through the Service Broker Policy (SBP), services are dynamically 

distributed between the cloud's infrastructure and its service providers [198], effectively 

guiding the selection of data centers [196]. The assignment of virtual machines to physical 

hardware in data centers, a process critical to the data center broker known as virtual machine 

deployment, underscores the importance of the SBP [199]. It is crucial to grasp the operational 

context of the SBP, particularly how it mediates between specific data centers and user 

demands. The SBP plays a pivotal role in identifying the most fitting data center to meet service 

expectations based on customer requests [196]. Our analysis involved adopting two 

foundational broker strategies and examining and contrasting their effectiveness.[200]. The 

primary policy focuses on optimizing response time, where the service broker evaluates 

essential attributes of data centers to gauge their performance [189]. This approach ensures the 

quickest possible response times for end-users during queries [201]. In this routing strategy, 

the efficiency of data centers is continuously monitored, with preference given to directing 

traffic to the data center that offers the best response time, effectively managing direct 

bottlenecks [202]. Virtual machines are utilized to handle customer requests swiftly, enhancing 

point-to-point communication [203]. This policy assumes uniform processing requirements 

and execution times for all requests [204]. The secondary policy involves dynamic 

reconfiguration based on load, where the service broker manages scalability for cloud 

applications [189]. This involves the service broker dynamically reconfiguring and altering the 

virtual machines within data centers to match demand [201]. A cloud analyst facilitates the 

redistribution of loads across different data centers when the performance of the initial data 

center falls below a certain threshold [178]. This method calculates retention times to achieve 

the longest cycle time recorded, addressing both cost and performance expectations of users 

[204] and adjusting the number of virtual machines as needed [205].  

7.4 Experimentation and analysis 

7.4.1 Simulation the proposed system 

To test our proposed policy, deployed Cloud-Analyst with the optimize response time policy as 

part of an intelligent cloud broker validation process. This involved handling 1,000,000 user 

requests, allocated across ten user bases, and leveraging 31 individual AWS data centers spread 

across six geographic regions. Each data center operated with a single virtual machine, with 

configurations based on 11 real-life EC2 attributes as previously described. This setup allowed 

us to benchmark the performance against existing routing policies, notably the Reconfigure 

Dynamically with Load broker policy. Before initiating the simulations,  standardized the 

network delay metrics from AWS latency monitoring(https://www.cloudping.co/grid), shown in 

https://www.cloudping.co/grid
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Appendix 7 (Table 3), and set advanced data center configurations for all tests, as detailed below. 

Table 7.4, displays data related to a Single User Base, which becomes pertinent in Table 7.5 as 

our research encompasses 11 analogous instances derived from this single-user base, varying 

according to the magnitude of user requests, employed Peak Hours (GMT) to depict the timing 

of user activity on AWS-Cloud. The number 60 is used to denote the number of requests per 

user within a one-hour simulation, measured hourly (60.0).  It's posited that the upper limit of 

users from each user base cluster during peak times is 100,000 average peak users, while the 

lower limit during off-peak periods is 10,000 average users. This is established using the 

following mathematical formula: 

                                  Avg 𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠 =  
𝑇𝑜𝑡𝑎𝑙 𝑈𝑠𝑒𝑟 𝐶𝑜𝑢𝑛𝑡

10 𝑈𝐵
                                                      (7.11) 

                                      𝐴𝑣𝑔 𝑂𝑓𝑓 −  𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠 =
𝐴𝑣𝑔 𝑃𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠

10 
                                   (7.12) 

The data size per request (in bytes) and the instruction length per request (in bytes) were 

determined by applying mathematical formulas No. 12 and No. 13, respectively. The "Grouping 

factor in data centers" refers to the capacity of a single application server instance to handle 

multiple requests concurrently. Similarly, the "User grouping factor in user bases" denotes the 

maximum number of users accessing services from a single user base simultaneously. 

Additionally, a round-robin load-balancing strategy is employed to manage the distribution of 

workloads across virtual machines within a single data center.  

                              𝐷𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 𝑝𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝐵 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐴𝑣𝑔 𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠
                                       (7.13) 

                                       𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑈𝐵 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

10 𝑈𝐵𝑠
                                       (7.14) 

Appendix 7 (Table 4), displays the foundational configuration for each of the 31 data centres 

featured in our research, which were deployed in 11 different scenarios adhering to the 

specifications of AWS General Purpose EC2 instances, as indicated in Appendix 7 (Table 5). 

The pricing is based on data transferred "in" to and "out" of Amazon EC2. 

https://aws.amazon.com/ec2/pricing/on-demand/. In our study, contrasted the proposed 

Intelligent Validation Cloud Broker System (IVCBS) with traditional random allocation 

methods within the context of cloud resource management. Both approaches were evaluated 

under two distinct policies: optimizing response times and dynamically reconfiguring loads 

based on demand. Traditional methods of allocating virtual machine (VM) resources typically 

distribute these resources to customer requests indiscriminately, using a random approach that 

does not account for the specific needs of the requests. Our study provides a comprehensive 

description of these traditional allocation strategies in Appendix 7 (Table 6). It is critical to 

note that the specifications of the EC2 instances utilized in these traditional methods are 

identical to those employed in the Intelligent Validation Cloud Broker System (IVCBS) 

method, as detailed in previous tables and sections of our study. This strategic allocation is 

further illustrated by the general distribution of EC2 across 31 data centers, as depicted in our 

study, apply this distribution in 11 different scenarios, tailored according to the number of user 

request sizes identified in this study.   

Table 7.3 Results of the Proposed Algorithm. 

https://aws.amazon.com/ec2/pricing/on-demand/
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Table 7.4 Single-User Base Clusters. 

Single-

User 

Base 

Clusters 

Geographic 

Regions 

Requests 

per user 

per Hour 

Peak 

Hours 

(GMT) 

Avg 

peak 

users 

Avg 

Off- 

peak 

users Start End 

UB1 R0 60 12 15 100000 10000 

UB2 R1 60 14 17 100000 10000 

 UB3 R2 60 19 22 100000 10000 
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UB4 R3 60 0 3 100000 10000 

UB5 R4 60 20 23 100000 10000 

UB6 R5 60 8 11 100000 10000 

UB7 R0 60 12 15 100000 10000 

UB8 R1 60 14 17 100000 10000 

UB9 R2 60 19 22 100000 10000 

UB10 R3 60 0 3 100000 10000 

Table 7.5 (11-User Base Instances). 

11-User Base Instances 
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M6g.medium 10- UBs 30 100000 100000 300000 

M6g.large 10- Ubs 50 100000 100000 500000 

M6g.xlarge 10- Ubs 100 100000 100000 1000000 

M5.2xlarge 10- Ubs 350 100000 100000 3500000 

M5.4xlarge 10- Ubs 700 100000 100000 7000000 

M6gd.8xlarg 10- Ubs 1050 100000 100000 10500000 

M6gd.12xlarge 10- Ubs 1400 100000 100000 14000000 

M6g.metal 10- Ubs 7500 100000 100000 75000000 

M5d.metal 10- Ubs 15000 100000 100000 150000000 

M6i.metal 10- Ubs 22500 100000 100000 225000000 

M6a.metal 10- Ubs 30000 100000 100000 300000000 

7.4.2 Results and Comparative Analysis 

7.4.2.1 Implementation of IVCBS with two Service Broker Policies 

In the proposed methodology, IVCBS utilizes either the Optimized Response Time Service 

Broker Policy (ORSP) or the Dynamic Reconfiguration with Load Balancing approach, both 

supported by the Cloud Analyst simulator. IVCBS employs these policies to route user requests 

from User Bases (UBs) to AWS 31 data centers worldwide. This router ensures that each data 

center adheres to predefined parameters tailored to the request volumes of each UB user group, 

by IVCBS, as detailed in Appendix 7, Table 5. Specifically, resources such as EC2-M6a.metal 

are optimized for handling high-volume user requests effectively. For instance, the allocation of 

VM-Cost is optimized to effectively address user requirements, with resources like EC2-

M6a.metal specifically designated for handling high-volume user requests. Our analysis reveals 

that the Optimized Response Time Policy yields better outcomes than the Dynamic 

Reconfiguration with Load Policy in several key performance metrics: Average Overall 

Response Time, Average Data Center Processing Time, and Total Virtual Machine Cost. This 

suggests that the optimized policy more efficiently handles these aspects of cloud service 

management. However, the scenario shifts when examining Data Center Request Servicing 

Times, where the optimized policy either matches or slightly exceeds the times achieved by the 
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dynamic reconfiguration policy. This indicates a nuanced trade-off between the two approaches 

in handling specific service demands. To provide a clear comparison, Table 7.6 showcases the 

results of implementing the IVCBS method with the Optimized Response Time Service Broker 

Policy, while Table 7.7 details the outcomes when applying the Dynamic Reconfiguration with 

Load Service Broker Policy. The experiments were carried out across 31 Amazon data centers 

spanning 6 geographic regions. To capture data accurately during both peak and off-peak periods, 

11 scenarios were implemented across 11 EC2 levels based on hourly intervals. Appendix 7 

(Figure 3). The study explores the implementation of IVCBS with two distinct Service Broker 

Policies: The Optimized Response Time Service Broker Policy (ORSP) and the Dynamic 

Reconfiguration with Load Balancing approach. It assesses regional average response times for 

ten user bases, emphasizing the effectiveness of IVCBS's Optimized Response Time Policy. This 

policy ensures even distribution of user requests across AWS data centers globally, irrespective 

of geographic proximity, consistently achieving reduced response times compared to the 

Dynamic Reconfiguration Policy. Appendix 7 (Figure 4) details the outcomes of the Dynamic 

Reconfiguration Policy, which directs user requests to data centers located in the same 

geographic region as the users, aiming to minimize latency under the IVCBS framework. Despite 

the intuitive logic behind this approach, response times were generally higher than those achieved 

by the Optimized Response Time Policy, highlighting a key area where the latter excels. The 

Average Data Center Request Servicing Time significantly influences energy consumption 

within cloud computing environments. Extended servicing times often reflect inefficient 

utilization of computing resources like processors and memory, which in turn can increase the 

energy load of operations. This inefficiency not only affects the Power Usage Effectiveness 

(PUE) of data centers but also demands more extensive cooling solutions, a major contributor to 

energy consumption in these facilities. Additionally, the need to scale up resources to reduce 

servicing times can lead to over-provisioning, further elevating overall energy usage. Enhancing 

the efficiency of request servicing times not only promotes more responsive cloud services but 

also helps in cutting down energy costs, thus supporting the broader goal of making cloud 

computing more energy-efficient and eco-friendly [206] [207]. Our observations indicate that 

the Intelligent Validation Cloud Broker System (IVCBS), when implemented with an 

optimized response time policy, significantly outperforms the dynamic reconfiguration policy. 

This superiority is clearly demonstrated through the comparative analysis presented in 

Appendix 7 (Figures 5 and 6). Which illustrate the superior performance of the optimized 

response time policy in managing Average Data Center Request Servicing Time, which leads to 

enhanced energy efficiency. Previously, the results demonstrated that systems using IVCBS with 

a dynamically reconfigured load-balancing broker policy, as shown in Appendix 7 (Figure 7), 

differ in performance from those using the Intelligent Validation Cloud Broker System (IVCBS) 

optimized for response times. As shown in Appendix 7 (Figure 8), This variance primarily stems 

from the dynamics of reconfiguration itself. The dynamic reconfiguration strategy routes user 

requests to data centers within the same geographic area as the users, often leading to increased 

processing delays. This occurs as requests queue up, awaiting available virtual machines for 

reconfiguration. Additionally, in some regions, having only one data center acts as a bottleneck, 

exacerbating delays during peak demand periods.  In contrast, the optimized response time policy 

excels by delivering superior round-trip times and more efficient processing. Moreover, our 

analysis is grounded in Amazon's real-world distribution of data center locations globally, 
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utilizing eight virtual machines (VMs) in North America, one in South America, eight in Europe, 

ten in the Asia Pacific and Australia, and four in Africa and the Middle East.  This strategic 

distribution facilitates the IVCBS's ability to redirect user requests to data centers with 

appropriate VMs, optimized both for the characteristics of the user requests and for reduced 

processing times, energy consumption, and costs. For example, small user requests, defined in 

our study as 3 MB, are routed to VMs like the M6g.medium, while larger requests of 3 GB are 

directed to more robust machines like the M6a.metal. 

Table 7.6 Implementing IVCBS with optimize response time policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM Cost 

($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2475,8 2373,38 83,29 $298,59 

M6g.Large 3853,10 3740,25 167,24 497,65 

M6g.Xlarge 14325,08 10798,69 334,48 1255,96 

M5.2XLarge 140667,03 137632,98 853,50 3483,46 

M5.4XLarge 1010570,86 1031103,10 1707,06 6963,47 

M6gd.8XLarge 2151917,72 1947568,70 3140,37 9966,88 

M6gd.12XLarge 3684599,83 3335444,58 4709,26 13114,84 

M6g.metal 38334990,80 38234416,58 5351,62 25236,98 

M5d.metal 79337433,27 79315311,43 12090,55 14482,63 

M6i.metal 93529270,35 93372293,67 13730,36 6863,40 

M6a.metal 94549552,26 94331238,90 17150,67 3320,20 

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 6353,58 6324,05 166,32 $298,59 

M6g.Large 55390,42 55364 667,5 497,65 

M6g.Xlarge 275390,88 270714,32 2666,54 1255,83 

M5.2XLarge 2556092 2556270,05 8502,06 3483,45 

M5.4XLarge 3252254,20 3255057,05 20401,48 6234,76 

M6gd.8XLarge 3915809,21 3921022,05 43758,17 8915,92 

M6gd.12XLarge 3573677,62 3584236,77 74944,34 11618,91 

M6g.metal 37016372,94 37016688,54 95138,79 25828,65 

M5d.metal 81818244,66 81883142,21 273382,89 14705,94 

     

M6i.metal 93919067,50 93689019,40 379237,75 6796,75 

M6a.metal 96334126,87 96128434,12 607000,72 3341,66 

7.4.2.2 Traditional methods 
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This approach starkly contrasts with the intelligent methodology implemented by IVCBS. In both 

the Optimize Response Time - Service Broker Policy and the Dynamic Reconfiguration with 

Load Balancing, user requests of varying sizes are randomly distributed across the 31 data centers 

without consideration for the specific type and specifications of the EC2 VMs. There is no 

structured allocation across all DC-VMs. DC-VMs process requests with diverse parameters that 

lack uniformity and fail to align with the request volumes of each user group (UBs), as detailed 

in Appendix 7, Table 6. For instance, the high VM cost is expensive for users whose task 

requirements are minor, thus failing to meet their basic needs adequately. Additionally, resources 

like EC2-M6a.metal are allocated to execute small user requests that EC2-M6g.medium could 

more efficiently handle. The setup and configuration of DCs for both methodologies are 

facilitated by the CloudAnalyst simulation environment, outlined in Appendix 7 (Table 4). This 

environment allows for configuring AWS-31 DC metrics, which differ between the proposed 

and traditional methods. These metrics include VM cost, vCPUs count, storage, RAM, and 

bandwidth. There are 11 scenarios in both methods, similar in setup but differing in the numerical 

configuration of metrics for each EC2 instance. Employing the optimized response time policy 

resulted in a higher average overall response time, average data center processing time, and total 

virtual machine cost than our proposed IVCBS method. However, it was observed that the Total 

Data Transfer Cost was either less than or equal to that of the proposed IVCBS method. These 

findings are detailed in Table 7.8. When evaluating the results from applying the dynamic 

reconfiguration policy with traditional methods, as detailed in Table 7.9, it is noted that the 

overall response time is broader than that achieved by the proposed IVCBS method in specific 

EC2 allocations (M5.4xlarge, m6gd.8xlarge, m6gd.12xlarge, m6g. metal, and m5d. metal). 

However, in all scenarios concerning the Total Data Transfer Cost, the traditional methods 

demonstrate lower costs than the IVCBS approach. Additionally, Appendix 7 (Figure 9) displays 

the regional average response times for the 10 user bases, showcasing the performance of the 

traditional Optimized Response Time Policy. Meanwhile, Appendix 7 (Figure 10) visualizes the 

regional average response times under the dynamic reconfiguration with load policy. Both figures 

highlight that these traditional methods were less effective than the results of the proposed 

IVCBS method. Furthermore, Appendix 7 (Figure 12) illustrates the outcomes when the 

traditional method incorporates the Dynamic Reconfiguration Policy. By comparing these 

findings with those from the proposed IVCBS method, it is evident that the IVCBS generally 

provides better Data Center Request Servicing Times. This improvement significantly impacts 

energy efficiency in the computing environment, showcasing the advantages of the proposed 

method over conventional strategies. This enhances the IVCBS's effectiveness, demonstrating its 

potential to accommodate future growth in cloud systems while ensuring efficient and cost-

effective user request processing within the cloud computing environment. Simultaneously, 

Appendix 7 (Figure 11) displays the average Data Center Request Servicing Time results across 

the 31 data centers in our study, applied in 11 different scenarios using the traditional Optimized 

Response Time Policy.  

 Table 7. 8 Implementing traditional with optimize response time policy. 
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AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2648,32 2544,20 5039,17 298,59 

M6g.Large 3979,79 3866,43 5039,17 497,65 

M6g.Xlarge 16565,20 16507,91 5039,17 995,31 

M5.2XLarge 200877,44 206148,60 5039,17 3483,25 

M5.4XLarge 1012024,16 1045751,95 5039,17 6965,51 

M6gd.8XLarge 2784038,22 2523254,74 5039,17 9907,33 

M6gd.12XLarge 4246474,38 3977103,11 5039,17 13054,04 

M6g.metal 44420610,74 43609256,19 5039,17 17375,69 

M5d.metal 80927473,71 80639117,03 5039,17 7093,73 

M6i.metal 95412416,34 95769447,44 5039,17 3711,87 

M6a.metal 97606171,17 98736234,17 5039,17 1686,10 

 

Table 7.9 Implementing traditional with Dynamic reconfiguration policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2950,74 2918.84 137867,12 298,59 

M6g.Large 4501,42 4481,36 137962,28 497,65 

M6g.Xlarge 49465,79 49405,39 137677,42 995,31 

M5.2XLarge 1275803,03 1276385,26 137762,59 3483,52 

M5.4XLarge 3599233,17 3600108,32 137634,08 6234,08 

M6gd.8XLarge 5282197,57 5322005,63 137742,44 8914,56 

M6gd.12XLarge 7432190,15 7473084,39 137624,85 11566,42 

M6g.metal 48005803,13 47769425,91 136059,33 14250,25 

M5d.metal 84937790,73 85306107,68 134039,80 5810,42 

M6i.metal 93010845,72 93028448,77 131046,97 3042,69 

M6a.metal 91124687,42 90537061,27 124762,54 1462,37 

 

7.5 Summary  

This research delves into crucial cloud computing aspects such as optimizing resource use during 

peak and off-peak periods, minimizing data processing and transfer times and costs and reducing 

the average response time from different geographical regions. A novel simulation was 

developed to improve cloud computing's response times by adjusting virtual machine (VM) 

attributes to match user request sizes and evenly distributing workloads as per Service Level 

Agreement (SLA) standards. This approach considers the current and future workloads and the 

available resources on each AWS-EC2 instance, aiming to distribute user request across VM 
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uniformly to ensure balanced system utilization and avoid over- or underutilization. A significant 

part of the study introduces the Intelligent Validation Cloud Broker System (IVCBS). Which 

enhances the proximity routing policy for data center selection by considering both VM attributes 

and the size of user requests. This modification allows for more efficient handling of variable 

request sizes, optimizing network delay, VM, and data transfer costs, and selecting data centers 

with minimal delay while considering real-time bandwidth, EC2 attribute diversity, and expected 

processing times. This refined approach improves upon traditional performance-optimized 

routing policies by including job size in its considerations, thereby achieving better response and 

processing times. The Intelligent Validation Cloud Broker System (IVCBS), evaluated using the 

Cloud Analyst simulator, demonstrated notable improvements compared to existing policies. The 

adoption of a throttled load balancing policy could further enhance the system's effectiveness, 

highlighting its potential to support future growth in cloud systems while ensuring the efficient 

and cost-effective processing of user requests within the cloud computing environment. This 

approach can be expanded upon in the next contribution of this thesis. Specifically, incorporating 

job size and classifying the workload into performance-optimized routing policies lead to 

significant improvements in both response and processing times in cloud systems. This addition 

provides a critical layer of optimization that directly impacts key performance metrics, including 

response and processing times, which are integral to cloud system efficiency. Furthermore, the 

introduction of the throttled load balancing policy serves as a natural extension of the proposed 

approach, facilitating more efficient workload management and distribution, particularly during 

peak demand periods. 
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Chapter 8  A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual 

Machine Allocation 

Chapter 8 introduces a broker-driven approach integrating fuzzy logic to optimize virtual 

machine (VM) allocation in cloud environments. This method dynamically adjusts VM 

distribution based on incoming request packet sizes and CPU utilization. It utilizes Google's 

General-purpose machine family for Compute Engine - T2D standard machine types, 

configured with specifications including VCPU, RAM (GB), Storage (GB), BW (GBPS), and 

Price per hour ($), as applied in this study. Employing fuzzy logic, this system intelligently 

assigns VMs to user requests within the user base, ensuring alignment with appropriate sizes 

and cost considerations for the allocated VMs. In contrast, the traditional method relies on 

random VM allocation, disregarding user request sizes and assigning available VMs arbitrarily 

to execute tasks. 

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery 

In the realm of cloud computing, the efficient allocation of virtual machines (VMs) is 

paramount for optimizing resource utilization and ensuring high performance. The rapid 

proliferation of cloud services has necessitated sophisticated strategies to manage the dynamic 

and heterogeneous nature of cloud workloads. Traditional methods, which often prioritize 

metrics such as CPU, memory, and storage capacities, frequently overlook the varying sizes of 

request packets. This oversight can lead to suboptimal resource usage and potential 

performance bottlenecks, thereby hindering the overall efficiency and responsiveness of cloud 

services [208][209]. The complexity of cloud environments requires innovative approaches to 

VM allocation that can adapt to fluctuating workloads and diverse user demands. Recent 

advancements in cloud resource management have emphasized the need for intelligent and 

adaptive systems capable of making real-time decisions based on workload characteristics 

[210][211]. In this field, one promising direction is dynamically optimizing resource 

distribution by analyzing the size and nature of incoming request packets [212][213], approach 

leverages a centralized broker to monitor, analyze, and direct network traffic to the appropriate 

VMs based on the size of the request packets. This method not only enhances VM efficiency 

but also reduces latency and improves overall system performance. By incorporating a fuzzy 

logic system that uses imprecise inputs to make informed decisions, the broker can dynamically 

adjust VM allocation better to match the real-time demands of the cloud environment 

[214][76]. The Cloud Analyst tool provides a robust platform for implementing and simulating 

broker driven VM allocation strategies. It allows for detailed modeling and analysis of cloud 

computing environments, facilitating the evaluation of various allocation methods under 

different scenarios. The Cloud Analyst tool integrates fuzzy logic [215], [216], and [217]. As 

discussed in the previous contribution, propose a novel approach to virtual machine (VM) 

allocation that optimizes resource utilization, reduces latency, and enhances overall system 

performance. This research aims to advance the field of cloud resource management by 

addressing the limitations inherent in traditional VM allocation strategies. By focusing on the 

dynamic optimization of VM allocation based on request packet size and workload 

classification, the proposed broker-driven approach seeks to provide high-quality cloud 

services while ensuring efficient resource use. 
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8.2 Current Issues and Challenges 

Research on advanced VM allocation strategies aims to optimize resource utilization and 

performance in cloud computing, addressing the limitations of traditional strategies that often 

overlook the impact of varying request packet sizes. Sangaiah, Arun Kumar, et al. (2023) 

propose an intelligent dynamic resource allocation method that integrates TSK neural-fuzzy 

systems with ACO techniques to reduce energy consumption in cloud networks. This method, 

which uses real-time data, significantly enhances efficiency and performance in virtual 

machine migration [218]. However, existing methods often fail to consider the varying sizes 

of request packets, which can significantly impact network performance. In contrast, broker-

driven approaches enhance network performance by dynamically allocating virtual machines 

(VMs) based on request packet sizes. This allows for real-time optimization of resource 

distribution and reduces latency, effectively addressing the limitations of traditional 

methods.[219] proposes a broker-based mechanism to connect cloud service providers with 

customers, analyzing task tendencies and assigning resources. This model uses multi-criteria 

decision-making to maximize profits, ensure customer satisfaction, and reduce energy 

consumption in cloud data centers. [220] highlights the increasing demand for cloud services, 

which necessitates a flexible and dynamic design for data center deployment. Traditional traffic 

engineering approaches are inadequate for efficiently utilizing IT and network resources. The 

study suggests two fuzzy logic controllers for efficient virtual machine allocation. These 

controllers are based on the Mamdani and Sugeno inference processes. Preliminary simulation 

tests validate the effectiveness of the proposed approach. The Cloud Analyst tool simulates 

cloud computing environments, evaluates VM allocation strategies, and simulates broker-

driven approaches. It is used in a study [221], which discusses the widespread adoption of cloud 

computing for web applications. The study uses virtualization concepts and resource allocation 

policies to manage resources in a cloud computing environment. They use a GUI tool called 

Cloud Analyst to simulate the cloud environment, focusing on energy consumption 

minimization and class diagram design. Furthermore, integrating advanced algorithms with 

broker-driven approaches has shown significant promise for optimizing VM allocation. [222] 

proposes DeepBS, a DRL-based scheduler, to address the inherent uncertainties in cloud broker 

VM scheduling due to on-demand IaaS VMs.  Their study demonstrates that DeepBS improves 

cost optimization by learning from experience and enhancing scheduling strategies in 

unpredictable environments, showcasing its potential in dynamic cloud computing. Several 

recent studies have further expanded on these concepts. For instance, [223] emphasizes the 

significance of mobile terminal cloud computing migration technology in addressing evolving 

computer and cloud computing demands. They highlight the necessity for efficient data access, 

storage, and minimal time delays. They also introduce machine learning-based virtual machine 

migration optimization and dynamic resource allocation as key research directions in cloud 

computing. Similarly, [224] introduces a resource allocation model called IMARM, which uses 

an intelligent multi-agent system and reinforcement learning. Combining multi-agent 

characteristics and Q-learning, IMARM dynamically allocates resources based on changing 

consumer demands and optimizes VM placement. Experimental results indicate that IMARM 

outperforms other algorithms in energy consumption, fault tolerance, load balancing, and 

execution time.[225] reviews resource allocation and service provisioning in multi-agent cloud 



101 

 

robotics. They provide a taxonomy of resource allocation strategies, covering resource pooling, 

computation offloading, and task scheduling. The paper discusses challenges such as 

heterogeneous energy consumption rates and data transmission delays and suggests future 

research directions to advance the field. The authors emphasize addressing research gaps and 

mitigating data transmission delays for efficient service provisioning. [226] notes that cloud 

computing has revolutionized resource management, but challenges remain due to scalability, 

heterogeneity, and dynamic environments. Artificial intelligence (AI) technology has emerged 

as a solution to improve efficiency. This paper reviews AI techniques for resource 

management, including machine learning, reinforcement learning, predictive analytics, natural 

language processing, and genetic algorithms. It discusses AI-based strategies for efficient 

resource management, including automated resource provisioning, intelligent workload 

planning, predictive maintenance, and energy-efficient management. The paper also discusses 

evaluation metrics, performance analysis techniques, ethical considerations, and future 

directions for AI integration. VM allocation research has also focused on energy efficiency. 

[227] explores energy-efficient resource allocation using a hybrid heuristic algorithm, showing 

substantial improvements in energy consumption. Finally,[228] reviews the state-of-the-art and 

research challenges in cloud computing, providing a comprehensive overview of current trends 

and future directions in VM allocation and resource management. 

8.3 Broker-Driven Methodology in Cloud Computing 

The proposed methodology for optimizing virtual machine (VM) allocation in cloud computing 

environments leverages a broker-driven approach, enhanced with a fuzzy logic system, to 

dynamically optimize resource distribution based on the size of incoming request packets. This 

method is designed to improve VM efficiency, reduce latency, and enhance overall system 

performance. The following sections detail the key components of the methodology: broker 

design, fuzzy logic system, integration with the Cloud Analyst tool, and evaluation metrics. 

Table 8.1, shows the Workload Sizes alongside the specifications for the Google Cloud 

Platform's t2d-standard machine type, using data from the Google Cloud Compute Engine 

Pricing. The system leverages real-time data for smart VM allocation, demonstrating its 

adaptability by adjusting resource distribution in response to changes in network conditions 

and workload demands. 

Table 8.1 workload size machine series specifications. 

Workload Size Machine type 

Series 

VCPU RAM 

(GB) 

Storage 

(GB) 

BW 

(GBPS) 

Price per 

hour ($) 

Small (<1 GB) t2d-Standard-1 1 4 2 2 0.054427 

Medium (1-10 GB) t2d-Standard-2 2 8 10 4 0.108854 

Large (10-100 GB) t2d-Standard-4 4 16 16 8 0.217708 

Very Large (>100 

GB) 
t2d-Standard-8 8 32 32 10 0.435416 

Massive (Big Data 

Processing) 

t2d-Standard-

16 
16 64 100 14 0.870832 

8.3.1 Design and Architecture of the Broker System 
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Design and Architecture of the Broker System, Integrating Traffic Monitoring, Data Analysis, 

and Traffic Routing. The proposed methodology utilizes the Optimized Response Time Service 

Broker Policy (ORSP) with a load balancing approach, facilitated by the Cloud Analyst 

simulator. The broker acts as a mediator that monitors and analyzes incoming request packets. 

Its primary functions include: 

● Traffic Monitoring: continuously monitoring network traffic to collect data on packet 

sizes and associated metrics. 

● Data Analysis: analyzing the collected data in real-time to identify patterns and trends in 

request packet sizes. 

● Traffic Routing: directing traffic to the appropriate VMs based on the analysis, ensuring 

optimal resource allocation [229][230]. 

The broker features advanced data analytics to manage the varied and dynamic cloud 

workloads effectively.  

8.3.2 Implementation of Fuzzy Logic  

The Fuzzy Logic system is integrated into the broker to handle the uncertainty and variability 

inherent in cloud environments [76][231]. The model's input parameters were crafted using the 

Fuzzy Logic Designer, adhering to the methodological framework introduced in Chapter 4. 

However, for this chapter, adjustments were made to the division of the universe of discourse 

to align with the specific primitives and structural prerequisites of the developed model. This 

chapter focuses on utilizing two primary inputs and single outputs, categorized as VM 

categories. Five defined triangular membership functions characterize each input. 

First input (Workload- Request Packet Size ) 

Represented by the size of incoming request packets. 

Small: [0 0.9 5]; Medium: [1 10 50]; Large: [10 100 150]; V.Large: [100 150 200]; 

Massive: [150 200 250] 

i. Second input (CPU Utilization) 

Current utilization levels of the available VMs. 

Poor: [10 30 40]; Fair: [30 50 60]; High: [50 70 80]; V.High: [70 85 90]; Excellent: [85 

100 100] 

ii. Output (T2D standard machine types-Levels) 

Simple: [0 0.1 0.2]; Moderate: [0.2 0.3 0.4]; Good: [0.4 0.5 0.6]; V.Good: [0.6 0.7 0.8] 

High-Performance: [0.8 1 1] 

These functions allow the system to evaluate the inputs and produce a set of fuzzy rules, 

illustrated in Appendix 8 (Figure 1), that determine the optimal VM allocation strategy. The 

outputs of the Fuzzy Logic system include VM classes, which categorize VMs based on their 

suitability for handling the current workload and CPU utilization levels [232]. Table 8.2. 

Illustrated the fuzzy logic output – Decision making. 

Table 8.2 Rules – Decision making. 

CPU 

Utilization     

Poor Fair High V.High Excellent 
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Request 

Packet 

Size 

Output (T2D standard machine types-Levels) 

Small Simple Simple Simple Moderate Moderate 

Moderate Moderate Simple Moderate Moderate Good 

Large Moderate Moderate Good Good V. Good 

V.Large Good Good V. Good V. Good H.Perf. 

Massive V.Good V.Good H.Perf. H.Perf. H.Perf. 

8.3.3 Integration with Cloud Analyst Tool 

The Cloud Analyst tool is employed to simulate and evaluate the proposed broker-driven 

approach. This tool provides a robust platform for modelling cloud computing environments 

and testing various VM allocation strategies [233]. The integration process involves: 

8.3.3.1 Cloud Environment Modeling 

Configuring a simulated cloud environment in Cloud Analyst involves setting up data centers 

with single VMs and associated user bases. This setup is tested across five scenarios, each 

employing the proposed broker technique to assess performance and efficiency. The process is 

illustrated in Appendix 8 (Tables 1 and 2). 

8.3.3.2 Throttling Algorithm  

In cloud computing, throttling plays a pivotal role in managing system loads and sustaining 

service quality while also keeping operational costs in check. This process is vital for scaling 

computing resources efficiently. Through the application of diverse algorithms, throttling 

ensures that cloud services remain scalable, dependable, and fair. Specifically, it regulates the 

allocation of critical computing resources such as CPU, bandwidth, and memory. This control 

helps prevent any single user or application from monopolizing resources, thereby avoiding 

system overloads and ensuring equitable performance across all users [234]. 

8.3.3.3 Broker Policy for Response Time  

In cloud environments typically involves strategically managing resource allocation to 

minimize latency. This policy ensures that the broker prioritizes tasks or requests that are 

critical for performance, dynamically adjusting resource distribution based on real-time 

demands. Doing so effectively reduces waiting times for resource-intensive operations, 

ensuring that all processes are executed as swiftly as possible, thus enhancing overall system 

efficiency and user satisfaction [200]. 

● Implementing Broker Logic: embedding the broker’s traffic monitoring, analysis, and 

direction functionalities into the Cloud Analyst simulation. 

● Incorporating Fuzzy Logic: integrating the Fuzzy Logic system with the broker within 

Cloud Analyst to dynamically adjust VM allocation based on real-time data. 

8.4 Simulation and Evaluation of Results and Discussion 
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The proposed methodology was rigorously evaluated through extensive simulations conducted 

using the Cloud Analyst tool [235].  In the proposed methodology, five distinct scenarios were 

executed, each involving the implementation of ten user bases as outlined in this study. In the 

initial scenario, the user's request was within this amount. (500,000,000) Bytes were processed 

using t2d-Standard-1. Moving to the second scenario, requests within this amount of a 

workload of 1,000,000,000 bytes were allocated to t2d-Standard-2. The third scenario handled 

requests within the workload of 10,000,000,000 bytes assigned to t2d-Standard-4. 

Subsequently, requests amounting to 150,000,000,000 bytes in the fourth scenario were 

managed using t2d-Standard-8. Finally, in the fifth scenario, where requests amounted to 

200,000,000,000 bytes, t2d-Standard-16 was allocated for execution. Similar parameters were 

utilized when implementing the traditional method scenarios, as in the proposed method 

concerning user base logins to the computing environment, defined by Peak hours Start-End 

and Avg. Peak Users On-Off. However, the traditional approach diverges from the proposed 

method in how it distributes and processes user requests and workloads, as detailed in Table 

8.3. 

Table 8.3 Basics of applying the traditional method. 

Scenario 

number 

User 

Bases 

 

Request Packet 

Size (Byte) 

Machine 

type 

Series 

Price per 

hour($) 

 

Load 

balance 

Algorithm 

Broker 

policy 

1 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

1 

0.054427 
Throttling 

algorithm. 

Optimize 

response 

time. 

2 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

1 

0.108854 
Throttling 

algorithm. 

Optimize 

response 

time. 

3 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

4 

0.217708 
Throttling 

algorithm. 

Optimize 

response 

time. 

4 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

8 

0.435416 
Throttling 

algorithm. 

Optimize 

response 

time. 

5 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

16 

0.870832 
Throttling 

algorithm. 

Optimize 

response 

time. 

 

A variety of workload scenarios were implemented, each featuring distinct request packet sizes 

and VM resource demands. These simulations were designed to assess the robustness, 

adaptability, and practical viability of the broker-driven approach, particularly in comparison 

to traditional VM allocation strategies. The experimental setup modeled a realistic cloud 

environment where the dynamic nature of cloud workloads was replicated to test how 

effectively the system responds under varying operating conditions. The broker-driven system 

incorporates a fuzzy logic mechanism that utilizes workload packet size and CPU utilization 

as key input parameters to dynamically allocate virtual machines (VMs) based on their 

classification across five levels of workload intensity. Appendix 8 (Figure 2) visually 
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demonstrates the simulation execution process, while Appendix 8 (Figure 3) illustrates the 

decision outcomes produced by the fuzzy logic system. Quantitative performance metrics were 

collected, including overall response time, data center processing time, request serving time, 

total VM costs, and total data transfer costs. The comparison between the traditional VM 

allocation approach (summarized in Table 8.4) and the proposed method (detailed in Table 8.5) 

clearly demonstrates significant improvements across all critical metrics. Specifically, the 

proposed broker-driven system reduced response time by up to 68%, decreased processing and 

serving times by an average of 20% and achieved substantial reductions in cost—most notably 

in data transfer and VM provisioning. The novelty of this research lies in the introduction of a 

broker-driven VM allocation model that uniquely integrates fuzzy logic with packet size 

classification—an aspect widely neglected in conventional allocation approaches. Traditional 

methods largely emphasize Resource scalability capabilities, yet they often fail to account for 

the heterogeneity and variability of incoming packet sizes, which are essential determinants of 

workload behavior. By incorporating packet size as a classification factor alongside real-time 

CPU utilization, the proposed approach ensures a more granular and intelligent allocation of 

cloud resources. Moreover, the integration of fuzzy logic contributes significant adaptability to 

the decision-making process. The fuzzy inference engine enables the system to handle 

uncertainty and imprecision, aligning resource allocation with dynamic demand patterns more 

effectively than static rule-based methods. This enables the system not only to allocate 

resources optimally but also to proactively prevent bottlenecks and reduce energy consumption 

through more efficient VM utilization. The methodological innovation also includes a well-

defined classification scheme that translates request sizes and CPU usage into actionable VM 

categories. This classification is mapped through triangular membership functions that support 

interpretability and computational efficiency—key features for scalable cloud infrastructure. 

The proposed approach has substantial practical implications. By dynamically aligning VM 

allocations with workload characteristics, cloud providers can achieve better energy efficiency, 

improve system responsiveness, and reduce operational costs. The ability to manage workloads 

based on packet size and CPU load allows for a more equitable and efficient distribution of 

cloud resources, enhancing the performance and reliability of services across heterogeneous 

and high-demand environments. This study contributes to the advancement of intelligent cloud 

resource management by offering a scalable, cost-effective, and energy-aware alternative to 

traditional VM allocation. The results validate the theoretical principles underpinning this 

model and position it as a promising solution for next-generation cloud systems where 

adaptability and performance optimization are paramount. 

Table 8.4 Summary of the results of the traditional method. 

Scenario  Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving 

times 

Avg(ms) 

Total data 

transfer cost 

($) 

1 571309,86 58,06 58,06 33959999,08 

2 548272,30 59,31 59,31 30557098,39 

3 565510,88 60,39 60,386 33791313,17 

4 558790,62 58,03 58,026 33726768,49 
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5 574401,10 59,35 59,348 32435417,18 

Table 8.5 Summary of the results of the proposed Method. 

Scenario 

Number 

Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving times 

Avg(ms) 

Total data 

transfer 

cost 

($) 

1 333748,21 56,41 56,141 4186420,44 

2 278151,12 49,88 49,875 6354904,17 

3 183111 44,30 44,297 9916305,54 

4 0 39,32 39,323 4909515,38 

5 0 40,26 40,264 4531860,35 

8.5 Summary  

This study set out to address key inefficiencies in traditional virtual machine (VM) allocation 

methods within cloud computing environments, particularly under the dynamic demands of 

contemporary workloads. The main objectives were to evaluate the effectiveness of a broker-

driven approach enhanced by fuzzy logic for managing VM allocations based on the size of 

incoming request packets, to validate this approach using real-world data from the Google 

Cloud Platform’s Europe West3 region and t2d-Standard machine types, and to demonstrate 

its technological advancement over traditional strategies. By leveraging the Cloud Analyst tool 

to simulate various operational scenarios, the study provided a comprehensive comparison of 

the proposed broker-driven system against traditional VM allocation methods across multiple 

performance metrics. The findings confirmed that the broker-driven approach with fuzzy logic 

significantly advances cloud computing technology, offering greater adaptability, efficiency, 

and cost-effectiveness. The results of this study support the broader adoption and continued 

development of such systems, emphasizing their practical utility and effectiveness in real-

world scenarios. Furthermore, the study validated the theoretical principles by demonstrating 

the tangible benefits of incorporating fuzzy logic into a broker system for virtual machine (VM) 

allocation. This approach significantly improves operational efficiency and cost management, 

presenting a strong case for its integration into both current and future cloud infrastructures. In 

conclusion, the study highlights the potential and practical advantages of a broker-driven, fuzzy 

logic-enhanced VM allocation approach, advocating for its integration as a transformative 

solution for resource management practices in cloud computing environments. Building on the 

findings from this chapter and previous contributions, future solutions should include the 

development of a fuzzy logic-based cloud brokerage technique to assist users in selecting the 

most appropriate cloud service instances by evaluating factors such as user requirements and 

service characteristics. The next contribution seeks to enhance decision-making processes for 

cloud service selection by analyzing various scenarios, including those involving static and 

mobile users, to assess the impact of user mobility on service quality. Additionally, the study 

explores the effects of implementing a brokerage service that supports service migration and 

optimizing cloud service management in dynamic environments. This represents a novel 

contribution, which will be discussed in greater detail in the ninth and final chapter. 
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Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker 

Due to the rapid increase in cloud service providers, users find it challenging to select a cloud 

service that suits their needs and budget. Thus, having an intermediate entity between the two 

in cloud broking services is more crucial than ever. Chapter 9 contributes. Proposes a cloud 

broker that uses fuzzy logic to rank service instances and users, aiming to balance user needs 

and service provider interests. It investigates the impact of user mobility on service quality by 

analyzing scenarios involving stationary and mobile users. The study also explores the effects 

of service migration on performance and cost, demonstrating the advantages of dynamic 

resource management. The proposed broker ensures reliable service delivery with stable 

performance and cost-efficient resource usage, outperforming traditional methods in mobility 

and service migration scenarios. 

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic 

Remote processing has become increasingly popular in recent years with the rise of cloud 

computing [236], multi-access edge computing [237], and fog computing platforms [238]. 

These paradigms are considered the main enablers for Ultra-Reliable Low Latency 

Communications (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine-

Type Communications (mMTC) services [239] that are promised for beyond 5G networks. 

These kinds of services are more strict in Key Performance Indicators (KPIs), which can only 

be achieved by overcoming the limitations of users’ equipment resources and exploiting the 

unlimited cloud resources via remote processing. Notwithstanding the indisputable advantages 

of these platforms, they also pose novel challenges for cloud service providers and their 

customers. For example, the user who needs a certain service will have difficulty choosing 

from the abundance of alternatives offered by the Cloud Service Provider s (CSPs). On the 

other hand, CSP may also have difficulty promoting their services and efficiently allocating 

their resources to accommodate more users. Therefore, mentioned in the previous chapters, 

focusing on representing a third party is usually recommended in the form of a cloud broker, 

which is an entity that acts as middleware between potential customers and CSP. The presence 

of such an entity can help not only offer efficient and affordable services for users but also help 

with resource management and load balancing cross-cloud or between different instances of 

the service in the same cloud. Driven by the importance of having a broking service that takes 

into account the customers' needs and the CSP's interests, present this study with several 

contributions in mind.  

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage 

Cloud brokerage services have been widely discussed in academia, where numerous studies 

have been conducted in search of the optimal broker. Focus-wise, some studies were customer-

centric, where the interest of the clients was considered the priority in terms of focusing on 

improving the Quality of Service (QoS) provided for the users. Examples of these studies are 

[240–244]. Other approaches were more focused on the broker profit [245–247]. This profit 

can mainly be acquired by wisely managing the cloud’s resources or by exploiting the 

difference in prices between on-demand and reserved service instances [247]. Some studies, 

however, tried to find a balance between the broker’s and user’s interests [248, 249]. The 
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brokerage problem is viewed in some research studies as a resource provisioning and 

management problem, which can be summed up as deciding which resources should be set 

aside for the user and then distributing the load among the resources that the service provider 

has available [250]. Thus, numerous studies focused on load balancing and efficient resource 

allocation such as [251–254], Methodology-wise, many techniques were employed for the 

brokerage service, such as game theory [255], reinforcement learning [256, 222], weighted 

algorithm [257, 258], ontology [259], Analytic Hierarchy Process (AHP) in combination with 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [260] and fuzzy logic 

[261–263]. The main issue in game theory approaches is that the negotiating process becomes 

lengthy when the number of SLA parameters rises [264]. Similarly, the primary disadvantage 

of reinforcement learning approaches is their lengthy execution time to reach a stable model, 

which leads to a long learning phase in which the broker is not functioning. On the other hand, 

weighted algorithms need predefined weights and criteria to select the service efficiently. 

Setting a fixed value for these weights for all users may be unsatisfactory for some users. 

Meanwhile, defining values that correspond to each user takes a lot of effort and time. In AHP 

combined with TOPSIS approaches, the broker employs a multi-criteria decision-making 

technique to choose a suitable cloud provider after evaluating each provider’s quality and 

ranking each one according to the customer’s needs. Therefore, these approaches can be 

confusing for nonprofessional users since they are forced to specifically define their priorities 

and preferences. [250, 264]. Employing fuzzy logic systems can yield good results. However, 

two problems will surface when many input parameters are taken into account. The first issue 

is when the number of customers grows and online service selection is required, collecting this 

data can become more challenging if not impossible. Additionally, some service providers 

might be reluctant to divulge some parameters since doing so could reveal security flaws and 

compromise the service provider’s integrity. The second problem is that as the number of rules 

increases dramatically with the increase of input parameters, setting up the inference engine 

will become more difficult and time-consuming. These problems can be identified in studies 

such as the fuzzy-based brokers proposed in [261–263]. In our approach, combine two different 

techniques for our cloud brokerage system. They are fuzzy logic and a modified version of 

TOPSIS.  In the study, various data centers from Amazon Web Services (AWS), Google Cloud 

(GC), and Azure Cloud Services (AZURE) are distributed across different geographical 

regions. These Cloud Service Providers (CSPs) offer a range of VM types, including general-

purpose, compute-optimized, memory-optimized, and accelerator-optimized instances. Our 

approach uses fuzzy logic to classify and rank the service instance and the user, trying to satisfy 

users’ and service providers’ interests and needs. Moreover, we only consider two easily 

acquired parameters for each fuzzy system, reducing the rules required in the engine and 

making the broker incorporation in the cloud environment more feasible. We associate the user 

with an appropriate service instance based on this ranking. Further details on our proposed 

brokerage system design are elaborated in the subsequent section. 

9.3 System Design 

The proposed system considers the user requirements as well as the service specifications 

offered by different cloud providers. The proposed system architecture is illustrated in Figure 
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9.1, made an effort to build the system so that both novice and expert users could utilize the 

broker with ease since the user interface is thought to be one of the most common problems 

with commercial brokers [265].  

 

 

FIGURE 9.1 PROPOSED SYSTEM ARCHITECTURE. 

i. Clarification and Detailed Explanation of the Matching Process: 

In the proposed fuzzy-based cloud brokerage system, the "Matching" phase constitutes 

a critical step in the overall service allocation process. The matching procedure occurs 

after two crucial prior stages, which are clearly described: 

1. Service Discovery: Users specify their service requirements (type, budget, desired 

quality), and the broker identifies relevant cloud service instances from available Cloud 

Service Providers (CSPs). 

2. Ranking (Classification): 

o A fuzzy logic system is employed to independently classify Virtual Machines 

(VMs) and users into distinct ranks: Gold, Silver, and Bronze. 

o VM ranking considers CPU availability and cost; user ranking considers task size 

and budget constraints. 

Once these classifications are established, the "Matching" process explicitly associates users 

with suitable VM service instances according to their respective ranks (Gold, Silver, Bronze). 

This step ensures alignment between user expectations and VM capabilities. 

ii. Detailed Explanation and Steps of the Matching Phase: 

The matching operation specifically follows these structured steps: 

Step 1: Independent Classification: 

o VM Instances: Classified into Gold, Silver, or Bronze based on available CPU 

resources and associated costs. 

o Users: Classified into Gold, Silver, or Bronze based on their budget and task length 

requirements. 

Step 2: Rank-Based Matching: The system pairs users and VM instances according to 

their corresponding ranks: 

o Gold-ranked users are matched to Gold-ranked VM instances to ensure high-

quality service and resource availability. 

o   Silver-ranked users are matched to Silver-ranked VM instances, providing a 

balanced trade-off between performance and affordability. 
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o Bronze-ranked users are matched to Bronze-ranked VM instances, satisfying 

basic service requirements economically. 

Step 3: Final Allocation: Once the matching pairs are established, the broker 

executes resource allocation, ensuring optimal performance, service quality, and 

cost-effectiveness for users and efficient resource utilization for providers. 

iii. Reasoning for the Matching Process: The rank-based matching approach achieves 

several key objectives: 

o Optimal Compatibility: It ensures users receive appropriate resource types 

matching their service quality and budget constraints. 

o Balanced Load Distribution: Aligning user demands and VM capabilities helps 

maintain balanced resource utilization. 

o Enhanced User Satisfaction: The systematic matching ensures user needs are 

accurately met, enhancing overall satisfaction. 

o Efficiency in Decision Making: Utilizing predefined rankings simplifies the 

decision-making process, enabling efficient real-time service allocation. 

9.3.1 The broker’s Fuzzy-logic systems 

In the proposed cloud broker, we used two fuzzy logic systems. One is designated to rank the 

service, and the other is to rank the users. These two systems are detailed in the following 

subsections. 

9.3.1.1 VM ranking Fuzzy logic system 

The Fuzzy Logic System (FLS) system used for VM ranking is illustrated in phase 2 in Figure 

9.1. The input parameters for this system are the percentage of available Central Processing 

Unit (CPU) on the VM, and the cost of the VM. These parameters go into the fuzzification 

phase to be mapped into the linguistic values (low, medium, and high) according to the 

membership functions illustrated in Figure 9.2 and Figure 9.3, used trapezoidal and triangular 

fuzzy membership functions to map the crisp input variables into multivalued logic. After the 

fuzzification phase, these resulting linguistic values will go through the inference engine. To 

assess the fuzzy output variable indicating the VM ranking, the engine uses simple IF-THEN 

rules with a condition and conclusion. For instance: 

IF VM′s available CPU capacity is (Low)AND the VM cost per month is (Low) Then the VM 

has a (Silver) ranking. 

The VM will be classified as Gold, Silver, or Bronze according to its specification, Figure 9.4, 

illustrate the VM’s ranking membership function. This rank is subjective and a typical user’s 

assessment served as the basis for this classification. The set of fuzzy rules used in the inference 

engine is depicted in Table 9.1. The resulting ranking is then converted to a crisp value using 

the Center of Gravity (CG) technique. 
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FIGURE 9.2 THE VM’S AVAILABILITY MEMBERSHIP FUNCTION. 

 

FIGURE 9.3 THE VM’S COST MEMBERSHIP FUNCTION. 

Table 9.1 VM ranking FLS. 

Available 

CPU 

Cost per 

month 

Service 

classification 

 

Low Low Silver 

Low Medium Bronze 

Low High Bronze 

Medium Low Gold 

Medium Medium Gold 

Medium High Silver 

High Low Gold 

High Medium Gold 

High High Silver 
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FIGURE 9.4 VM’S RANKING MEMBERSHIP FUNCTION. 

9.3.1.2 User ranking Fuzzy logic system 

These parameters include the client's budget and the task length, measured in the number of 

instructions required. These fuzzy logic inputs are translated into Low, Medium, and High 

linguistic values. Triangular and trapezoidal membership functions were employed to convert 

the user budget and task length into fuzzy sets, depicted in Figure 9.5 and Figure 9.6, 

respectively. Based on their requirements and financial constraints, the user type will be 

classified as Gold, Silver, or Bronze.This rating is based on our estimation of what the service 

provider would assign to that user. To compute the user ranking, which is the output parameter, 

an IF-Then inference engine is used, with a set of rules summarized in Table 9.2. In the 

defuzzification stage, the linguistic value representing the user’s rank and derived from the 

inference engine is then mapped into a crisp value using the Center of Gravity (CG) method 

for defuzzification. The membership function used for the user rank is depicted in figure 9.7. 

 

 

FIGURE 9.5 TASK SIZE MEMBERSHIP FUNCTION. 

 

Table 9.2 User ranking FLS. 

Task size 
Cost per 

month 

Service 

classification 

Low Low Silver 
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Low Medium Gold 

Low High Gold 

Medium Low Bronze 

Medium Medium Silver 

Medium High Gold 

High Low Bronze 

High Medium Bronze 

High High Gold 

 
 

 

FIGURE 9.6 USER BUDGET MEMBERSHIP FUNCTION. 

 

 

FIGURE 9.7 USER RANK MEMBERSHIP FUNCTION. 

9.4 Scenario Description 

Used Edge CloudSim [266–269]. Simulator to implement the proposed cloud broker on Multi-

access Edge Computing (MEC) paradigm, made this choice as the services running on the 

virtualized edge are more sensitive to delay and the broker selection of the appropriate service 

instance will have a more significant impact in this kind of setting.  In the scenario, have 

different data centers belonging to Amazon Web Services (AWS), Google Cloud (GC), and 

Azure Cloud Services (AZURE) and placed in different regions, namely: United State of 

America (USA), western Europe and Southeast Asia and the data centers located in different 

regions are connected via Wide Area Network (WAN) and the datacenters located in the same 

region are connected by MAN network. Giant CSP have different types of VM, such as general 

purpose, compute-optimized, memory-optimized, and accelerator-optimized instances. Thus, 



114 

 

tried to make the scenario more realistic by choosing one or more instances from these different 

types. The chosen instances are detailed in Table 9.3. All the values in this table are taken from 

the official websites of the three cloud providers. Four types of delay-intolerant services are 

used in the simulation setup, with them specifications in terms of the generated traffic 

characteristics mentioned in Table 9.4. The delay sensitivity is a value between 0 to 1 where 

the value 1 indicates the application with the highest delay sensitivity. Each user requests a 

specific type of service identifying his budget and his needs will be determined by his traffic 

profile and more specifically his average tasks’ length measured in millions of instructions 

(MI). This value is usually estimated based on the application he requested. Based on these 

parameters, the cloud broker will identify the most appropriate service instance in the region 

where the user is currently located. The user communicates with the datacenter where the 

service is placed via a wireless local area network. This network is modeled as M/M/1 Queue. 

EdgeCloudSim has realistic network measurements. In which, for WLAN delay, an access 

point of 802.11 family was closely examined, and a fiber internet connection in Istanbul was 

utilized to calculate WAN delays. The results of the empirical network delay analysis are 

detailed in [266]. 

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites. 

Name CSP Type 
Number of 

vcpu 
Memory 

T2A GC 
General 

purpose 
2 4 

E2 GC 
Cost 

optimized 
2 1 

M1 GC 
Memory 

optimized 
40 961 

C2 GC 
Compute 

optimized 
4 6 

A2 GC 
Accelerator 

optimized 
12 85 

t2. small AWS 
General 

purpose 
1 2 

i4i.large AWS 
Storage 

optimized 
2 16 

r7a.medium AWS 
Memory 

optimized 
1 8 

r7a.large AWS 
Memory 

optimized 
2 16 

c7a.medium AWS 
Compute 

optimized 
1 2 

c7a.large AWS 
Compute 

optimized 
2 4 

p3.2xlarge AWS 
Accelerator 

optimized 
8 61 

hpc7g.4xlarge AWS 
HPC 

optimized 
16 128 

B2ls v2 AZURE 
General 

purpose 
2 4 
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F2s v2 AZURE 
Compute 

optimized 
2 4 

E2as v5 AZURE 
Memory 

optimized 
2 16 

L8as v3 AZURE 
Storage 

optimized 
8 64 

NC6 AZURE 
GPU 

optimized 
6 56 

H8 AZURE 

High 

performance 

compute 

8 56 

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup. 

Type 

 

Average of 

upload data 

 

Average of 

download data 

 

Task Length 

Delay 

sensitivity 

 

Health App 1500 25 9000 0.7 

Augmented 

Reality 
20 1250 3000 0.9 

Heavy 

Computing 
2500 200 45000 0.1 

Infotainment 25 1000 15000 0.3 

9.5 Results analysis 

Compare the proposed system with two different approaches. They are, a random approach 

where the user randomly chooses the service instance, and the second approach is when the 

broker chooses the service instance with the highest capability in terms of processing power 

available to associate the user with, compare these approaches focusing on two main metrics 

which are the service delay experienced by the users and the cost the user needs to pay per 

month, make this comparison in four distinct scenarios. They are: 

• First scenario: the users are motionless. Upon selecting a service instance from a 

certain CSP, the user establishes and maintains the association until the simulation time 

expires. This represents the policy of reserved VM. 

• Second scenario: the users are mobile and move around following a nomadic mobility, 

spending a specific duration on one site before moving on to the next. In this scenario, 

the service instance stays in the original data center with which it was associated and is 

not migrated. The payment policy here is also a reserved instance policy. 

• The third scenario involves clients moving around following a nomadic mobility model. 

In this scenario, test a cross-cloud migration, where the broker seamlessly migrates the 

service across multiple cloud providers ensuring the satisfaction of Service Level 

Agreement (SLA) requirements defined by the user. The payment policy in this 

scenario is pay-as-you-go policy (PAYG), where the user rent resources on-demand 

and only pays for his usage. 

For the first scenario, compare the proposed approach with two approaches. They are the Least 

Loaded (LL), in which the VM that is least loaded and within the budget of the user is chosen 

as a service instance. The second algorithm is a random selection, where the service instance 
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is chosen randomly. The simulation is performed for five runs and the average results for 

service delay and the client’s budget savings are illustrated in figures Figure 9.8, and Figure 

9.9. As shown in these figures, by employing our fuzzy logic approach, were able to achieve 

better results regarding the average service delay. The increase in the delay in accordance to 

the increase of the number of clients is normal due to the limited number of service instances 

in the scenario. 

 

FIGURE 9.8 AVERAGE SERVICE DELAY FOR IMMOBILE USERS. 

 

FIGURE 9.9 THE AVERAGE OF MONTHLY CLIENT PAYMENT. 

However, noted that our approach exhibits a more stable performance than both random and 

least-loaded approaches, where the variation in the delay is unnoticeable compared to the other 

two. This is a very important aspect from the service provider’s perspective as he is obligated 

to respect certain QoS limits defined in the SLA. Thus, employing our approach can guarantee 

more stable performance and prevent the violation of the SLA terms. The main reason why the 

LL approach failed to perform well is because service migration and dynamic task offloading 

are not supported in this scenario. Since each user is maintaining the association with the same 

service instance for the whole time, the effectiveness of choosing the least loaded instance is 

diminished. When comparing the proposed approach with the other two approaches regarding 

the average cost each customer has to pay, noticed LL and random approaches forced the clients 

to pay more as the number of clients increased. This is basically due to their imbalanced 

policies where the cost was not considered, and more users were associated with more 
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expensive service instances. On the other hand, our approach surpassed both approaches and 

the customer were still able to get the service with the same quality while maintaining the same 

payment. 

9.5.1 The effects of Client’s mobility 

In the second scenario, we tested the three approaches on mobile clients. The clients follow a 

nomadic mobility model, mimicking a normal person’s daily routine, where he goes to certain 

points of interest such as the workplace, university, or home, spends some time there, and then 

moves to other places. In this scenario, once the user is associated with a service instance, he 

maintains his association regardless of his current location. This represents some broker’s 

policy of no support for service migration. The results are illustrated in Fig. 10. All three 

approaches were significantly affected by the client’s mobility as shown in Fig. 10. This is 

mainly because the communication delay started to play a significant part in the overall delay 

as none of the three approaches was able to mitigate the impact of the user’s getting further 

away from the service instance. Our approach was not able to get notably better results in terms 

of the average service delay. However, it was able to maintain a certain stability in the 

performance, with less delay variation than both random and LL approaches. This is quite 

important for preventing SLA breaches. 

 

 

FIGURE 9.10 AVERAGE SERVICE DELAY FOR MOBILE USERS. 

9.5.2 Effects of Service Migration on SLA Compliance 

In the third scenario, examined the implementation of the three brokerage approaches on 

mobile users with the support of service migration. As the service instance associated with the 

user is changing in accordance with the user’s location, considered a pay-as-you-go pricing 

policy in each location, where the minimum reservation time is one hour. The resulting average 

service delay experienced by the clients as well as the average cost per user are illustrated in 

Figure 9.11 and Figure 9.12. Our approach and LL selection-based broker gave a very close 

performance in terms of service delay experienced by clients. The main advantage of our 

approach was in having the clients maintain the same quality of service while paying the same 

amount regardless of the number of users demanding the same service. 
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9.6 Real-World Implementation and Practical Implications 

Estimate that our model can be integrated into the cloud computing environment easily. Using 

fuzzy logic for ranking can facilitate the use of this broker for unprofessional users. 

Nevertheless, several issues can arise. First, observed a significant amount of computation 

when the number of users increased. This resulted in a longer simulation time than other 

approaches such as the random and the LL service selection. When used in practice, this may 

have an impact on scalability. However, when sufficient resources are allotted for the broker 

to carry out fuzzy-logic-based ranking, significant computation time can be avoided. 

 

 

FIGURE 9.11 AVERAGE SERVICE DELAY WITH MOBILE USERS AND SERVICE 

MIGRATION. 

 

 

FIGURE 9.12 AVERAGE MONTHLY PAYMENT IN CASE OF SERVICE MIGRATION. 

To further reduce the computation needed, have several suggestions. Users can be clustered 

and ranked as a single cluster to assist cut down on the amount of processing required for 

ranking. One of our model’s primary input parameters for ranking a user is the average task 

size of the application he utilizes. When multiple people use the same application, both group-

based and flow-based ranking are possible. For example, a group of video gamers at the same 
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location or a group of employees in a firm using the same application can be ranked as a cluster 

using the aggregated flow specifications. Subsequently, a single service instance can be 

assigned to this group instead of allocating an instance for each user. Computation can also be 

minimized by employing user profiling and assigning a fixed rank for some clients based on 

the sensitivity of their services. For instance, users of health applications can be assigned the 

highest rank (Gold) due to the sensitivity and importance of the data transmitted. 

9.7 Summary  

In this contribution, introduce a novel fuzzy logic-based broker that considers both the interests 

of the client and the service provider, analyze various scenarios, demonstrating the feasibility 

of our approach. For future work, aim to enhance the design of the proposed broker by 

incorporating additional parameters into the decision-making process, such as the delay 

sensitivity of applications and the client's mobility profile. Our observations revealed that 

network delay plays a significant role, especially in the absence of service migration support 

for mobile users. To address this, plan to implement a new mechanism within the broker to 

mitigate the impact of mobility on service quality. As discussed in previous chapters, utilizing 

a third-party intermediary, typically in the form of a cloud broker, is widely recommended. A 

cloud broker acts as middleware between potential customers and cloud service providers 

(CSPs). The inclusion of such an entity facilitates the provision of efficient and cost-effective 

services for users while also assisting with resource management and load balancing across 

multiple clouds or between instances within the same cloud. Cloud broking is a rapidly growing 

field driven by the increasing adoption of cloud computing. The cloud services broking (CSB) 

market is expected to continue its expansion in the coming years. CSBs are instrumental in 

managing multi-cloud and hybrid cloud environments, optimizing cloud expenditures, and 

integrating advanced technologies such as artificial intelligence (AI), big data, and the Internet 

of Things (IoT). Future advancements in cloud broking are expected to focus on deeper AI 

integration, enhanced security measures, expansion into emerging markets, and greater 

automation. This positions cloud broking as a dynamic and promising area of growth and 

innovation in the future. 
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Chapter 10 Theses  

Cloud computing is pivotal in contemporary IT infrastructure, providing scalable resource 

access through Service Level Agreements (SLAs) that dictate performance assurances. 

However, compliance, vendor lock-in, and varying Quality of Service (QoS) hinder decision-

making and operational efficiency. The expanding footprint of cloud data centers intensifies 

energy consumption concerns, underscoring the need for energy-efficient management 

strategies. Geographical distances between data centers impact round-trip times (RTT) and 

service reliability, compounded by qualitative rather than quantitative network performance 

data from Cloud Service Providers (CSPs). Efficient cloud-to-user latency management and 

network optimization are crucial for global service reliability. Furthermore, distributed 

transaction management must balance reliability and consistency amidst hardware failures, 

network disruptions, and latency fluctuations. Intelligent and adaptive cloud service 

management, including advanced resource allocation, SLA optimization, and predictive 

modeling, is crucial for enhancing performance, reducing latency, and ensuring scalable, cost-

effective, and sustainable cloud services aligned with evolving IT demands. The Intelligent 

Validation Cloud Broker System (IVCBS) enhances cloud computing efficiency through 

advanced fuzzy logic-based decision-making. It introduces a flexible mathematical model that 

reduces complexity and costs while improving accuracy in dynamically optimizing VM 

allocation. Leveraging a broker-driven approach enhanced with fuzzy logic, the system 

optimizes VM distribution based on incoming request packet sizes, enhancing VM efficiency, 

reducing latency, and improving overall system performance. Similarly, the Intelligent Cloud 

Brokerage System utilizes fuzzy logic and a TOPSIS-based approach to optimize service 

selection and resource management across diverse CSP offerings. Acting as an intermediary, 

it balances user preferences with provider capabilities to enhance service quality, affordability, 

and operational efficiency. This study contributes significant advancements in system 

development, scenario analysis, and the evaluation of service migration benefits, addressing 

critical challenges in cloud service optimization. In summary, the three primary theses of our 

research focus on enhancing cloud computing efficiency through innovative fuzzy logic-based 

decision-making in VM allocation and service selection, thereby improving overall system 

performance and operational efficiency. 

I. Intelligent SLA Guarantee Model for Cloud Computing: A Fuzzy Logic-Based 

Approach to RTT Estimation and SLA Classification 

The suggested Intelligent SLA Guarantee Model for Cloud Computing is a fuzzy logic-

based approach, which is suitable for round trip time (RTT) estimation and service level 

agreement (SLA) classification using a human-friendly linguistic term format. 

II. Intelligent Validation Cloud Broker System (IVCBS): A Fuzzy Logic-Based 

Approach for Optimizing Virtual Machine Allocation and Enhancing Cloud 

Computing Efficiency 

The suggested Intelligent Validation Cloud Broker System (IVCBS) is a fuzzy logic-based 

approach that is suitable for virtual machine allocation and cloud computing efficiency 

optimization. 

III. Intelligent Cloud Brokerage System: A Fuzzy Logic and TOPSIS-Based Approach 

for Optimized Service Selection and Resource Management 
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The suggested Intelligent Cloud Brokerage System is a Fuzzy Logic and TOPSIS-based 

approach that is suitable for cloud computing service selection and resource management 

optimization. 

10.1 Future Research Direction 

• Future research should focus on integrating IoT, edge computing, and 5G to enhance 

cloud computing scalability and interoperability. Real-world testing is crucial to 

evaluate performance, adaptability, and SLA management. Incorporating machine 

learning and fuzzy logic can optimize SLA classification and QoS adjustments, 

improving efficiency and reliability. Additionally, adaptive traffic management should 

be explored to enhance QoS, resource allocation, and fault recovery. Further research 

on SLA prioritization will optimize cloud resource utilization and user satisfaction. 

These advancements will contribute to intelligent, adaptive, and efficient cloud 

brokerage systems, ensuring better service selection and resource optimization in 

dynamic cloud environments. 

• Enhance cross-cloud compatibility through standardized integration methods, ensuring 

seamless workload distribution across heterogeneous platforms for individual users and 

enterprises. This will also improve energy efficiency, reducing data centers' carbon 

footprint while maintaining high performance. Leveraging machine learning-driven 

workload distribution enables real-time optimization, dynamically adapting to service 

demands and enhancing resource efficiency. Addressing security and compliance 

challenges is crucial to mitigating vulnerabilities, improving data privacy, and 

maintaining regulatory standards in multi-cloud environments. Additionally, context-

aware decision-making in cloud brokerage systems should incorporate application 

delay sensitivity and client mobility profiles. Developing adaptive mechanisms to 

adjust resource allocation dynamically will help mitigate network delay, ensuring 

seamless service quality, minimal latency, and optimal performance in mobile cloud 

environments. 
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Appendices  

Appendix 1: Cloud Computing  

 

APPENDIX 1: 0.1 FIGURE 1. NIST CLOUD COMPUTING REFERENCE MODEL. 

 

APPENDIX 1: 0.2 FIGURE 2. THE ESSENTIAL CHARACTERISTICS OF CLOUD 

COMPUTING. 

 

Appendix 2: Adoption and Implementation of Cloud Platforms  

 

APPENDIX 2: 0.1 FIGURE 1. (A) SINGLE APPLICATION SERVER. (B) VIRTUALIZED 

SERVER. 
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APPENDIX 2: 0.2 FIGURE 2. HARDWARE SERVER COMPONENTS. 

 

 

APPENDIX 2: 0.3 FIGURE 3. TYPE1 HYPERVISOR. 

 

 

APPENDIX 2: 0.4 FIGURE 4. TYPE2 HYPERVISOR. 
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APPENDIX 2: 0.5 FIGURE 5. DATA CENTER NETWORK ARCHITECTURE. 

Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA. 

Hardware availability month 99% uptime in a calendar month 

Power availability  99.99% of the time in a calendar month 

Data center network 

availability 
99.99% of the time in a calendar month 

Backbone network 

availability 
99.999% of the time in a calendar month 

Service credit for 

unavailability 

Refund of service credit prorated on 

downtime period 

Outage notification 

guarantee 

Notification of customer within 1 hr. of 

complete downtime 

Internet latency 

guarantee 

When latency is measured at 5-min 

intervals to an upstream 

provider, the average doesn’t exceed 60 

msec 

Packet loss guarantee Shall not exceed 1% in a calendar month 

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA. 

Service-level 

parameter metric 

• Web site response time (e.g., max of 3.5 sec 

per user request) 

• Latency of web server (WS) (e.g., max of 

0.2 sec per request) 

• Latency of DB (e.g., max of 0.5 sec per 

query) 

Function • Average latency of WS= (latency of web 

server 1+latency of web server 2) /2 

• Web site response time= Average latency of 

web server+ latency of database 

Measurement 

directive 

• DB latency available via 

http://mgmtserver/em/latency 

• WS latency available via 

http://mgmtserver/ws/instanceno/latency 

Service-level 

objective 

Service Assurance 

Penalty • web site latency, 1 sec when concurrent 

connection, 1000 Penalty. 

• 1000 USD for every minute while the SLO 

was breached 

Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time 

(RTT) for Optimal SLA Evaluation 
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APPENDIX 3: 0.1 FIGURE 1. RTT PROCESS. 

The RTT calculation, The ensuing diagram and equations provide a visual representation of 

how the round-trip time is computed 

Server RTT: 

• RTTs1 = t2 - t1 

• RTTs2 = t5 - t4 

Client RTT: 

• RTTc1 = t3 - t2 

• RTTc2 = t7 - t6 

Average Server RTT = (RTTs1 + RTTs2)/2 

Average Client RTT = (RTTc1 + RTTc2)/2 

Average Total RTT = avRTTs + avRTTc 
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APPENDIX 3: 0.2 FIGURE 2. PING TESTING PROCESS. 

 

 

APPENDIX 3: 0.3 FIGURE 3. AWS LATENCY TEST. 

 

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions. 

http://aws.amazon.com/
http://aws.amazon.com/
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No 
Region 

name 

Distance 

(KM) 
Latitude 

Longitude Endpoint 

1 Bahrain 862.94 26.0667 50.5577 ec2.me-south-1.amazonaws.com 

2 
UAE – 

Dubai 

1234.23 25.276987 55.296249 ec2.me-central-1.amazonaws.com 

3 Mumbai 3089.72 19.0760 72.8777 ec2.ap-south-1.amazonaws.com 

4 Milan 3428.79 45.4642 9.1900 ec2.eu-south-1.amazonaws.com 

5 Zurich 3525.01 47.3769 8.5417 ec2.eu-central-2.amazonaws.com 

6 Frankfurt 3601.23 50.1109 8.6821 ec2.eu-central-1.amazonaws.com 

7 Paris 3607.54 48.8566 2.3522 ec2.eu-west-3.amazonaws.com 

8 London 4009.87 51.5074 -0.1278 ec2.eu-west-2.amazonaws.com 

9 Spain 4202.65 41.6488 -0.8891 ec2.eu-south-2.amazonaws.com 

10 Ireland 4238.49 53.3331 -6.2489 ec2.eu-west-1.amazonaws.com 

11 Stockholm 4682.33 59.3293 18.0686 ec2.eu-north-1.amazonaws.com 

12 
Hong 

Kong 

5981.25 22.3193 114.1694 ec2.ap-east-1.amazonaws.com 

13 Hyderabad 6012.87 17.3850 78.4867 ec2.ap-south-2.amazonaws.com 

14 Osaka 6789.34 34.6937 135.5023 ec2.ap-northeast-

3.amazonaws.com 

15 Seoul 7056.22 37.5665 126.9780 ec2.ap-northeast-

2.amazonaws.com 

16 Singapore 7289.64 1.3521 103.8198 ec2.ap-southeast-

1.amazonaws.com 

17 Tokyo 7435.78 35.6895 139.6917 ec2.ap-northeast-

1.amazonaws.com 

18 Jakarta 7832.90 -6.2088 106.8456 ec2.ap-southeast-

3.amazonaws.com 

19 
Kuala 

Lumpur 

8053.21 3.1390 101.6869 ec2.ap-southeast-

4.amazonaws.com 

20 

Canada 

Central – 

Ottawa 

8923.45 45.4215 -75.6972 ec2.ca-central-1.amazonaws.com 

21 
N. 

Virginia 

10023.67 38.0336 -78.5080 ec2.us-east-1.amazonaws.com 

22 Ohio 10289.47 39.9612 -82.9988 ec2.us-east-2.amazonaws.com 
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23 
N. 

California 

12345.89 37.7749 -122.4194 ec2.us-west-1.amazonaws.com 

24 Oregon 12678.56 45.5234 -122.6762 ec2.us-west-2.amazonaws.com 

25 Melbourne 13756.90 -37.8136 144.9631 ec2.ap-southeast-

4.amazonaws.com 

26 Sydney 14321.76 -33.8688 151.2093 ec2.ap-southeast-

2.amazonaws.com 

27 
Cape 

Town 

14989.34 -33.9249 18.4241 ec2.af-south-1.amazonaws.com 

28 São Paulo 15478.65 -23.5505 -46.6333 ec2.sa-east-1.amazonaws.com 

 

❖ Haversine Formula 

The formula to compute the distance d between two points (lat1, lon1) and (lat2, lon2) is: 

𝑑 = 2𝑅. arcsin ( √𝑠𝑖𝑛2 (
Δφ

2
) + cos(φ1) . cos(φ2) . 𝑠𝑖𝑛2  (

Δλ

2
)  ) 

Where: 

• d = distance between the two points (in kilometers or miles). 

• R = Earth's radius (mean radius = 6371 km or 3958.8 miles). 

• φ1, φ2 = latitudes of the two points in radians. 

• λ1, λ2 = longitudes of the two points in radians. 

• Δφ =φ2−φ1 (difference in latitudes). 

• Δλ =λ2−λ1 (difference in longitudes). 

 

APPENDIX 3: 0.5 FIGURE 4. DEFINE FIRST INPUT (DISTANCE). 
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APPENDIX 3: 0.6 FIGURE 5. DEFINE SECOND INPUT (NETWORK-CONGESTION).  

 

APPENDIX 3: 0.7 FIGURE 6. DEFINE OUTPUT (RTT-EXPECTATION). 

 

 

APPENDIX 3: 0.8 FIGURE 7. RULE BASE SYSTEM. 

Appendix 4: Quality of Service (QoS) Availability Assessment for Optimal SLA 

Selection 
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Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels. 

Years of 

continuous 

operations 

1 2 3 

Availability Maximum allowable downtime 

99.0000% (2–

9s) 

3 d 15 h 36 min 

0 s 

7 d 7 h 12 min 0 

s 

10 d 22 h 48 min 

0 s 

99.9000% (3–

9s) 
8 h 45 min 15 s 17 h 31 min 12 s 

1 d 2 h 16 min 48 

s 

99.9900% (4–

9s) 
52 min 34 s 1 h 45 min 7 s 2 h 37 min 41 s 

99.9990% (5–

9s) 
5 min 15 s 10 min 31 s 

15 min 46 s 

99.9999% (6–

9s) 
32 s 1 min 3 s 1 min 3 s 1 min 35 s 

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs. 

 

The universe of discourse for both (Computing and networking) inputs 

90 93.39966 96.79932 

90.09999 93.49965 96.89931 

90.19998 93.59964 96.9993 

90.29997 93.69963 97.09929 

90.39996 
93.79962 

 
97.19928 

90.49995 
93.89961 

 
97.29927 

90.59994 93.9996 97.39926 

90.69993 
94.09959 

 
97.49925 

90.79992 94.19958 97.59924 

90.89991 94.29957 97.69923 
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90.9999 94.39956 97.79922 

91.09989 94.49955 97.89921 

91.19988 94.59954 97.9992 

91.29987 94.69953 98.09919 

91.39986 
94.79952 

 
98.19918 

91.49985 94.89951 98.29917 

91.59984 94.9995 98.39916 

91.69983 95.09949 98.49915 

91.79982 95.19948 98.59914 

91.89981 95.29947 98.69913 

91.9998 95.39946 98.79912 

92.09979 95.49945 98.89911 

92.19978 95.59944 98.9991 

92.29977 95.69943 99.09909 

92.39976 95.79942 99.19908 

92.49975 95.89941 99.29907 

92.59974 95.9994 99.39906 

92.69973 96.09939 99.49905 

92.79972 96.19938 99.59904 

92.89971 96.29937 99.69903 

92.9997 96.39936 99.79902 

93.09969 96.49935 99.89901 

93.19968 96.59934 

99.999 93.29967 

 
96.69933 

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime. 
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• EX: In equation form for 90% uptime in a single day: 

Uptime in seconds: 

       Uptime=Total Time per day × Uptime percentage; Where: 

Total Time per day = 86,400 seconds (for 24 hours), 

       Uptime percentage = 0.90 for 90%. 

Downtime in second: 

        Downtime=Total Time per day × (1- Uptime percentage); Where: 

        Downtime percentage=1 - 0.90  

                Downtime= 0.10 

Then In equation form for 90% Uptime in a single day: 

        Uptime = 86,400 × 0.90 =77,760 seconds 

         Downtime = 86,400 × (1-0.90) 

                Downtime = 8,640 seconds 

To convert seconds into hours, minutes, and seconds: 

▪ Uptime:77,760 seconds =21 hours,36 minutes. 

▪ Downtime:8,640 seconds = 2 hours,2 minutes. 

These equations provide a clear way to calculate uptime and downtime for any  

percentage of uptime over any given period (e.g., a day, week, month, or year). 

Appendix 5: Implementation details of the three proposed algorithms for the system 

Appendix 5:0.1 Detailed Analysis of the First Algorithm 

▪ Maximum value: 67,170 

▪ Point1 = Maximum value / 4 

▪ Point2 = 2 * Point1 

▪ Point3 = 3 * Point1 
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▪ Point4 = 4 * Point1 

▪ 𝜇small: [0 0 point2] 

▪ 𝜇medium: [point1 point2 point3] 

▪ 𝜇big: [point2 point4 point4] 

▪ When 0 ≤ value ≤point1 

Consider input value is 165  

Calculate Small Membership function: 

𝜇small (165) =( - value/point2)+1 

𝜇small (165) =( -165/33585)+1 

𝜇small (165) = -0.00491+1 

𝜇small (165) = 0.995087092 

" 𝜇medium (165) " remains 0 since the input value falls within the 0 to Point1 range. 

" 𝜇big (165) " remains 0 since the input value falls within the 0 to Point1 range. 

• When point1 ≤ value ≤point2 then: 

Consider input value is 20892  

Calculate Small Membership function: 

𝜇small (20892) = (- value/point2)+1 

𝜇small (20892) = - 0.6218+1 

𝜇small (20892) = 0.377936579 

Calculate α 

α= value – point2 

α=20892 – 33585 

α= - 12693 

Calculate medium Membership function: 

𝜇medium (20892) = (-1/point2 - point1). | α |+1 

𝜇medium (20892) = (-1/33585– 16792.5). |12693|+1 

𝜇medium(20892)= (-1/16792.5) . 12693+1 

𝜇medium(20892)= - 0.7560+1 

𝜇medium(20892)=0.244126842 

" 𝜇big(20892)" remains 0 since the input value falls within the Point1 to Point2 range. 

Appendix 5:0.2 Detailed Analysis of the Second Algorithm 

• Maximum value: 67,170 
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• Point1 = Maximum value / 5 

• Point2 = 2 * Point1 

• Point3 = 3 * Point1 

• Point4 = 4 * Point1 

• Point5 =5 * point1 

• 𝜇small: [0  0  point1  point2] 

• 𝜇medium: [point1  point2  point3  point4] 

• 𝜇big: [point3  point4 point4  point5] 

• When 0 ≤ value ≤point1 then: 

𝜇small (value) = 1 

" 𝜇medium (value) " remains 0 since the input value falls within the 0 to Point1 range. 

" 𝜇big(value) " remains 0 since the input value falls within the 0 to Point1 range. 

• When point1 ≤ value ≤point2 

Consider input value is 17132  

Calculate Small Membership function degree: 

𝜇small (value) = (- value/point2)+1 

𝜇small (17132) = (- 17132/33585)+1 

𝜇small (17132) = - 0.6376+1 

𝜇small (17132) = 0.362364151 

Calculate α: 

α= value – point2 

α=17132 – 26868 

α= - 9736 

Calculate medium Membership function degree: 

𝜇medium (17132) = (-1/point2 - point1). | α |+1 

𝜇medium (17132) = (-1/26868 – 13434). |- 9736 |+1 

𝜇medium (17132) = (-1/13434). 9736+1 

𝜇medium (17132) = -0.7248+1 

𝜇medium (17132) =0.275271699 

" 𝜇big (17132)" remains 0 since the input value falls within the Point1 to Point2 range. 

Appendix 5:0.3 Detailed Analysis of the Third Algorithm 

• Maximum value: 67,170 

• Point1=0 
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• Point2=Maximum value/2 

• Point4=Maximum value 

• Standard Deviation  𝜎 =16339 

• Small center= csmall=point1 

• 𝜇small: [ 𝜎   𝑝𝑜𝑖𝑛𝑡1] 

• Medium center= cmedium=point2 

𝜇medium: [ 𝜎   𝑝𝑜𝑖𝑛𝑡2] 

• Big center= cbig=point4 

𝜇big: [ 𝜎   𝑝𝑜𝑖𝑛𝑡4] 

Consider input value is 11381 

• Calculate Small membership function degree 

𝜇small (11381) =Exp (-(11381-0)2/2. (16339)2) 

Calculate the squared difference: 

(11381-0)2=129564361 

Compute 2. 𝜎2=2. (16339)2 

=533906642 

Divide and apply the exponent: 

𝜇small (11381) =Exp ( -129564361/533906642) 

𝜇small (11381) =Exp (-0.2426) 

𝜇small(11381) =0.784590058 

• Calculate Medium membership function degree 

𝜇medium (11381) =Exp (-(11381-33585)2/2.(16339)2) 

Calculate the squared difference: 

(11381-33585)2=494383296 

Divide and apply the exponent: 

𝜇medium (11381) =Exp ( -494383296/533906642) 

                   𝜇medium =Exp(-0.9263)  

            𝜇medium = 0.397173449 

• Calculate Big membership function degree 

𝜇big (11381) =Exp (-(11381-67170)2/2. (16339)2) 

Calculate the squared difference: 

(11381-67170)2=3104115681 

Divide and apply the exponent: 

𝜇big (11381) =Exp ( -3104115681/533906642) 

𝜇big (11381) =Exp (-5.8146) 

𝜇big (11381) = 0.002940142 

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in 

Uncertain Domains  
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APPENDIX 6: 0.1 FIGURE 1. DATABASE ADDRESSES. 

 

 

APPENDIX 6: 0.2 FIGURE 2. USER TASK BEFORE CLASSIFY. 

 

APPENDIX 6: 0.3 FIGURE 3. MAMDANI TRIANGULAR MF. 
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APPENDIX 6: 0.4 FIGURE 4. MAMDANI TRAPEZOIDAL MF. 

 

APPENDIX 6: 0.5 FIGURE 5. MAMDANI GAUSSIAN MF. 

Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms 

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs. 

EC2-

families 

AWS-General-Purpose Instance -features 

Resource 

efficiency 

Instance 

Storage 

Enhance Security 

M6g AWS 

Nitro 

system 

EBS or Nonvolatile 

Memory express (NVMe) 

based solid-state drive 

(SSD) storage 

NVMe SSDs 

256-bit DRAM 

encryption 

M5 

AWS 

Nitro 

system 

EBS or NVMe SSDs XTS-AES-256 Cipher 

M6i 

AWS 

Nitro 

system 

EBS or NVMe SSDs Total Memory 

Encryption (TME) 

M6a 

AWS 

Nitro 

system 

Elastic Block Store (EBS) AMD Transparent 

Single key Memory 

Encryption (TSME) 
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Appendix 7: 0.2 Table 2. AWS data centers and general costs. 
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Appendix 7: 0.3 Table 3. Delay matrix. 

Geographic-

Regions 

R0 R1 R2 R3 R4 R5 

R0 3,27 

 ms 

117,23 

ms 

94,24 

ms 

190,95 

ms 

227,74 

ms 

199,16 

ms 

R1 117,23 

ms 

2,63 

ms 

205,77 

ms 

299,86 

ms 

341,07 

ms 

312,32 

ms 

R2 94,24  

ms 

205,77 

ms 

4,99 

ms 

128,66 

ms 

155,91 

ms 

248,86 

ms 

R3 190,95 

ms 

299,86 

ms 

128,66 

ms 

3,51 

ms 

270,64 

ms 

153,24 

ms 
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R4 227,74 

ms 

341,07 

ms 

155,91 

ms 

270,64 

ms 

8,1 ms 415 

ms 

R5 199,16 

ms 

312,32 

ms 

248,86 

ms 

153,24 

ms 

415 

ms 

4,42 

ms 

Appendix 7: 0.4 Table 4. Fundamental Data Center. 

31-AWS 

(DC- 

single 

instance) 

Geographic 

Regions 
Arch OS VMM 

Data 

transfer 

cost 

Physical 

HW-

units 

DC1 R0-N.virgina X86 Linux Xen 0,02 1 

DC2 R0- Ohio X86 Linux Xen 0,02 1 

DC3 R0-N.California X86 Linux Xen 0,02 1 

DC4 R0- Oregon X86 Linux Xen 0,02 1 

DC5 R0- Canada Central X86 Linux Xen 0,02 1 

DC6 R0-Canada west(Calgary) X86 Linux Xen 0,02 1 

DC7 R0-AWS GovCloud(US-

East) 

X86 Linux Xen 0,02 1 

DC8 R0-AWS GovCloud(US-

West) 

X86 Linux Xen 0,02 1 

DC9 R1- São Paulo X86 Linux Xen 0,02 1 

DC10 R2- Frankfurt X86 Linux Xen 0,02 1 

DC11 R2- Ireland X86 Linux Xen 0,02 1 

DC12 R2- London X86 Linux Xen 0,02 1 

DC13 R2- Milan X86 Linux Xen 0,02 1 

DC14 R2- Paris X86 Linux Xen 0,02 1 

DC15 R2- Spain X86 Linux Xen 0,02 1 

DC16 R2- Stockholm X86 Linux Xen 0,02 1 

DC17 R2- Zurich X86 Linux Xen 0,02 1 

DC18 R3- Hong Kong X86 Linux Xen 0,02 1 

DC19 R3- Hyderabad X86 Linux Xen 0,02 1 

DC20 R3-Jakarta X86 Linux Xen 0,02 1 

DC21 R3- Melbourne X86 Linux Xen 0,02 1 

DC22 R3- Mumbai X86 Linux Xen 0,02 1 

DC23 R3- Osaka X86 Linux Xen 0,02 1 

DC24 R3- Seoul X86 Linux Xen 0,02 1 

DC25 R3- Singapore X86 Linux Xen 0,02 1 

DC26 R3- Sydney X86 Linux Xen 0,02 1 

DC27 R3- Tokyo X86 Linux Xen 0,02 1 

DC28 R4- Cape town X86 Linux Xen 0,02 1 

DC29 R4- Bahrain X86 Linux Xen 0,02 1 

DC30 R4- Israel X86 Linux Xen 0,02 1 

DC31 R4- UAE X86 Linux Xen 0,02 1 

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class specifications. 

11-AWS-EC2 

Instances 

Data Centers Utilized for Execution within 

the EC2 Class Specification 
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# of 

DCs 

# of 

VM 

VM policy 

M6g.medium 31 1 Time-Shared 

M6g.large 31 1 Time-Shared 

M6g.xlarge 31 1 Time-Shared 

M5.2xlarge 31 1 Time-Shared 

M5.4xlarge 31 1 Time-Shared 

M6gd.8xlarg 31 1 Time-Shared 

M6gd.12xlarge 31 1 Time-Shared 

M6g.metal 31 1 Time-Shared 

M5d.metal 31 1 Time-Shared 

M6i.metal 31 1 Time-Shared 

M6a.metal 31 1 Time-Shared 

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods. 

31-AWS 

(DC- 

single 

instance) 

Geographic 

Regions 

EC2 Cost ($) Physical 

HW-units 

DC1 R0-N.virgina M6g.medium 0.0385 1 

DC2 R0- Ohio M6g.xlarge 0.154 1 

DC3 R0-N.California M5.4xlarge 0.896 1 

DC4 R0- Oregon M6gd.12xlarge 2.1696 1 

DC5 R0- Canada Central M5d.metal 6.048 1 

DC6 R0-Canada west(Calgary) M6a.metal 8.3922 1 

DC7 R0-AWS GovCloud(US-

East) 

M6g.large 0.0968 1 

DC8 R0-AWS GovCloud(US-

West) 

M5.2xlarge 0.484 1 

DC9 R1- São Paulo M6gd.8xlarg 2.304 1 

DC10 R2- Frankfurt M6g.metal 2.944 1 

DC11 R2- Ireland M6i.metal 6.848 1 

DC12 R2- London M6g.medium 0.0444 1 

DC13 R2- Milan M6g.xlarge 0.1792 1 

DC14 R2- Paris M5.4xlarge 0.896 1 

DC15 R2- Spain M6gd.12xlarge 2.4192 1 

DC16 R2- Stockholm M5d.metal 5.76 1 

DC17 R2- Zurich M6a.metal 9.6878 1 

DC18 R3- Hong Kong M6g.large 0.106 1 

DC19 R3- Hyderabad M5.2xlarge 0.404 1 

DC20 R3-Jakarta M6gd.8xlarg 1.808 1 

DC21 R3- Melbourne M6g.metal 3.072 1 

DC22 R3- Mumbai M6i.metal 6.464 1 

DC23 R3- Osaka M6g.medium 0.0496 1 

DC24 R3- Seoul M6g.xlarge 0.188 1 

DC25 R3- Singapore M5.4xlarge 0.96 1 

DC26 R3- Sydney M6gd.12xlarge 2.736 1 

DC27 R3- Tokyo M5d.metal 7.008 1 

DC28 R4- Cape town M6a.metal 9.513 1 
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DC29 R4- Bahrain M6g.large 0.094 1 

DC30 R4- Israel M5.2xlarge 0.449 1 

DC31 R4- UAE M6gd.8xlarg 1.7728 1 

 

This MATLAB code serves as a foundational tool for analyzing and improving cloud 

resource allocation, playing a crucial role in system enhancement, have demonstrated that 

similar to previous examples, the following steps outline the configuration of the trapezoidal 

membership function. This continuation ensures a comprehensive understanding of our 

approach. 

• Data Import and Initialization 

This section initializes the fuzzy inference system to explore the intelligent features built into 

the Intelligent Validation Cloud Broker System (IVCBS), looked into the complex sorting of 

VCPU sources, using them as a key example. This strict method is used the same way for all 

VM resources and user requests,. This makes sure that the SLA-level classification is correct 

and reliable. Moreover, to demonstrate the alignment of our mathematical model with the 

trapezoidal membership function, referenced this approach in the discussion on initializing 

and depicting the membership function. This MATLAB code is crucial, serving as a 

foundational tool for the analysis and enhancement of cloud resource allocation. 

 

APPENDIX 7:0.7 FIGURE 1. VCPU CLASSIFICATION CODE. 

clear; close all; CLC; warning off fis = newfis('Classification'); d = xlsread('VCPU.xlsx'); 

Input-Value = d(:,1); MAX = max(Input-Value); 
 
(fis) and reads input data from an Excel file ('VCPU.xlsx'), extracting the 'Input-Value' column 
and determining the maximum value for normalization. 

• Defining Membership Functions 

pV1 = 1; pV2 = 2; pV3 = 4; pV4 = 8; pV5 = 16 ; 

pV6 = 32; pV7 = 48; pV8 = 64; pV9 = 96; pV10 = 128; pV11 = 192 ; 

fis = addvar(fis, 'input', 'VCPU', [0 MAX]) ; 

fis = addmf(fis, 'input', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ; 

fis = addmf(fis, 'input', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ; 
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fis = addmf(fis, 'input', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ; 

fis = addmf(fis, 'input', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ; 

fis = addmf(fis, 'input', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]) ; 

fis = addvar(fis, 'output', 'VCPU Level', [0 MAX]); 

fis = addmf(fis, 'output', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ; 

fis = addmf(fis, 'output', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ; 

fis = addmf(fis, 'output', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ; 

fis = addmf(fis, 'output', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ; 

fis = addmf(fis, 'output', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]); 

 

Membership functions (MFs) for the input and output variables are defined using trapezoidal 

membership functions (trapmf). These functions categorize the VCPU values into linguistic 

variables: Poor, Fair, Good, Very Good, and Excellent. 

• Visualization 

figure  

plotmf(fis, 'input', 1); 

This visualizes the trapezoidal membership functions. Finally, the specific MATLAB software 

and libraries, along with the parameters and functions examined in the Intelligent Cloud Broker 

Validation System, were represented. After the broker finalizes the classification of user 

requests and SLA resources using the classification algorithm, it then performs precise 

matching of the validation results, ensuring that all outcomes equate to 1. This is accomplished 

through a specialized matching algorithm. This section delves into both algorithms, showcasing 

their crucial role in guaranteeing intelligent SLA selection for executing corresponding user 

requests. The following context in this section illustrates both algorithms. 

 

APPENDIX 7:0.8 FIGURE 2.  APPLY THE TRAPEZOIDAL PROPOSED MODEL OF 

CPU LEVELS. 
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APPENDIX 7:0.9 FIGURE 3. IVCBS-RESPONSE TIME BY REGION (OPTIMIZE 

RESPONSE TIME POLICY). 

 

APPENDIX 7:1.0 FIGURE 4. IVCBS-RESPONSE TIME BY REGION (RECONFIGURE 

DYNAMICALLY POLICY). 
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APPENDIX 7:1.1 FIGURE 5. IVCBS DC- REQUEST SERVICING TIME (OPTIMIZE 

RESPONSE TIME POLICY). 

 

APPENDIX 7:1.2 FIGURE 6. IVCBS DC- REQUEST SERVICING TIME (DYNAMIC 

RECONFIGURATION POLICY). 

 

APPENDIX 7:1.3 FIGURE 7. ROUTING STRATEGY BY THE DYNAMIC 

RECONFIGURATIONS POLICY. 
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APPENDIX 7:1.4 FIGURE 8. ROUTING STRATEGY BY THE OPTIMIZED RESPONSE 

TIME POLICY. 

 

APPENDIX 7:1.5 FIGURE 9. TRADITIONAL-RESPONSE TIME BY REGION 

(OPTIMIZE RESPONSE TIME POLICY). 

 

APPENDIX 7:1.6 FIGURE 10. TRADITIONAL-RESPONSE TIME BY REGION 

(RECONFIGURE DYNAMICALLY POLICY). 
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APPENDIX 7:1.7 FIGURE 11. TRADITIONAL DC- REQUEST SERVICING TIME 

(OPTIMIZE RESPONSE TIME POLICY). 

 

APPENDIX 7:1.8 FIGURE 12. TRADITIONAL DC- REQUEST SERVICING TIME 

(DYNAMIC RECONFIGURATION POLICY). 

Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven 

Approach 

 



150 

 

APPENDIX 8:0.1 FIGURE 1. FUZZY RULE BASE. 

Appendix 8:0.2 Table 1. User base configuration. 

User Bases Geographic- 

Regions 

Requests- 

per users 

per Hour 

Peak Hours 

(GMT) 

Avg 

peak 

users 

Avg 

Off- 

peak 

users 

Start End 

UB1 :1000 R0: North 

America 

60 12 15 800 100 

UB2 :1000 R1: South 

America 

60 14 17 1000 100 

UB3 :1000 R2: Europe 60 19 22 1000 100 

UB4 :1000 R3: Asia  60 0 3 700 100 

UB5 :1000 R4: Africa and 

middle east 

60 20 23 900 100 

UB6 :1000 R5: Africa 60 8 11 1000 100 

UB7:1000 R0: North 

America 

60 6 9 1000 100 

UB8:1000 R1: South 

America 

60 12 15 500 100 

UB9 :1000 R2: Europe 60 18 21 750 100 

UB10 :1000 R3: Asia 60 7 9 1000 100 

Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center. 
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APPENDIX 8:0.4 FIGURE 2. SIMULATION PROCESS. 

 

APPENDIX 8:0.5 FIGURE 3. SURFACE VIEWER FOR FUZZY MODEL OUTPUT. 
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