
University of Miskolc

FACULTY OF MECHANICAL ENGINEERING AND

INFORMATICS

Adaptive Fuzzy Logic Models for Efficient Cloud Service Management and SLA

Optimization

PhD DISSERTATION

AUTHOR:

Ihab Razzaq Sekhi

MSc in Information Science

József Hatvany Doctoral School of

Information Science, Engineering and Technology

HEAD OF DOCTORAL SCHOOL

Prof. Dr. Jenő SZIGETI

ACADEMIC SUPERVISORS

Prof. Szilvester Kovacs

Dr. Károly Nehéz

Miskolc

2025

I

Declaration of Authorship

The author hereby declares that this dissertation has not been submitted, either in the same or

in a different form, to this or to any other university for obtaining a PhD degree. The author

confirms that the submitted work is his own and the appropriate credit has been given where

reference has been addressed to the work of others.

Author's declaration

I, the undersigned, Ihab Razzaq Sekhi, affirm that I have independently prepared this doctoral

dissertation utilizing solely the sources provided. All content borrowed from external sources,

whether quoted verbatim or paraphrased, has been clearly cited with appropriate references.

March 22, 2025.

 Ihab Razzaq Sekhi

II

Acknowledgments

First and foremost, I express my sincere gratitude to Allah, the Almighty, for granting me

countless blessings, wisdom, and inspiration, enabling me to complete this dissertation.

I also extend my heartfelt thanks to the University of Miskolc, Faculty of Mechanical

Engineering and Informatics, for providing me with the opportunity to pursue a PhD in

information technology.

While this dissertation represents the culmination of my efforts, its success is also the result of

invaluable guidance and encouragement from many individuals. It would not have been

possible without the unwavering support of those around me and the dedication and hard work

invested over the past four years.

I am particularly grateful to my supervisors, Professor Szilveszter Kovacs and Dr. Károly

Nehéz, for their continued support, direction, and encouragement throughout this journey. This

dissertation would not have come to fruition without their expert guidance. I would also like to

thank everyone in the Computer Science Department for their contributions.

In addition, I am thankful to my department colleagues for their assistance and support,

especially in organizing events related to my doctoral studies.

Finally, I would like to express my profound gratitude to my family, particularly my parents

and siblings, whose unwavering support and encouragement have been instrumental in helping

me achieve this milestone.

Ihab Razzaq Sekhi

III

Table of Contents

Declaration of Authorship.. I

Author's declaration ... I

Acknowledgments... II

Table of Contents ... III

List of Abbreviations .. VIII

List of Figures ... X

List of Tables .. XIII

Chapter 1 General Introduction ... 1

1.1 Problem statement .. 3

1.2 The objectives of the thesis .. 4

1.3 Dissertation Structure and Organization .. 5

Chapter 2 Cloud Computing .. 7

2.1 Cloud Computing Service Models and Offerings .. 7

2.2.1 Infrastructure as a Service (IaaS) .. 7

2.1.2 Platform as a Service (PaaS) ... 8

2.1.3 Software as a Service (SaaS) .. 9

2.2 Cloud Deployment Models .. 9

2.2.1 public cloud ... 10

2.2.1.1 Technical Architecture ... 10

2.2.1.2 Operational Considerations .. 10

2.2.2 Private Cloud .. 10

2.2.2.1 Technical Architecture ... 11

2.2.2.2 Technical Operational Considerations ... 11

2.2.3 Hybrid Cloud .. 11

2.2.3.1 Technical Architecture ... 12

2.2.3.2 Operational Considerations .. 12

2.2.4 Community Cloud ... 12

2.2.4.1 Technical Architecture ... 13

2.2.4.2 Operational Considerations .. 13

2.3 Characteristics of Cloud Computing .. 13

Chapter 3 Adoption and Implementation of Cloud Platforms ... 15

3.1 Key Drivers for Cloud Platform Adoption .. 15

3.1.1 Enhancing Business Agility .. 15

3.1.2 Business Adaptability ... 15

3.1.3 Ensuring Business Continuity ... 16

3.1.3.1 Cloud Redundancy and Disaster Recovery .. 16

3.1.3.2 High Availability in Cloud Adoption .. 16

3.1.3.3 Data Durability and Integrity ... 17

3.2 Security Considerations in Cloud Adoption .. 17

3.3 Economic Implications of Cloud Computing .. 17

IV

3.4 Virtualization in Cloud Infrastructure .. 17

3.4.1 Fundamentals of Hardware Virtualization .. 18

3.4.2 Hypervisor Technologies in Cloud Environments .. 18

3.4.2.1 Type 1 Hypervisors .. 18

3.4.2.2 Type 2 Hypervisors .. 18

3.5 Virtual Machines and Cloud Workloads .. 19

3.6 Network Architecture in Cloud Computing ... 19

3.6.1 Data Center Networks ... 19

3.6.2 Data Center Interconnect Network ... 20

3.7 Cloud Service Providers and Vendor Ecosystem .. 21

3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing 21

3.7.1.1 Infrastructure SLA ... 22

3.7.1.2 Application SLA .. 22

3.8 Amazon Web Services (AWS) .. 22

3.8.1 Core Services of AWS .. 23

3.8.1.1 Compute Services (Amazon EC2) ... 23

3.8.1.2 Storage Solutions (Amazon S3 & EBS) .. 23

3.8.1.3 Database Services .. 23

3.8.1.4 Networking Services (Amazon VPC) .. 23

3.8.1.5 Security and Compliance ... 24

3.8.2 AWS Pricing Models .. 24

3.8.3 AWS Global Infrastructure and Availability .. 25

3.9 Google Cloud Platform (GCP)... 25

3.9.1 Comprehensive Cloud Services Portfolio ... 26

3.9.2 Performance and Scalability ... 26

3.9.3 Industry Adoption and Use Cases ... 27

3.9.4 Compute Engine Resources: Regions and Zones ... 27

3.9.5 GCP Pricing Models ... 27

3.10 Microsoft Azure: Enterprise Cloud Solutions.. 28

3.10.1 Compute Services in Azure .. 28

3.10.2 Azure Storage Solutions ... 29

3.10.3 Networking in Azure... 30

3.10.4 Azure AI and Machine Learning .. 30

3.10.5 Security and Identity Management in Azure .. 30

3.10.6 Azure Global Geographies and Data Center Locations .. 31

3.10.7 Azure pricing models .. 31

Chapter 4 Triangular Membership Function-Based Estimation of Round-Trip Time (RTT) for

Optimal SLA Evaluation.. 32

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing 32

4.2 Challenges in Estimating RTT in Cloud Environments .. 34

4.2.1 Geographical Distance .. 34

4.2.2 Network Congestion ... 34

4.3 Transmission Performance Evaluation in Cloud Computing .. 35

4.4 Intelligent Systems and Network Service Prediction... 35

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic . 36

4.5.1 Experimental Testing Model Determination .. 36

V

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS

Regions .. 37

4.5.3 Fuzzy Logic Framework ... 37

4.5.3.1 Design System ... 37

4.5.3.2 Description of the Proposed Model ... 39

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and

Discussion .. 40

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS

Cloud Services and SLA Optimization .. 41

Chapter 5 Quality of Service (QoS) Availability Assessment for Optimal SLA Selection..... 44

5.1 Evaluating QoS metrics for determining SLA ... 44

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis 46

5.3 Understanding Availability .. 47

5.3.1. Measurement Period .. 48

5.3.2 Accuracy in Service Provision .. 48

5.3.3 Time-Based Accuracy in Availability .. 48

5.3.4 Exclusions in Availability Calculations .. 49

5.4 Availability in Computing and Networking Environment... 49

5.4.1 Bandwidth Considerations .. 49

5.4.2 Network Latency and Delay ... 50

5.4.3 Network jitter .. 51

5.4.4 Packet Loss ... 51

5.5 Methodology for SLA Assessment and Optimization ... 51

5.5.1 Proposed Framework for SLA Selection .. 51

5.5.2 Fuzzy Logic-Based Methodology for QoS Evaluation ... 54

5.5.2.1 Key Input Parameters ... 54

5.5.2.2 Implementation of FIS and Defuzzification for SLA Analysis 54

5.6 Experimental Evaluation .. 56

5.7 Summary of the SLA selection Model... 60

Chapter 6 Enhanced Decision-Making in Uncertain Domains .. 61

6.1 Overview of Decision-Making Challenges .. 61

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making 63

6.3 Background of Fuzzy Logic System .. 64

6.3.1 Core Principles of Fuzzy Logic Systems .. 64

6.3.1.1 Fuzzy System Basics.. 65

6.3.1.1.1 Crisp Input Processing .. 65

6.3.1.1.2 Fuzzification Process .. 65

6.3.1.1.3 Inference Engine ... 65

6.3.1.1.4 Fuzzy Rule Base ... 66

6. 3.1.1.5 Defuzzification Process ... 66

6.3.2 Membership Functions and Their Significance .. 66

6.3.2.1 Triangular Membership Function .. 66

6.3.2.2 Trapezoidal Membership Function .. 67

6.3.2.3 Gaussian Membership Function .. 67

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains 67

VI

6.4.1 Mathematical Formulation for Algorithms 1 and 2 .. 67

6.4.2 Mathematical Formulation for Algorithm 3 ... 68

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain

Domains ... 68

6.5 Experimental Results and Analysis ... 71

6.5.1 Determine the Degree of Membership as The Triangular Membership Function .. 71

6.5.2 Determine the degree of membership as the trapezoidal membership function 72

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function 73

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed

Mathematical Model .. 74

6.6 Summary .. 76

Chapter 7 Intelligent Validation Cloud Broker System ... 78

7.1 Overview of SLA Selection and the IVCBS Framework .. 78

7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making 80

7.3 Proposed System .. 82

7.3.1 Extraction information Factors from AWS Cloud Environment 82

7.3.2 AWS General-Purpose Instance Types ... 82

7.3.3 Theoretical Framework and Methodology.. 83

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System

(IVCBS) ... 83

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation Cloud

Broker System (IVCBS) .. 85

7.3.3.3 Cloud Analyst Simulation Framework .. 89

7.3.3.4 Round Robin Algorithm .. 89

7.3.3.5 Service Brokering Strategies .. 90

7.4 Experimentation and analysis .. 90

7.4.1 Simulation the proposed system ... 90

7.4.2 Results and Comparative Analysis ... 93

7.4.2.1 Implementation of IVCBS with two Service Broker Policies 93

7.4.2.2 Traditional methods ... 95

7.5 Summary .. 97

Chapter 8 A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual

Machine Allocation .. 99

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery 99

8.2 Current Issues and Challenges ... 100

8.3 Broker-Driven Methodology in Cloud Computing ... 101

8.3.1 Design and Architecture of the Broker System .. 101

8.3.2 Implementation of Fuzzy Logic .. 102

8.3.3 Integration with Cloud Analyst Tool .. 103

8.3.3.1 Cloud Environment Modeling ... 103

8.3.3.2 Throttling Algorithm .. 103

8.3.3.3 Broker Policy for Response Time .. 103

8.4 Simulation and Evaluation of Results and Discussion .. 103

8.5 Summary .. 106

VII

Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker 107

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic 107

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage 107

9.3 System Design ... 108

9.3.1 The broker’s Fuzzy-logic systems .. 110

9.3.1.1 VM ranking Fuzzy logic system .. 110

9.3.1.2 User ranking Fuzzy logic system ... 112

9.4 Scenario Description .. 113

9.5 Results analysis .. 115

9.5.1 The effects of Client’s mobility .. 117

9.5.2 Effects of Service Migration on SLA Compliance ... 117

9.6 Real-World Implementation and Practical Implications.. 118

9.7 Summary .. 119

Chapter 10 Theses .. 120

10.1 Future Research Direction ... 121

Appendices ... 122

Appendix 1: Cloud Computing .. 122

Appendix 2: Adoption and Implementation of Cloud Platforms ... 122

Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation ... 124

Appendix 4: Quality of Service (QoS) Availability Assessment for Optimal SLA Selection

.. 129

Appendix 5: Implementation details of the three proposed algorithms for the system 133

Appendix 5:0.1 Detailed Analysis of the First Algorithm ... 133

Appendix 5:0.2 Detailed Analysis of the Second Algorithm 134

Appendix 5:0.3 Detailed Analysis of the Third Algorithm 135

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in Uncertain

Domains ... 136

Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms 138

Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven

Approach .. 149

Author’s Publication .. 152

References .. 153

VIII

List of Abbreviations

XaaS Everything as a Service

SLA Service Level Agreement

QoS Quality of Service

RTT Round-Trip Time

VM Virtual Machine

RLBGD Rank-based Load Balancing in Geo-Distributed

FIS Fuzzy Inference System

CSP Cloud Service Provider

IVCBS Intelligent Validation Cloud Broker System

EC2 Elastic Compute Cloud

MEC Multi-Access Edge Computing

AWS Amazon Web Services

GC Google Cloud

AI Artificial Intelligence

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

NIST National Institute of Standards and Technology

API application programming interface

VPN Virtual Private Network

GCE Google Compute Engine

CRM Customer Relationship Management

ERP Enterprise Resource Planning

API Application Programming Interface

IAM Identity and Access Management

WAN Wide area network

PDA Personal digital assistant

CAF Cloud Adoption Framework

DCN Data center network

SLO Service Level Objectives

EBS Elastic Block Store

RDS Relational Database Service

VPC Virtual Private Cloud

ACL Access Control Lists

AKS Azure Kubernetes Service

ML Machine Learning

BGP Border Gateway Protocol

QoE Quality of Experience

MTTF Mean-Time-To-Failure

MTTR Mean-Time-To-Recovery

BW Bandwidth

BTC bulk transfer capacity

UDP User Datagram Protocol

TCP Transmission Control Protocol

ms milliseconds

ISP Internet service provider

IX

MF Membership Function

COG Center of Gravity

CSU Cloud service users

PM Physical machines

PRSF Performance and Resource-Aware Virtual Machine Selection

using Fuzzy

COTD Cost Optimization based on Task Deadline

ESCE Equally Spread Current Execution

LB load balancing

RR Round Robin algorithm

SBP Service Broker Policy

X

List of Figures

Figure 4.1. Proposed model design. ... 38

Figure 4.2 Surface Viewer of RTT Estimation Based on Distance and Network Congestion

Using Fuzzy Logic. .. 40

Figure 5.1 Proposed SLA guarantee model. .. 53

Figure 5.2 Results of the proposed model. .. 57

Figure 6.1 Architecture of a fuzzy logic system. ... 65

Figure 6.2 Classify single Triangular MF. ... 72

Figure 6.3 Classify all Triangular MF. .. 72

Figure 6.4 Classify single Trapezoidal MF. ... 73

Figure 6.5 Classify all Trapezoidal MF. .. 73

Figure 6.6 Classify single Gaussian MF. ... 74

Figure 6.7 Classify all Gaussian MF.. 74

Figure 7.1 Intelligent Validation Cloud Broker System Framework. 83

Figure 7.2 Fuzzy Partition Using Intelligent Mathematical Model. .. 85

Figure 7.3 Cloud Analyst Model. .. 89

Figure 9.1 Proposed System Architecture. .. 109

Figure 9.2 The VM’s availability membership function. .. 111

Figure 9.3 The VM’s Cost membership function. ... 111

Figure 9.4 VM’s ranking membership function. ... 112

Figure 9.5 Task size membership function. ... 112

Figure 9.6 User budget membership function.. 113

Figure 9.7 User rank membership function. .. 113

Figure 9.8 Average service delay for immobile users. .. 116

Figure 9.9 The average of monthly client payment. .. 116

Figure 9.10 Average service delay for mobile users. ... 117

Figure 9.11 Average service delay with mobile users and service migration. 118

Figure 9.12 Average monthly payment in case of service migration. 118

Appendix 1: 0.1 Figure 1. NIST Cloud Computing reference model. 122

Appendix 1: 0.2 Figure 2. The essential characteristics of cloud computing. 122

Appendix 2: 0.1 Figure 1. (a) Single application server. (b) Virtualized server. 122

Appendix 2: 0.2 Figure 2. Hardware server components. ... 123

Appendix 2: 0.3 Figure 3. Type1 hypervisor. .. 123

XI

Appendix 2: 0.4 Figure 4. Type2 hypervisor. .. 123

Appendix 2: 0.5 Figure 5. Data center network architecture. .. 124

Appendix 3: 0.1 Figure 1. RTT process. .. 125

Appendix 3: 0.2 Figure 2. Ping testing process. .. 126

Appendix 3: 0.3 Figure 3. AWS latency test. .. 126

Appendix 3: 0.5 Figure 4. Define first input (Distance). ... 128

Appendix 3: 0.6 Figure 5. Define second input (Network-congestion). 129

Appendix 3: 0.7 Figure 6. Define Output (RTT-Expectation). .. 129

Appendix 3: 0.8 Figure 7. Rule base system. .. 129

Appendix 6: 0.1 Figure 1. Database Addresses. .. 137

Appendix 6: 0.2 Figure 2. User task before classify. ... 137

Appendix 6: 0.3 Figure 3. Mamdani Triangular MF. .. 137

Appendix 6: 0.4 Figure 4. Mamdani Trapezoidal MF. .. 138

Appendix 6: 0.5 Figure 5. Mamdani Gaussian MF. .. 138

Appendix 7:0.7 Figure 1. VCPU Classification code. ... 144

Appendix 7:0.8 Figure 2. Apply the Trapezoidal proposed model of CPU levels. 145

Appendix 7:0.9 Figure 3. IVCBS-Response time by region (optimize response time policy).

.. 146

Appendix 7:1.0 Figure 4. IVCBS-Response time by region (reconfigure dynamically policy).

.. 146

Appendix 7:1.1 Figure 5. IVCBS DC- Request Servicing Time (optimize response time

policy). ... 147

Appendix 7:1.2 Figure 6. IVCBS DC- Request Servicing Time (dynamic reconfiguration

policy). ... 147

Appendix 7:1.3 Figure 7. Routing strategy by the dynamic reconfigurations policy. 147

Appendix 7:1.4 Figure 8. Routing strategy by the optimized response time policy. 148

Appendix 7:1.5 Figure 9. Traditional-Response time by region (optimize response time

policy). ... 148

Appendix 7:1.6 Figure 10. Traditional-Response time by region (reconfigure dynamically

policy). ... 148

Appendix 7:1.7 Figure 11. Traditional DC- Request Servicing Time (optimize response time

policy). ... 149

Appendix 7:1.8 Figure 12. Traditional DC- Request Servicing Time (dynamic reconfiguration

policy). ... 149

Appendix 8:0.1 Figure 1. Fuzzy rule base. .. 150

Appendix 8:0.4 Figure 2. Simulation process. ... 151

XII

Appendix 8:0.5 Figure 3. Surface Viewer for Fuzzy Model Output. 151

XIII

List of Tables

Table 4.1 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT)

Measurements. ... 42

Table 5.2 QoS Network and Computing Metrics Availability. ... 53

Table 5.3 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees. 57

Table 6.1 Results of the Proposed Method Applied to Selected Samples. 75

Table 6.2 Results of the Traditional Method Applied to Selected Samples. 76

Table 7.1 AWS-General purpose instance features. .. 83

Table 7.2 Cloud users and sizes of their requests. ... 84

Table 7.3 Results of the Proposed Algorithm. ... 91

Table 7.4 Single-User Base Clusters. .. 92

Table 7.5 (11-User Base Instances). .. 93

Table 7.6 Implementing IVCBS with optimize response time policy. 95

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy.

.. 95

Table 7. 8 Implementing traditional with optimize response time policy. 96

Table 7.9 Implementing traditional with Dynamic reconfiguration policy. 97

Table 8.1 workload size machine series specifications. .. 101

Table 8.2 Rules – Decision making. .. 102

Table 8.3 Basics of applying the traditional method. .. 104

Table 8.4 Summary of the results of the traditional method.. 105

Table 8.5 Summary of the results of the proposed Method. .. 106

Table 9.1 VM ranking FLS. ... 111

Table 9.2 User ranking FLS. .. 112

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites. .. 114

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup. . 115

Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA. 124

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA. 124

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions. 126

Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels. .. 130

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs. 130

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime. .. 131

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs. 138

Appendix 7: 0.2 Table 2. AWS data centers and general costs. .. 139

XIV

Appendix 7: 0.3 Table 3. Delay matrix.. 141

Appendix 7: 0.4 Table 4. Fundamental Data Center. .. 142

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class specifications.

.. 142

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods. 143

Appendix 8:0.2 Table 1. User base configuration. .. 150

Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center. 150

1

Chapter 1 General Introduction

Cloud computing is a transformative technology that provides seamless access to a wide range

of computing resources—including applications, servers, storage, and networks—without

requiring an upfront investment. This technology supports substantial scalability, allowing

users to pay only for the resources they utilize, which makes it highly adaptable to diverse

needs. Cloud services, collectively known as "XaaS" (Everything as a Service) facilitate data-

driven decision-making, significantly enhancing productivity and customer service. Cloud

computing effectively bridges the gap between client expectations and service delivery by

offering internet-based services that improve collaboration, ease of access, and security [1].

Service Level Agreements (SLAs) are fundamental in defining the relationship between service

providers and users by establishing the terms of service and quality expectations. SLAs also

hold vendors accountable for non-compliance. As cloud computing adoption continues to

grow, the importance of SLAs has increased, demanding robust guarantees for availability,

uptime, and downtime. Effective SLAs go beyond mere contractual obligations; they are

crucial for fostering trust between providers and clients, essential for sustainable success.

Consequently, research has focused on developing SLA methodologies that enhance Quality

of Service (QoS) and build customer trust, recognizing their significance in managing complex

business relationships and shaping modern business practices [2][3]. Evaluating performance

in cloud environments is complex due to the components involved, ranging from concrete

elements like communication links to abstract ones like packets and protocols. Researchers and

engineers must design a comprehensive performance evaluation plan to obtain meaningful

results and answer critical questions. Such a plan should clearly define the objectives for

assessing the system's performance and identify specific metrics to measure, such as round-trip

time (RTT) and response time, to provide actionable insights [4]. SLA-oriented resource

allocation in cloud computing involves several key components: brokers, SLA resource

allocators, virtual machines (VMs), and physical machines. Users interact with cloud

management systems through brokers, enabling dynamic resource allocation and concurrently

operating multiple applications on a single machine. Data centers, composed of numerous

servers and networks that function as transmission media for resources, form the backbone of

cloud infrastructure. Despite these advanced capabilities, resource availability and privacy

remain persistent concerns. Effective load balancing is crucial for enhancing service quality

and optimizing resource utilization. Service brokers select the most appropriate geo-distributed

data centers based on transmission delay, network delay, processing time, workload, and cost.

The Rank-based Load Balancing in Geo-Distributed Datacenters (RLBGD) method employs a

weighted combination of these criteria for optimization, ensuring efficient cloud resource

management [5][6]. Fuzzy logic is a mathematical framework that handles uncertainty and

imprecision by enabling approximate reasoning rather than fixed binary logic. Unlike

traditional binary systems, where variables are strictly defined as true or false, fuzzy logic

allows variables to have truth values between 0 and 1. This approach is beneficial for modeling

complex systems where binary logic falls short. Based on fuzzy set theory, fuzzy computing

simulates the human brain's nonlinear and imprecise information processing capabilities. It is

widely applied in fields like Fuzzy Inference Systems (FIS), often in combination with other

artificial intelligence methods. This approach enables more precise and scientific consumer

2

preference designs by reducing ambiguity through the fuzzy comprehensive evaluation method

[7][8]. This thesis introduces several innovative approaches using fuzzy logic-based systems

and algorithms to enhance SLA management, VM allocation, and decision-making in cloud

computing environments. The study first presents the estimating Cloud Computing Round-Trip

Time (RTT) Using Fuzzy Logic for Inter-Region Distances, a novel approach for estimating

RTT in Amazon cloud environments. This method uses fuzzy logic to account for inter-region

distances, providing a nuanced understanding of network latency by categorizing proximity

and time and employing both ping tests and mathematical methods for accurate RTT

calculation. Additionally, the thesis explores Selecting the SLA Guarantee by Evaluating the

QoS Availability, which develops an intelligent SLA guarantee model using fuzzy theory. This

model calculates SLA values for cloud service providers by evaluating specific computing and

networking parameters and transforming data to manage ambiguity. The proposed fuzzy logic

system classifies SLAs into 9 levels (ranging from 90% to 99%) based on QoS availability

metrics, including computing (uptime and downtime) and networking (bandwidth, jitter, RTT,

and packet loss). The primary objectives are to develop a versatile SLA model that diverges

from typical CSP offerings and improve SLA categorization’s precision, tailored to user-

specific requirements. The work Enhancing Decision-Making in Uncertain Domains through

Optimized Fuzzy Logic Systems proposes optimizing fuzzy logic systems by reducing fuzzy

rules and improving decision-making accuracy. The study introduces flexible mathematical

modeling to minimize time and cost while enhancing precision in fuzzy decision-making

processes for classification and scheduling. A comparative analysis shows the advantage of

this approach over traditional methods by employing three distinct membership functions

(Triangular, Trapezoidal, and Gaussian), enhancing flexibility and accuracy in determining

overlapping membership degrees. Another essential contribution is the Efficient Broker-Driven

Request Packet Size approach, which introduces a broker-driven model using fuzzy logic for

dynamic VM allocation based on request packet size. This method optimizes resource usage,

reduces latency, and improves system performance. Compared to traditional techniques,

simulations using data from Google Cloud Platform’s Europe West3 region demonstrated

significant improvements in response time, data center processing, request serving time, and

data transfer costs. Furthermore, the thesis presents the Intelligent Validation Cloud Broker

System (IVCBS), which leverages an algorithm for dynamic VM allocation and intelligent

SLA selection. The algorithm relies on a mathematical model aligned with the trapezoidal

membership function, making decisions based on binary results (1 or 0). Tested across 31 AWS

data centers worldwide with 11 EC2 types, IVCBS optimizes response time, improves

processing efficiency, reduces VM and transfer costs, and enhances power efficiency while

maintaining high QoS in cloud environments. Various tools and environments, including

CloudAnalyst [9] and MATLAB, were utilized to conduct these studies. Lastly, the study

proposes the Reliable and Cost-Effective Fuzzy-based Cloud Broker technique, which assists

users in selecting suitable cloud service instances by evaluating user needs and service

characteristics. This technique analyzes various scenarios, including static and mobile users, to

assess the impact of user mobility on service quality and optimize cloud service management.

The work emphasizes the necessity of cloud brokerage services as intermediaries, balancing

user needs with service provider interests. The Edge CloudSim simulator [10] implemented the

proposed cloud broker on the Multi-Access Edge Computing (MEC) paradigm. This choice

3

was made because services running on the virtualized edge are more sensitive to delay, and the

broker's selection of the appropriate service instance significantly impacts such settings. In this

scenario, different data centers belonging to Amazon Web Services (AWS), Google Cloud

(GC), and Azure Cloud Services (AZURE) were placed in different regions.

1.1 Problem statement

Cloud computing, a cornerstone of modern IT, offers scalable, flexible, and on-demand access

to computing resources through various service models governed by Service Level Agreements

(SLAs), formal contracts between a cloud service provider (CSP) and a customer that define

the specific level of service the provider guarantees to deliver. However, challenges such as

compliance mechanisms by Cloud Service Providers (CSPs), provider lock-in, and the

proliferation of CSPs create complexity for users. Inconsistencies in promised Quality of

Service (QoS) levels also complicate the decision-making process, leading to inefficiencies and

suboptimal outcomes. As cloud data centers scale, energy consumption becomes a critical

concern, making energy efficiency a vital aspect of cloud service management. Balancing

energy consumption with QoS metrics is crucial for delivering sustainable and efficient cloud

services that meet diverse user requirements [11][12]. By addressing these challenges, we can

pave the way for more efficient and reliable cloud services, a key goal of this research. This

will enhance the user experience and the overall performance of cloud computing. The

complexity of cloud computing is amplified by factors such as the physical distance between

data centers, which significantly impacts performance and round-trip time (RTT) for data

transmission. As IT services increasingly migrate to cloud infrastructures, monitoring network

performance becomes essential for ensuring optimal service delivery. However, Cloud Service

Providers (CSPs) typically provide only qualitative information on network performance,

resulting in uncertainties and suboptimal deployment decisions. To address these challenges,

it is crucial to focus on cloud-to-user latency and the network paths connecting data centers to

globally distributed users. Furthermore, managing distributed transactions in cloud

environments involves balancing reliability and consistency, particularly in the face of

hardware failures, network outages, and varying latencies. Analyzing these factors can lead to

more informed strategies for cloud service deployment and optimization [13][14]. Given the

current state of cloud service management, there is an urgent need for more intelligent and

adaptive strategies. These strategies should focus on managing Service Level Agreement

(SLA) selection and resource allocation in cloud environments. Their goal should be to

optimize response times, reduce latency, and ensure service reliability. A compelling resource

management strategy can enable cloud providers to lower energy consumption and minimize

SLA violations within data centers, thus enhancing overall service efficiency and sustainability.

Moreover, such a strategy can incorporate predictive models that anticipate future resource

demands, prevent resource shortages, and dynamically scale resources in response to changing

workloads, ensuring optimal performance and resource utilization [15][16]. Traditional

approaches to managing cloud service environments often rely on extensive rule-based systems

that are computationally intensive and lack the flexibility needed to adapt to these

environments' diverse and dynamic nature [17]. Challenges such as data migration, resource

allocation, and competition among providers can significantly limit the capabilities of cloud

4

computing environments. Similarly, in artificial intelligence (AI), decision-making in uncertain

and ambiguous real-world scenarios presents substantial complexities. Fuzzy logic systems

have proven valuable tools in these contexts, offering a means to approximate optimal

decisions by effectively handling uncertainty and vagueness [18]. While fuzzy logic is a

valuable method for modelling computer knowledge, traditional approaches have their

limitations. These approaches rely extensively on significant rule sets to determine the degree

of membership for elements within a fuzzy set. This reliance results in considerable

computational overhead and limits the scalability of such systems, posing challenges to their

efficient implementation in complex environments [19]. Efficient allocation of virtual

machines (VMs) is essential for optimizing resource utilization in cloud environments.

However, traditional VM allocation methods often face challenges in managing dynamic

workloads, leading to suboptimal performance and increased operational costs. Resource

management, particularly with a focus on CPU resource utilization, is a complex task that

requires advanced strategies to enhance efficiency and reduce overall costs [20]. As cloud

computing environments expand in scale and complexity, there is an increasing need for

adaptive and efficient resource allocation strategies capable of dynamically responding to

varying demand patterns in real time. Such a strategy must optimize resource utilization while

maintaining low latency and fast execution times for real-time applications and interactive

services. Artificial intelligence (AI) is increasingly being leveraged to automatically manage

and optimize cloud resources, addressing challenges such as real-time performance

requirements and energy efficiency concerns. The effectiveness of these methods can be further

enhanced by incorporating advanced AI models and developing innovative solutions to address

emerging challenges in distributed and heterogeneous cloud environments [16]. To address the

intertwined challenges of optimizing cloud service delivery, there is a pressing need for

innovative cloud brokerage systems that utilize advanced techniques such as fuzzy logic and

intelligent algorithms. These systems can act as intermediaries between users and cloud service

providers (CSPs), enabling more accurate and efficient service selection by accounting for user

requirements and different CSPs' diverse characteristics. Additionally, to tackle environmental

and operational concerns, future generations of cloud computing must focus on becoming more

energy-efficient and sustainable while maintaining the delivery of high-quality services. This

is a crucial direction for the future of cloud computing [21]. In conclusion, cloud computing

services' rapid growth and complexity necessitate developing reliable, adaptive, and cost-

effective cloud brokerage solutions. These systems improve decision-making accuracy,

optimize SLA selection, and manage workload distribution, preventing data center overload

and minimizing costs [22].

1.2 The objectives of the thesis

I. Estimating round-trip Time (RTT) in cloud computing environments using fuzzy logic

to account for inter-region distances, providing a nuanced understanding of network

latency by categorizing proximity and time, and employing two techniques a ping test

and a mathematical approach—for accurate RTT calculation.

II. To develop an intelligent fuzzy theory-based SLA guarantee model that calculates the

SLA guarantee value for each cloud service provider by considering specific computing

5

and networking parameters, using fuzzy logic to handle and transform data to address

ambiguity in results.

III. This research aims to push the boundaries of cloud computing by improving the

precision and accuracy of fuzzy decision-making processes and non-probabilistic

models. I propose an innovative approach to flexible mathematical modeling that

minimizes time and cost while eliminating the need for extensive fuzzy rules. This

approach promises to revolutionize the efficiency of cloud computing environments.

IV. To develop the Intelligent Validation Cloud Broker System (IVCBS) using a fuzzy

logic-based algorithm aligned with the trapezoidal membership function to optimize

Virtual Machine (VM) allocation dynamically, enhance response times, improve data

center processing efficiency, reduce VM and data transfer costs, and achieve power

efficiency, thereby addressing scalability and performance challenges while

maintaining high Quality of Service (QoS) in cloud computing environments.

V. Our research is dedicated to developing a broker-driven approach using a fuzzy logic

system for the dynamic optimization of Virtual Machine (VM) allocation in cloud

computing environments. Based on request packet size, this approach promises to

optimize resource usage, reduce latency, enhance overall system performance, and

improve response times, data center processing times, request serving times, and data

transfer costs. I believe this approach will significantly contribute to the efficient

management of cloud resources.

VI. To develop a fuzzy logic-based cloud brokerage technique to assist users in selecting

the most suitable cloud service instances by evaluating factors like user needs and

service characteristics. The study aims to enhance decision-making processes for cloud

service selection by analyzing multiple scenarios, including static and mobile users, to

assess the impact of user mobility on service quality and explore the effects of

implementing a brokerage service that supports service migration, optimizing cloud

service management in dynamic environments.

1.3 Dissertation Structure and Organization

The remaining structure of the dissertation is organized as follows:

• Chapter 2: Provides an in-depth understanding of cloud service models (IaaS, PaaS,

SaaS) and deployment models, discussing their importance for informed decision-

making regarding customization, control, and scalability. It also introduces the NIST

Cloud Computing Reference Architecture and essential characteristics of cloud

computing systems.

• Chapter 3: Explores the driving factors behind cloud adoption, emphasizing strategic,

operational, and financial aspects. It discusses Cloud Adoption Frameworks (CAFs),

core business benefits (agility, adaptability, security), and financial advantages (cost

savings, economies of scale). Focuses on best practices for successful cloud adoption,

including governance, migration, and security. It highlights the benefits of cloud

platforms, such as agility, business continuity, and economic advantages, alongside the

importance of security.

6

• Chapter 4: Discusses the estimation of Round-Trip Time (RTT) in cloud computing

environments using fuzzy logic, focusing on challenges like geographical distance,

network congestion, and routing policies, with a case study on AWS demonstrating

improved RTT estimation.

• Chapter 5: Introduces a fuzzy logic-based SLA classification model, categorizing

SLAs into 9 levels based on key QoS metrics such as uptime, bandwidth, jitter, and

RTT, offering a flexible, transparent, and user-friendly method for improved SLA

selection.

• Chapter 6: Examines the optimization of fuzzy logic systems for decision-making in

uncertain environments, presenting a mathematical model using various membership

functions to categorize input data, with comparisons to traditional fuzzy inference

systems demonstrating improved performance.

• Chapter 7: Discusses the Intelligent SLA Selection through the Validation Cloud

Broker System (IVCBS), focusing on improving cloud computing efficiency through

optimization algorithms and simulations that show IVCBS outperforms traditional

methods in response time, processing, and cost reduction.

• Chapter 8: Explores a broker-driven approach to virtual machine (VM) allocation,

using fuzzy logic to dynamically adjust resource distribution based on request packet

sizes. The study demonstrates improved performance and cost efficiency through Cloud

Analyst simulations.

• Chapter 9: Presents the design of a fuzzy logic-based cloud broker system that balances

CSP and customer interests by ranking service instances and users. It optimizes service

quality and cost through service migration and mobility considerations, with

simulations showing superior stability, service delay, and cost-effectiveness compared

to other methods.

• Chapter 10: presents a comprehensive conclusion of all contributions, outlining three

key theses under the section "New Scientific Results," which constitute the primary

objectives of this dissertation.

7

Chapter 2 Cloud Computing

Chapter 2 provides a comprehensive overview of Cloud Computing Service Models,

deployment models, and key characteristics. It aims to equip readers with a solid understanding

of the fundamental approaches and methodologies that underpin cloud computing. The chapter

explains the distinctions between IaaS, PaaS, and SaaS, helping users select the most

appropriate model for their specific needs. It also introduces the NIST Cloud Computing

Reference Architecture, outlining its components and their interactions. Additionally, the

chapter explores various deployment models, highlighting the trade-offs in control, security,

cost, and scalability. Furthermore, it emphasizes the key benefits of cloud computing, such as

on-demand self-service, broad network access, and resource pooling.

2.1 Cloud Computing Service Models and Offerings

Choosing the right service model is a critical factor for the successful delivery of cloud-based

solutions. To make an informed choice, it is essential to understand each service model and the

division of responsibilities between the cloud service provider and the cloud service consumer

[23]. Cloud service models include Software as a Service (SaaS), Platform as a Service (PaaS),

and Infrastructure as a Service (IaaS). SaaS operates on top of PaaS, which, in turn, runs on

IaaS. In recent years, the number of SaaS offerings has grown significantly, making it

challenging for consumers to select the best service among those with similar functionalities

[24]. Each cloud service model provides different levels of customization and ownership,

depending on the user's needs—ranging from raw computing power to fully developed

software solutions. The separation of responsibilities and customization options between the

models varies, offering flexibility to users based on their requirements . Appendix 1 (Figure 1)

provides an overview of the NIST Cloud Computing Reference Architecture, which identifies

the key actors, their activities, and functions in cloud computing. This high-level diagram is

designed to help users understand the requirements, uses, characteristics, and standards of

cloud computing [25][26]. Three cloud service models offer abstraction levels to simplify

system building and deployment [25].

2.2.1 Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) provides virtualized computing resources over the Internet,

enabling users to manage and control infrastructure components such as servers, storage, and

networking. The National Institute of Standards and Technology (NIST) defines IaaS as: "The

capability provided to the consumer is to provision processing, storage, networks, and other

fundamental computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The consumer does not

manage or control the underlying cloud infrastructure but has control over operating systems,

storage, and deployed applications and possibly limited control of select networking

components (e.g., host fi rewalls). "Although the cloud provider is responsible for maintaining

the underlying hardware, IaaS abstracts many of the tasks associated with managing a physical

data center—such as handling servers, disc storage, and networking—into a collection of

services. These services can be accessed and automated through code or web-based

management consoles. One of the key advantages of IaaS is its on-demand nature. The virtual

8

infrastructure is available when you need it. Users can swiftly set up and launch infrastructure

components within minutes by calling an application programming interface (API) or utilizing

a web-based management console. In summary, IaaS offers virtual data center capabilities,

allowing consumers to focus on building and managing applications rather than dealing with

the complexities of maintaining physical infrastructure. Infrastructure as a Service (IaaS)

Offerings:

i. Compute resources: Virtual machines (VMs), containers, and bare metal servers.

ii. Storage: Block storage (e.g., AWS Elastic Block Store), object storage (e.g., Amazon

S3), and file storage.

iii. Networking: Virtual networks, load balancers, VPNs, and firewalls.

Infrastructure as a Service (IaaS) Benefits and examples:

i. Benefits: full control over the infrastructure, the flexibility to scale resources as needed,

and a pay-as-you-go pricing model.

ii. Examples: Amazon Web Services (AWS) EC2, Google Compute Engine (GCE),

Microsoft Azure Virtual Machines (VMs).

2.1.2 Platform as a Service (PaaS)

Platform as a Service (PaaS) offers developers a platform to build, run, and manage

applications without needing to manage the underlying infrastructure. It abstracts the

complexities of hardware management and provides a development environment with built-in

tools and services for application creation. According to the National Institute of Standards and

Technology (NIST), PaaS is defined as: "The capability provided to the consumer is to deploy

onto the cloud infrastructure consumer-created or acquired applications created using

programming languages, libraries, services, and tools supported by the provider. The consumer

does not manage or control the underlying cloud infrastructure, including networks, servers,

operating systems, or storage, but has control over the deployed applications and possibly

configuration settings for the application-hosting environment." In essence, PaaS allows

developers to focus on building and managing their applications, while the cloud provider takes

care of the infrastructure. Platform as a Service (PaaS) Offerings and:

i. Development frameworks: Programming languages, development tools, and

libraries (e.g., Java, Python, Node.js).

ii. Application hosting: Managed services to run applications without

infrastructure management.

iii. Database management: Built-in databases and data services (e.g., MySQL,

PostgreSQL, NoSQL databases).

iv. Middleware: Tools for messaging, authentication, and integration.

Platform as a Service (PaaS) Benefits and examples:

v. Benefits:

o Simplifies application development by removing infrastructure concerns.

o Streamlines workflows with integrated development tools.

9

o Accelerates time-to-market for applications.

vi. Examples: Google App Engine, Heroku, Microsoft Azure App Service.

2.1.3 Software as a Service (SaaS)

Software as a Service (SaaS) delivers fully functional software applications over the Internet,

allowing users to access the software via a web browser without the need for installation,

management, or maintenance. SaaS provides a complete application to the consumer, who only

needs to configure some application-specific settings and manage users. The service provider

is responsible for handling all aspects of infrastructure, application logic, deployments, and

overall delivery of the product or service. SaaS solutions are particularly popular for non-core

functions, enabling companies to avoid the need to support the application infrastructure,

provide maintenance, or hire staff to manage it. Instead, businesses pay a subscription fee to

access the service over the Internet via a browser-based interface. NIST defines SaaS as:

"The capability provided to the consumer is to use the provider’s applications running on a

cloud infrastructure. The applications are accessible from various client devices through either

a thin client interface, such as a web browser (e.g., web-based email), or a program interface.

The consumer does not manage or control the underlying cloud infrastructure, including

networks, servers, operating systems, storage, or even individual application capabilities,

except for limited user-specified configuration settings." In summary, SaaS simplifies software

usage by allowing businesses to focus on utilizing the service rather than managing the

complexities of the underlying infrastructure. Software as a Service (SaaS)Offerings:

i. Business applications: Ready-to-use applications for CRM, ERP, collaboration,

etc. (e.g., Salesforce, Office 365, Google Workspace).

ii. Industry-specific solutions: Tailored software for specific industries (e.g.,

healthcare, retail, manufacturing).

iii. Data analytics and visualization tools: SaaS products for data processing and

visualization.

Software as a Service (SaaS) Benefits and examples:

iv. Benefits:

o No infrastructure or application management required.

o Automatic software updates and patches.

o Subscription-based pricing model.

v. Examples: Dropbox, Slack, Zoom, Google Workspace.

2.2 Cloud Deployment Models

Cloud deployment models define how a cloud environment is constructed, who owns it, and

what its intended purpose is. These models influence the governance, security, cost, and

accessibility of cloud services. According to NIST, there are four primary cloud deployment

10

models: public clouds, private clouds, community clouds, and hybrid clouds. The classification

of a cloud deployment model depends on where the infrastructure is located and who controls

it. Each cloud deployment model is designed to meet different organizational needs. Equally

important, each model offers a unique value proposition and incurs different costs [27].

2.2.1 public cloud

A private cloud refers to a cloud infrastructure dedicated to a single organization. It can be

managed either internally or by a third-party provider and may exist on-premises or off-

premises. In this model, the systems and resources that provide the cloud services are housed

within the organization, which is responsible for managing and administering them.

Additionally, the organization is responsible for any software or client applications installed

on end-user systems. Private clouds are typically accessed through the local area network

(LAN) or wide area network (WAN). Remote users generally have access via the Internet,

often utilizing a virtual private network (VPN) for secure connections.

2.2.1.1 Technical Architecture

i. Shared Resources: Public cloud infrastructure uses virtualization to dynamically

provision resources from a shared pool, allowing tenants to access and manage services

through a web browser.

ii. Elasticity: Cloud elasticity allows real-time scaling of resources like CPU power,

memory, storage capacity, and bandwidth to respond to unexpected online traffic

fluctuations, enabling instant adjustments.

iii. Network Accessibility: IT infrastructure, including servers, networking, and storage, is

now accessible online via secure connections through Virtual Private Networks or

encrypted tunnels, replacing the need for in-house management.

iv. API Accessibility: Public clouds provide RESTful APIs for programmatic resource

control, integration with services, and low-level access to software inputs, processes,

and outputs, enabling assistive technologies like screen readers to interact with the

system.

v. Self-service: The public cloud offers unlimited scalability and self-service

provisioning, allowing users to manage resources like instances and storage through

self-service portals.

2.2.1.2 Operational Considerations

i. Cost: Cost management in cloud technology involves optimizing usage and

efficiency, with the pay-per-use model allowing organizations to pay only for

resources consumed.

ii. Security: Users are responsible for securing their data and applications using

encryption, IAM, and compliance features, ensuring cloud compliance through

strong practices, regular audits, and continuous monitoring.

iii. Performance: Public clouds offer geographically distributed data centers, reducing

latency and improving cloud performance by hosting applications closer to users.

2.2.2 Private Cloud

11

A private cloud refers to a cloud infrastructure dedicated to a single organization. It can be

managed either internally or by a third-party provider and may exist on-premises or off-

premises. In this model, the systems and resources that provide the cloud services are housed

within the organization, which is responsible for managing and administering them.

Additionally, the organization is responsible for any software or client applications installed

on end-user systems. Private clouds are typically accessed through the local area network

(LAN) or wide area network (WAN). Remote users generally have access via the Internet,

often utilizing a virtual private network (VPN) for secure connections.

2.2.2.1 Technical Architecture

i. Single-Tenant Environment: Dedicated to a single organization, offering

scalability, flexibility, and self-service capabilities while providing enhanced

control and security. It operates in a single-tenant environment, allowing customers

to customize software and infrastructure.

ii. Customization: Private cloud customers can customize servers and software,

maintain security and access control, and create specialized environments for high-

performance computing, while maintaining control over hardware and software

configurations.

iii. Infrastructure: Private cloud architecture, hosted on-premises or off-premises,

allows organizations to customize their infrastructure using proprietary platforms

like VMware vSphere, OpenStack, or Hyper-V, allowing resource management as

a service.

iv. Automation: Modern private clouds use automation frameworks like Kubernetes

and OpenShift to improve efficiency and resource management, streamlining

operations and increasing productivity by automating resource provisioning,

scaling, and management.

2.2.2.2 Technical Operational Considerations

i. Control: Customizing cloud environment offers flexibility, control, and complete

control over security, performance, and infrastructure, allowing organizations to

meet specific business needs without sharing resources.

ii. Security: Private cloud security involves safeguarding data and infrastructure in a

dedicated, isolated environment, managing threats like breaches and cyberattacks,

and implementing robust protocols, technologies, data governance policies,

advanced firewalls, and encryption mechanisms.

iii. Compliance: Cloud compliance in private cloud environments requires adhering to

regulatory standards, security protocols, and industry best practices for data

protection, privacy, and operational integrity, especially in highly regulated

industries like finance, healthcare, and government.

viii. Cost: Initial capital expenses can make it costly, so effective cost management is

essential for optimizing spending over time. By understanding cloud costs and

exploring various pricing models, organizations can better control expenses and

ensure cost efficiency.

2.2.3 Hybrid Cloud

12

The hybrid cloud model combines public and private clouds, enabling organizations to host

sensitive workloads on private clouds and non-sensitive workloads on public clouds. Data and

applications can be shared between the two environments, offering the best of both worlds. In

a hybrid cloud setup, two or more cloud models are used together, but they remain distinct and

separate, linked through integration. While a hybrid cloud may introduce more complexity to

the overall environment, it provides greater flexibility in meeting an organization’s specific

objectives.

2.2.3.1 Technical Architecture

i. Integration: Hybrid cloud technical architecture connects public and private clouds

and on-premises systems for seamless data and workload sharing. It requires cloud

orchestration tools, APIs, and middleware for efficient workflow management and

coordination between cloud systems.

ii. Workload Distribution: Combines public and private cloud environments with on-

premises infrastructure, allowing for flexible workload distribution and seamless

transitions. This optimizes resource utilization, ensures business continuity, and

maximizes efficiency in managing diverse business operations.

iii. Cloud Bursting: A hybrid cloud deployment technique that offloads excess traffic

from a private cloud to a public cloud when on-premises infrastructure reaches

capacity limits, enabling organizations to efficiently scale computing resources and

maintain system reliability during high demand periods.

iv. Network Management: Integrates on-premises infrastructure with private and

public cloud services for seamless data transfer and management. Effective network

management ensures secure connections, optimizes performance and addresses

security, scalability, and compliance concerns. Strong network connectivity is

required.

2.2.3.2 Operational Considerations

i. Flexibility: Provides operational flexibility by strategically deploying workloads

across on-premises and cloud environments, safeguarding sensitive data, and

leveraging scalability and performance benefits. Companies must evaluate specific

needs for data, location, compliance, and scalability.

ii. Interoperability: Implementing a hybrid cloud strategy requires data compatibility

and interoperability between different cloud environments, requiring data migration

and identifying specific needs. Hybrid cloud management platforms like

Kubernetes, VMware Tanzu, or Azure Arc help manage resources across

environments.

iii. Data Security: Hybrid cloud security combines on-premises and cloud-hosted data

security, utilizing strong network measures, uniform data governance, and

software-defined networking. Encrypted data transfer and access control

mechanisms are crucial for preventing breaches.

2.2.4 Community Cloud

A community cloud is a cloud infrastructure shared by several organizations with common

requirements or purposes. It operates similarly to a private cloud but is used by multiple

13

organizations (a group of tenants) rather than just one. These organizations typically have a

shared mission or objective and prefer a semi-public cloud environment that offers more

privacy than a public cloud. In a community cloud, the participating organizations benefit from

shared resources and responsibilities, allowing them to maintain privacy and security without

the need for each organization to individually manage and maintain the cloud infrastructure.

This collaborative approach ensures that the cloud is tailored to the specific needs of the group

while distributing the maintenance workload across the member organizations.

2.2.4.1 Technical Architecture

i. Shared Infrastructure: Community clouds share infrastructure among

organizations, reducing costs and improving resource utilization. They are often

tailored to specific industries for privacy, security, and compliance

requirements.

ii. Collaboration: A collaborative cloud environment for organizations sharing

resources and projects and maintaining privacy and compliance standards. It

requires robust technical architecture, security, scalability, and user

management. The infrastructure can be hosted on-premises, third-party, or

distributed across multiple data centers.

iii. Customization: It can be customized to enhance user experience and align with

brand identity, offering flexibility in performance, security, compliance, cost,

and scalability. It can also be tailored to specific regulatory requirements.

2.2.4.2 Operational Considerations

i. Cost: Cost management in a community cloud environment optimizes resource

usage and expenditure, enhancing efficiency and cost control. Shared costs

make it more cost-effective than private cloud options.

ii. Governance: Organizations, including IT professionals, must actively evaluate

governance frameworks for community clouds to ensure compliance with

regulations and policies. Proper governance strategies for data privacy, security

management, and service usage are crucial, requiring collaboration on the

governance model.

iii. Security: Community cloud resources pose security risks like misconfiguration,

unauthorized access, and limited visibility. Organizations must implement

robust measures and manage operations effectively. Coordination of

governance policies among participating organizations ensures smooth

collaboration.

iv. Compliance: Community cloud compliance ensures that shared environments

comply with regulatory frameworks and standards. It involves continuous

monitoring, data security, privacy protection, and operational integrity.

Community clouds streamline compliance across participating entities,

promoting legal obligations.

2.3 Characteristics of Cloud Computing

 Cloud computing systems possess several key characteristics that make them highly promising

for future IT applications and services. The National Institute of Standards and Technology

14

(NIST) has identified five essential characteristics of cloud computing systems [28], as

illustrated in Appendix 1 (Figure 2). These characteristics are outlined and described below

[29]:

i. On-demand self-service: On-demand self-service allows consumers to

independently provision computing resources, such as server time and network

storage, as needed. This process is automatic and does not require human

interaction with the service provider. Users can access resources like storage,

processing power, and applications whenever needed, without relying on

manual intervention from the provider.

ii. Broad network access: means that cloud capabilities are available over the

network and can be accessed through standard mechanisms. It supports a variety

of platforms, including thin and thick clients (e.g., laptops, smartphones, and

personal digital assistants [PDAs]). This ensures that cloud services are

accessible anytime and anywhere through common devices such as laptops,

smartphones, and tablets.

iii. Resource Pooling and Broad Network Access: Cloud providers pool their

computing resources to serve multiple consumers using a multi-tenant model.

In this setup, physical and virtual resources such as storage, processing,

memory, and network bandwidth are dynamically assigned and reassigned

based on consumer demand. There is a level of location independence, where

customers typically do not control or know the exact location of the resources

but may be able to specify a location at a higher level of abstraction (e.g.,

country, state, or data center). This model enables efficient resource allocation

while maintaining data and process isolation for different users.

iv. Rapid Elasticity: Cloud resources offer rapid elasticity, allowing them to be

quickly scaled up or down to meet the fluctuating demands of users. This

elasticity ensures cost-effectiveness, as users only pay for what they need.

Cloud capabilities can be elastically provisioned and released, sometimes

automatically, enabling rapid scaling in response to demand. To consumers, the

available resources often appear unlimited, and they can be provisioned in any

quantity at any time, offering a reassuring level of flexibility and scalability.

v. Measured Service: Cloud systems use measured services to automatically

control and optimize resource usage through metering capabilities at various

levels of abstraction, depending on the type of service (e.g., storage, processing,

bandwidth, or active user accounts). This enables the monitoring, controlling,

and reporting of resource consumption, providing transparency for both the

provider and the consumer. As a result, users can track their resource usage,

allowing for better cost management and resource optimization.

15

Chapter 3 Adoption and Implementation of Cloud Platforms

Chapter 3 discusses the main reasons for adopting a cloud platform, including availability in

cloud adoption, data durability in cloud adoption, virtualization in cloud operations, hardware

server operation, network architectures for clouds, cloud providers and vendors, SLA

management in cloud computing, system virtual machines (full virtualization), cost reduction,

market adaptability, and innovation. It highlights the benefits of cloud adoption, including

agility, adaptability, redundancy, and data continuity. The chapter also discusses Amazon Web

Services (AWS), Google Cloud Platform, Microsoft Azure: Cloud Computing Services, the

economics of cloud adoption, highlighting cost-saving opportunities, and the importance of

virtualization technology and networking architectures for scalable, cost-effective cloud

operations.

3.1 Key Drivers for Cloud Platform Adoption

Organizations increasingly recognize the need for a strategic cloud adoption plan to effectively

leverage the advantages of a cloud data platform. Major cloud service providers offer

comprehensive frameworks to help businesses translate their strategic goals into actionable

steps, ensuring a structured approach to cloud adoption. Many Cloud Adoption Frameworks

(CAFs) provide a range of tools and resources, including plan generators, trackers, templates,

checklists, and readiness assessments. These tools cover critical areas such as environment

preparation, governance, migration, innovation, management, organization, and security of the

cloud platform, ensuring organizations follow best practices throughout the adoption process.

While the benefits of the cloud over on-premise data centers are substantial, much of the focus

has traditionally been on potential economic gains. However, it is important to note that

migrating to a public cloud provider does not always guarantee cost savings. In fact, cost

savings should not be the primary factor driving cloud adoption. Instead, organizations should

prioritize the cloud's ability to enable or enhance their business objectives

[30][31][32][33][34][35][27].

3.1.1 Enhancing Business Agility

Business agility refers to an organization’s ability to quickly adapt to changing market

conditions, customer demands, and emerging opportunities. Cloud platforms are central to

enabling this agility by providing the tools and flexibility necessary for innovation, scalability,

and dynamic responses to business needs. Traditional IT infrastructures often require weeks or

even months to set up, involving tasks such as installing, cabling, configuring, provisioning,

and testing equipment. In contrast, public cloud providers offer fully operational resources that

can be automatically and rapidly deployed, making it possible to have a global infrastructure

up and running within minutes.

3.1.2 Business Adaptability

Cloud adoption improves business adaptability by offering flexibility, scalability, and

improved performance. It enables businesses to adjust resources based on demand, modify

operations, and experiment with new strategies. Major public cloud providers offer a wide

16

range of services, including AI, machine learning, and big data analytics, ensuring businesses

can respond quickly to market changes and evolving customer needs.

3.1.3 Ensuring Business Continuity

Business continuity in cloud adoption focusses on proactive planning to ensure that critical

operations can continue during disruptions. This involves creating a cloud-specific business

continuity plan, implementing disaster recovery measures, and utilizing platform-level

capabilities to maintain resilience in the cloud environment. In essence, business continuity is

the ability of an organization to continue operating regardless of external circumstances. When

migrating to a public cloud infrastructure, business continuity should be a top priority. Key

areas that contribute to this are:

3.1.3.1 Cloud Redundancy and Disaster Recovery

Cloud redundancy involves duplicating physical and virtual cloud resources, as well as backing

up customer data to ensure continuous service during system failures. When the primary system

fails, traffic is automatically redirected to a redundant system to maintain operations. Public

cloud providers offer redundancy at two levels:

i. Local Redundancy: Duplicates resources within a single data center to protect

against localized failures.

ii. Geographical Redundancy: Replicates data across multiple distant data centers,

ensuring resilience during regional outages.

While geographical redundancy can be costly to implement independently, many cloud

providers offer it at no additional cost, making it accessible for businesses. Redundancy is a

crucial part of disaster recovery strategies, ensuring that systems remain operational during

events like natural disasters or technical issues. This approach helps prevent data loss and

downtime, maintaining productivity, especially during outages or remote work. To ensure

continuous operations, businesses must incorporate redundancy into their cloud strategy and

regularly assess both their cloud provider’s capabilities and their own continuity plans.

3.1.3.2 High Availability in Cloud Adoption

A public cloud provider's level of redundancy is a crucial factor in determining the system's

availability, which reflects how dependably users can access cloud services from their

locations. Redundancy ensures that critical systems and data are duplicated across multiple

environments, safeguarding against outages and disruptions. Most public cloud providers

guarantee 99.99% availability, or “four nines” of uptime, which translates to approximately 52

minutes of potential downtime per year. While this level of availability is generally reliable, it

may not be sufficient for businesses with mission-critical operations that demand near-

continuous uptime. In industries where downtime has significant consequences, such as

healthcare or autonomous systems, 99.999% (five nines) availability is the more accepted

standard, equating to less than 5 minutes of downtime annually.

17

3.1.3.3 Data Durability and Integrity

Data durability refers to the ability of stored data to remain intact, complete, and uncorrupted

over time, ensuring long-term accessibility. In public cloud infrastructure, data durability is not

left to chance. It is achieved through extensive replication across multiple locations. For

example, some cloud providers duplicate data six times across three geographically separate

regions, ensuring data availability even in the event of localized failures. These extensive

measures should make you feel secure and well-informed about the data durability in cloud

adoption. Most public cloud providers offer a durability rate of 99.99999999% (often referred

to as "eleven nines"). This means that the likelihood of data being lost or inaccessible is

incredibly small—statistically, only one failure of a few bytes of data is expected to occur over

thousands or even millions of years. Durability ensures that data remains uncompromised and

accessible for both consumers and businesses. For consumers, compromised or degraded data

can negatively affect their experience. For businesses, the integrity of their data is crucial, as

compromised data can lead to a loss of customer loyalty, damage to reputation, and potential

revenue loss. Therefore, ensuring high levels of data durability is essential for maintaining trust

and operational continuity.

3.2 Security Considerations in Cloud Adoption

Cloud security attacks often target unknown vulnerabilities in software or hardware, making

them difficult to detect and mitigate until a security patch is developed and applied. Securing

IT resources has become more complex than ever. However, by moving to a public cloud

infrastructure, customers benefit from the shared responsibility model, where security duties

are divided between the customer and the cloud provider. Cloud providers have dedicated

security teams, advanced systems, and tools to help protect resources. Many of these security

tools are readily accessible to customers, allowing them to enhance their defenses.

Additionally, encryption is available at multiple levels within the provider's infrastructure,

ensuring robust protection of customer data.

3.3 Economic Implications of Cloud Computing

Migrating enterprise IT to a public cloud provider can be highly cost-effective, with some

organizations reporting savings of 50% or more. This is achieved by replacing capital

expenditures, such as purchasing hardware and maintaining on-premise resources, with the

lower operational costs of managing cloud infrastructure. In the cloud, resource capacity is

flexible, meaning customers only pay for the resources they actually use, which eliminates the

cost of overprovisioning for occasional peak demands. Cloud economics revolves around two

key principles: economies of scale and global reach. Cloud providers reduce costs for

organizations by purchasing computing resources in massive quantities at lower prices, passing

those savings on to their customers. Additionally, the global reach of cloud providers allows

them to offer services in multiple regions, further optimizing performance and cost efficiency

for businesses.

3.4 Virtualization in Cloud Infrastructure

18

Virtualization is a fundamental technology that enables modern cloud operations by allowing

functions previously performed by hardware to be handled through software. By using

virtualization, multiple virtual machines (VMs), or "instances," can run on a single physical

server, Appendix 2 (Figure 1). In the past, each hardware server typically hosted one or only a

few web servers, but with virtualization, a single server can host dozens or even hundreds of

virtual servers. This shift has led to significant cost savings for data centres, as operators can

perform more tasks with fewer hardware servers, reducing the need for constant hardware

expansion. Without virtualization, the cloud's cost-effectiveness and scalability would not be

possible. Virtualization extends beyond computing to other areas, such as web applications,

databases, and more. One example is data virtualization, a technique that allows users to access

and query data from multiple sources as though it were a single virtual database. Platforms like

Denodo facilitate this by enabling users to work with data from different systems without

needing to move or integrate the data physically. This simplifies data access and management,

streamlining processes and improving efficiency.

3.4.1 Fundamentals of Hardware Virtualization

Before exploring how virtualization is implemented, it is essential to understand the

fundamental components of a hardware server, Appendix 2 (Figure 2). Similar to workstations

or laptops, a hardware server consists of key elements such as central processing units (CPUs),

an operating system (OS), memory, and storage. These components provide the necessary

infrastructure on which applications can be installed to deliver services to users.

3.4.2 Hypervisor Technologies in Cloud Environments

Server virtualization relies on a hypervisor, a software layer that creates and manages virtual

machines (VMs) by allocating specific hardware resources, such as CPU and memory, to each

VM. This allocation ensures that each virtual server receives the appropriate resources based

on its requirements, enabling it to operate independently of the underlying hardware. This

approach optimizes the use of physical server resources, making the system cost-effective.

3.4.2.1 Type 1 Hypervisors

In contrast, Type 1 hypervisors operate directly on the hardware without the need for a host

operating system, earning them the designation of “bare-metal” hypervisors, Appendix 2

(Figure 3). These hypervisors enable hardware servers to create and manage dozens, or even

hundreds, of virtual machines, each capable of running different operating systems from a

diverse selection. Type 1 hypervisors are widely utilized in large-scale data center

environments due to their efficiency and scalability. Prominent examples of Type 1 hypervisors

include Microsoft’s Hyper-V, VMware’s ESXi, and Linux KVM.

3.4.2.2 Type 2 Hypervisors

Type 2 hypervisors operate on top of a hardware server's existing operating system, known as

the host operating system, such as Microsoft Windows or Linux, Appendix 2 (Figure 4). When

the hypervisor creates a virtual machine (VM), it provides the VM with a separate, scaled-

down operating system known as the guest operating system. Notably, the guest operating

19

system can differ from the host. For example, a VM on a Windows-based hardware server can

run a Linux operating system. One limitation of Type 2 hypervisors is that they rely on the host

operating system, which can introduce additional costs, potential performance delays, and the

need for regular maintenance. As a result, Type 2 hypervisors are less suited for large-scale

enterprise environments. However, they are adequate for personal or small-scale use,

particularly when multiple operating systems need to be run on a single machine. Popular

examples of Type 2 hypervisors include Oracle’s VirtualBox and Microsoft’s Virtual PC.

3.5 Virtual Machines and Cloud Workloads

A virtual machine (VM) is a software-based computing resource that simulates a physical

computer to run programs and deploy applications. It creates a virtual environment where an

operating system (OS) can be installed and used independently of the main OS on the physical

computer. This allows the VM to mimic the hardware of the host machine, enabling it to

function as if it were a completely separate computer with its operating system. There are two

main users involved in this setup:

i. Host machine: The physical hardware and main operating system running on the

computer.

ii. Guest machine: The virtual machine, which operates with a separate, independent

guest operating system.

Virtual machines are classified into two types, each serving distinct purposes:

i. System virtual machines (full virtualization): These VMs replace a real machine

and allow multiple virtual machines to coexist on a single physical machine. This

is made possible by a software layer called a hypervisor, which isolates each virtual

environment while managing their coexistence on the same hardware. Modern

hypervisors leverage virtualization-specific hardware, primarily provided by the

host processor, to optimize performance.

ii. Process virtual machines (VMs): These VMs are designed to run specific programs

in a platform-independent environment. Each VM created by the hypervisor

operates as a self-contained computer with all necessary components, including a

guest operating system. The hypervisor allocates hardware resources, such as CPUs

and RAM, to each VM, ensuring that they function independently while sharing the

same physical resources. Virtual machines efficiently use hardware resources by

enabling multiple, isolated environments on a single physical machine, with each

VM running its own OS and applications.

3.6 Network Architecture in Cloud Computing

This approach focuses on the data centre network and data centre interconnect network, which

are crucial areas in cloud computing. The interconnect network connects multiple data centers

in private, public, or hybrid cloud environments, while the public Internet connects end users

to public cloud provider data centers [36][37][38][39][40].

3.6.1 Data Center Networks

20

A data center network (DCN) is the foundational infrastructure that connects all the physical

and virtual resources within a cloud service data center. It enables communication between

servers, storage devices, and other critical components, ensuring seamless operation, efficient

data flow, and high performance. Cloud providers rely on large-scale data centers to deliver

scalable services, and these data center networks are designed to connect thousands of servers.

A well-architected data center network is essential to ensure the scalability, reliability, and

performance of cloud services, and continuous advancements in network technologies help

meet the increasing demands of modern cloud-based applications. Appendix 2 (Figure 5),

shows a conceptual view of a hierarchical data center network, as well as an example of

mapping the reference architecture to a physical data center deployment.

The most common architecture used in DCNs is a hierarchical network design, which is

composed of three key layers:

i. Access Layer: This layer provides connectivity for the server resource pool. Server

density, form factor, and the degree of virtualization are a few variables that affect

the design of the access layer. Common approaches include:

• End-of-row (EoR) switches.

• Top-of-rack (ToR) switches.

• Integrated switches.

ii. Aggregation Layer: The aggregation layer consolidates access layer switches,

facilitating connectivity between servers for multi-tier applications and enabling

communication across the network with external clients.

iii. Core Layer: This layer provides high-performance Layer-3 switching, which

manages IP traffic between the data center and the telecommunications provider's

Internet edge and backbone.

In geographically dispersed data centers, the use of Layer-3 Peering Routing is not just

common, it's crucial. This routing method allows for rapid recovery from link failures and

shields the control plane from broadcast traffic and Layer-2 network loops, making it an

essential part of your network design decisions. As cloud-based applications depend heavily

on the underlying data center network, emerging optical technologies are being adopted to

improve throughput by dynamically adjusting the physical network topology. While these

technologies enhance performance, they introduce complexity, restrictions, and overheads

associated with topology engineering.

3.6.2 Data Center Interconnect Network

Data Center Interconnect Networks (DCIN) are designed to link multiple data centers, enabling

a seamless customer experience for cloud services. Traditional, statically provisioned virtual

private networks (VPNs) can interconnect data centers and offer secure communication.

However, these networks often fall short of meeting the dynamic requirements of modern cloud

services, such as high availability, dynamic server migration, and application mobility. To

address these needs, DCINs for cloud services have evolved into a specialized class of networks

based on Layer 2 network extensions across multiple data centers. DCINs support disaster

avoidance, server migration, high availability, and workload balancing, all while providing the

flexibility needed for compute elasticity. As the cloud landscape continues to evolve, further

21

research is needed to enhance DCIN performance, particularly in areas like load balancing and

loop prevention, while ensuring security through encryption.

3.7 Cloud Service Providers and Vendor Ecosystem

A cloud vendor is a company that offers cloud-related products, such as software, hardware,

and services related to cloud infrastructure. They provide a range of solutions, including

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service

(IaaS). Examples of prominent cloud vendors include Amazon, Microsoft, Google, IBM, and

Oracle. A cloud provider, on the other hand, delivers cloud services—primarily IaaS and

PaaS—to customers over the Internet. Cloud providers own and operate the physical

infrastructure, such as servers and storage, and give customers on-demand access to these

resources. While vendors sell cloud products, providers deliver cloud services. Major cloud

providers include Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform

(GCP). When selecting a cloud provider or vendor, it is crucial to assess the specific needs of

your organization. Key factors to consider include:

i. Budget: Determine the financial feasibility of the solution.

ii. Security: Evaluate the security features and compliance offered by the provider.

iii. Scalability: Ensure the solution can grow with your organization’s needs.

iv. Services and Tools: Review the specific tools, platforms, and services required by

your business.

It is also important to recognize that the best provider for one organization may not be the

best for another, as different companies have varying needs and priorities. To learn more

about specific providers, organizations can explore documentation, whitepapers, and case

studies provided by vendors. Additionally, many cloud providers offer free trials, webinars,

and certification programs to help users make informed decisions [31][42][43].

3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing

In cloud computing, Service Level Agreements (SLAs) are critical for ensuring that service

providers deliver consistent and reliable services. SLAs establish clear expectations regarding

performance, availability, and security, while also protecting customers through compensation

mechanisms in case of service failures. Organizations should thoroughly review and negotiate

SLAs to ensure they align with their specific business needs and risk management strategies.

An SLA provides a formal framework that defines the understanding between the service

provider and the service consumer. It forms the basis for conducting business and maintaining

a mutually beneficial relationship. Legally, the SLA outlines the terms and conditions that bind

the service provider to continuously deliver services to the customer. SLAs can be modeled

using the Web Service-Level Agreement (WSLA) language specification, which, while

initially intended for web service-based applications, is equally applicable to hosting services.

Key components of WSLA include service-level parameters, metrics, functions, measurement

directives, service-level objectives, and penalties [44][45][46]. several characteristics defining

a proper SLA are listed, namely:

22

i. Attainability is the possibility of meeting the desired level of service.

ii. Meaningfulness is a property defining that all SLA parts must be relevant to the

agreement.

iii. Measurability defines that the level of service provisioning should be measurable

in an impartial way.

iv. Controllability specifies that the factors impacting the SLA must be under the

service provider’s control.

v. Understandability means that both parties must understand the concepts and

quantities of the SLA.

vi. Affordability is a property determining that the SLA should be cost-effective.

vii. Mutual acceptability is related to the definition of the SLA that should be the result

of the negotiation between parties.

There are two types of SLAs from the perspective of application hosting. These are described

in detail here.

3.7.1.1 Infrastructure SLA

In an Infrastructure SLA, the infrastructure provider is responsible for managing and

guaranteeing the availability of key infrastructure components, such as server machines, power,

and network connectivity. Enterprises retain control over managing their own applications and

services that are deployed on these leased server machines. These machines are dedicated to

individual customers and are isolated from other customers' infrastructure, ensuring privacy

and security in a dedicated hosting environment. Specific examples of service-level guarantees

provided by infrastructure providers in such environments are illustrated in Appendix 2(Table

1).

3.7.1.2 Application SLA

In an Application SLA within a co-location hosting model, server capacity is dynamically

allocated to applications based on their resource needs. Service providers have the flexibility

to allocate and deallocate computing resources among co-located applications as needed. As

part of this arrangement, service providers are also responsible for ensuring that the Service

Level Objectives (SLOs) of their customers' applications are met. For example, an enterprise

might have an application SLA with a service provider that outlines specific performance

metrics for one of its applications, as shown in Appendix 2 (Table 2).

3.8 Amazon Web Services (AWS)

Amazon Web Services (AWS), launched in 2006 by Amazon, is one of the leading and oldest

cloud computing platforms. It provides a comprehensive suite of cloud-based services that

enable businesses to scale, innovate, and operate more efficiently. AWS caters to a wide range

of computing needs, offering services in computing power, storage, networking, databases,

machine learning, analytics, the Internet of Things (IoT), mobile computing, and enterprise

solutions [47]. Since its inception, AWS has been a key player in the cloud computing market.

23

It helps organizations across industries streamline their operations, improve scalability, and

drive innovation [48].

3.8.1 Core Services of AWS

3.8.1.1 Compute Services (Amazon EC2)

 Amazon Elastic Compute Cloud enables users to rent virtual servers, known as instances, to

run applications. EC2 offers flexible configurations, allowing users to customize the amount

of computing power, memory, and storage based on their specific workload needs. With just a

credit card, individuals or businesses can access a virtually limitless pool of computing

resources, renting virtual machines for an affordable hourly rate, making cloud computing

accessible to a wide range of users [49].

3.8.1.2 Storage Solutions (Amazon S3 & EBS)

Amazon S3 and Amazon Elastic Block Store are two storage solutions designed for businesses.

S3 is a highly scalable solution that allows businesses to store and retrieve large volumes of

data over the Internet. It offers multiple storage classes and is ideal for various use cases. EBS,

on the other hand, provides persistent block storage for use with Amazon EC2 instances,

offering high-performance and low-latency options. Both solutions offer flexible and efficient

solutions for managing large-scale storage needs [50].

3.8.1.3 Database Services

AWS offers a comprehensive suite of managed database services to meet the needs of

various applications:

i. Amazon Relational Database Service (RDS): RDS provides fully managed

relational database management services for popular databases such as MySQL,

PostgreSQL, Oracle, SQL Server, and MariaDB. It automates common

administrative tasks like backups, scaling, and patching.

ii. Amazon Aurora: Aurora is a fully managed, high-performance relational

database compatible with MySQL and PostgreSQL. It offers enhanced

performance and scalability compared to standard databases.

iii. Amazon DynamoDB: This is a fully managed NoSQL database solution,

designed for applications requiring high scalability and low-latency

performance.

iv. Amazon Redshift: Redshift is a powerful data warehousing solution optimized

for big data analytics. It enables organizations to run complex queries efficiently

across large datasets.

Together, these services provide flexible and scalable database solutions for both

relational and NoSQL use cases, as well as specialized services for data warehousing

and high-performance applications [51].

3.8.1.4 Networking Services (Amazon VPC)

24

Amazon Virtual Private Cloud (VPC) enables users to create isolated cloud

environments within AWS, providing secure communication, networking, and access

control between cloud resources and on-premises systems. Key components of

Amazon VPC include:

i. Network Access Control Lists (ACLs): Stateless, second-level defenses that

control incoming and outgoing traffic at the subnet level. They operate with

separate inbound and outbound rules to manage traffic flow.

ii. Gateways: A gateway is required to connect a VPC to external networks,

providing connectivity outside the AWS network.

iii. Route Tables: These contain rules that direct network traffic, specifying how

traffic is routed from a subnet or gateway to its destination.

iv. VPC Peering Connections: This feature allows routing traffic between two

VPCs using private IPv4 or IPv6 addresses, facilitating communication

between isolated cloud environments.

These components collectively offer robust networking and security capabilities for

managing and controlling cloud resources within AWS [52].

3.8.1.5 Security and Compliance

AWS prioritizes security by offering various services to protect infrastructure and customer

resources. These include AWS Identity and Access Management (IAM), which manages user

access and permissions, and AWS Key Management Service (KMS), which enforces security

best practices. AWS Secrets Manager manages sensitive information like API keys and

database credentials, and AWS Shield protects against Distributed Denial of Service (DDoS)

attacks. AWS operates under a shared responsibility model, where the provider manages cloud

infrastructure security while customers secure their data and access. By utilizing these tools

and following security best practices, organizations can reduce risks and ensure compliance

with industry regulations [53].

3.8.2 AWS Pricing Models

AWS offers various pricing models to suit organizations' needs, including a pay-as-you-go

model. This model allows businesses to pay only for the resources they consume, ensuring they

pay for the services they use [54].

i. On-Demand Instances: is a pay-as-you-go pricing model for resources like EC2

instances or DynamoDB, offering a flat rate without long-term commitments. It is

suitable for short-term, unpredictable, and pre-production environments with

unpredictable spikes or uninterrupted runtimes and can be billed in increments of

one second depending on the service.

ii. Spot Instances: are Amazon EC2 compute capacity at up to 90% off on-demand

prices, enabling applications to reduce costs or scale computing capacity. They are

ideal for fault-tolerant, stateless, and flexible workloads like batch processing, big

25

data, analytics, containerized environments, and high-performance computing.

They are integrated into multiple AWS services.

iii. Commitment discounts – Savings Plans: AWS provides savings plans to help users

reduce costs by committing to a specific amount of resource usage in exchange for

discounted rates. These plans allow users to commit to hourly spending over one or

three years, covering AWS Compute services such as Amazon EC2, AWS Fargate,

and AWS Lambda. The commitment is paid on an hourly basis, with discounts

applied based on the actual usage.

iv. Geographic selection: To optimize computing resources, it is important to place

them closer to users, reducing latency and ensuring compliance with data

sovereignty requirements. For a global audience, deploying resources across

multiple locations can minimize costs. AWS cloud infrastructure is organized into

regions and availability zones, with each region operating under local market

conditions and varying resource pricing. To estimate the cost of running workloads

in different regions, users can leverage the AWS Simple Monthly Calculator for

more accurate budgeting and cost planning.

v. Third-Party Agreements and Pricing: When utilizing third-party cloud solutions or

services, it is essential to ensure that pricing structures are aligned with Cost

Optimization objectives. Pricing should be outcome-based, meaning it scales

according to the value provided, such as software charging based on the cost savings

it generates. Agreements that scale with your total bill may not align with cost

optimization unless they deliver specific outcomes for every component of your

bill. Ensure that the service pricing includes cost optimization features, which are

critical for driving operational efficiency and reducing costs.

3.8.3 AWS Global Infrastructure and Availability

AWS Regions are geographically separated physical locations, each with multiple isolated

Availability Zones (AZs) for high fault tolerance, stability, and resilience. This isolation

prevents the automatic replication of resources across regions, allowing businesses to deploy

Amazon EC2 instances in locations that best meet their specific needs. Each region consists of

multiple AZs, each with redundant power, networking, and connectivity, housed in separate

facilities. This enhances fault tolerance and ensures high availability. By deploying resources

in different regions, businesses can reduce latency by placing applications closer to their

geographic locations. The autonomy of each region ensures strong fault isolation and security,

preventing automatic replication of resources across regions. By leveraging this global

infrastructure, businesses can optimize performance, comply with local regulations, and

enhance disaster recovery capabilities, ensuring stability and high availability for their

applications. [55].

3.9 Google Cloud Platform (GCP)

In April 2008, the Google developer team introduced a closed developer preview of Google

App Engine, marking their entry into the Platform-as-a-Service (PaaS) market. Over the

following years, Google steadily expanded its cloud offerings, releasing key services such as

26

Google Cloud Storage in 2010, Compute Engine in 2013, Cloud SQL in 2014, and Kubernetes

Engine in 2015. This suite of products has enabled the development of cloud-native solutions,

including machine learning and big data applications. By 2017, Google had established data

centers across 39 zones in 13 regions, positioning itself as a leader in scalable managed services

and big data. Google's cloud platform leverages its extensive experience managing services

like Search and Gmail, offering customers access to many of the same tools used internally.

This results in a platform known for its scalability and reliability. With services such as

BigQuery, Bigtable, Cloud Pub/Sub, and Dataflow, Google has made significant strides in the

data analytics space. Google Cloud Platform (GCP) offers a comprehensive catalog of products

and services, catering to a wide range of industries and use cases. Core services like Compute

Engine and Cloud Storage enable teams to build virtually any solution, while specialized

services such as the Cloud Vision API lower the barrier to solving specific, complex problems.

Empowering digital innovation with Google Cloud Platform, which offers a wide range of

cloud services and solutions. This platform enables companies, developers, and organizations

to leverage Google’s expertise in data management, artificial intelligence, and scalable

infrastructure to drive growth and innovation [56][57][58][59].

3.9.1 Comprehensive Cloud Services Portfolio

i. Google Cloud Compute Engine (GCE) is a core service offering IaaS for virtual

machine creation, customization of CPU, memory, and storage, and scalability for

web applications.

ii. Storage Alternatives Google Cloud Bigtable is ideal for managing large data sets

with high throughput and low latency, while Google Cloud Storage offers secure,

scalable storage for object data. The choice depends on performance or cost

requirements.

iii. Data analytics, Google Cloud Platform (GCP) provides Big Query, a serverless data

warehouse, for efficient data analysis on large datasets. It enables the efficient

processing of terabytes and petabytes of data in minutes.

iv. AI and Machine Learning, Google Cloud provides AI and machine learning

services, including Google Cloud AI and Machine Learning Engine, allowing users

to create, train, test, monitor, tune, and deploy models, addressing critical business

challenges and making AI more accessible.

v. Internet of Things (IoT) and Networking, Google Cloud Platform (GCP) is a robust

IoT platform with strong networking infrastructure. It ensures seamless

connectivity and scalability for large-scale deployments and offers services like

Dedicated Interconnect, Partner Interconnect, and Cloud VPN.

vi. Serverless Computing, Google Cloud Platform (GCP) provides serverless

computing services like Google Cloud Functions and Google App Engine. These

services enable developers to build and deploy applications without managing

infrastructure, enhancing speed and scalability.

3.9.2 Performance and Scalability

27

i. Global Network Infrastructure, Google Cloud Platform (GCP) utilizes a global

network infrastructure with strategically located data centers for low latency, high

availability, cost-efficiency, and energy-efficient operations, enhancing its appeal

for sustainable cloud computing solutions.

ii. Auto-Scaling, Google Cloud Platform (GCP) utilizes Google Kubernetes Engine

(GKE) for auto-scaling, a feature that dynamically adjusts node pool size based on

workload demands. This optimizes performance and resource utilization, enabling

applications to handle fluctuating traffic efficiently.

3.9.3 Industry Adoption and Use Cases

i. Media and Entertainment, Google Cloud Platform (GCP) is a crucial tool in the

media and entertainment sector. It offers scalable infrastructure and innovative

solutions for content delivery, streamlining operations, reducing costs, and

enhancing audience engagement, thereby transforming global audience

interactions.

ii. Healthcare and Life Sciences, Google Cloud Platform (GCP) significantly impacts

healthcare and pharmaceutical industries by facilitating genomics research, data

processing, and secure storage. It facilitates digital transformation, enhances data

analytics, and drives advancements in biotech and life sciences.

iii. E-commerce and retail, Google Cloud Platform (GCP) significantly impacts

healthcare and pharmaceutical industries by facilitating genomics research, data

processing, and secure storage. It facilitates digital transformation, enhances data

analytics, and drives advancements in biotech and life sciences.

3.9.4 Compute Engine Resources: Regions and Zones

Google Cloud Compute Engine resources are distributed across multiple locations worldwide,

organized into regions and zones. A region is a specific geographical area where resources can

be hosted, and each region is composed of at least three zones. Zones are individual data centers

within a region, and resources such as virtual machine instances or zonal persistent disks are

referred to as zonal resources. Distributing resources across different zones within a region

enhances fault tolerance by isolating them from infrastructure failures, such as hardware or

software issues, in a single zone. To achieve even greater resilience, deploying resources across

multiple regions offers a higher degree of failure independence. Regions consist of multiple

zones connected by high-bandwidth, low-latency networks, ensuring fast communication

between zones. When deploying fault-tolerant, high-availability applications, it is essential to

choose regions and zones that best suit your specific requirements. All Compute Engine

resources are categorized as global, regional, or zonal. Regional resources are accessible only

within the same region, providing efficient resource sharing across zones within that region. A

placement policy governs the proximity of virtual machines (VMs) to each other, helping to

minimize the effects of host system failures or network latency, further enhancing performance

and reliability [60].

3.9.5 GCP Pricing Models

28

Google Cloud provides several pricing models to suit different organizational needs,

including:

i. Pay-as-you-go: Google Cloud offers a pay-as-you-go, on-demand pricing model,

which is ideal for users who expect intermittent cloud usage. This model provides

flexibility by allowing you to add or remove services as needed, with charges based

on actual usage and no upfront costs. However, this flexibility comes at a higher

price, making pay-as-you-go the most expensive option on a per-hour basis.

ii. Long-term reservations: Also known as Committed Use, offer significant discounts

for committing to resource usage over a period, typically one or three years. This

pricing model is ideal for organizations planning to use the cloud long-term and

willing to make an upfront commitment. By choosing Committed Use, users can

achieve substantial savings—up to 70% on Compute Engine—compared to the pay-

as-you-go model. These long-term pricing terms allow for greater cost efficiency

over time, making it a cost-effective option for consistent cloud usage.

iii. Free tier: The free tier of Google Cloud Platform (GCP) allows users to explore

various services and resources at no cost but with limited capacity. This tier

provides ongoing access to a predefined set of resources, enabling users to

familiarize themselves with Google Cloud products while staying within specific

usage limits. Unlike the time-limited free trial, which offers broader access to

services for new users, the free tier is continuously available to all users.

Additionally, Google Cloud offers "always free" services for organizations with low

usage requirements. New customers also receive $300 in credits, which can be

applied to any Google Cloud services or products during the initial trial period.

When choosing the most suitable model, organizations should consider their budget

and computing requirements. Key factors that influence Google Cloud costs include

compute, storage, network, SQL, and serverless pricing. These elements should be

carefully evaluated when selecting the appropriate pricing structure [61].

3.10 Microsoft Azure: Enterprise Cloud Solutions

Microsoft Azure, launched in 2008, is a rapidly growing cloud platform offering a wide range

of services across various categories, including AI, Machine Learning, Analytics, Blockchain,

Compute, Containers, Serverless Computing, Databases, Developer Tools, DevOps, Identity

Management, IoT, Networking, Security, Storage, Web Services, and Windows Virtual

Desktop. Azure's seamless integration with Microsoft products and comprehensive intelligent

services make it an attractive and flexible solution for organizations of all sizes. With 95% of

Fortune 500 companies using its services, Azure's extensive service offerings are highly

customizable and can be easily integrated with external solutions [62].

3.10.1 Compute Services in Azure

i. Azure Virtual Machines (VMs) provide on-demand, scalable computing resources,

enabling users to run various operating systems without physical hardware. Available

in four types—standard, preset, Azure Arc VMs, and private VMs via Azure VMware

29

Solution (AVS)—VMs can be deployed across 60+ regions with a 99.99% SLA. Users

can choose between uniform orchestration for stateless workloads or flexible

orchestration for stateful workloads. Azure’s shared responsibility model ensures

security through features like trusted launch, confidential VMs, firewalls, disc

redundancy, load balancing, and identity management. With a 99.9999999999%

durability guarantee and zone-redundant storage, Azure VMs offer flexibility, security,

and reliability for diverse workloads [63].

ii. Azure App Service is a powerful Platform-as-a-Service (PaaS) from Microsoft that

enables developers to easily build, deploy, and scale web applications, REST APIs, and

mobile backends. It supports multiple programming languages, including .NET, Java,

Node.js, PHP, and Python, while automatically managing OS and framework updates.

With seamless DevOps integration, it connects with platforms like Azure DevOps,

GitHub, and Docker Hub for continuous deployment. It offers global scalability, high

availability, and built-in security features while adhering to standards like SOC and

PCI, thanks to Azure's robust infrastructure. This makes Azure ideal for secure, flexible,

and scalable cloud application deployment [64].

iii. Azure Kubernetes Service (AKS) is a fully managed service by Microsoft Azure that

simplifies the deployment, management, and scaling of containerized applications.

AKS enables organizations to use Kubernetes for container orchestration without

requiring deep platform expertise, as Azure handles operational overheads like health

monitoring, maintenance, and security, ensuring faster application delivery. Kubernetes

(K8s) is an open-source system that automates deployment, load balancing, and self-

healing for containerized applications, offering strong scalability. K3s is a lightweight

Kubernetes version designed for resource-constrained environments, while K0s

simplifies Kubernetes cluster management with features like Role-Based Access

Control (RBAC), security policies, and micro-VM support [65].

3.10.2 Azure Storage Solutions

i. Azure Blob Storage is a cloud-based solution from Microsoft Azure designed for

storing large amounts of unstructured data, such as text or binary files. It offers

scalability, allowing data of any size to be stored, and includes cost optimization

through various storage tiers (Hot, Cool, and Archive). Ideal for storing images, videos,

backups, and log files, Azure Blob Storage ensures global accessibility via

HTTP/HTTPS and integrates seamlessly with other Azure services. Security features

include encryption at rest and in transit, role-based access control (RBAC), and shared

access signatures. It supports two types of blobs: block blobs for large files and page

blobs for disk storage [66].

ii. Azure offers comprehensive solutions for high-performance computing (HPC)

workloads through its HPC-optimized virtual machine series, including the H-series

and N-series, which feature high-performance CPUs and NVIDIA GPUs. To meet data

storage needs, Azure Blob Storage and Azure Files provide scalable, reliable options.

Azure Cycle Cloud facilitates the management of HPC and big data clusters. For Azure

Virtual Machines, Azure Disc Storage provides high-performance block storage with

30

various managed disc types to suit different workloads. With 99.999% availability and

integrated security features, Azure's disc solutions enhance the reliability and

scalability of applications while supporting extensive VM deployments [67].

iii. Azure Files is a managed cloud storage solution that offers file shares via SMB and

NFS, supports various operating systems, and allows concurrent access. It is serverless,

scalable, secure, and cost-effective, with different pricing tiers. Azure's services are

compatible with SOAP, REST, and XML protocols [68].

3.10.3 Networking in Azure

i. Azure Virtual Network (VNet) is a key service in Microsoft Azure. It enables

private networks, secure deployment, and management of virtual machines and

services. It also supports communication and traffic control, ensuring seamless

integration within the cloud environment [69].

ii. Azure Virtual WAN is a centralized networking service that simplifies WAN

management by consolidating networking, security, and routing functions. It offers

centralized hub connectivity for branch offices, data centers, and Azure regions,

ensuring efficient and secure connectivity [69].

iii. Azure VPN Gateway is a service that provides secure, encrypted communication

between Azure virtual networks and on-premises locations, ensuring data

confidentiality and integrity over public networks. It facilitates site-to-site VPNs,

making it ideal for cross-premises communication [69].

3.10.4 Azure AI and Machine Learning

i. Azure Machine Learning is a Microsoft cloud-based service that provides advanced

analytics and AI capabilities for various industries. It ensures robust cybersecurity

measures and a secure, scalable solution for managing cloud-based projects [70].

ii. Azure Cognitive Services is a Microsoft cloud-based suite of AI services that integrates

AI into applications, including natural language processing, speech recognition, and

computer vision. It integrates with Azure IoT, enhancing insights in the retail and

healthcare sectors and offering flexibility and scalability [71].

iii. Azure Bot Services is a cloud-based platform for creating, managing, and deploying

enterprise-grade conversational AI bots. It offers an intuitive interface and is flexible,

allowing users to create chatbots without coding or AI expertise. Microsoft Bot

Framework provides tools for building intelligent conversational agents and connecting

them to messaging platforms. It integrates with cognitive services like Watson, LUIS,

Lex, and Dialog flow, simplifying the creation process and reducing deployment time

[72].

3.10.5 Security and Identity Management in Azure

i. Azure Active Directory is a cloud-based identity and access management service that

enables web application authentication, Single Sign-On, and user management. It

extends on-premises Active Directory (AD) and supports HTTP and HTTPS protocols

like SAML 2.0, OAuth 2.0, and OpenID Connect. Azure AD offers features like user

31

and group management, self-service password reset, and multi-factor authentication. It

is free for basic functionality [73].

ii. Azure Security Center is a comprehensive security management system that offers

advanced threat protection across Azure and non-Azure resources. It provides security

recommendations, continuous monitoring, and compliance management. Single Sign-

On (SSO) offers advantages like strict password policies, reducing password fatigue,

and enabling quick deactivation of access across multiple systems. However,

organizations must monitor user sign-on activities to detect potential intrusions [73].

3.10.6 Azure Global Geographies and Data Center Locations

Each Azure geography is meticulously designed to meet specific data residency and

compliance requirements, ensuring that business-critical data and applications remain close to

users. These geographies consist of one or more regions, all built on fault-tolerant, high-

capacity networking infrastructure. Many Azure regions also offer availability zones, which

are physically separated groups of data centres within the same region. These zones are

connected by a high-performance network with a round-trip latency of less than 2 ms, a key

factor in ensuring low-latency communication. Availability zones are strategically spaced to

minimize the impact of local outages or adverse weather conditions while still being close

enough to maintain fast connections. Each zone operates with independent power, cooling, and

networking infrastructure, ensuring that if one zone experiences an outage, the remaining zones

will continue to support regional services, capacity, and high availability. This design helps

keep data synchronized and accessible during failures. The selection of data centre locations is

based on a rigorous vulnerability risk assessment. This assessment identifies significant risks

specific to each data centre and accounts for shared risks between availability zones to enhance

overall resilience and reliability [74].

3.10.7 Azure pricing models

Azure's pay-as-you-go pricing model charges customers only for the resources they use, but

these rates are generally higher than reserved pricing. Costs may vary depending on usage

levels, and billing is based on standard pay-as-you-go rates unless otherwise specified. Azure

periodically introduces new services, notifying users in advance of any associated fees.

Customers are only charged for new services if they choose to use them. Any taxes resulting

from receiving services at no charge are the responsibility of the recipient. Azure offers a free

tier for new customers, which includes 12 months of access to popular services and 55

additional free services. New customers also receive a $200 credit for use within the first 30

days. After 12 months, usage is billed at standard pay-as-you-go rates, although some services

remain free for as long as the account is active. Microsoft reserves the right to modify or

discontinue free services at any time. To help reduce costs, Azure offers Reserved Virtual

Machine Instances, which provide savings of up to 72% compared to pay-as-you-go pricing,

and Spot Virtual Machines, which offer discounts of up to 90% by using unused compute

capacity. For the most accurate and current pricing details, users should refer to Azure's official

pricing page [75].

32

Chapter 4 Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation

Chapter 4 significantly contributes to the estimation and optimization of Round-Trip Time

(RTT) in cloud computing environments, with a specific focus on the impact of geographical

distances and network conditions. This chapter introduces a novel approach by integrating a

triangular membership function (MF) within a fuzzy logic framework to enhance the accuracy

of RTT estimation, addressing the limitations of traditional methods, particularly in time-

sensitive cloud applications. The proposed fuzzy logic-based model incorporates key factors

influencing RTT, including network congestion, which is evaluated in terms of time

(milliseconds) and routing policies and analyzed based on distance (kilometers) and geographic

distances. By integrating these parameters, the model provides a more refined and adaptable

RTT prediction than conventional estimation techniques, ensuring greater precision in cloud

performance assessments. Furthermore, the chapter emphasizes the advantages of fuzzy logic-

based RTT estimation in optimizing network performance, enhancing Quality of Service

(QoS), and ensuring SLA compliance. A comparative analysis of RTT values across 28 AWS

regions is presented, demonstrating that the fuzzy logic-based system consistently yields more

precise and lower RTT estimates than traditional measurement methodologies available

through Websites standard online tools. These findings highlight the effectiveness of fuzzy

logic in estimating latency and improving SLA evaluation.

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing

Traditional cloud computing is primarily used for storing, analyzing, and processing large

volumes of data. However, it struggles to handle high latency issues in time-critical

applications, such as computer gaming, e-healthcare, telemedicine, and robot-assisted surgery.

Network latency, which causes delays in data transmission, is a critical factor for real-time

applications. Traditional cloud computing methods are often insufficient to meet the stringent

Quality of Service (QoS) requirements for devices operating in these environments. Challenges

in calculating and expectation the Round-Trip Time (RTT) further complicate efforts to

minimize latency when transmitting time-sensitive data in real-time [76]. RTT is a crucial

determinant of latency in cloud services. Efficient management of RTT can significantly

enhance QoS by ensuring faster data exchange and reducing response times. This optimization

is essential for applications dependent on real-time interactions, where latency can drastically

affect user experience and satisfaction. Ensuring low RTT is also essential for maintaining

Service Level Agreement (SLA) compliance [77]. Scientists are evaluating cloud infrastructure

for next-generation applications by analyzing the impact of geographical distance on latency.

Private network backbones and direct peering agreements have been shown to significantly

improve latency in cloud environments, reducing the delays experienced by users across

different regions [78]. One study assessed the performance of the Tahoe Least-Authority File

System (Tahoe-LAFS) by comparing its write operations on community network clouds and

the Azure commercial cloud platform. The results revealed that read operations outperform

write operations on Azure due to the platform’s network homogeneity, highlighting the

performance differences between community and commercial clouds [79]. In the pursuit of

optimizing resource management and reducing communication costs, two approaches—queue-

33

based dynamic resource allocation and spatial resource partitioning—were evaluated for their

impact on latency, throughput, fairness, and latency fairness. The findings show that queue-

based dynamic technology outperforms spatial partitioning in terms of latency reduction and

overall performance [80]. Data center networks are also evolving, with line rates increasing to

200Gbps to support NVMe and distributed machine learning (ML) applications. However, this

advancement leaves room for imperfect control decisions. To address this, the Bolt system was

developed, founded on three core ideas: (i) Sub-RTT Control (SRC), which reacts to congestion

faster than traditional RTT control loop delays; (ii) Proactive Ramp-Up (PRU), which

anticipates future flow completions to quickly utilize released bandwidth; and (iii) Supply

Matching (SM), which explicitly matches bandwidth demand with supply to maximize

utilization. Bolt has been shown to reduce latency and improve flow completion times while

maintaining near line-rate utilization, even at 400Gbps [81]. Cloud applications often operate

exclusively on the servers provided by cloud service providers, accessible through a simple

web browser or similar client interface. For example, Amazon Web Services (AWS) offers

widely used business applications that are hosted on its servers and accessed online. AWS has

demonstrated this by providing scalable infrastructure to accommodate various enterprise

needs, further illustrating the potential impact of cloud computing [82]. Similar to how most

people today opt to rent homes rather than build them, the future of computing may see

organizations favoring scalable and reliable cloud providers instead of constructing their own

IT infrastructures. This shift would significantly reduce the risks and costs associated with

launching new applications and services, as cloud providers offer ready-made platforms for

deployment [83]. The widespread enthusiasm for cloud computing has led to a surge of

discussions surrounding network availability, reliability, and latency within cloud

environments. Despite these discussions, there is a noticeable lack of empirical measurement

studies that validate these claims. Specifically, there is a gap in research comparing networking

performance metrics, such as RTT, with the actual RTT experienced by web hosting services

across different geographical regions. This gap highlights the need for more comprehensive

studies to better understand and address the challenges related to RTT and latency in cloud

computing [76]. As a result, our research endeavors to assess the performance of networking

services under varying load conditions to determine the validity of the hype generated around

cloud computing. We approach the assessment of network availability from two broad

perspectives: firstly, by computing network based RTT through ping tests to evaluate

connectivity, and secondly, by adopting a mathematical respective with RTT approach to verify

the scalability and performance claims made by cloud service providers [82]. To gain a deeper

understanding of these aspects, we employ a fuzzy logic system incorporating three triangular

membership functions for two input parameters: (distance) and (network congestion). This

system enables the measurement of service performance concerning the expected optimal

Round-Trip Time (RTT). The study is conducted within the Amazon Web Services (AWS)

platform, where performance is evaluated based on the interaction between the sender and

receiver when retrieving cloud services. RTT values are categorized into three distinct classes:

small RTT (RTT < 100 ms), medium RTT (100 ms < RTT < 200 ms), and large RTT (RTT >

250 ms). Following this classification, a comparative analysis is performed between the

expected RTT values obtained using the triangular membership function in the fuzzy logic

system and the actual RTT values provided by Amazon Web Services. The findings indicate

34

that the fuzzy logic-based approach for RTT estimation yields more accurate and predictable

results than those promoted by AWS. For further investigation, ping tests were employed to

analyze variations while accounting for inter-region distances and network latency. This

method provides a practical solution to the first challenge identified in this study: enhancing

cloud service management and selection. By integrating fuzzy logic-based SLA optimization,

users can make informed decisions regarding cloud service selection based on their geographic

proximity to AWS regions, ultimately improving service performance and efficiency. This

contribution facilitates the analysis and evaluation of additional Quality of Service (QoS)

criteria in both computing and networking, which will be examined in detail in the subsequent

chapter. Furthermore, the fundamental principles underlying the fuzzy logic technology

employed in this study will be systematically presented and discussed throughout this

dissertation in a structured and sequential manner.

4.2 Challenges in Estimating RTT in Cloud Environments

Accurately estimating RTT in cloud environments presents a range of challenges due to the

complex, dynamic nature of modern cloud architectures.

4.2.1 Geographical Distance

Cloud data centers are distributed globally, and the physical distance between nodes, such as

between locations i and j, can introduce significant delays in data transmission. For example,

transcontinental communications between data centers in Europe and Asia often experience

higher Round-Trip Time (RTT) due to the long distances involved. The geographical

separation between the sender and receiver plays a crucial role in network performance,

particularly in terms of latency. As the distance increases, data transmission delays grow, which

can have a substantial impact on time-sensitive applications that require real-time data

exchange. This underscores the importance of optimizing routing and data transmission

strategies to minimize the negative effects of geographical distance on network performance

[84].

4.2.2 Network Congestion

As cloud networks continue to expand, network congestion becomes a growing concern,

leading to variable delays in data transmission. In multi-tenant environments, where multiple

clients share network resources, this competition can result in unpredictable fluctuations in

Round-Trip Time (RTT). A key issue often cited is the effect of out-of-order packet arrivals on

the performance of TCP (Transmission Control Protocol). These out-of-order arrivals are

typically interpreted as a sign of network congestion, causing the receiver to generate duplicate

acknowledgements. This, in turn, prompts the sender to react as if packets were lost, triggering

spurious retransmissions and unnecessary reductions in the sending rate. When it comes to flow

control, the combination of traffic from multiple servers can exceed the capacity available at

the destination server, further intensifying network congestion. This congestion can also spill

over, affecting traffic to neighboring servers and exacerbating overall network performance

issues. Therefore, the management of congestion and the optimization of traffic flow are crucial

to ensuring stable and efficient cloud network operations [85][86].

35

4.3 Transmission Performance Evaluation in Cloud Computing

The Internet serves as a foundational component of computational technologies, facilitating

extensive data generation that is stored on servers or within cloud infrastructures. The processes

of data migration and transfer are integral to maintaining system integrity, ensuring

consistency, and implementing essential security and load-balancing mechanisms. Among the

key metrics for assessing transmission performance in network communications is Round Trip

Time (RTT), which quantifies the duration required for a signal to travel from the source to the

destination and return. RTT is widely utilized to evaluate the efficiency and Quality of Service

(QoS) across diverse network environments, including cellular networks, Internet of Things

(IoT) systems, and traditional Internet-based frameworks [87]. RTT analysis is particularly

significant in network optimization, as it aids in diagnosing transmission delays and enhancing

end-to-end communication performance. Moreover, RTT plays a pivotal role in congestion

control protocols, such as TCP BBRv3, which is designed to optimize bandwidth utilization

and ensure fairness in networks exhibiting variable RTT values. Within IoT environments,

RTT is assessed alongside other key performance indicators, including power consumption, to

enhance data transmission reliability. The integration of RTT-based optimizations enables

cloud service providers to maintain high levels of performance and reliability while

simultaneously reducing their environmental impact [88]. Cloud computing systems are

subject to performance evaluations, generally categorized into resource assessments and

network infrastructure assessments. Resource assessments focus on analyzing the

computational performance of cloud applications, particularly concerning the hardware and

virtualized environments that support these applications. Each cloud service provider employs

distinct criteria for measuring CPU utilization. For instance, Google App Engine assesses

resource consumption based on "Megacycles used," whereas Amazon EC2 evaluates

performance in terms of deployment duration and instance utilization. Conducting such

assessments typically requires root-level access permissions, limiting them to cloud providers

or certified third-party evaluators [89].

4.4 Intelligent Systems and Network Service Prediction

Intelligent systems encompass a diverse range of computational techniques derived from

artificial intelligence (AI) research, including fuzzy logic, neural networks, and genetic

algorithms [90]. Among these approaches, fuzzy logic provides a powerful framework for

managing uncertainty and imprecision, making it particularly effective for solving complex

problems where traditional binary logic falls short. By incorporating partial truth values, fuzzy

logic facilitates human-like decision-making in ambiguous situations, which is essential for

applications such as control systems, decision-making processes, and pattern recognition.

Fuzzy logic plays a crucial role in intelligent systems due to its capability to process uncertain,

imprecise, and vague data. Unlike conventional logic systems that rely on absolute true or false

values, fuzzy logic allows for degrees of truth, mimicking human reasoning and improving

adaptability in dynamic environments. A fundamental aspect of fuzzy logic is the fuzzy

linguistic approach, which utilizes linguistic variables to represent qualitative system attributes.

This methodology is particularly beneficial for ill-defined or highly complex scenarios,

enhancing flexibility and adaptability in intelligent problem-solving [91]. Additionally, fuzzy

36

reasoning aids in system behavior analysis, allowing for interpolation between input and output

conditions, simplifying complexity management, and supporting induction-based learning—a

critical feature for addressing intricate computational challenges. Ensuring balanced

uncertainty is essential for optimizing model performance in such systems, particularly in

server management and task distribution, which are fundamental to the efficient operation of

service-based infrastructures. In cloud computing and networking, fuzzy logic plays a key role

in addressing complex challenges such as network delay estimation, which is critical for

accurately predicting task completion times and optimizing cloud resource allocation

[90][92][93]. Empirical studies and simulations have demonstrated that fuzzy logic-based

decision-making models operate effectively in uncertain environments, offering high precision

in estimating network delays within cloud-based infrastructures. In virtualized cloud

environments, where applications primarily run on virtual machines (VMs), fuzzy logic

enhances system reliability by predicting potential failures and implementing proactive

mitigation strategies. Given the complexity and dynamic nature of cloud infrastructures,

adopting flexible and adaptive methodologies is essential for effective management. By

providing a structured decision-making framework, fuzzy logic enables systems to efficiently

handle uncertainty, ultimately enhancing efficiency, reliability, and resilience in cloud-based

operations [94][95].

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic

4.5.1 Experimental Testing Model Determination

Several techniques are utilized to calculate Round-Trip Time (RTT) in network environments,

each offering varying levels of accuracy and application. One widely used method is the Ping

Test, which serves as a rapid and reliable tool for assessing network performance and

connection quality. This technique measures the latency in milliseconds between a user's

device and a specified remote server. The RTT value is significantly influenced by the

geographical distance to the server, with greater distances typically resulting in higher RTT

values. A stable network connection is indicated by a consistently straight horizontal line on a

ping test chart, whereas fluctuations in RTT may signal network instability or congestion [96].

Another method for calculating Round-Trip Time (RTT) involves mathematical modeling

techniques implemented within network infrastructures. In this context, network performance

metrics are derived by measuring transactions, defined as client requests followed by server

replies, including TCP and UDP flows. Each read and write transaction between client and

server is timed, providing essential data for RTT calculation. Typically, network appliances,

such as Exinda devices (https://docs.exinda.com/), are strategically placed between the client

and server to facilitate precise measurement. These devices timestamp each intercepted packet

with high-resolution nanosecond accuracy. Since the initial packet transmission from the client

is unknown, RTT is calculated by summing the server-side RTT (from appliance to server and

back) and the client-side RTT (from appliance to client and back). With increasing packets

traversing the Exinda appliance, RTT estimations become more accurate by continuously

averaging newly captured data. Consequently, RTT provides a reliable measure of the time

required for a minimal packet to travel through the network and receive acknowledgment,

improving progressively with ongoing data accumulation.

https://docs.exinda.com/

37

 [97][98]. The methodology for calculating RTT, along with its visual representation and

governing equations, is depicted in Appendix 3 (Figure 1), which provides a diagrammatic

illustration of the RTT computation process. In this study, the ping technique was employed to

assess the connectivity between the sender and receiver, enhancing the accuracy of the analysis

and enabling precise tracking of the connection process between network nodes within the

AWS computing environment. Appendix 3: 0.2 Figure 2. Ping testing process. A sample of the

results obtained from the ping testing process was presented to verify the integrity of the

connection and establish a reliable link between the user and the endpoint. This verification

was performed across all selected servers in this study to ensure network stability and

performance.

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS

Regions

In this study, data was systematically extracted to include the names of 28 AWS regions where

data centers are located, along with relevant details necessary for conducting a comprehensive

communication and connection assessment. These regions were considered as Amazon’s

endpoints or receivers, facilitating the evaluation of network performance across different

geographical locations. To conduct this analysis, the AWS latency testing platform

(https://aws-latency-test.com/) was utilized to measure network latency between the sender and

AWS endpoints. Additionally, the Haversine formula was applied to determine the latitude and

longitude of each endpoint. The Haversine formula, commonly used in navigation and

geospatial analysis, calculates the great-circle distance between two points on a sphere based

on their geographic coordinates. This approach enabled precise estimation of the physical

distance between the sender and AWS data centers. The sender's location was identified as Kut,

Muhafazat Wasit, Iraq (IQ), with an IP address of 37.236.213.12 and geographical coordinates

of latitude 32.6024 and longitude 45.7521, The primary objective was to analyze and extract

the precise distance between the sender and all AWS regions across multiple continents,

Appendix 3 (Figure 3, Table 1).This geospatial analysis facilitated a better understanding of

network performance, enabling a more accurate evaluation of latency and connectivity between

cloud service users and data centers worldwide.

4.5.3 Fuzzy Logic Framework

 4.5.3.1 Design System

The proposed model employs a triangular membership function [99], formulated in Equation

(4.1), to convert crisp values into fuzzy sets. This function is defined by a vector "d" and three

scalar parameters: l, m, and n. The MATLAB Fuzzy Logic Designer tool was utilized to

develop the model, as depicted in Figure 4.1, the model integrates two input parameters, as

detailed in Appendix 3 (Figures 4 and 5). The model utilizes three triangular membership

functions for each input parameter.

𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑑(𝑑: 𝑙,𝑚, 𝑛) = {

0, 𝑑 < 1
𝑑 − 𝑙/𝑚 − 𝑙, 𝑙 ≤ 𝑑 ≤ 𝑚
𝑛 − 𝑑/𝑛 −𝑚,𝑚 ≤ 𝑑 ≤ 𝑛

0, 𝑛 ≤ 𝑑

} (4.1)

https://aws-latency-test.com/

38

FIGURE 4.1. PROPOSED MODEL DESIGN.

1) Input Variables Definition

• Distance:

Small: [0, 862.94, 4516]; Medium: [2689, 8170, 11824]; Long: [9997, 15478,

15478.65]

• Network Congestion:

Light: [0, 3, 6]; Average: [3, 6, 8]; Peak: [7, 14, 23.59].

2) Output Variables Definition

The expected Round-Trip Time (RTT-Expectation) output is defined in Appendix

(Figure 7) as follows:

RTT1: [0, 0, 25]; RTT2: [10, 50, 75]; RTT3: [50, 100, 125]; RTT4: [100, 150, 175];

RTT5: [150, 175, 200]; RTT6: [175, 200, 250]; RTT7: [200, 250, 325]; RTT8: [250,

325, 350]; RTT9: [325, 430, 500].

In total, nine triangular membership functions were employed for the output, Appendix 3

(Figure 6)., in accordance with fuzzy logic system standards (3 × 3) rules, as depicted in

Appendix 3 (Figure 7).

3) Fuzzy Rule Base System

The fuzzy inference system applies the following rule base to determine the expected

RTT based on distance and network congestion levels:

• If distance is small and network congestion is light, then RTT-Expectation is

RTT1.

• If distance is small and network congestion is average, then RTT-Expectation is

RTT2.

39

• If distance is small and network congestion is peak, then RTT-Expectation is

RTT3.

• If distance is medium and network congestion is light, then RTT-Expectation is

RTT4.

• If distance is medium and network congestion is average, then RTT-Expectation is

RTT5.

• If distance is medium and network congestion is peak, then RTT-Expectation is

RTT6.

• If distance is long and network congestion is light, then RTT-Expectation is

RTT7.

• If distance is long and network congestion is average, then RTT-Expectation is

RTT8.

• If distance is long and network congestion is peak, then RTT-Expectation is

RTT9.

4.5.3.2 Description of the Proposed Model

The fuzzy logic system designed for estimating Round-Trip Time (RTT) comprises four

integral components: fuzzification, inference engine, knowledge base, and defuzzification. The

fuzzification process transforms precise numerical inputs into fuzzy sets using linguistic

variables, effectively managing uncertainty and variability inherent in network conditions. The

inference engine utilizes a defined set of fuzzy rules to process these input fuzzy sets,

generating output fuzzy sets that determine RTT estimations. The knowledge base includes a

rule base of conditional (if-then) rules and a database of membership functions specifying fuzzy

sets for various network parameters. Finally, defuzzification converts fuzzy output values back

into precise numerical values, yielding practical RTT estimates suitable for network

performance decisions [100]. By leveraging these components, fuzzy logic offers an adaptive

and intelligent approach to RTT estimation, superior to traditional deterministic methods,

especially in handling unpredictable network fluctuations. The structured methodology ensures

accurate transformation of raw data into meaningful RTT predictions, enhancing evaluation

precision and network adaptability. In the fuzzification stage, crisp numerical inputs such as

Distance (measured in kilometers, indicating geographical separation between sender and

receiver) and Network Congestion (measured in milliseconds, representing network traffic

intensity and its impact on latency) are translated into linguistic terms mapped onto fuzzy sets

using triangular membership functions. Following fuzzification, the system applies nine

comprehensive if-then fuzzy rules, enabling dynamic adaptation to varying network conditions.

The fuzzy outputs derived from the inference process are subsequently converted into precise

numerical values through defuzzification using the centroid defuzzification method, also

known as the center of gravity (COG) method. This technique ensures realistic and weighted

RTT estimates that accurately reflect real-world network conditions, significantly enhancing

reliability, precision, and interpretability, thereby optimizing Quality of Service (QoS) and

ensuring compliance with Service Level Agreements (SLAs) in cloud computing and network

management contexts. Figure 4.2 presents a surface viewer of the proposed fuzzy logic system,

illustrating the relationship between distance, network congestion, and the expected Round-

Trip Time (RTT). The X-axis represents the geographical distance (in kilometers) between the

service consumer and the cloud data center, ranging from 0 km to approximately 15,478 km,

thereby covering local, regional, and global communication scenarios. The Y-axis corresponds

to the network congestion level, mapped linguistically as Light, Average, and Peak, and

modeled over a 24-hour time scale to reflect hourly fluctuations in network load. The Z-axis

indicates the expected RTT, measured in milliseconds, and the estimated delay for a data packet

40

to travel from the user to the cloud and back. RTT values range from 0 ms to 500 ms, where

higher values signify network performance degradation. The surface behavior shows that the

RTT remains minimal at short distances and under light congestion conditions (e.g., RTT1: 25

ms). As the distance increases or the network congestion becomes more intense, the RTT

values rise accordingly, aligning with intermediate fuzzy rule outputs such as RTT2 through

RTT8. Under long-distance communication and peak congestion scenarios, the model

estimates the highest RTT values (e.g., RTT9: 500 ms), which may indicate potential service

delays or connection timeouts. The system employs triangular membership functions for all

inputs and outputs and is governed by nine fuzzy rules defining how input combinations

translate into RTT classifications. For instance, a rule such as “If Distance is Long and

Congestion is Peak, then RTT is Very High (RTT9)” exemplifies the model’s logic structure.

The inference engine processes these rules to produce fuzzy output sets, which are then

translated into precise RTT estimates through defuzzification using the Centroid (Center of

Gravity) method, resulting in realistic and actionable RTT values that enhance network

performance assessment and SLA compliance.

FIGURE 4.2 SURFACE VIEWER OF RTT ESTIMATION BASED ON DISTANCE AND

NETWORK CONGESTION USING FUZZY LOGIC.

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and

Discussion

The proposed model was rigorously tested to ensure its accuracy and adherence to established

standards. The primary objective of this evaluation was to validate the model's reliability in

estimating Round-Trip Time (RTT) by simulating real-world conditions. One of the critical

aspects of this assessment involved verifying communication between two points on a network,

specifically between a sender located in Kut, Iraq, and recipients across all AWS geographical

regions. This verification, conducted using the ping tool, ensured the integrity and

responsiveness of the network connection. Additionally, since RTT is influenced by factors

such as geographical distance, network congestion, and peak cloud service usage, the distance

between the sender and receiver was precisely calculated to account for its impact on RTT

fluctuations. Following the implementation of the proposed system, the model successfully

41

extracted and estimated RTT over 24 hours, capturing its variations across different congestion

levels. The results demonstrated that during low congestion periods—typically corresponding

to off-peak hours when cloud service and network traffic are minimal—the estimated RTT

remained significantly low. Conversely, during moderate congestion periods, which generally

coincide with regular business hours in companies and organizations, RTT values exhibited a

gradual increase. The model also effectively estimated RTT under peak congestion conditions,

representing the highest levels of cloud service utilization. Unlike conventional cloud service

providers, such as Amazon Web Services (AWS), which often display a single, static RTT

value, the proposed model offers a dynamic and comprehensive RTT estimation. This approach

enhances user confidence by providing a more detailed representation of RTT fluctuations,

allowing users to make more informed decisions regarding their network performance. Table

4.1, presents details of the calculated distances between the sender and each recipient region,

the RTT values reported by AWS, and the detailed RTT estimates generated by the proposed

model. Furthermore, the results indicate that RTT1 to RTT3 correspond to optimal network

performance, characterized by minimal latency and efficient data transmission. Conversely,

RTT9 signifies severe network degradation, which may result in connection termination due to

excessive delays. Intermediate RTT values, ranging from RTT4 to RTT8, reflect progressive

performance deterioration, where users experience increased latency, extended page load

times, and diminished service quality. Each estimated RTT result in the proposed system is

labeled accordingly, allowing users to identify the most suitable geographic region based on

their network requirements.

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS

Cloud Services and SLA Optimization

This research introduces a novel fuzzy logic-based model for accurately estimating Round-Trip

Time (RTT) in Amazon Web Services (AWS) cloud environments. The primary objective is

to enhance the precision of RTT predictions by incorporating multiple network parameters,

notably distance and network congestion, into a rule-based fuzzy inference framework.

Compared to traditional RTT calculation methods, this proposed model provides a more

detailed, dynamic, and adaptable assessment, enhancing user decision-making when selecting

Service Level Agreements (SLAs) from cloud providers. AWS supports RTT measurements

through various diagnostic tools, including ping and traceroute, which transmit Internet Control

Message Protocol (ICMP) echo request packets to a specified destination and measure the

elapsed time until their return. AWS documentation describes the process of RTT measurement

using the ping command, involving the execution of the 'ping' command followed by the target

IP address or hostname within a command prompt. Each executed ping transmits data packets

and records individual RTT values. It is important to recognize that RTT measurements may

vary due to fluctuating network conditions and the inherent limitations of diagnostic tools,

posing significant challenges in accurately estimating RTT. This study emphasizes the critical

importance of precise RTT estimation in ensuring optimal Quality of Service (QoS) within

cloud computing contexts, particularly for applications sensitive to latency. The model

effectively categorizes RTT into various performance levels using triangular membership

functions, enabling detailed network efficiency analysis. Additionally, the model accounts for

RTT variability across different congestion levels, differentiating optimal network conditions,

moderate degradation, and severe latency issues, potentially resulting in connection

disruptions. A significant contribution of this research is the comparative evaluation between

42

the proposed fuzzy logic model and RTT values provided by AWS. While AWS typically

offers static RTT measurements, the proposed system dynamically estimates RTT variations

throughout daily periods, providing more realistic and context-sensitive insights into network

performance. This feature empowers users to make informed choices when selecting cloud

service regions that match their specific networking and computational requirements.

Furthermore, this work addresses the challenges associated with the availability and reliability

of critical network metrics, particularly RTT, essential for cloud-based service performance.

Future sections of this thesis will explore additional network performance indicators, such as

uptime, downtime, jitter, packet loss, and bandwidth, aiming for 99.99% reliability. The

developed fuzzy logic-based RTT estimation model represents a robust, scalable, and

intelligent tool for cloud service selection, significantly improving network performance

monitoring and resource allocation. By incorporating fuzzy inference techniques, the model

enables more accurate, adaptive, and real-time RTT predictions, thus enhancing reliability and

operational efficiency in contemporary cloud computing infrastructures.

Table 4.1 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT)

Measurements.

NO

Computed

Distance

Between the

Sender and

Receiver(km)

Amazon

(RTT)

(ms)

During

Daytime

Estimated Latency Values in the Proposed RTT

Classifications During Daytime Hours(ms)

Light congestion Average

congestion

Peak

congestion

1 862.94 62 9 45 92

2 1234.23 50 9 45 92

3 3089.72 361 30 65 110

4 3428.79 88 50 86 128

5 3525.01 100 57 92 134

6 3601.23 102 62 97 138

7 3607.54 113 62 97 139

8 4009.87 115 93 127 166

9 4202.65 112 110 144 181

10 4238.49 127 113 147 184

11 4682.33 138 142 175 208

12 5981.25 388 142 175 208

13 6012.87 212 142 175 208

14 6789.34 347 142 175 208

15 7056.22 339 142 175 208

16 7289.64 369 142 175 208

17 7435.78 414 142 175 208

18 7832.90 426 142 142 208

19 8053.21 374 142 142 208

20 8923.45 181 142 142 208

21 10023.67 172 143 143 210

22 10289.47 198 155 155 232

23 12345.89 279 258 258 418

24 12678.56 242 258 258 418

25 13756.90 390 258 258 418

26 14321.76 427 258 258 418

43

27 14989.34 266 258 258 418

28 15478.65 300 258 258 418

44

Chapter 5 Quality of Service (QoS) Availability Assessment for Optimal SLA Selection

This chapter presents a significant advancement in cloud computing service selection by

introducing a fuzzy logic-based classification model for evaluating Quality of Service (QoS)

levels. The proposed method enhances user decision-making by enabling the confident

selection of the most appropriate Service Level Agreement (SLA), thereby improving the

accuracy and reliability of cloud service utilization. Building upon the Round-Trip Time (RTT)

estimation framework discussed in the previous chapter, this model expands the analysis to

encompass a comprehensive set of quality-of-service parameters. It systematically evaluates

computing and networking metrics, including virtual CPU (vCPU), RAM, storage, bandwidth,

delay, jitter, and packet loss. The model categorizes SLAs into nine distinct service availability

levels, ranging from 90% to 99%. It organizes them into structured tiers, beginning with entry-

level agreements such as Normal SLA and Bronze SLA, culminating in the highest reliability

classification under the Gold SLA. This granular classification framework empowers users to

align SLA selection with their specific performance and reliability requirements. By leveraging

fuzzy logic principles, the model supports a more adaptive SLA selection process, dynamically

aligning service guarantees with real-world user demands and fluctuating network conditions.

This approach enhances quality of service by increasing the precision and reliability of SLA

classification, particularly benefiting users with high availability and performance needs. It

also facilitates intelligent cloud service provisioning by enabling responsive adjustments to

variations in service quality. Overall, the proposed model establishes a robust foundation for

SLA optimization, contributing to improved network efficiency, more effective resource

management, and greater reliability across modern cloud computing environments.

5.1 Evaluating QoS metrics for determining SLA

Cloud computing represents a transformative paradigm in networking, enabling seamless, real-

time access to a range of computing resources, including applications, servers, storage,

services, and networks, without the need for upfront infrastructure investment. This model

provides users significant scalability and flexibility, allowing them to pay only for the resources

they consume. As a result, cloud computing facilitates the convergence of global data and

service accessibility from any location at any time. Cloud infrastructure typically offers three

primary service models: Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS). Service providers deliver these models reliably and cost-

effectively, earning user trust [101]. As cloud computing becomes increasingly ubiquitous

across desktop and mobile platforms, new challenges have emerged for providers and users.

The growing user base and rising storage demands have intensified concerns surrounding data

privacy and system security [102]. Although cloud providers offer a broad array of services, a

significant issue remains the lack of transparent guarantees regarding availability, uptime, and

downtime as specified in Service Level Agreements (SLAs) [103]. In addition, network

performance indicators—such as throughput, round-trip time (RTT), jitter, and packet loss—

are also critical to overall service availability [104]. These technical parameters are essential

for meeting user expectations but are often presented in complex or unclear ways. Therefore,

understanding the SLA decision framework is essential for ensuring timely and cost-effective

service delivery. Users must ensure that cloud providers offer comprehensive guarantees

regarding networking QoS metrics (e.g., bandwidth, RTT, jitter, and packet loss) and

computing QoS metrics (e.g., uptime and downtime). Before adopting cloud services,

45

customers must conduct detailed assessments and maintain clear communication with

providers to establish reliable SLA terms. A trustworthy relationship between provider and

customer hinges on this clarity. Moreover, defining guarantees in a cloud environment entails

identifying key performance indicators such as task execution speed and responsiveness. Cloud

providers must demonstrate transparency in their service offerings through detailed

documentation, SLA disclosures, and performance metrics. Significantly, validation of SLA

commitments operates within the shared responsibility model, wherein accountability is

distributed between the cloud provider and the customer [105]. The Shared Responsibility

Model is a foundational framework for cloud security and compliance. It delineates

responsibilities for various components of the cloud environment, including hardware,

infrastructure, endpoints, data, configurations, operating systems, network controls, and access

management. This model clearly establishes the boundary between cloud providers' obligations

and those of the customers. Irrespective of the chosen service model—be it IaaS, PaaS, or

SaaS—the shared responsibility framework applies universally [106]. However, the increasing

complexity and variability of component-level services present additional challenges in SLA

selection. Existing selection methods are generally limited to formal service attributes and fail

to accommodate unquantifiable user preferences or subjective opinions. Many web interfaces

only allow customers to select pre-configured service packages without explicitly articulating

the guarantees these packages offer. The key challenge lies in capturing and expressing

consumer preferences, which often involve abstract and non-measurable factors, and

incorporating them into the decision-making process for optimal service selection [107]. To

address these limitations, this research proposes a service selection mechanism that integrates

users' subjective judgments into SLA decision-making. By allowing users to express qualitative

preferences—referred to as "human opinions"—for each service requirement, the model

ensures alignment between selected services and individual user expectations. In SLA

selection, a comprehensive understanding of Quality of Service (QoS) is vital, as QoS

parameters are closely linked to user needs and application demands [108]. Accordingly, this

study introduces a fuzzy logic-based QoS classification model designed to support efficient

and practical SLA selection. The model systematically categorizes SLAs into nine distinct

availability levels, ranging from 90% to 99%, reflecting the diverse needs of cloud users. This

classification incorporates both computing QoS metrics—such as vCPU, RAM, and storage—

and networking QoS metrics, including bandwidth, jitter, RTT, and packet loss. By integrating

these parameters, the model facilitates a comprehensive evaluation of service quality, thereby

enabling informed SLA selection. The proposed model enhances user empowerment by

enabling informed decisions based on specific application requirements, budget constraints,

and desired QoS guarantees. For instance, users with minimal computing demands, such as

those using basic office applications, may select entry-level service tiers. Conversely, users

engaged in activities like virtual conferencing may require enhanced service levels, while high-

performance users, such as gamers or professionals working in video editing or scientific

computation, may necessitate premium gold-tier services. The motivation for this research

arises from the observed lack of clarity and interpretability in SLA representations provided by

major cloud platforms. Leading providers such as AWS and GCP present SLA terms that are

often difficult for users to interpret. For example, AWS specifies uptime guarantees ranging

from 99.0% to 99.95%, while GCP offers guarantees for single-instance services at or above

46

99.95% uptime. Given the range of computing and networking services offered at varying price

points, a transparent classification model is needed to assist users in navigating service

availability levels. The fuzzy logic-based model presented in this study addresses this need by

providing a systematic classification of SLA options. By organizing SLAs into structured

tiers—ranging from Normal and Bronze to premium Gold levels—the model improves clarity,

enabling users to make strategic choices that optimize cost-efficiency, performance, and

reliability. Additionally, it incorporates user-defined qualitative factors, making the SLA

selection process more adaptive and personalized. Ultimately, this model supports better

resource allocation, enhances service performance, and boosts confidence in decision-making

within modern cloud computing environments.

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis

Patel et al. [109] propose an architecture for managing cloud Service Level Agreements (SLAs)

using the Web Service Level Agreement (WSLA) specification, distinguishing their approach

by presenting three core WSLA services that facilitate cloud SLA automation. Their method

also incorporates trusted third parties to enhance security within the SLA process. Similarly,

Alhamad et al. [110] outline essential criteria for formulating SLAs across service models,

including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS). They emphasize specific factors for IaaS, such as boot time, scale-

up/downtime, and response time, as critical components of effective SLA design. Building on

the work of Alhamad and Baset, Qiu et al. [111] analyze 29 SLAs from various public cloud

services, including 17 IaaS SLAs, identifying commonly mentioned attributes and significant

gaps that impact the relationship between cloud providers and consumers. They note that many

SLAs lack specific provisions concerning customer data, including security, privacy,

protection, and backup policies, even as availability is consistently guaranteed. However, Qiu

et al. also highlight a lack of detailed commitments on availability and penalties, suggesting a

need for greater clarity and accountability in SLA agreements. As the demands of network

applications evolve, the focus has shifted to include factors such as media quality, interactivity,

and responsiveness, leading to a broader definition of Quality of Experience (QoE). In

telecommunications networks, QoE considers user satisfaction, expectations, and enjoyment

[112]. In a related study, Baset [113] examines SLAs across five IaaS and PaaS providers,

focusing on compute and storage services. Baset’s framework dissects SLAs into various

components, facilitating comparisons between providers and aiding them in defining clear,

comprehensive SLAs. In line with Baset’s approach, this study focuses on availability and

provides a detailed classification of provider commitments to service availability. Expanding

on SLA methodology, Godhrawala and Sridaran [114] propose a service-oriented architecture

(SOA) that leverages a machine learning-based Apriori algorithm to connect quality of service

(QoS) metrics, enhancing SLA strength and simplifying resource management. This approach

improves SLA definitions, facilitates QoS management, reduces costs, and optimizes revenue.

Akbari-Moghanjoughi et al. [115] underscore the importance of SLAs in managing service

demands within ICT networks. Their survey reviews the current state of SLA establishment,

deployment, and management, covering core concepts, methodologies, and challenges. The

study also emphasizes the need to go beyond traditional networking by linking each Service

Level Objective (SLO) to relevant service domains, with the ultimate goal of developing a

comprehensive methodology for effective SLA definition, establishment, and deployment.

47

Finally, Saqib et al. [116] address the limitations of conventional traffic classification,

advocating for adaptive solutions in response to evolving traffic patterns. They introduce a

framework to quantify SLA violations and an economic model to assess profitability impacts.

Their study suggests adaptive ML techniques to sustain classification accuracy over time. It

concludes that an adaptive traffic classifier can mitigate penalties, optimize resources, and

uphold SLA integrity, offering network operators a robust approach to managing traffic

dynamics.

5.3 Understanding Availability

When a failure lasts more than a few seconds, it can disrupt not only individual user requests

but also subsequent retries. If repeated attempts fail, the issue is considered a service outage,

impacting availability metrics. Prolonged disruptions may eventually lead users to abandon

access attempts, marking the service as unavailable. In complex systems, outages are classified

as either service impact outages or network element impact outages. Service impact outages

directly affect end-user access and are visibly disruptive. In contrast, network element impact

outages involve failures within a network component that could impact service depending on

redundancy and recovery time. High-availability systems must distinguish between these types

to effectively monitor downtime and ensure backup resources are in place. Suppose a second

failure occurs before resolving a network element outage. In that case, a prolonged service

impact outage may result, emphasizing the need for robust redundancy and quick recovery to

maintain consistent service availability [117][118]. The following criteria are commonly used

to classify and rank availability [117]. In practical scenarios, cloud availability calculation

necessitates consideration of additional elements, such as:

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒 − 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
 (5.1)

Availability is a critical metric in cloud computing, quantified as a percentage representing the

ratio of system uptime to total operational time. Uptime denotes the total duration for which a

system or service is expected to remain operational, whereas Downtime refers to periods of

inoperability. By incorporating these variables into the standard availability formula,

availability can be expressed either as a ratio or as a percentage, providing a standardized

measure of service reliability. Cloud service providers prioritize high availability to ensure

continuous access to applications and data, thereby minimizing service disruptions. Service

Level Agreements (SLAs) define and guarantee a specific percentage of uptime, reflecting the

provider's commitment to service reliability. Service outage, commonly referred to as

downtime, is determined by subtracting the uptime percentage from 100%, thereby quantifying

the proportion of time during which the service remains unavailable. The availability

commitment represents the extent to which cloud providers assure service availability, often

serving as a key differentiator in cloud service offerings. It is important to note that reliability

is either conceptually like or a broader construct encompassing service availability [119].

Among surveyed SLAs, providers generally express their commitment in terms of availability

rate [120]. Highly available systems, particularly those used in telecommunications and critical

cloud services, are expected to meet a minimum of 99.999% availability, commonly referred

to as the "five-nines" (5–9s) reliability standard. Appendix 4 (Table 1) illustrates the maximum

allowable downtime for various levels of availability commitment across different operating

intervals. For example, a system adhering to the 5–9s standard permits only 5 minutes and 15

48

seconds of downtime over a full year of continuous operation [121]. Such stringent availability

requirements are fundamental in ensuring uninterrupted service delivery, particularly in

mission-critical cloud-based infrastructures.

5.3.1. Measurement Period

The Measurement Period refers to the timeframe in which cloud providers calculate their

services' availability. There are two common forms: the billing month and the calendar month.

The commitment level of cloud providers can vary depending on the length of the measurement

period. Suppose the measurement period is set to one year. In that case, cloud providers can

perform inconsistently for a few months while maintaining stability for the rest, still fulfilling

the overall availability requirement. On the other hand, a measurement period of one month

necessitates that providers consistently maintain stable and available services every month

[122].

5.3.2 Accuracy in Service Provision

Accuracy in service provision is the extent to which cloud providers classify failed services as

unavailable, varying by component, such as virtual machines, hosts, or entire Availability

Zones. Amazon EC2, for example, considers an outage only if multiple Availability Zones lose

connectivity, while Aliyun Cloud treats any instance downtime as unavailable. To improve

cloud system dimensioning, analytical and simulation models at the IaaS level are employed.

These models account for the heterogeneous nature of cloud systems and physical server

limitations. By using analytical tools, they approximate real traffic and calculate request loss

probability, offering a reliable means to evaluate service availability and optimize resource

allocation [120][123].

5.3.3 Time-Based Accuracy in Availability

The accuracy in Time provision, refers to the unit of downtime used in the measurement period.

Currently, three types of unit downtime are prevalent: 1 minute, 5 minutes, and half an hour.

The way downtime is handled varies among cloud providers. Sometimes, if the downtime does

not align perfectly with the time granularity, certain clouds may exclude those periods from

the total service downtime calculation. On the other hand, other providers would include such

periods in the calculation. For example, consider a cloud service experiencing a downtime of

7 minutes with a time granularity of 5 minutes. In this scenario, the eventual downtime is either

5 minutes or 10 minutes, depending on the specific policies adopted by the cloud provider. This

difference in handling time granularity becomes more pronounced when using more extended

periods, such as half an hour, and can significantly impact the availability calculation [120].

define availability as:

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹 +𝑀𝑇𝑇𝑅
 (5.2)

MTTF represents the mean-time-to-failure, and MTTR denotes the mean-time-to-recovery.

This measure is based on the duration when the system is either up or down, which holds

significance for users. Consequently, it is unsurprising that several cloud providers, such as

Microsoft's Office 365, employ this measure. Uptime corresponds to the time between failures,

while downtime refers to the time taken to recover from a failure [121].

49

5.3.4 Exclusions in Availability Calculations

Exclusions refer to scenarios not considered when determining whether cloud services are

available. Several events are not considered while calculating availability. In most cases,

occurrences of natural disasters, regularly scheduled maintenance, network outages that occur

beyond the demarcation point of the cloud provider, and internet attacks are excluded from

coverage under this policy. Because these occurrences are deemed extraordinary and transient,

they are not factored into the calculation of the availability of cloud services.is done because it

is possible that they do not reflect the typical service performance of the provider [124].

5.4 Availability in Computing and Networking Environment

In cloud computing, ensuring the availability of critical resources such as virtual CPUs

(vCPUs), RAM, and storage is essential for maintaining a reliable and efficient computing

environment. The availability of these resources is governed by multiple factors, including

performance, scalability, fault tolerance, Service Level Agreement (SLA) guarantees,

elasticity, monitoring, and security. Performance optimization is a crucial aspect of cloud

computing, requiring resource availability to be adaptable to workload fluctuations. Efficient

allocation of vCPUs is necessary to meet processing power demands, while RAM provisioning

must be adequate to support memory-intensive applications and large-scale datasets. Similarly,

storage infrastructure, particularly high-performance options such as solid-state drives (SSDs),

must be capable of seamlessly accommodating growing data volumes. These performance

criteria directly impact the expected availability of vCPU, RAM, and storage, establishing clear

reliability benchmarks for cloud service users. To enhance service resilience, cloud providers

must implement availability strategies that encompass network monitoring, fault tolerance, and

proactive system management. Network monitoring has evolved from basic connectivity

checks to sophisticated analytical techniques leveraging big data, machine learning, and

artificial intelligence (AI). These advanced approaches enable the optimization of network

traffic flow, improved efficiency, and enhanced security by predicting and mitigating potential

disruptions. Service Level Agreements (SLAs) serve as contractual frameworks that define

performance metrics and ensure compliance with predefined quality standards. Key SLA

parameters, including delay, jitter, packet loss, and bandwidth, play a critical role in

maintaining optimal network performance. These metrics facilitate the identification of

network inefficiencies, enabling cloud service providers to address issues that may impact

overall system productivity and user experience. The assessment of core performance metrics

provides valuable insights into network efficiency and availability, allowing for continuous

improvement and the prevention of service degradation. By incorporating these availability

and performance criteria, cloud providers can offer resilient, high-performance services that

meet user expectations for reliability, scalability, and security in modern cloud computing

infrastructures [120][123][125].

5.4.1 Bandwidth Considerations

The bandwidth (BW) of a channel refers to the amount of data that can be transmitted per unit

time, typically measured in bits per second. However, its interpretation varies depending on

the context and underlying parameters [126]. One common definition equates bandwidth with

a path's capacity. For an end-to-end path composed of n sequential links indexed by i = 1,.., n,

the path capacity C* is determined by the link with the smallest transmission capacity:

50

 𝐶∗ =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
𝐶𝑖 (5.3)

Here, 𝐶𝑖 is the capacity of link i. The links where this minimum is attained—i.e., those

satisfying 𝐶𝑖 = 𝐶
∗ are referred to as the narrow links or bottlenecks of the path. There may be

multiple such links. Let iK denote the K-th index such that 𝐶𝑖𝑘=𝐶∗ . In this context, k indexes

the set of links that constitute the bottlenecks. Alternatively, bandwidth may refer to available

bandwidth, which is the unused portion of the link's capacity at a given time t. It complements

the utilized bandwidth, expressed by the utilization factor: 𝑢𝑖
𝑡 ∈ [0,1] for each link. The

instantaneous available bandwidth of the path is defined as:

 𝐴𝑡
∗ =

𝑚𝑖𝑛
𝑖 = 1, . . , 𝑛

[𝐶𝑖 . (1 − 𝑢𝑖
𝑡)] (5.4)

In this formulation, the link iK such that 𝐴𝑖𝐾= 𝐴𝑡
∗ is referred to as the tight link, representing

the current performance bottleneck under existing traffic conditions. To account for temporal

variation, the available bandwidth is often averaged over a time interval [t, t + τ], yielding:

 𝐴∗(𝑡, 𝑡 + 𝜏) =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
[𝐶𝑖 . (1 − 𝑢𝑖(𝑡, 𝑡 + 𝜏))] (5.5)

Where 𝑢𝑖(𝑡, 𝑡 + 𝜏) is the average utilization of link i over the interval. This averaged metric

offers a more stable and meaningful reflection of path availability, particularly in dynamic or

congested network environments. The bulk transfer capacity (BTC) refers to the upper limit of

data transmission per unit of time achievable by a congestion management method, such as

TCP, when implemented within a protocol. The statistic in question is influenced by various

elements [127], including the quantity of concurrent TCP sessions and conflicting traffic from

the User Datagram Protocol (UDP), among other variables. In order to conduct measurements

of body weight (BW), two approaches can be employed: an active method or a passive

approach. The efficacy of active techniques is influenced by the choice of transport protocol,

resulting in potential variations in the reported parameters of measurements. For instance, the

utilization of the packet train technique [127], which employs UDP, enables precise

determination of the path's capacity C*. Conversely, estimations of the BTC can be obtained

by measurements conducted with TCP traffic. Passive techniques are dependent on the

monitoring of bandwidth utilization by applications or hosts, thereby accounting for the number

of transmitted bytes within a specific time frame. Absolute thresholds are not that helpful, but

when the client detects bandwidth is low (< 100 Kbps) audio quality can easily be impacted by

other applications or network congestion.

5.4.2 Network Latency and Delay

Network delay, also known as latency, is a key metric for assessing network performance. It

measures the time required for a data packet to travel from its source to its destination and back,

a duration referred to as Round Trip Time (RTT) and typically measured in milliseconds (ms).

High latency can cause significant communication delays, impacting the performance of

applications that rely on real-time interaction, such as video conferencing and online gaming.

Factors affecting network delay include the distance between endpoints, network congestion,

and the quality of network equipment [128]. The delay can be calculated using the following

equation:

51

 𝐷𝑒𝑙𝑎𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 (5.6)

5.4.3 Network jitter

Network jitter, defined as the variation in time delay between data packets as they traverse a

network, often leads to irregular arrival times that can cause lag, buffering, and reduced quality

in real-time applications such as video conferencing, online gaming, and calls. High jitter is

typically caused by varying traffic loads and frequent packet collisions (network congestion),

which can lower Quality of Service (QoS) levels. Contributing factors include network

congestion, where heavy traffic delays packets as they compete for bandwidth; poor hardware

performance from outdated or malfunctioning equipment; and insufficient packet

prioritization, where important packets are not given precedence [129]. The Network jitter can

be calculated using the following equation:

 𝑗𝑖𝑡𝑡𝑒𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 (5.7)

5.4.4 Packet Loss

Network packet loss, occurring when data packets fail to reach their destination, can lead to

slow internet speeds, buffering, and lag in applications like streaming, gaming, and video calls.

Causes include network congestion, hardware issues (faulty routers or cables), Wi-Fi

interference, software bugs, ISP issues, and bit errors due to hardware malfunctions or random

noise in wireless communications. Packet loss measurement for UDP traffic often uses

protocols like Q4S or IPPM, which track sequence numbers to gauge reliability. Solutions

include restarting routers and devices, checking connections, switching to wired setups,

reducing network load, updating firmware and drivers, minimizing router interference,

adjusting Quality of Service (QoS) settings, and contacting the ISP for unresolved issues [129].

The Network packet loss can be calculated using the following equation:

 𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =
𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡 − 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡
 ∗ 100 (5.8)

5.5 Methodology for SLA Assessment and Optimization

5.5.1 Proposed Framework for SLA Selection

A fuzzy logic-based service guarantee model is proposed to enhance the assurance of Service

Level Agreements (SLAs) within cloud computing environments (see Figure 5.1). The model

employs Quality of Service (QoS) availability metrics as input variables to the fuzzy logic

system, effectively capturing customer preferences, service requirements, and performance

expectations. By systematically classifying QoS availability, the model facilitates a precise and

context-aware evaluation of service reliability. The classification framework defines distinct

SLA tiers based on availability levels: Normal SLA (90%–92%), Bronze SLA (93%–95%),

Silver SLA (96%–97%), and Gold SLA (98%–99%). This categorization provides a clear and

structured mechanism for SLA differentiation. The model ensures input consistency by

validating that both QoS-computing and QoS-networking parameters are evaluated over the

same domain, defined within the universe of discourse spanning from 90% to 100%. Appendix

52

4 (Table 2) presents the detailed definition of this domain, which serves as a reference for both

input categories. The proposed model integrates two sets of input variables into the fuzzy logic

system: QoS-computing parameters—including virtual CPU (vCPU), memory (RAM), and

storage capacity—and QoS-networking parameters, such as bandwidth, delay, jitter, and packet

loss. These inputs collectively enable a comprehensive classification of cloud services. The

methodology for estimating QoS availability and its incorporation into the fuzzy inference

process is further detailed in Table 5.2. To establish a granular and structured representation of

QoS availability levels, a systematic approach is adopted to define the progression of values

within the universe of discourse. This sequence begins with an initial increment of

approximately 0.09999, with each subsequent increment decreasing by 0.00001. The result is

a smoothly increasing, non-linear sequence that converges toward a high-precision endpoint at

99.999%. The mathematical formulation governing this progression is defined in Equation

(5.9):

 An= 90 + (𝑛 − 1). (0.09999 − (𝑛 − 1). 0.00001) (5.9)

• An is the nth availability level in the sequence.

• n is the index of the term ranging from 1 to 101 (for n=1, the first term A1 is 90).

The equation initiates the sequence with a maximum increment of 0.09999, which then

decreases linearly by 0.00001 per term. This formulation generates a precisely calibrated, non-

uniform stepwise scale, making it particularly suitable for applications such as service level

classification, where fine-grained availability tiers are necessary.

• Strengths of the Equation: When n=1:

 A1= 90 + 0. (0.09999 − 0. 0.00001) =90, which correctly sets the starting point.

• Controlled Increment: The term:

(0.09999 − (𝑛 − 1). 0.00001)
When n=101:

 A101= 90 + 100. (0.09999 − 100 . 0.00001)

 =90 + 100. (0.09999 − 0.001)
 =90 + 100 . 0.09899 = 99.999

Furthermore, to express the output fuzzy logic-based SLA availability, the model considers

uptime and corresponding downtime for a given period (e.g., daily, weekly, monthly, or

yearly), based on the input QoS availability to the fuzzy logic system. The general equations

for calculating uptime and downtime are formulated as follows:

 𝑈𝑝𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (5.10)

 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × (1 − 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) (5.11)

53

FIGURE 5.1 PROPOSED SLA GUARANTEE MODEL.

The detailed results of these calculations are presented in Appendix 4 (Table 3), offering a

comprehensive analysis of service availability and performance assurance in cloud computing

environments. By integrating fuzzy logic principles, this model provides a structured, scalable,

and intelligent framework for SLA classification, ensuring an optimized and adaptive cloud

service selection process.

Table 5.2 QoS Network and Computing Metrics Availability.

QoS Network Metrics Availability

B
an

d

w
id

th

BW <500 Mbps [90% - 92%]

500 Mbps <= BW <1Gbps [93% - 95%]

1Gbps <= BW =<2.5Gbps [96% - 97%]

BW >2.5Gbps [98% - 99.999]

R
o
u
n
d

T
rip

T
im

e

(R
T

T
)

RTT > 500 ms [90% - 92%]

250< RTT<=500 ms [93% - 95%]

100 < RTT<=250 ms [96% - 97%]

1<RTT<=100 ms [98% - 99.999]

jitter

35<= Jitter <=45 ms [90% - 92%]

25< Jitter <=35 ms [93% - 95%]

15< Jitter <=25 ms [96% - 97%]

1< Jitter <=15 ms [98% - 99.999]

P
ack

et

lo
ss

10 < Packet loss <=25 ms [90% - 92%]

5 < Packet loss <=10 ms [93% - 95%]

1 < Packet loss <=5 ms [96% - 97%]

0< Packet loss <=1 ms [98% - 99.999]

QoS Computing Metrics Availability

v
C

P
U

1< VCPU <=2 [90% - 92%]

2< VCPU <=16 [93% - 95%]

16< VCPU <=64 [96% - 97%]

64< VCPU <=192 [98% - 99.999]

R
A

M

4< RAM <=8 GB [90% - 92%]

8< RAM <=64 GB [93% - 95%]

64< RAM <=256 GB [96% - 97%]

256< VCPU <=768 GB

[98% - 99.999]

54

S
T

O
R

A
A

G
E

1< Storage <=2 GB [90% - 92%]

2< Storage <=12 GB [93% - 95%]

12< Storage <=32 GB [96% - 97%]

32< Storage <=88 GB [98% - 99.999]

5.5.2 Fuzzy Logic-Based Methodology for QoS Evaluation

5.5.2.1 Key Input Parameters

Fuzzification is a foundational process in fuzzy logic systems through which crisp numerical

inputs are converted into fuzzy sets characterized by linguistic variables, terms, and

corresponding membership functions [98]. This transformation enables the system to represent

imprecise or uncertain information, supporting more flexible, adaptive, and human-like

reasoning in decision-making contexts. The input parameters for the model were designed

using the Fuzzy Logic Designer, following the same methodological framework introduced in

Chapter 4. However, the division of the universe of discourse in this chapter has been modified

to suit the specific primitives and structural requirements of the model developed herein.

Through this approach, the model systematically converts crisp QoS input values into fuzzy

sets, allowing for the nuanced evaluation of computing and networking resource availability.

These fuzzy sets serve as the basis for inferring the final Service Level Agreement (SLA)

classification, thus supporting the accurate and optimized categorization of service levels. The

first input to the fuzzy logic system corresponds to QoS-computing availability. This input is

defined over a universe of discourse ranging from 90% to 100% and is represented using three

triangular membership functions, structured as follows:

• Light Availability: [90, 90, 95]

• Middle Availability: [90, 95, 100]

• High Availability: [95, 99.999, 100]

The second input to the fuzzy logic system is QoS-networking availability, which reflects the

availability of networking resources. Like the QoS-computing input, this parameter is defined

over a universe of discourse spanning from 90% to 100% and is represented using three

triangular membership functions, structured as follows:

• Low Availability: [90, 90, 95]

• Average Availability: [90, 95, 100]

• Top Availability: [95, 99.999, 100]

By integrating these membership functions, the fuzzy logic system systematically evaluates

availability conditions for both computing and networking resources. This structured approach

enhances the model's ability to classify SLAs, ensuring that cloud service consumers receive

accurate, reliable, and context-aware service guarantees tailored to their specific needs.

5.5.2.2 Implementation of FIS and Defuzzification for SLA Analysis

To achieve an accurate and adaptive Service Level Agreement (SLA) classification, the

proposed model implements a Mamdani fuzzy inference system, utilizing three membership

55

functions for the first input (QoS-computing) and three membership functions for the second

input (QoS-network). Given this structure, the model requires 3 × 3 inference rules, ensuring a

comprehensive decision-making process by considering all possible input-output relationships.

i. Fuzzy Inference Rules

Fuzzy inference rules play a critical role in fuzzy logic systems, using IF...THEN conditions to

interpret input values and generate corresponding decisions. These rules effectively handle

uncertain or imprecise information, transforming crisp input values into fuzzified outputs,

which are then utilized for intelligent decision-making [98]. The model employs the following

fuzzy rule base:

1. If (QoS-computing is Light) and (QoS-network is Low), then (SLA-level is Normal-

SLA1).

2. If (QoS-computing is Light) and (QoS-network is Average), then (SLA-level is

Normal-SLA2).

3. If (QoS-computing is Light) and (QoS-network is Top), then (SLA-level is Normal-

SLA3).

4. If (QoS-computing is Middle) and (QoS-network is Low), then (SLA-level is Bronze-

SLA1).

5. If (QoS-computing is Middle) and (QoS-network is Average), then (SLA-level is

Bronze-SLA2).

6. If (QoS-computing is Middle) and (QoS-network is Top), then (SLA-level is Bronze-

SLA3).

7. If (QoS-computing is High) and (QoS-network is Low), then (SLA-level is Silver-

SLA1).

8. If (QoS-computing is High) and (QoS-network is Average), then (SLA-level is Silver-

SLA2).

9. If (QoS-computing is High) and (QoS-network is Top), then (SLA-level is Gold-

SLA9).

This rule base ensures that SLA classification is performed systematically, considering

both computing resource availability (vCPU, RAM, and Storage) and networking

parameters (bandwidth, delay, jitter, and packet loss).

ii. System Outputs

Once the fuzzification and inference process is completed, the final step involves

defuzzification, which converts fuzzy outputs into precise (crisp) values. This

transformation is crucial for practical decision-making, as it provides a definitive SLA

classification. The proposed model utilizes the centroid method of defuzzification, a

widely adopted mathematical technique in fuzzy logic systems [130]. The

defuzzification process in this model applies triangular membership functions to

classify SLAs based on a universe of discourse ranging from 90 to 100. The SLA

classification follows nine membership functions, as described below:

1) Normal-SLA1: [90, 90, 91]

2) Normal-SLA2: [90, 91, 92]

3) Normal-SLA3: [91, 92, 93]

4) Bronze-SLA1: [92, 93, 94]

5) Bronze-SLA2: [93, 94, 95]

56

6) Bronze-SLA3: [94, 95, 96]

7) Silver-SLA1: [95, 96, 97]

8) Silver-SLA2: [96, 97, 98]

9) Gold-SLA9: [97, 99.999, 100]

The model enables precise classification of QoS availability by implementing a fuzzy

logic system, ensuring that cloud service consumers receive context-aware and reliable

SLA commitments aligned with their specific computing and networking requirements.

5.6 Experimental Evaluation

The proposed model was extensively analyzed within the MATLAB environment to assess its

effectiveness in evaluating Service Level Agreement (SLA) classifications based on Quality of

Service (QoS) parameters for computing and networking resources. The model was designed

to process customer preferences by computing the availability ratio of virtualized computing

resources—such as vCPU, RAM, and storage—alongside network resources, including

bandwidth, delay, jitter, and packet loss. By integrating these metrics into a Fuzzy Logic-based

framework, the model systematically classified services into multiple SLA categories to

provide a granular and data-driven approach to service selection. The Fuzzy Logic inference

system extracted results according to predefined conditions and criteria, which were

established during the model design phase. These results were systematically categorized into

multiple SLA levels based on their corresponding availability ratios. The classification

hierarchy begins with the Normal SLA tier, which includes Normal-SLA 1, Normal-SLA 2,

and Normal-SLA 3; as availability conditions improve based on input classifications and the

selected fuzzy inference rules, the model sequentially transitions into the Bronze SLA tier,

which consists of, Bronze-SLA 1, Bronze-SLA 2, Bronze-SLA 3, In each classification level,

the availability percentage progressively increases according to the pre-established input

classification rules, ensuring a systematic and logical increase in service quality. Following

this, the model advances to the Silver SLA tier, which further refines the service levels with

improved availability metrics, Silver-SLA 1, Silver-SLA 2; at the highest tier, the Gold SLA

classification represents the most optimal service category, characterized by the highest levels

of availability and reliability, suitable for mission-critical applications requiring minimal

downtime. The classification hierarchy, As illustrated in Figure 5.2, the model dynamically

adjusts service availability ratios in response to varying QoS computing and networking inputs.

This structured classification enables cloud consumers to identify and select the most suitable

SLA level based on their specific performance requirements and budgetary constraints.

Additionally, Table 5.3 presents a detailed explanation of the fuzzy input-output mappings and

their corresponding SLA guarantees, showcasing the effectiveness of the proposed system

implementation.

57

FIGURE 5.2 RESULTS OF THE PROPOSED MODEL.

Table 5.3 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees.

No

First input

(Computing)

Second input

(Networking)
Output SLA Guarantees

1 90 90 90.333 SLA-Normal1 (90%)

2 90.09999 90.09999 90.467 SLA-Normal1 (90%)

3 90.19998 90.19998 90.592 SLA-Normal1 (90%)

4 90.29997 90.29997 90.708 SLA-Normal1 (90%)

5 90.39996 90.39996 90.816 SLA-Normal1 (90%)

6 90.49995 90.49995 90.916 SLA-Normal1 (90%)

7 90.59994 90.59994 91.010 SLA-Normal1 (90%)

8 90.69993 90.69993 91.098 SLA-Normal1 (90%)

9 90.79992 90.79992 91.181 SLA-Normal1 (90%)

10 90.89991 90.89991 91.259 SLA-Normal1 (90%)

11 90.9999 90.9999 91.333 SLA-Normal2 (91%)

12 91.09989 91.09989 91.402 SLA-Normal2 (91%)

13 91.19988 91.19988 91.468 SLA-Normal2 (91%)

14 91.29987 91.29987 91.530 SLA-Normal2 (91%)

15 91.39986 91.39986 91.589 SLA-Normal2 (91%)

58

16 91.49985 91.49985 91.645 SLA-Normal2 (91%)

17 91.59984 91.59984 91.699 SLA-Normal2 (91%)

18 91.69983 91.69983 91.749 SLA-Normal2 (91%)

19 91.79982 91.79982 91.798 SLA-Normal2 (91%)

20 91.89981 91.89981 91.844 SLA-Normal2 (91%)

21 91.9998 91.9998 91.888 SLA-Normal3 (92%)

22 92.09979 92.09979 91.931 SLA-Normal3 (92%)

23 92.19978 92.19978 91.971 SLA-Normal3 (92%)

24 92.29977 92.29977 92.010 SLA-Normal3 (92%)

25 92.39976 92.39976 92.047 SLA-Normal3 (92%)

26 92.49975 92.49975 92.083 SLA-Normal3 (92%)

27 92.59974 92.59974 92.122 SLA-Normal3 (92%)

28 92.69973 92.69973 92.163 SLA-Normal3 (92%)

29 92.79972 92.79972 92.205 SLA-Normal3 (92%)

30 92.89971 92.89971 92.249 SLA-Normal3 (92%)

31 92.9997 92.9997 92.296 SLA-Bronze1 (93%)

32 93.09969 93.09969 92.344 SLA-Bronze1 (93%)

33 93.19968 93.19968 92.395 SLA-Bronze1 (93%)

34 93.29967 93.29967 92.448 SLA-Bronze1 (93%)

35 93.39966 93.39966 92.503 SLA-Bronze1 (93%)

36 93.49965 93.49965 92.562 SLA-Bronze1 (93%)

37 93.59964 93.59964 92.623 SLA-Bronze1 (93%)

38 93.69963 93.69963 92.688 SLA-Bronze1 (93%)

39 93.79962 93.79962 92.756 SLA-Bronze1 (93%)

40 93.89961 93.89961 92.828 SLA-Bronze1 (93%)

41 93.9996 93.9996 92.904 SLA-Bronze2 (94%)

42 94.09959 94.09959 92.984 SLA-Bronze2 (94%)

43 94.19958 94.19958 93.070 SLA-Bronze2 (94%)

44 94.29957 94.29957 93.161 SLA-Bronze2 (94%)

45 94.39956 94.39956 93.257 SLA-Bronze2 (94%)

46 94.49955 94.49955 93.360 SLA-Bronze2 (94%)

47 94.59954 94.59954 93.470 SLA-Bronze2 (94%)

48 94.69953 94.69953 93.588 SLA-Bronze2 (94%)

49 94.79952 94.79952 93.715 SLA-Bronze2 (94%)

50 94.89951 94.89951 93.851 SLA-Bronze2 (94%)

51 94.9995 94.9995 93.999 SLA-Bronze3 (95%)

52 95.09949 95.09949 94.172 SLA-Bronze3 (95%)

53 95.19948 95.19948 94.332 SLA-Bronze3 (95%)

54 95.29947 95.29947 94.481 SLA-Bronze3 (95%)

55 95.39946 95.39946 94.620 SLA-Bronze3 (95%)

56 95.49945 95.49945 94.749 SLA-Bronze3 (95%)

57 95.59944 95.59944 94.870 SLA-Bronze3 (95%)

58 95.69943 95.69943 94.983 SLA-Bronze3 (95%)

59 95.79942 95.79942 95.090 SLA-Bronze3 (95%)

60 95.89941 95.89941 95.190 SLA-Bronze3 (95%)

61 95.9994 95.9994 95.285 SLA-Silver1 (96%)

62 96.09939 96.09939 95.374 SLA-Silver1 (96%)

63 96.19938 96.19938 95.459 SLA-Silver1 (96%)

59

64 96.29937 96.29937 95.539 SLA-Silver1 (96%)

65 96.39936 96.39936 95.615 SLA-Silver1 (96%)

66 96.49935 96.49935 95.687 SLA-Silver1 (96%)

67 96.59934 96.59934 95.755 SLA-Silver1 (96%)

68 96.69933 96.69933 95.821 SLA-Silver1 (96%)

69 96.79932 96.79932 95.883 SLA-Silver1 (96%)

70 96.89931 96.89931 95.942 SLA-Silver1 (96%)

71 96.9993 96.9993 95.999 SLA-Silver2(97%)

72 97.09929 97.09929 96.054 SLA-Silver2(97%)

73 97.19928 97.19928 96.106 SLA-Silver2(97%)

74 97.29927 97.29927 96.155 SLA-Silver2(97%)

75 97.39926 97.39926 96.203 SLA-Silver2(97%)

76 97.49925 97.49925 96.249 SLA-Silver2(97%)

77 97.59924 97.59924 96.305 SLA-Silver2(97%)

78 97.69923 97.69923 96.364 SLA-Silver2(97%)

79 97.79922 97.79922 96.425 SLA-Silver2(97%)

80 97.89921 97.89921 96.488 SLA-Silver2(97%)

81 97.9992 97.9992 96.555 SLA-Gold (98%)

82 98.09919 98.09919 96.624 SLA-Gold (98%)

83 98.19918 98.19918 96.697 SLA-Gold (98%)

84 98.29917 98.29917 96.773 SLA-Gold (98%)

85 98.39916 98.39916 96.853 SLA-Gold (98%)

86 98.49915 98.49915 96.936 SLA-Gold (98%)

87 98.59914 98.59914 97.024 SLA-Gold (98%)

88 98.69913 98.69913 97.117 SLA-Gold (98%)

89 98.79912 98.79912 97.215 SLA-Gold (98%)

90 98.89911 98.89911 97.318 SLA-Gold (98%)

91 98.9991 98.9991 97.427 SLA-Gold (99%)

92 99.09909 99.09909 97.543 SLA-Gold (99%)

93 99.19908 99.19908 97.665 SLA-Gold (99%)

94 99.29907 99.29907 97.795 SLA-Gold (99%)

95 99.39906 99.39906 97.934 SLA-Gold (99%)

96 99.49905 99.49905 98.081 SLA-Gold (99%)

97 99.59904 99.59904 98.239 SLA-Gold (99%)

98 99.69903 99.69903 98.408 SLA-Gold (99%)

99 99.79902 99.79902 98.590 SLA-Gold (99%)

100 99.89901 99.89901 99.899 SLA-Gold (99%)

101 99.999 99.999 99.999 SLA-Gold (99%)

The inputs for QoS availability—both for computing and networking—are inherently

continuous variables. However, Table 5.3 is not intended to serve as a discrete or static

"lookup" table. Instead, it presents a sampled output from the continuous fuzzy mapping

function that is defined and implemented via our Mamdani-type fuzzy inference system (FIS).

As detailed in Section 5.5.2.1 of the manuscript, both QoS-Computing and QoS-Networking

availabilities are fuzzified using triangular membership functions over a continuous universe

of discourse ranging from 90% to 100%. These inputs are then processed using a fuzzy rule

base (outlined in Section 5.5.2.2) consisting of 9 inference rules. The output SLA classification

60

is derived through fuzzy reasoning and defuzzification (via the centroid method), producing a

continuous mapping function from input QoS metrics to a numerical SLA guarantee level.

Table 5.3 merely illustrates a dense sampling from this function, incremented using a

mathematically defined non-linear progression (as explained in Equation 5.9), for

demonstration and analysis purposes. These values are generated from a MATLAB simulation

and demonstrate how the fuzzy model transitions through SLA categories (Normal, Bronze,

Silver, and Gold) as input availabilities gradually increase. Therefore, while Table 5.3 may

appear tabular, it is a result of a continuous fuzzy mapping, not a discrete mapping in the

classical sense.

5.7 Summary of the SLA selection Model

One of the central contributions of the proposed model lies in its ability to align user

preferences with optimal SLA classifications in real-time dynamically. The system effectively

accommodates the inherent uncertainties in computing and networking performance by

applying fuzzy logic principles, enabling a more adaptive and responsive approach to SLA

selection. This intelligent mechanism surpasses traditional, static SLA models defined solely

by service providers, offering enhanced flexibility and personalization. Furthermore, the model

introduces a structured method for calculating and classifying availability ratios, equipping

Cloud Service Providers (CSPs) with a systematic framework for delivering tiered service

offerings tailored to individual user requirements. Unlike conventional frameworks that depend

on fixed SLA definitions, the proposed approach enables dynamic SLA mapping, ensuring

more responsive and context-aware service delivery. The experimental analysis provides

compelling evidence of the model's practical relevance. A comprehensive simulation in

MATLAB was conducted using over 100 paired input values representing computing and

networking QoS availability. The fuzzy inference system generated output SLA classifications

that followed a consistent, continuous gradient aligning with widely recognized SLA tiers such

as SLA-Normal, Bronze, Silver, and Gold, as detailed in Table 5.3. For instance, the model

produced granular availability scores, including 90.333%, 91.333%, 92.296%, 95.999%, and

99.999%, each accurately mapped to the corresponding SLA category. These classifications

are consistent with publicly published SLA policies by providers such as AWS EC2, which

outline guarantees for availability levels such as 99.5% and 99.99%. The output labels assigned

by the fuzzy system (e.g., SLA-Bronze3 for the availability of 95.999%) closely mirror the

expected service levels defined by industry standards. This correlation affirms the model's

classification accuracy and real-world applicability, positioning it as a robust decision-support

tool for SLA compliance assessment in cloud environments. Building on these results, our

focus shifts to enhancing decision-making accuracy, which is addressed further in this study's

next contribution. This next step involves refining fuzzy logic systems through optimization

techniques to improve decision-making in complex systems. We aim to develop adaptive fuzzy

logic models for efficient cloud service management and SLA optimization, tackling the

challenges identified in this thesis.

61

Chapter 6 Enhanced Decision-Making in Uncertain Domains

Chapter 6 presents an advanced mathematical methodology designed to facilitate decision-

making in uncertain environments. The primary contribution of this chapter is the formulation

of an optimized strategy for the selection and implementation of fuzzy membership functions.

Notably, the novelty of this approach is explicitly situated in the methodological innovations

rather than the mere act of classifying input values. Specifically, the introduced mathematical

model integrates systematic, optimized algorithms for efficiently computing membership

degrees. Unlike traditional fuzzy logic approaches that rely heavily on predefined, static

membership functions—such as standard triangular, trapezoidal, or Gaussian forms, typically

defined manually or through heuristic adjustments—the proposed methodology utilizes

structured mathematical optimization techniques. This allows for dynamic, precise

classification of crisp input values into appropriate fuzzy sets, significantly enhancing accuracy

and computational efficiency. The distinctiveness of this model arises from its structured

mathematical optimization approach, systematically refining the process of classifying crisp

inputs into fuzzy sets. Doing so achieves greater precision and computational efficiency than

conventional methods reliant on heuristics or manual adjustments. This model explicitly

incorporates optimization algorithms to streamline and enhance the calculation of membership

degrees via three specialized algorithms, each analogous to traditional fuzzy logic membership

functions, namely triangular, trapezoidal, and Gaussian. A significant aspect of the proposed

approach lies in its independence from conventional fuzzy logic implementations that

frequently depend on specialized fuzzy logic software, such as MATLAB's Fuzzy Logic

Toolbox or other simulation frameworks. Traditional methods typically involve specific

software dependencies, plugins, or graphical tools to define membership functions and

inference mechanisms, limiting their adaptability and operational efficiency in varied

computational contexts. In contrast, the proposed method introduces a simplified,

mathematically driven, and tool-independent model that does not necessitate external fuzzy

logic software or environment-specific configurations. The advantage of this independence

manifests in broader applicability, simplified integration processes, and reduced computational

requirements. Due to its inherent simplicity, computational efficiency, and high adaptability,

the proposed method exhibits substantial potential across diverse artificial intelligence

applications, eliminating the necessity for complex adaptive systems or specialized software

environments. This simplified mathematical framework ensures faster and more accurate

classification of input values, effectively reducing computational overhead and enhancing

operational performance in practical artificial intelligence deployments.

6.1 Overview of Decision-Making Challenges

Fuzzy logic has become a cornerstone of intelligent control systems, seamlessly integrating

with advanced methodologies such as neural networks and genetic algorithms. It is widely

applied to interpret, analyze, and resolve the inherent ambiguities associated with complex

human-centric needs and challenges. Its unique ability to handle imprecise and uncertain data

through fuzzy sets and rules positions it as a powerful tool for decision-making in dynamic and

intricate systems. The core processes of fuzzy logic—fuzzification, inference (driven by IF-

THEN rules and an extensive knowledge base), and defuzzification—facilitate the conversion

of vague inputs into precise, actionable outputs, ensuring effective and reliable system

performance. This capability supports the suitability of robust control and decision-making

across various applications. Integrating fuzzy logic with adaptive systems enhances its

62

flexibility and optimization capabilities, making it indispensable in robotics, industrial

automation, and artificial intelligence (AI) domains. These fields frequently encounter

inaccuracies from sensor data or other unpredictable inputs, whereas fuzzy logic systems

demonstrate exceptional efficiency and reliability. The Mamdani fuzzy logic system is widely

favored among the many fuzzy logic approaches for its straightforward structure and

interpretability. In electric drive systems, fuzzy logic has been employed to develop an adaptive

proportional-integral (PI) speed controller for vector control of induction motors (IM) [131].

This controller uses an Adaptive Neuro-Fuzzy Inference System (ANFIS) to optimize control

gains, ensuring resilience against parametric variations. Validation through MATLAB-

Simulink simulations demonstrated its robust performance and suitability for enhancing

electric drive reliability. In agriculture, fuzzy logic has addressed environmental uncertainty.

For instance, a wheeled robot with a microcontroller was developed for autonomous pesticide

spraying, achieving high decision-making accuracy in weed identification despite challenging

environmental conditions [132]. Hydraulic systems have also benefited from fuzzy logic.

Researchers proposed a discrete-time switching controller strategy for pumping stations,

integrating fuzzy-PD or fuzzy-PID controllers with PI controllers. A fuzzy supervisor

facilitates controller switching, ensuring robustness, stability, and asymptotic error correction

[133]. In high-performance electric motor applications, integrating Model Reference Adaptive

Systems (MRAS) with fuzzy logic has significantly improved rotor speed and resistance

estimation in induction motors. The study "High-Performance Control of IM using MRAS-

Fuzzy Logic Observer" highlights this advanced control strategy's effectiveness in high-

demand environments [134]. Further advancements include a method for simultaneously

estimating rotor resistance and speed using two independent adaptive observers alongside a

streamlined algorithm for optimal controller gains [135]. The adaptability of fuzzy logic

extends to managing ambiguity and vagueness, which occur when boundaries and alternatives

are unclear. By employing fuzzy numbers and membership functions, fuzzy logic offers a

structured approach to handling uncertainty, surpassing traditional Boolean logic [136][137].

This flexibility allows fuzzy logic systems to adapt to tasks such as navigation, object handling,

and decision-making in uncertain environments, enabling human-like control in artificial

intelligence (AI) systems [138][139]. Classical information theory reduces uncertainty by

increasing information; however, fuzzy logic uses membership functions to quantify degrees

of association between inputs and sets within a universe discourse. These functions form the

backbone of fuzzy logic systems, linking input values to degrees of membership and enabling

approximate reasoning in complex scenarios [140][141][142]. Optimization algorithms

enhance fuzzy logic by refining membership functions and improving actuator precision and

control, especially in autonomous systems [143]. The development of fuzzy logic systems

hinges on constructing fuzzy partitions and defining the shape and number of membership

functions (MFs). These MFs are essential as they quantify the degree to which a specific input

belongs to a fuzzy set. Expert knowledge is pivotal in this process, guiding the selection and

parameterization of appropriate MFs. Optimizing these systems minimizes reliance on

subjective trial-and-error approaches, thereby enhancing the accuracy of input/output

mappings [144]. Membership functions are fundamental to representing the degree of

membership for each variable, serving as critical inputs for the inference rules that drive system

functionality [145]. Building upon the findings of our previous contribution, this study seeks

to enhance further the accuracy and robustness of the proposed classification approach. This

section provides a detailed exposition of the mathematical methodology, which centers on

63

applying three specialized classification algorithms. These algorithms operate analogously to

the membership functions used in the Mamdani fuzzy logic system. The core of this approach

is a novel mathematical model designed to systematically classify crisp input values into their

appropriate fuzzy sets, thereby enhancing the accuracy of membership degree computations.

Optimization techniques refine these computations through three distinct algorithms,

corresponding to triangular, trapezoidal, and Gaussian membership functions. The model was

implemented in MATLAB and evaluated using a dataset of 10000 user task size entries with

varying magnitudes. The primary objective was to assess the performance of the proposed

algorithms in categorizing task sizes into three predefined classes: Small, Medium, and Big. A

comparative analysis with the Mamdani fuzzy logic system demonstrated that the proposed

model produces classification results that are either equivalent to or slightly more precise than

those generated by Mamdani’s approach, particularly regarding numerical accuracy. These

findings validate the proposed method as a viable and competitive alternative to Mamdani’s

model for classification tasks. Additionally, the mathematical simplicity and independence of

the proposed model from simulation environments or third-party tools, such as dynamic-link

libraries (DLLs), software extensions, or external simulation frameworks, make it particularly

suitable for broader deployment in artificial intelligence applications. This is especially

advantageous in contexts where tool-dependent environments are unavailable or impractical.

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making

Fuzzy logic systems have become influential in decision-making, particularly in uncertain

contexts. They offer flexibility and approximate reasoning; however, the literature points to

challenges such as the complexity of fuzzy rule formulations and computational inefficiencies.

These challenges underscore the need for further optimization to enhance the applicability and

effectiveness of fuzzy logic across various fields. In his seminal work on fuzzy sets, Zadeh

defined a fuzzy set as "a class of objects with a continuum of grades of membership," where a

membership function assigns each object a grade ranging from zero to one. This work extends

traditional notions such as inclusion, union, intersection, and complement to fuzzy sets,

establishing various properties within this context. Notably, Zadeh also proved a separation

theorem for convex fuzzy sets without requiring the sets to be disjoint [146]. Building on this

foundation, researchers expanded fuzzy set theory by exploring its theoretical underpinnings

and practical applications in managing uncertainty and imprecision across various domains

[147]. However, these approaches often overlook the computational inefficiencies that arise

when applying fuzzy logic in real-world decision-making scenarios. Recent advancements

have attempted to address these inefficiencies. For instance, researchers have proposed a novel

approach to healthcare decision-making that integrates fuzzy logic with machine learning

[148]. This hybrid model aims to improve diagnostic accuracy and resource utilization,

particularly when dealing with incomplete and uncertain data, thus addressing traditional

inefficiencies. However, it has faced criticism for relying on subjective inputs, which can

introduce biases and affect the consistency of outcomes [149]. Moreover, researchers have

highlighted limitations in the fuzzy linguistic approach, particularly regarding information loss

during fusion processes. They propose a 2-tuple model to enhance precision and extend

aggregation operators [150], although its complexity continues to pose challenges for

practitioners, making implementation cumbersome [151]. Further research has discussed

adaptive fuzzy systems, which show promise but frequently experience stability issues [152],

64

leading to inconsistent decision-making in dynamic environments [153]. The Mamdani fuzzy

inference model, while foundational, is often critiqued for its limited robustness under varying

conditions [154]. Although recent studies have sought to enhance this model's applicability,

challenges persist in managing time-sensitive decisions effectively [155]. Additionally, the

researchers provided extensive insights into fuzzy systems but focused primarily on theoretical

aspects [156], which hinders practical application and adoption by industry practitioners [157].

Doong et al. explored fuzzy risk assessment in engineering [158], yet their approach does not

adequately address the interactions among risk factors, potentially oversimplifying complex

decision-making contexts [159]. In the context of business applications, researchers reviewed

fuzzy decision-making [160], underscoring the pressing need for improved methodologies to

handle severe uncertainties, particularly when data is sparse or incomplete [161]. Lastly, the

integration of fuzzy logic with genetic algorithms has been explored [162]. However, this

approach often struggles with computational efficiency and convergence issues, complicating

its practical use in real-time decision-making scenarios [163]. In summary, the literature

underscores significant gaps in the application of fuzzy logic systems within uncertain

domains, highlighting the need for optimized methodologies to enhance robustness, efficiency,

and applicability in decision-making processes. This study aims to address these critical gaps

by focusing on accurately determining the degree of membership of input elements and their

association with the most appropriate membership functions. The proposed mathematical

model seeks to improve fuzzy logic systems' capacity to handle uncertainty and make accurate

decisions by refining the process of selecting the best membership function and aligning it with

closely related decisions.

6.3 Background of Fuzzy Logic System

6.3.1 Core Principles of Fuzzy Logic Systems

Fuzzy logic is a form of many-valued logic that deals with approximate rather than fixed and

exact reasoning. Unlike traditional binary logic, which operates with true or false values, fuzzy

logic allows for a range of values between 0 and 1, which makes it particularly useful for

handling the concept of partial truth. This approach is often referred to as "computing with

words" because it can model the way humans think and reason with imprecise information

[164] [165]. Figure 6.1 depicts the architecture of a fuzzy logic system.

65

FIGURE 6.1 ARCHITECTURE OF A FUZZY LOGIC SYSTEM.

6.3.1.1 Fuzzy System Basics

6.3.1.1.1 Crisp Input Processing

In fuzzy logic, a crisp set refers to a set in which each element has a membership value that is

strictly either 0 or 1, signifying complete exclusion or inclusion. This differs from fuzzy sets,

where membership values can vary continuously between 0 and 1, enabling partial

membership. In a crisp set, individuals are categorized into two distinct groups: members, who

belong unequivocally to the set, and non-members, who are definitively excluded. Crisp sets

adhere to classical binary logic, emphasizing a clear and absolute boundary for set membership.

The indicator function for a crisp set, A, where elements in the set are assigned a value of 1

and those outside the set are assigned a value of 0, can be expressed as:

 𝜇𝐴(𝑥) ={
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

 (6.1)

6.3.1.1.2 Fuzzification Process

Fuzzification inference is a process that converts input data into fuzzy sets, which are

subsequently used to generate outputs based on a predefined set of rules, typically expressed

in the "IF…THEN" format. This process plays a vital role in fuzzy inference systems,

facilitating the transformation of uncertain or imprecise information into structured, actionable

outcomes for decision-making [166].

6.3.1.1.3 Inference Engine

An inference engine is a critical component of an expert system, employing logical rules to

derive information or make decisions based on a knowledge base. It maps fuzzified inputs

(obtained through the fuzzification process) to the rule base, generating fuzzified outputs for

the applicable rules. The fuzzy inference engine follows a structured process comprising

several key steps. Initially, it performs rule matching by identifying relevant rules from the

knowledge base and comparing the input data to the conditions specified in each rule. Once the

relevant rules are identified, the engine evaluates the degree of truth for each rule, determining

the extent to which the input satisfies the conditions. Subsequently, it aggregates the

66

conclusions derived from the matched rules by combining their outputs to generate a coherent

decision or conclusion. This process is iterative, with the engine continuously applying rules

and updating the knowledge base until a solution is achieved or no further rules apply. This

systematic approach enables the fuzzy inference engine to handle complex and dynamic

scenarios effectively. Inference engines are widely used in artificial intelligence applications,

including diagnostic systems, recommendation systems, and other decision-making tasks

[167].

6.3.1.1.4 Fuzzy Rule Base

A fuzzy rule base is a set of fuzzy rules that describe the relationship between input variables

and output results in a fuzzy logic system. These rules, often derived from linguistic

expressions, characterize the dynamic behaviour of the system. Each rule consists of an

antecedent (the "IF" part) and a consequent (the "THEN" part) based on the knowledge and

expertise of a domain expert. Fuzzy rules generally follow the format:

𝒊𝒇 → 𝒂𝒏𝒕𝒆𝒄𝒆𝒅𝒆𝒏𝒕(𝒔) 𝒕𝒉𝒆𝒏 𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕(𝒔)

Enabling the system to infer outputs under various input conditions. These rules are crucial for

managing uncertainty and imprecision in control algorithms within systems [168][169].

6. 3.1.1.5 Defuzzification Process

Defuzzification is the final step in a fuzzy system and is responsible for converting the fuzzy

output generated by the inference engine into a precise numerical value. This process translates

the fuzzy set produced during inference into a specific, actionable numerical value suitable for

decision-making or control applications. Standard defuzzification techniques, such as the

Centre of Gravity (COG) method illustrated in equation 6.2, derive a crisp result by calculating

a representative value from the combined fuzzy sets generated by multiple rules. This step

ensures the system's outputs are interpretable and practical for real-world implementation

[170].

𝑍 = ∑ (𝜇𝑖
𝑛
𝑖=1 𝛽𝑖)/∑ 𝜇𝑖

𝑛
𝑖=1 (6.2)

Z: The crisp output (defuzzified value); 𝜇𝑖 : The membership degree of the fuzzy set for the 𝑖-
th rule; 𝛽𝑖 : The representative value (often the centroid) of the output fuzzy set for the 𝑖-th

rule.; n: The total number of rules in the system.

6.3.2 Membership Functions and Their Significance

The membership function is a core concept in fuzzy logic. It quantifies the degree of belonging

of a given input to a fuzzy set. Mapping inputs to values from 0 to 1 provides a nuanced

representation of uncertainty and partial truth, enabling more flexible and accurate modelling

than traditional binary logic. The function adheres to specific constraints and has a range of [0,

1]. For every x ∈ X, μ _A(x) must be unique [171]. In this study, have selected three widely

used membership functions recognized as essential in fuzzy logic systems: triangular,

trapezoidal, and Gaussian.

6.3.2.1 Triangular Membership Function

67

triangular membership function can be represented by the parameters {a, b, c}. As referenced

in the previous sections.

6.3.2.2 Trapezoidal Membership Function

fuzzy trapezoidal MF is defined by the parameters {a, b, c, d} as in equation (6.3).

 𝜇𝐹 =

{

0; 𝑥 ≤ 𝑎
𝑥−𝑎
𝑏−𝑎

 ;𝑎< 𝑥 <𝑏

1; 𝑏 ≤ 𝑥 ≤ 𝑐
𝑑−𝑥
𝑑−𝑐

 ; 𝑐< 𝑥 <𝑑

0; 𝑥 ≥ 𝑑

 (6.3)

6.3.2.3 Gaussian Membership Function

A fuzzy Gaussian membership function uses the Gaussian distribution to measure membership

levels within a fuzzy set. It creates bell-shaped curves that manage uncertainty and vagueness.

The function provides a continuous range of membership values between 0 and 1. The general

formula for a fuzzy Gaussian membership function is:

 𝜇𝐴(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)2

 (6.4)

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains

The max-min compositional Mamdani fuzzy logic inference method employs a classification

approach that integrates IF-THEN conditions with AND (fuzzy t-norm) and OR (fuzzy s-norm)

operators to categorize and filter input values based on their compatibility with specific

functions. In the max-min compositional Mamdani method the t-norm selects the minimum

degree of membership among comparable values, while the s-norm selects the maximum

degree of membership. In this framework, every value within the universe of discourse is

associated with a distinct degree of membership function, irrespective of its membership in

other functions. This attribute empowers our proposed method to gauge the membership level

of a value across all relevant membership functions within the problem-solving model. It

facilitates the assessment of a value's impact on the environment in connection with the

decision-making process, have drawn upon mathematical principles embodied by the following

equations and principles:

6.4.1 Mathematical Formulation for Algorithms 1 and 2

The general equation for a straight line is expressed as in equation (6.5).

y=mx+c (6.5)

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used

equation form for a straight line in geometry. However, the straight-line equation can be

presented in various forms, including point-slope. The equation of a straight line with a slope

'm' that passes through a specific point (x1, y1) is derived using the point-slope form, which is

expressed as in equation (6.6).

 y-y1=m(x-x1) (6.6)

Where (x, y) denotes an arbitrary point on the line. The absolute value parent function is

68

represented as:

𝑓(𝑥) = |𝑥| (6.7)

It is defined as: 𝑓(𝑥) = {

𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 = 0
−𝑥, 𝑖𝑓 𝑥 < 0

 (6.8)

The stretching or compressing of the absolute value function 𝑦 = |𝑥| is defined by the

function 𝑦 = 𝛼|𝑥| where 𝛼 is a constant. The graph opens if 𝛼 > 0 and opens down when 𝛼 <

0. In a more general context, the equation for an absolute value function takes the form:

 𝑦 = 𝛼|𝑥 − ℎ| + 𝑘 (6.9)

 𝛼 =
𝑦2−𝑦1

𝑥2−𝑥1
 (6.10)

Here, ℎ signifies the horizontal translation, and 𝑘 represents the vertical translation [163].

6.4.2 Mathematical Formulation for Algorithm 3

The Gaussian random variable is the most utilized and highly significant when investigating

random variables. A Gaussian random variable is characterized by a probability density

function (PDF) that can be expressed in a general form.

 𝑓𝑋(𝑥)=
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2
) (6.11)

 𝜎 = √
∑(𝑥𝑖−𝑥)̿̿ ̿

2

𝑛−1
 (6.12)

The PDF of the Gaussian random variable has two parameters, 𝑚 and 𝜎, which have the

interpretation of the mean and standard deviation (𝜎), respectively. The parameter 𝜎2 is

referred to as the variance [172] [173].

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain

Domains

The proposed methodology introduces a rigorous mathematical framework for categorizing

inputs within a defined universe of discourse, facilitating precise and efficient determination

of membership function levels. This approach incorporates three distinct algorithms derived

from the mathematical formulations central to this study. The first algorithm enhances the

construction of precise triangular membership functions, while the second refines the formation

of trapezoidal membership functions. Additionally, the third algorithm optimizes the

generation of Gaussian membership functions. At its core, this method employs a robust

mathematical model that simplifies the computation of membership degrees, resulting in

significantly improved processing speed compared to traditional methods such as the Mamdani

fuzzy logic system. An inherent strength of this approach lies in its systematic classification of

input values based on specific membership functions. By effectively addressing issues of

ambiguity and uncertainty, the methodology ensures a more accurate determination of

membership degrees, thereby supporting enhanced decision-making outcomes. Appendix 5

provides detailed explanations and illustrative examples validating the effectiveness of these

algorithms.

Algorithm 1: Input Partitioning and Membership Classification as similar work as Triangular MF

69

Input:
• V: Set of input values representing the universe discourse variables.

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated.

Output :

• A collection of Triangular Membership Functions (MF) and their corresponding degrees for each input

value 𝑉.

Procedure:

1. Initialization:

• Max(Vi) max(Vi) // Calculate the maximum value of sets V in the universe discourse.

2. Parameter Value Calculation:

• PV1 (Max(Vi)/n) // Determine the first parameter value.

• PVn n × PV1 // Compute the last parameter value.

3. 3. Iterate Over Each Input Value Vi in the Set of Parameter Values:

for each Vi ∈ V:

• Case 1:if Vi ≥0 and Vi ≤ PV1

MF1 (
−𝑉𝑖

𝑃𝑉2
)+1; Output (MF1, Degree (Vi)) //Compute Membership Function 1.

Output (MF2, MF3,…,MFm−1, Degree(Vi)) // Determining the degree of element in the

remaining MF domain.

• Case 2: if Vi ≥ PV1 and Vi ≤ PV2

MF1 (
−𝑉𝑖

𝑃𝑉2
)+1; Output (MF1, Degree (Vi))

// Compute the degree of element affiliated with both domains MF1 and Subsequent it, as MF2.

α (Vi−PV2) // Define the alpha variable.

MF2 (
−1

𝑃𝑉2−𝑃𝑉1
) × (|𝛼| + 1)

// Compute the degree of element affiliated with both domains MF2 and previous it, as MF1.

Output (MF3, MF4,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

• Case 3: if Vi ≥ 𝑃𝑉𝑛 − 1 and Vi ≤ PVn

MFm((
1

𝑃𝑉𝑛−𝑃𝑉𝑛−1
) × (𝑉𝑖 − 𝑃𝑛 − 1); Output (MFm, Degree (Vi))

// Calculate Membership Function m.

Output (MF1,MF2,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

4.End of Algorithm 1

Algorithm 2: Input Partitioning and Membership Classification as similar work as Trapezoidal MF

70

Input:

• V: Set of input values representing the universe discourse variables.

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated.

Output :

• A collection of trapezoidal Membership Functions (MF) and their corresponding degrees for each

input value 𝑉.

Procedure:

1. Initialization:

• Max (Vi)max (Vi) // Calculate the maximum value from the sets V.

2. Parameter Value Calculation:

• PV1(Max (Vi)/n) // Determine the first parameter value.

• PVn n×PV1

// Compute the last parameter value.

3. Iterate Over Each Input Value Vi in the Set of Parameter Values:

for each Vi ∈ V:

• Case 1: if Vi ≥0 and Vi ≤ PV1

Degree (Vi) 1; Output (MF1, Degree (Vi)) // Compute Membership Function 1.

Output (MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions

• Case 2: if Vi ≥ PV1 and Vi ≤ PV2

MF1 (((
−𝑉𝑖

𝑃𝑉2
) – PV1

)) +1; Output (MF1, Degree (Vi))

// Compute the degree of element affiliated with both domains MF1 and Subsequent it, as MF2.

o α(Vi−PV2) // Define the alpha variable; MF2 (((
−1

𝑃𝑉2−𝑃𝑉1
)) × (abs(α))) +1

o Output (MF2, Degree (Vi))

// Compute the degree of element affiliated with both domains MF2 and previous it, as MF1.

o Output (MF3, MF4,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

• Case 3: if Vi ≥PVn-1 and Vi ≤ PVn

o Degree (Vi) 1

o Output (MFm, Degree (Vi))

// Calculate Membership Function m.

o Output(MF1,MF2,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

4)End of Algorithm 2

Algorithm 3: Input Partitioning and Membership Classification as similar work as Gaussian MF

Input:

• V: Set of input values representing the universe discourse variables.

• n: Total number of parameter values (PV) for which the degree of membership is to be calculated.

Output :

• A collection of Gaussian Membership Functions (MF) and their corresponding degrees for each input

value 𝑉.

Procedure:

1. Initialization:

• Max (Vi)max (Vi) // Calculate the maximum value from the sets V.

• 𝝈16339 //Define standard deviation of the Gaussian MF.

1. Parameter Value Calculation:

PV10; PV2MAX(Vi)/2; PVn MAX(Vi); MF1 centerPV1; MF2 CenterPV2; MFm

CenterPVn

2. Iterate Over Each Input Value Vi in the Set of Parameter Values:

71

for each Vi ∈ V:

• Case 1: if Vi ≥0 and Vi ≤ PVn

MF1 EXP (-((Vi – PV1)2) /(2* 𝜎 2)); Output (MF1, Degree (Vi))

// Compute Membership Function 1.

Output (MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

• Case 2: MF2EXP (-((Vi – PV2)2) /(2* 𝜎 2))

Output (MF2, Degree (Vi)) // Compute Membership Function 2.

Output (MF3, MF4,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions

• Case 3: MFm EXP (-((Vi – PVm)2) /(2. 𝜎 2))

Output (MFm, Degree (Vi)) // Compute Membership Function m.

Output (MF1,MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership functions.

4.End of Algorithm 3

6.5 Experimental Results and Analysis

 Our proposed method has been applied to a dataset comprising over 10,000 user tasks of

varying sizes, which was extracted from the Parallel Workloads Archive. This archive is a

comprehensive repository that contains detailed logs of job-level usage data from large-scale

parallel supercomputers, clusters, and grids. The logs encompass crucial information about the

size of user tasks, which can vary significantly depending on the specific workload and system

specifications. Given that each user base requests the cloud environment to perform its tasks,

the data size is measured per request. For further specifics regarding user task sizes, you can

explore the raw workload logs and models available on the Parallel Workloads Archive website

at https://www.cs.huji.ac.il/labs/parallel/workload/. In our work. These task sizes are generally

random and unstructured, encompassing "small," "medium," and big" The recorded data

consists of task sizes measured in bytes, ranging from a minimum of 0 to a maximum of 67170

bytes. This wide range reflects the diverse nature of user activities. The data were obtained

directly from the database in their original form without preprocessing. Appendix 6 (Figure 1).

depicts the database titles selected for the work. The task column data, specifically identified

and prepared for analytical purposes, was systematically extracted from the database to serve

as the foundation for the subsequent experimentation, Appendix 6 (Figure 2), shows the tasks

before classifying. Operations using the MATLAB® (R2018b) software [174]. This program

was selected due to its robust computational capabilities, enabling precise mathematical

analysis, data manipulation, and visualization. The processing steps included data filtering and

targeted analysis to derive meaningful insights and ensure the integrity of the results.

6.5.1 Determine the Degree of Membership as The Triangular Membership Function

In this context, tasks are classified by size using the proposed method, as outlined in Section

4. To demonstrate this, determine the degree of membership through the triangular membership

function by applying the first algorithm to values within the universe discourse. The

implementation results are systematically illustrated to demonstrate the classification processes

based on fuzzy logic principles. Figure 6.2 presents a classified single triangular membership

function, showcasing the initial classification structure with a single membership function type

for clarity and precision.

https://www.cs.huji.ac.il/labs/parallel/workload/

72

FIGURE 6.2 CLASSIFY SINGLE TRIANGULAR MF.

Figure 6.3 extends this analysis by depicting the classification of all nested membership

functions, emphasizing the hierarchical arrangement and interactions between multiple

membership functions within the system. In contrast, Appendix 6 (Figure 2), demonstrates the

classification of the membership function achieved through the application of the Mamdani

fuzzy logic system, which integrates fuzzy rules and inference mechanisms to produce

comprehensive and interpretable classification results. These figures collectively highlight the

progressive refinement of membership function classification, illustrating the effectiveness of

fuzzy logic systems in managing uncertainty and delivering accurate outcomes.

FIGURE 6.3 CLASSIFY ALL TRIANGULAR MF.

6.5.2 Determine the degree of membership as the trapezoidal membership function

In this context, tasks are classified based on their size using the proposed method, as outlined

in Section 4. The classification process is achieved by determining the degree of membership

through the implementation of a trapezoidal membership function. This function is applied

using the second algorithm, which assigns membership values to data points within the defined

universe discourse, ensuring a systematic and accurate task classification. The results of this

implementation are illustrated in Figures 6.4 and 6.5. Figure 6.4 presents the classification of

a single trapezoidal membership function, while Figure 6.5 depicts the classification of all

trapezoidal membership functions, demonstrating the effectiveness of the second algorithm in

73

assigning precise membership values. In contrast, Appendix 6 (Figure 3), presents the

corresponding Mamdani system membership functions, showcasing the fuzzy inference

process and its integration into the classification framework. This detailed analysis highlights

the significance of the proposed method and algorithms in accurately determining membership

degrees, thereby enabling a precise and meaningful classification of tasks within the system.

FIGURE 6.4 CLASSIFY SINGLE TRAPEZOIDAL MF.

FIGURE 6.5 CLASSIFY ALL TRAPEZOIDAL MF.

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function

In this context, tasks are classified based on their size using the proposed method, as outlined

in Section 4. To demonstrate the effectiveness of this approach, the degree of membership is

determined using the Gaussian membership function by implementing the third algorithm on

values within the defined universe discourse. The Gaussian membership function, chosen for

its smooth and continuous nature, ensures precise membership value assignment, facilitating

accurate classification of task sizes. The results of this implementation are presented as follows:

Figure 6.6 illustrates the classification using a single Gaussian membership function, providing

a clear and focused representation of membership values for task sizes. Figure 6.7 expands on

this by presenting the classification of all Gaussian membership functions simultaneously,

showcasing the system's ability to handle multiple overlapping membership functions

effectively. In contrast, Appendix 6 (Figure 4), depicts the classification results using the

74

Mamdani fuzzy system membership functions, highlighting the integration of fuzzy inference

rules with membership functions to produce comprehensive, interpretable, and consistent

outcomes. These results collectively validate the robustness and flexibility of the proposed

method, demonstrating the precision of Gaussian membership functions and the effectiveness

in managing uncertainty and enhancing task size classification.

FIGURE 6.6 CLASSIFY SINGLE GAUSSIAN MF.

FIGURE 6.7 CLASSIFY ALL GAUSSIAN MF.

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed

Mathematical Model

This study introduces a significant theoretical advancement in intelligent decision-making

systems through a refined framework for fuzzy logic membership functions (Triangular,

Trapezoidal, and Gaussian). This study introduces algorithms for systematically classifying

input values into fuzzy sets using mathematical methods analogous to standard fuzzy

membership functions (triangular, trapezoidal, and Gaussian). These algorithms are integrated

within a robust mathematical framework, providing an alternative to the heuristic or manually

tuned fuzzy partitions typically employed in Mamdani-based inference systems. The proposed

model demonstrates a novel application of standard fuzzy classification algorithms integrated

within an optimized mathematical framework, specifically triangular, trapezoidal, and

Gaussian membership functions. This innovative integration enhances fuzzy partitions'

precision, computational efficiency, and systematic adaptability compared to conventional

heuristic-based methods. The algorithms are capable of systematic input classification within

the universe of discourse and precise computation of membership degrees. These algorithms

75

are grounded in robust mathematical formulations: Triangular membership functions utilize

point-slope line equations, Trapezoidal functions employ linear interpolation techniques, and

Gaussian functions are based on probabilistic Gaussian distribution functions. Together, they

replicate and enhance the behavior of traditional membership functions while significantly

reducing computational overhead. The integration of these analytical methods offers

substantial benefits. The proposed algorithms maintain the interpretability of classical fuzzy

logic systems while enhancing scalability, computational efficiency, and precision—qualities

critical for modern intelligent applications. Moreover, the framework reduces dependency on

simulation programs and environments, minimizing the need for extensive storage space,

processors, and office software functions. To evaluate the effectiveness of the proposed model,

a comparative validation study was conducted using ten representative input samples

strategically selected from the universe of discourse. Each input underwent analysis to

determine its membership degrees across all relevant functions, with outputs outside the input

range assigned zero membership degrees. Results from the proposed mathematical model are

detailed in Table 6.1, juxtaposed with outcomes from the classical Mamdani approach in Table

6.2, facilitating direct performance comparison. To further validate the robustness of the

proposed method, a comprehensive validation study was conducted using 10,000 input samples

representing a wide range of task sizes. The proposed framework exhibits superior adaptability

and precision compared to the classical Mamdani system, particularly in managing complex

and uncertain inputs. This thorough evaluation reaffirms the method's robustness,

computational efficiency, and improved accuracy, thereby significantly contributing to the

advancement of intelligent fuzzy classification systems.

Table 6.1 Results of the Proposed Method Applied to Selected Samples.

Samples of Degree of Triangular Membership Function
value small medium big
0 1 0 0
16823 0.499091856 0.001816287 0
17129 0.489980646 0.020038708 0
17361 0.4830728 0.033854399 0
17579 0.476581807 0.046836385 0
25978 0.226499926 0.547000149 0
26931 0.198124163 0.603751675 0
28842 0.141223761 0.717552479 0
31475 0.062825666 0.874348668 0
33565 0.000595504 0.998808992 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182 0.500818818 0
21582 0.393479232 0.606520768 0
23875 0.222792914 0.777207086 0
25331 0.114411195 0.885588805 0
26846 0.001637636 0.998362364 0
46120 0 0.566919756 0.433080244
45451 0 0.616718773 0.383281227
44329 0 0.700238202 0.299761798
42852 0 0.810183117 0.189816883
40336 0 0.997469108 0.002530892

Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.120934543 0.000213895

76

Table 6.2 Results of the Traditional Method Applied to Selected Samples.

6.6 Summary

This chapter introduced and validated a novel mathematical framework designed to enhance

decision-making under uncertainty by providing precise fuzzy classification. The primary

contribution lies in systematically classifying input values into predefined fuzzy sets—

specifically, triangular, trapezoidal, and Gaussian membership functions—to significantly

enhance accuracy and computational efficiency in determining membership degrees. The

developed methodology integrates three optimized algorithms mathematically aligned with

1 0.999999998 0.120949757 0.000213949
10090 0.826402652 0.355634634 0.002238294
32026 0.146469985 0.995458374 0.098946015
49791 0.009627715 0.611475933 0.567984183
54045 0.004209592 0.456574063 0.724241188
61138 0.000911417 0.241274197 0.934125619
64852 0.000379417 0.160259114 0.989987311
65069 0.000359903 0.156223736 0.991766863
67170 0.000213895 0.120934543 1

Samples of Degree of Triangular Membership Function
value small medium big
0 1 0 0
16823 0.499076941,400667 0.001846117,1986660315 0
17129 0.489965459,74273464 0.020069080,51453073 0
17361 0.483057408,28966176 0.033885183,420676514 0
17579 0.476566222,01048116 0.046867555,979037634 0
25978 0.226476893,75893282 0.547046212,4821344 0
26931 0.198100285,8504 0.603799428,2991901 0
28842 0.141198189,61410197 0.717603620,7717961 0
31475 0.062797760,83849452 0.87440447,83230109 0
33565 0.000565745,5931395903 0.998868508,8137208 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182,07533124 0.500818817,9246688 0
21582 0.393479231,7999107 0.606520768,2000894 0
23875 0.222792913,50305197 0.777207086,496948 0
25331 0.114411195,47417002 0.885588804,52583 0
26846 0.001637635,849337502 0.998362364,1506625 0
46120 0 0.783443757,9096255 0.216556242,0903744

4
45451 0 0.808345120,2263083 0.19165487,97736916

7
44329 0 0.850107943,1251396 0.149892056,8748604

3
42852 0 0.905084493,4117472 0.094915506,5882528
40336 0 0.998734459,9121566 0.001265540,0878433

707
Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.122 0.0002
1 1 0.122 0.0002
10090 0.8418 0.7201 0.0053
32026 0.2931 0.996 0.1097
49791 0.0304 0.5364 0.7211
54045 0.0124 0.2917 0.8431
61138 0.0028 0.1097 0.9959
64852 0.0011 0.0566 0.9881
65069 0.0010 0.0532 0.9926
67170 0.0002 0.1218 1

77

traditional fuzzy logic membership functions. These algorithms facilitate systematic input

partitioning and precise computation of membership degrees, ensuring clear differentiation

among distinct membership levels (small, medium, and big). Compared to traditional Mamdani

fuzzy inference systems, our approach delivers more accurate, computationally efficient, and

robust results while preserving interpretability and simplicity crucial for broad practical

adoption. Extensive validation using over 10,000 user-task-size samples confirmed that the

proposed algorithms consistently match or surpass the performance of the traditional Mamdani

method. Our model efficiently manages distinct and overlapping fuzzy set classifications,

underscoring improved flexibility and precision.

The main contributions of this chapter include:

i. A novel mathematical model enables precise input classification through triangular,

trapezoidal, and Gaussian membership functions.

ii. Algorithmic innovation through developing three original algorithms leveraging

rigorous mathematical formulations to optimize fuzzy classification.

iii. Enhanced computational efficiency, significantly reducing computational overhead

without compromising accuracy or interpretability.

iv. A robust comparative analysis demonstrates the proposed methodology's superior

flexibility and effectiveness against traditional Mamdani-based fuzzy logic systems.

The demonstrated effectiveness of this methodology highlights its potential applicability across

diverse artificial intelligence domains, notably in QoS categorization. Looking ahead, this

chapter establishes a foundational model beneficial for future research endeavors, especially in

real-time decision-making contexts requiring high precision and scalability, such as healthcare

diagnostics, financial forecasting, and cloud computing environments. Future work will expand

this methodology's application within the Intelligent Validation Cloud Broker System

(IVCBS), directly addressing QoS scalability and classification accuracy challenges and

further validating the model’s suitability in practical, real-world decision-making scenarios.

78

Chapter 7 Intelligent Validation Cloud Broker System

Chapter 7 contributes to the Intelligent Validation Cloud Broker System (IVCBS), which

enhances SLA selection. Classifying virtual machine resources and user request sizes with an

algorithm works like the work of a trapezoidal membership function, improves decision-

making, reduces data centre processing time, and lowers VM costs. Simulations show that

IVCBS, using the "Optimize Response Time" policy, outperforms traditional methods in

response time, VM cost, and energy efficiency. This system also reduces data transfer costs

and enhances power usage efficiency by improving data center request servicing times, offering

a more efficient and cost-effective approach to cloud resource management.

7.1 Overview of SLA Selection and the IVCBS Framework

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction. This cloud model promotes availability and is composed of five

essential characteristics, three service models, and four deployment models [170]. Cloud users

can access the key elements of the underlying architecture, such as Broad network access, which

allows services to be consumed from anywhere; on-demand self-service, which enables usage

when desired; resource pooling and virtualization, which combine infrastructure, platforms, and

applications; rapid elasticity, which allows for horizontal scalability with pooled resources; and

measured service charges based on consumption [171]. The services of cloud computing are

broadly divided into three categories: Infrastructure-as-a-Service (IaaS), which is the delivery of

huge computing resources, such as the capacity of processing, storage, and network., Platform-

as-a-Service (PaaS) supports a set of application program interfaces to cloud applications. Well-

known examples are Amazon Web Services, Google App Engine, Microsoft’s Azure Services

Platform, and Software-as-a-Service (SaaS), which replace the applications running on PCs.

There is no need to install and run the special software on your computer if you use the SaaS

[172]. The dynamic nature of cloud computing necessitates efficient resource allocation, which

can be challenging due to potential resource shortages and conflicting interests between cloud

service providers (CSPs) and cloud service users (CSUs). Service-level Agreement (SLA)

negotiations can mitigate these issues, and the proposed broker-based mediation framework

optimizes these negotiations [173]. Cloud brokerage enhances service availability. Traditional

brokers face limitations in ensuring service trust and outcomes. An intelligent cloud broker

overcomes these limitations by validating and verifying service trust through factors like

response time, sustainability, and accuracy. It also incorporates customer feedback and maps

services from a service collection repository, outperforming traditional models in recommending

services to cloud users [174]. Selecting the most suitable resources to meet diverse user demands

is a significant research challenge. Quality of Service (QoS) parameters play a crucial role in

ranking these resources. This study proposes using fuzzy logic to handle uncertainties in QoS

attribute weights and pre-classify resources, reducing computational costs [175]. Fuzzy logic-

based optimization algorithms present Fuzzy-RLVMrB and Fuzzy-MOVMrB, designed to

balance horizontal and vertical loads across physical machines (PMs) by managing processor,

bandwidth, and memory resources. Simulations demonstrate that these algorithms excel in load

79

balancing and energy efficiency compared to other methods [176]. Performance and Resource-

Aware Virtual Machine Selection using Fuzzy in Cloud Environment (PRSF) develops a virtual

machine selection policy to optimize CPU resource utilization and minimize migration counts.

Utilizing the Mamdani fuzzy controller, the PRSF policy enhances decision-making for VM

selection, leading to decreased energy consumption and reduced migration events [177].

Furthermore, there are cloud simulators for creating and testing different cloud applications.

These simulators are based on parameters like programming languages, availability, and SLA

support. The analysis considers CloudSim to be the most effective and efficient simulator [178].

Simultaneously, Cloud Analyst is a simulation tool extended from CloudSim. Load balancing is

a major challenge in the cloud, where resources have to be directed to their respective servers so

that the whole system works efficiently by distributing the workload efficiently. Compare the

average response times of the six load balancing algorithms, like Round-Robin, by using a cloud

analyst tool to perform a thorough comparative study along with three service broker policies,

like optimizing response time, to find out which is the best [179]. Resource stalemates can occur

during resource allocation. The currently available algorithms, such as Min-Min and Min-Max,

have issues with overhead, hunger, and deadlock. A solution to some of these problems has been

proposed that decreases the amount of time required to respond while simultaneously increasing

the cloud's overall efficiency [180]. Building upon the methodologies discussed in prior studies,

which focus on enhancing decision-making accuracy, this research advances solutions to the

identified challenges within this thesis. The study introduces the "Intelligent Validation Cloud

Broker System," aimed at optimizing the allocation of AWS-EC2 resources based on user

demands. Key AWS-EC2 specifications, such as VCPUs, RAM, storage, and bandwidth,

collectively influence VM costs, power consumption, and processing times, impacting user

confidence and decision-making in selecting Service Level Agreements (SLAs) that align with

budgetary and performance needs. The study addresses a scenario involving one million

customers entering a cloud environment, each presenting varying demands, utilizing real-world

data from diverse datasets, with a particular emphasis on 11 types of AWS-General Purpose EC2

Instances. Employing MATLAB, an algorithm was developed to classify and organize EC2

resources. Furthermore, user demand sizes were categorized using a proposed mathematical

model employing five membership functions: Poor, Fair, Good, Very Good, and Excellent,

structured like the Trapezoidal Membership Function. This framework assigns membership

degrees to respective values, ensuring robust categorization of EC2 resources and user demands.

The term "membership score" introduced in this chapter is intentionally defined as a binary value

(1 or 0). It does not replace the concept of continuous membership degrees; it serves specifically

as a validation and decision-making criterion within our proposed Intelligent Validation Cloud

Broker System (IVCBS). The IVCBS utilizes a two-stage approach: in the first stage (fuzzy

classification), it employs an intelligent mathematical model analogous to trapezoidal

membership functions to classify input values and compute their continuous membership

degrees, reflecting the extent of resource compatibility on a scale from 0 to 1. In the second stage

(validation and allocation), it adopts a binary "membership score" (1 or 0) to make crisp decisions

on resource allocation based strictly on whether the computed fuzzy membership value meets a

predetermined threshold. This binary criterion ensures simplicity and operational efficiency by

eliminating the need to manage intermediate fuzzy values during resource allocation.

Specifically, if the computed fuzzy membership value exceeds the predefined threshold, the

80

decision to allocate the resource is validated (membership score = 1); otherwise, the allocation is

disregarded (membership score = 0). Thus, although continuous membership values derived from

trapezoidal membership functions effectively capture nuanced, fuzzy categorizations of

resources and user requests, the IVCBS strategically converts these continuous values into binary

membership scores for practical real-time cloud resource allocation. Consequently, the system

effectively integrates fuzzy logic principles for initial classification and categorization with crisp

decision-making, ensuring efficient, straightforward, and transparent resource validation and

allocation. However, the proposed algorithm categorizes AWS EC2 cloud computing resources

and user request sizes based on linguistic variables, where a membership score of 1 denotes the

highest relevance. This score serves as a validation criterion through broker validation processes.

For example, CPU resources falling within specified values (vCPU: 1, 2, 4) are classified as

'Poor' according to the algorithm, driven by their membership score 1, aligning firmly with the

'Poor' membership function. Similarly, user request sizes categorized within ranges (3, 5, 10) MB

also receive a membership score of 1, confirming their classification within the 'Poor' category.

This systematic approach extends across all data in the 'Poor' membership function domain,

maintaining the same principle for the remaining four membership functions, focusing

exclusively on values assigned a score of 1. Subsequently, the second algorithm, the matching

algorithm, plays a pivotal role in the broker validation process by verifying whether all system

metrics attain a membership score of 1. VM-EC2 resources are allocated to execute user requests

when this condition is met. Conversely, if the score is 0, the matching process is disregarded.

This streamlined methodology ensures efficient allocation of VM-EC2 resources based on

validated criteria. The matching process validates all values derived from the algorithm, ensuring

that each classification scenario defined by the five membership functions, whether for EC2

criteria or user request sizes, achieves a score of 1. Upon validation, the broker initiates the

allocation process, assigning an EC2 VM to execute user requests effectively. Expanding the

scope, the study distributes user requests across data centers in six geographic regions (North

America (R0), South America (R1), Europe (R2), Asia Pacific (R3), Africa (R4), and Australia

(R5)). It compares the performance of the traditional method with the Intelligent Validation

Cloud Broker System (IVCBS). Using Cloud Analyst tools, two distinct broker policies were

evaluated: the Optimize Response Time Policy, directing requests globally, and the Dynamic

Reconfigure with Load Service Broker Policy, routing requests within users' regions. Across 11

scenarios involving one million users, simulations across 31 AWS data centers demonstrated the

superiority of IVCBS, particularly with the Optimize Response Time policy, over the Dynamic

Reconfiguration with Load policy. IVCBS consistently exhibited superior performance metrics,

including overall response time, processing efficiency, total VM cost, and Data Center Request

Servicing Times, highlighting its efficacy in enhancing cloud computing efficiency across

diverse global environments.

7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making

If Cloud computing delivers computing resources via a network as a service. With the fast

adoption of this emerging technology in practical scenarios, understanding how to assess its

performance and security challenges has grown increasingly significant. Nowadays, modelling

and simulation technology is a valuable and potent resource among cloud computing

81

researchers to tackle these issues [181]. Qazi et al. [2] examine SLA methodologies in cloud

computing, detailing their taxonomy, challenges in QoS management, evaluation metrics, and

design goals. It also highlights open research areas, guiding future development for enhanced

service delivery and CSP-CSU accountability. Chauhan et al. [182] emphasized the role of

cloud brokers within an interconnected cloud computing framework. Their study explored the

advantages and limitations of cloud brokers, focusing on aspects like pricing, optimization,

trust, and Quality of Service (QoS). Being a survey, the paper provides in-depth discussions to

enhance the comprehension of cloud brokers in multi-cloud environments. Yao et al. Ahmad

et al. [183] introduce the Cost Optimization based on Task Deadline (COTD) algorithm for

cloud and fog services, aiming to reduce costs by 35% without compromising response times.

Tested with Cloud Analyst, COTD outperforms existing routing strategies, offering efficient

real-time decision-making for service providers. [184] detailed the diverse roles played by

cloud service brokers, including intermediation, aggregation, arbitration, integration, and

customization. Therefore, the process of delivering services is a collaborative effort involving

cloud service providers, cloud service brokers, and customers. Any issues arising within any

of these parties will undoubtedly impact the broker's performance. Cinar et al. [185] aim to

bolster security and compliance in multi-cloud environments by leveraging sophisticated

encryption and IAM strategies and legal insights. They underscore the role of cloud service

brokers in applying best practices to overcome challenges posed by technology adoption and

regulatory intricacies. Petcu [186] tackled the interoperability issue among cloud services,

highlighting the challenge posed by vendor lock-in and the necessity to integrate different

clouds to meet user needs. Despite the existence of hybrid clouds, linking multiple cloud

services is crucial for enhancing performance and user satisfaction. The authors suggested a

strategy to enable portability and interoperability across various cloud providers. However, this

proposal lacks a detailed practical method for addressing the interoperability challenges among

cloud service providers. Chafai et al. [187] This paper proposes a performance evaluation

model for federated clouds using an open Jackson network, focusing on service diversity and

user demand to improve system design. Calheiros et al. [188] explored the constraints a solitary

cloud provider faces in service delivery. They noted that with the rising demand for services,

current methods fell short regarding Service Level Agreements (SLA) and Quality of Service

(QoS). The authors introduced an inter-cloud framework that leverages agents to address these

issues. These agents publish, discover, and deliver services to cloud users under agreed-upon

SLAs. Nonetheless, the paper does not cover the decision-making strategies for purchasing

and selling services. Al-E'mari et al. [22] This article evaluates Cloud Service Broker policies

for Cloud Datacenter selection, highlighting their role in enhancing cloud computing efficiency

and addressing challenges to improve Quality-of-Service standards and decision-

making.Ahmed I. El Karadawy et al. [189] conducted a detailed examination of the cloud

analyst simulator, focusing on different load balancing (LB) algorithms and service broker

policies. They specifically evaluated three unique LB algorithms: Round Robin (RR), throttled,

and Equally Spread Current Execution (ESCE). Sunny Nandwani et al. [190] examined various

service broker policies and load balancing (LB) algorithms. They compared these LB

algorithms across different service broker policies and conducted simulations using cloud

analysts to evaluate the performance of existing algorithms. This comparison was based on

various metrics to assess their effectiveness.

82

7.3 Proposed System

The proposed study centers on intelligently identifying cloud services through rigorous

validation. This process ensures uniform attainment of a value of 1 across all outcomes from

the classification algorithm, applicable to resource allocation and user request sizes, as

discussed earlier. By maintaining this consistent criterion, the study assures the reliability and

accuracy of the classification algorithm's outputs, thereby optimizing resource management

and enhancing service efficiency in cloud computing environments. This systematic and

uniform validation approach highlights its critical role in achieving precise identification of

high-quality cloud services. Figure 7.1 depicts the proposed system.

7.3.1 Extraction information Factors from AWS Cloud Environment

Within the AWS cloud environment, users have access to a variety of service instance types,

including General Purpose (https://aws.amazon.com/ec2/instance-types/),Compute Optimized,

Memory-Optimized, Accelerated Computing, and Storage-Optimized, all falling under the

broad category of 'XaaS' (Anything as a Service). This study will concentrate on general-

purpose EC2 instance types tailored to meet user requirements. General-purpose EC2 instances

are strategically deployed across 31 AWS data centers in six geographic

regions(https://aws.amazon.com/about-aws/global-infrastructure/regions_az/), ensuring

robust global infrastructure and service availability.

7.3.2 AWS General-Purpose Instance Types

Amazon Web Services (AWS) boasts 212 types of EC2 general-purpose instances, meticulously

designed to balance computing, memory, and networking resources. These versatile instances

excel at diverse workloads, making them ideal for applications requiring equal resource

distribution, such as web servers and code repositories [191]. By sharing certain standardized

features, these EC2 instances are grouped into 11 categories based on similarities in their

specifications. Tables 7.1 and Appendix 7 (Table 1), highlight the adopted AWS-EC2 families'

specifications. while Appendix 7 (Table 2), lists the actual on-demand cost of each EC2 device,

as indicated on AWS's official pricing page (https://aws.amazon.com/ec2/pricing/on-demand/).

Table 7.2 displays the number of customers entering the cloud for each scenario and the sizes of

their requests.

https://aws.amazon.com/ec2/instance-types/),Compute
https://aws.amazon.com/ec2/pricing/on-demand/

83

FIGURE 7.1 INTELLIGENT VALIDATION CLOUD BROKER SYSTEM FRAMEWORK.

 Table 7.1 AWS-General purpose instance features.

AWS-General-Purpose series Attributes and specs
EC2- Series VCPU RAM

GB
Storage
GB

Bandwidth
Gbps

VCPU-clock
speed
GHz

M6g.medium 1 4 1 2 2
M6g.Large 2 8 2 4 2
M6g.Xlarge 4 16 4 8 2.4
M5.2XLarge 8 32 8 10 2.5
M5.4XLarge 16 64 12 12 2.5
M6gd.8XLarge 32 128 16 14 2.5
M6gd.12XLarge 48 192 24 16 2.7
M6g.metal 64 256 32 18 2.7
M5d.metal 96 384 48 24 3.4
M6i.metal 128 512 64 30 3.4
M6a.metal 192 768 88 40 3.4

7.3.3 Theoretical Framework and Methodology

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System

(IVCBS)

In cloud computing, "intelligence" signifies the deployment of sophisticated algorithms and

decision-making techniques that emulate human cognitive abilities like learning, reasoning, and

problem-solving [192]. In the Intelligent Validation Cloud Broker System (IVCBS), this

intelligence is utilized through optimization algorithms rooted in a mathematical model

influenced by the trapezoidal membership function. Implementing this model generates

membership scores of 1 and 0 for the input values across all proposed membership functions

within the system's universe of discourse. This approach significantly improves service level

agreement (SLA) selection and enhances overall system efficiency.

84

Table 7.2 Cloud users and sizes of their requests.

Cloud users User request
Scenario
number

Total

number of

users

SaaS Size

1 1000,000 App1 3 MB

2 1000,000 App2 5 MB

3 1000,000 App3 10 MB

4 1000,000 App4 35 MB

5 1000,000 App5 70 MB

6 1000,000 App6 105 MB

7 1000,000 App7 140 MB

8 1000,000 App8 750 MB

9 1000,000 App9 1500 MB

10 1000,000 App10 2250 MB

11 1000,000 App11 3000 MB

Our method provides adaptability and utility, making it a valuable tool for scientists and

researchers facing decision-making in ambiguous situations that require precise and

comprehensive insights. It facilitates the assessment of a value's impact on the environment in

connection with the decision-making process. Figure 7.2 demonstrates how the mathematical

approach closely reflects the characteristics of a trapezoidal membership function, particularly in

determining and generating degrees of membership or belonging. The equations and concepts

presented in this figure provide the foundation for the outcomes produced by the algorithms

detailed in Table 7.3. The behavior of the mathematical model as a membership function, which

classifies and assigns membership levels to input values within the proposed system, can be

effectively illustrated using equations that relate to point-slope lines and absolute values, as

discussed in Chapter Six.

𝑦 = 𝑚𝑥 + 𝑐 (7.1)

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used

equation form for a straight line in geometry. However, the straight-line equation can be

presented in various forms, including point-slope.

The equation of a straight line with a slope 'm' that passes through a specific point (x1, y1) is

derived using the point-slope form, which is expressed as:

 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) (7.2)

In this equation, (x, y) denotes an arbitrary point on the line [140][164]. The mathematical model

employed in the IVCBS is classifies and arranges virtual machine (VM) resources (e.g., VCPU,

RAM, Storage, Bandwidth) and user request sizes. This model defines mathematical functions

(Poor, Fair, Good, Very Good, and Excellent) similar to the trapezoidal membership function.

These functions are used to classify and determine the membership degree for each input value

within the discourse universe, evaluating the suitability of EC2 selections that adapt to client

SLA criteria. The classification outcomes directly influence the decision-making process for

validating the broker mechanism. A result of (1) indicates an effective decision, while (0)

suggests exclusion. This section introduces a novel model to explore the intelligent features

85

integrated into the Intelligent Validation Cloud Broker System (IVCBS). It focuses on the

intricate management of VCPU resources, using them as a key example. This rigorous method

is consistently applied to all VM-EC2 resources and user request sizes, ensuring SLA-level

classification uniformity and reliability. The MATLAB script demonstrates how this approach

reinforces the consistency of resource allocation within the system. Furthermore, to illustrate the

alignment of the mathematical model with the proposed membership functions, this approach

has been integrated into the discussion on initializing and visualizing the membership function,

as depicted in Appendix 7 (Figures 1 and 2).

FIGURE 7.2 FUZZY PARTITION USING INTELLIGENT MATHEMATICAL MODEL.

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation Cloud

Broker System (IVCBS)

This section addresses the handling of ten user-base requests, employing the round-robin

algorithm to evenly distribute workloads across virtual machine clusters. It introduces a set of

equations that form the mathematical basis for estimating the time required to process a given

task. As previously discussed, our framework utilizes 31 individual VMs linked to 31 data

centers, spread across six geographical areas and categorized based on 11 clustering factors. The

rationale for using a single VM from each AWS-supported data center is to harness suitable

computing resources that align with the demand of user requests. This strategy aims to achieve

cost efficiency, enhance processing speed, reduce energy consumption, and ensure the

availability of additional computing resources to handle other users' requests consistently. To

operationalize this concept, applied the CloudAnalyst tool under a designated service broker

policy in two distinct scenarios (optimizing response time and dynamically reconfiguring based

on load).

 Eq. (7.3) is given by n as the number of sets for the load (L) or requests that need to be

scheduled to servers.

 𝐿 = {𝐿1 , 𝐿2 , 𝐿3 , … , 𝐿𝑛 } (7.3)

This equation is coherent in indexing because it uses sequential indices 1,2,3,…,n to denote

each element Li The indexing starts from 1 and progresses sequentially up to n.

86

Eq. (7.4) DC represents a set of data centers, with dc1,dc2,dc3,…,dck denoting each data center

indexed from 1 to k.

 DC = {dc1 , dc2 , dc3 , … . , dck} (7.4)

This equation is coherent as well. It uses indices 1,2,3,…,k to denote each data center dci.

Similar to Equation (7.3), the indexing starts from 1 and proceeds sequentially up to k,

maintaining a consistent and logical index structure.

The following equation (7.5) For each data center dci, there is a single virtual machine VMi

associated with it.

 dci = {VMi} (7.5)

This equation introduces i as the index for virtual machines within each data center dci. It is

coherent because it specifies that dci has exactly one virtual machine VMi, ensuring clarity

and specificity in indexing.

Eq. (7.6) 𝐷𝐶𝑠𝐿 represents the load of each virtual machine VMi in the data centers.

 DCsL = {VM1 L , VM2L , VM3 L , … , VMk L} (7.6)

This equation uses i from 1 to k to denote each virtual machine VMi and its associated load L.

The indexing is coherent as it sequentially lists VMiL for each virtual machine within the data

centers.

Eq. (7.7) This equation indicates that the load L of each virtual machine VMi in the data centers

1,2,…,k is approximately equal. It uses i from 1 to k to represent each virtual machine VMi.

 VM1 L ≈ VM2 L ≈ VM3 L,… , VMk L (7.7)

Eq. (7.8) t0 calculates the time required to allocate all tasks L to each virtual machine VMi,

where τ0i, represents the time τ0 required to execute each task Li.

 t0 =∑τ0𝑖

𝑛

𝑖=1

 (7.8)

Where

i: Represents the index for tasks, consistent with Equation (7.3) where Li denotes each task or

load.

Eq.(7.9) This equation defines VM as a set containing k virtual machines within a specific data

center. It describes how, when multiple virtual machines are available (denoted by k), all tasks

can be evenly distributed among them for execution. This equation clarifies the method of task

distribution across multiple virtual machines, highlighting the shared allocation approach in

cloud computing environments.

 VM = (VM1 , VM2 ,VM3 ,… , VMk ,) (7.9)

87

Eq. (7.10) shows that the total execution time T0 is the sum of the execution times Ti for each

task i executed on the total number of virtual machines n in the data center:

 T0 =∑T𝑖

𝑛

𝑖=1

 (7.10)

This equation indicates that T0 represents the cumulative execution time across all tasks

executed on n virtual machines within the specific data center.

Classification Algorithm

Inputs: Parameter Value (PV)set= {PV1, PV2,,,PV11}

Output=Classification with order Parameter Values.

//Compute the level for each input parameters.

1.For each input value (V) from input parameter value set

2.IF (V >=PV1 and V <=PV2)

3.MF1 (((-1/PV1-PV2)) *((V-PV2))) +1)

//MF: Membership Functions

4.Output (Poor, MF1)

5.Output ((Fair, Good, V. Good, Excellent),0)

6.End

7.IF(V>PV2 and V<=PV3)

8.MF1 1

9.Output (Poor, MF1)

10.Output ((Fair, Good, V. Good, Excellent),0)

11.End

12.IF (V>PV3 and V<=PV4)

13.MF1 (((-1/(PV4-PV3)) *((V-PV3))) +1)

14.Output (Poor, MF1)

15.Output ((Good, V. Good, Excellent),0)

16.MF2 (((-1/PV3-PV4)) *((V-PV4))) +1)

17.Output (Fair, MF2)

18.Output ((Good, V. Good, Excellent),0)

19.End

20.IF(V>PV4 and V<=PV5)

21.MF21

22.Output (Fair, MF2)

23.Output ((Poor, Good, V. Good, Excellent),0)

24.End

25.IF(V>PV5 and V<=PV6)

26.MF2 (((-1/(PV6-PV5)) *((V-PV5))) +1)

27.OutputçFair, MF2)

28.Output ((Poor, V. Good, Excellent),0)

29.MF3 (((-1/PV5-PV6)) *((V-PV6))) +1)

30.Output (Good, MF3)

31.Output ((Poor, V. Good, Excellent),0)

32.End

33.IF (V>PV6 and V<=PV7)

34.MF31

35.Output(Good, MF3)

88

36.Output ((Poor, Fair, V.Good, Excellent),0)

37.End

38.IF (V>PV7 and V <=PV8)

39.MF3 (((-1/(PV8-PV7)) *((V-PV7))) +1)

40.Output (Good, MF3)

41.Output (Poor, Fair, Excellent),0)

42.MF4 (((-1/(PV7-PV8)) *((V-PV8))) +1)

43.Output (V. Good, MF4)

44.Output(Poor, Fair, Excellent,0)

45.End

46. IF (V>PV8 and V<=PV9)

47. MF41

48.Output(V. Good, MF4)

49.Output ((Poor, Fair, Good, Excellent),0)

50.End

51.IF (V>PV9 and V<=PV10)

52.MF4 (((-1/(PV10-PV9)) *((V-PV9))) +1)

53.Output (V. Good, MF4)

54.Output ((Poor, Fair, Good),0)

55.MF5 (((-1/(PV9-PV10)) *((V-PV10))) +1)

56.Output (Excellent, MF5)

57.Output ((Poor, Fair, Good),0)

58.End

59.IF (V>PV10 and V<=PV11)

60.MF51

61.Output (Excellent, MF5)

62.Output (Poor, Fair, Good, V.Good),0)

63.End

64.End

Matching Algorithm

1.IF Output (Poor, PV1)

2.Assign: User base Request (App1) M6g.medium

3.End

4.IF Output (Poor, PV2)

5.Assign: User base request (App2) M6g.large

6.End

7.IF Output (Poor, PV3)

8.Assign: User base request (App3) M6g.XLarge

9.End

10.IF Output (Fair, PV4)

11.Assign: User base request (App4) M5.2XLarge

12.End

13.IF Output (Fair, PV5)

14.Assign: User base request (App5) M5.4XLarge

15.End

16. IF Output (Good, PV6)

89

17.Assign: User base request (App6) M6gd.8XLarge

18.End

19.IF Output (Good, PV7)

20.Assign: User base request (App7) M6gd.12XLarge

21.End

22.IF Output (V. Good, PV8)

23.Assign: User base request (App8) M6g.metal

24.End

25.IF Output (V. Good, PV9)

26.Assign: User base request (App9) M5d.metal

27.End

28.IF Output (Excellent, PV10)

29.Assign: User base request (App10) M6i.metal

30.End

31.IF Output (Excellent, PV11)

32.Assign: User base request (App11) M6a.metal

33.End

7.3.3.3 Cloud Analyst Simulation Framework

This framework extends the CloudSim simulator with new capabilities, allowing for the

analysis of performance and costs associated with large, geographically dispersed cloud

systems under extensive user workloads and various parameters. It offers a user-friendly

graphical interface and the ability to customize settings for any geographically distributed

system, including hardware configurations like storage, CPU, main memory, and bandwidth.

The results of simulations are provided in charts and tables, detailing aspects such as cost,

response time, data center processing time, and data center load, among others [193]. Figure

7.3 depicts the cloud analyst model.

FIGURE 7.3 CLOUD ANALYST MODEL.

7.3.3.4 Round Robin Algorithm

The round-robin algorithm, known for its simplicity, is popular among load-balancing

mechanisms. It evenly distributes the workload by cyclically rotating through each server in

sequence. This method effectively manages the queues within load-balancing systems by

assigning turns to each virtual server, ensuring a systematic distribution cycle. The process

operates on a fixed time allocation known as the time quantum, the designated duration for a

process's execution within the system or for processing queued data. This approach is notably

equitable, as it does not prioritize any process over others; each receives an equal time allotment,

calculated as (1/n), where n represents the number of processes in the queue. Thus, the wait time

90

for any process is limited to (n-1) times the quantum length, q, ensuring a fair and efficient

distribution of processing time [194] [195].

7.3.3.5 Service Brokering Strategies

The role of a service broker is essential for determining the appropriate data center to satisfy

customer needs and for orchestrating the data exchange between consumers and data centers

[196]. This intermediary position enhances the connection between customers and cloud

service providers [197]. Through the Service Broker Policy (SBP), services are dynamically

distributed between the cloud's infrastructure and its service providers [198], effectively

guiding the selection of data centers [196]. The assignment of virtual machines to physical

hardware in data centers, a process critical to the data center broker known as virtual machine

deployment, underscores the importance of the SBP [199]. It is crucial to grasp the operational

context of the SBP, particularly how it mediates between specific data centers and user

demands. The SBP plays a pivotal role in identifying the most fitting data center to meet service

expectations based on customer requests [196]. Our analysis involved adopting two

foundational broker strategies and examining and contrasting their effectiveness.[200]. The

primary policy focuses on optimizing response time, where the service broker evaluates

essential attributes of data centers to gauge their performance [189]. This approach ensures the

quickest possible response times for end-users during queries [201]. In this routing strategy,

the efficiency of data centers is continuously monitored, with preference given to directing

traffic to the data center that offers the best response time, effectively managing direct

bottlenecks [202]. Virtual machines are utilized to handle customer requests swiftly, enhancing

point-to-point communication [203]. This policy assumes uniform processing requirements

and execution times for all requests [204]. The secondary policy involves dynamic

reconfiguration based on load, where the service broker manages scalability for cloud

applications [189]. This involves the service broker dynamically reconfiguring and altering the

virtual machines within data centers to match demand [201]. A cloud analyst facilitates the

redistribution of loads across different data centers when the performance of the initial data

center falls below a certain threshold [178]. This method calculates retention times to achieve

the longest cycle time recorded, addressing both cost and performance expectations of users

[204] and adjusting the number of virtual machines as needed [205].

7.4 Experimentation and analysis

7.4.1 Simulation the proposed system

To test our proposed policy, deployed Cloud-Analyst with the optimize response time policy as

part of an intelligent cloud broker validation process. This involved handling 1,000,000 user

requests, allocated across ten user bases, and leveraging 31 individual AWS data centers spread

across six geographic regions. Each data center operated with a single virtual machine, with

configurations based on 11 real-life EC2 attributes as previously described. This setup allowed

us to benchmark the performance against existing routing policies, notably the Reconfigure

Dynamically with Load broker policy. Before initiating the simulations, standardized the

network delay metrics from AWS latency monitoring(https://www.cloudping.co/grid), shown in

https://www.cloudping.co/grid

91

Appendix 7 (Table 3), and set advanced data center configurations for all tests, as detailed below.

Table 7.4, displays data related to a Single User Base, which becomes pertinent in Table 7.5 as

our research encompasses 11 analogous instances derived from this single-user base, varying

according to the magnitude of user requests, employed Peak Hours (GMT) to depict the timing

of user activity on AWS-Cloud. The number 60 is used to denote the number of requests per

user within a one-hour simulation, measured hourly (60.0). It's posited that the upper limit of

users from each user base cluster during peak times is 100,000 average peak users, while the

lower limit during off-peak periods is 10,000 average users. This is established using the

following mathematical formula:

 Avg 𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝑠𝑒𝑟 𝐶𝑜𝑢𝑛𝑡

10 𝑈𝐵
 (7.11)

 𝐴𝑣𝑔 𝑂𝑓𝑓 − 𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠 =
𝐴𝑣𝑔 𝑃𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠

10
 (7.12)

The data size per request (in bytes) and the instruction length per request (in bytes) were

determined by applying mathematical formulas No. 12 and No. 13, respectively. The "Grouping

factor in data centers" refers to the capacity of a single application server instance to handle

multiple requests concurrently. Similarly, the "User grouping factor in user bases" denotes the

maximum number of users accessing services from a single user base simultaneously.

Additionally, a round-robin load-balancing strategy is employed to manage the distribution of

workloads across virtual machines within a single data center.

 𝐷𝑎𝑡𝑎 𝑠𝑖𝑧𝑒 𝑝𝑒𝑟 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =
𝑇𝑜𝑡𝑎𝑙 𝑈𝐵 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

𝐴𝑣𝑔 𝑝𝑒𝑎𝑘 𝑢𝑠𝑒𝑟𝑠
 (7.13)

 𝐸𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 𝑙𝑒𝑛𝑔𝑡ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑈𝐵 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

10 𝑈𝐵𝑠
 (7.14)

Appendix 7 (Table 4), displays the foundational configuration for each of the 31 data centres

featured in our research, which were deployed in 11 different scenarios adhering to the

specifications of AWS General Purpose EC2 instances, as indicated in Appendix 7 (Table 5).

The pricing is based on data transferred "in" to and "out" of Amazon EC2.

https://aws.amazon.com/ec2/pricing/on-demand/. In our study, contrasted the proposed

Intelligent Validation Cloud Broker System (IVCBS) with traditional random allocation

methods within the context of cloud resource management. Both approaches were evaluated

under two distinct policies: optimizing response times and dynamically reconfiguring loads

based on demand. Traditional methods of allocating virtual machine (VM) resources typically

distribute these resources to customer requests indiscriminately, using a random approach that

does not account for the specific needs of the requests. Our study provides a comprehensive

description of these traditional allocation strategies in Appendix 7 (Table 6). It is critical to

note that the specifications of the EC2 instances utilized in these traditional methods are

identical to those employed in the Intelligent Validation Cloud Broker System (IVCBS)

method, as detailed in previous tables and sections of our study. This strategic allocation is

further illustrated by the general distribution of EC2 across 31 data centers, as depicted in our

study, apply this distribution in 11 different scenarios, tailored according to the number of user

request sizes identified in this study.

Table 7.3 Results of the Proposed Algorithm.

https://aws.amazon.com/ec2/pricing/on-demand/

92

1
1

1
0

9

8

7

6

5

4

3

2

1

No.

3
0
0
0
 M

B

2
2
5
0
 M

B

1
5
0
0
 M

B

7
5
0
 M

B

1
4
0
 M

B

1
0
5
 M

B

7
0
0
 M

B

3
5
0
 M

B

1
0
 M

B

5
 M

B

3
 M

B

User Base

Request Size

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

192 128 96 64 48 32 16 8 4 2 1 EC2 (VCPU)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

768 512 384 256 192 128 64 32 16 8 4 EC2 (RAM)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

88 64 48 32 24 16 12 8 4 2 1 EC2 (Storage)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

40 30 24 18 16 14 12 10 8 4 2 EC2(BW)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

M
6
a.

m
et

al

M
6
i.

m
et

al

M
5
d
.m

et
al

M
6
g
.m

et
al

M
6
g
d
.1

2
x
la

rg
e

M
6
g
d
.8

x
la

rg

M
5
.4

x
la

rg
e

M
5
.2

x
la

rg
e

M
6
g
.x

la
rg

e

M
6
g
.l

ar
g
e

 M
6
g
.m

ed
iu

m

Assignment

Table 7.4 Single-User Base Clusters.

Single-

User

Base

Clusters

Geographic

Regions

Requests

per user

per Hour

Peak

Hours

(GMT)

Avg

peak

users

Avg

Off-

peak

users Start End

UB1 R0 60 12 15 100000 10000

UB2 R1 60 14 17 100000 10000

 UB3 R2 60 19 22 100000 10000

93

UB4 R3 60 0 3 100000 10000

UB5 R4 60 20 23 100000 10000

UB6 R5 60 8 11 100000 10000

UB7 R0 60 12 15 100000 10000

UB8 R1 60 14 17 100000 10000

UB9 R2 60 19 22 100000 10000

UB10 R3 60 0 3 100000 10000

Table 7.5 (11-User Base Instances).

11-User Base Instances

D
at

a
si

ze
 p

er

re
q
u
es

t
(B

y
te

)

U
se

r

g
ro

u
p
in

g

fa
ct

o
r

in

U
se

r
b
as

es

R
eq

u
es

t

G
ro

u
p
in

g

fa
ct

o
r

in
 d

at
a

ce
n
te

rs

E
x
ec

u
ta

b
le

In
st

ru
ct

io
n

le
n
g
th

 p
er

re
q
u
es

t
(b

y
te

)

E
C

2

in
st

an
ce

s

C
o
u
n
t

o
f

U
se

r

B
as

e

C
lu

st
er

s

M6g.medium 10- UBs 30 100000 100000 300000

M6g.large 10- Ubs 50 100000 100000 500000

M6g.xlarge 10- Ubs 100 100000 100000 1000000

M5.2xlarge 10- Ubs 350 100000 100000 3500000

M5.4xlarge 10- Ubs 700 100000 100000 7000000

M6gd.8xlarg 10- Ubs 1050 100000 100000 10500000

M6gd.12xlarge 10- Ubs 1400 100000 100000 14000000

M6g.metal 10- Ubs 7500 100000 100000 75000000

M5d.metal 10- Ubs 15000 100000 100000 150000000

M6i.metal 10- Ubs 22500 100000 100000 225000000

M6a.metal 10- Ubs 30000 100000 100000 300000000

7.4.2 Results and Comparative Analysis

7.4.2.1 Implementation of IVCBS with two Service Broker Policies

In the proposed methodology, IVCBS utilizes either the Optimized Response Time Service

Broker Policy (ORSP) or the Dynamic Reconfiguration with Load Balancing approach, both

supported by the Cloud Analyst simulator. IVCBS employs these policies to route user requests

from User Bases (UBs) to AWS 31 data centers worldwide. This router ensures that each data

center adheres to predefined parameters tailored to the request volumes of each UB user group,

by IVCBS, as detailed in Appendix 7, Table 5. Specifically, resources such as EC2-M6a.metal

are optimized for handling high-volume user requests effectively. For instance, the allocation of

VM-Cost is optimized to effectively address user requirements, with resources like EC2-

M6a.metal specifically designated for handling high-volume user requests. Our analysis reveals

that the Optimized Response Time Policy yields better outcomes than the Dynamic

Reconfiguration with Load Policy in several key performance metrics: Average Overall

Response Time, Average Data Center Processing Time, and Total Virtual Machine Cost. This

suggests that the optimized policy more efficiently handles these aspects of cloud service

management. However, the scenario shifts when examining Data Center Request Servicing

Times, where the optimized policy either matches or slightly exceeds the times achieved by the

94

dynamic reconfiguration policy. This indicates a nuanced trade-off between the two approaches

in handling specific service demands. To provide a clear comparison, Table 7.6 showcases the

results of implementing the IVCBS method with the Optimized Response Time Service Broker

Policy, while Table 7.7 details the outcomes when applying the Dynamic Reconfiguration with

Load Service Broker Policy. The experiments were carried out across 31 Amazon data centers

spanning 6 geographic regions. To capture data accurately during both peak and off-peak periods,

11 scenarios were implemented across 11 EC2 levels based on hourly intervals. Appendix 7

(Figure 3). The study explores the implementation of IVCBS with two distinct Service Broker

Policies: The Optimized Response Time Service Broker Policy (ORSP) and the Dynamic

Reconfiguration with Load Balancing approach. It assesses regional average response times for

ten user bases, emphasizing the effectiveness of IVCBS's Optimized Response Time Policy. This

policy ensures even distribution of user requests across AWS data centers globally, irrespective

of geographic proximity, consistently achieving reduced response times compared to the

Dynamic Reconfiguration Policy. Appendix 7 (Figure 4) details the outcomes of the Dynamic

Reconfiguration Policy, which directs user requests to data centers located in the same

geographic region as the users, aiming to minimize latency under the IVCBS framework. Despite

the intuitive logic behind this approach, response times were generally higher than those achieved

by the Optimized Response Time Policy, highlighting a key area where the latter excels. The

Average Data Center Request Servicing Time significantly influences energy consumption

within cloud computing environments. Extended servicing times often reflect inefficient

utilization of computing resources like processors and memory, which in turn can increase the

energy load of operations. This inefficiency not only affects the Power Usage Effectiveness

(PUE) of data centers but also demands more extensive cooling solutions, a major contributor to

energy consumption in these facilities. Additionally, the need to scale up resources to reduce

servicing times can lead to over-provisioning, further elevating overall energy usage. Enhancing

the efficiency of request servicing times not only promotes more responsive cloud services but

also helps in cutting down energy costs, thus supporting the broader goal of making cloud

computing more energy-efficient and eco-friendly [206] [207]. Our observations indicate that

the Intelligent Validation Cloud Broker System (IVCBS), when implemented with an

optimized response time policy, significantly outperforms the dynamic reconfiguration policy.

This superiority is clearly demonstrated through the comparative analysis presented in

Appendix 7 (Figures 5 and 6). Which illustrate the superior performance of the optimized

response time policy in managing Average Data Center Request Servicing Time, which leads to

enhanced energy efficiency. Previously, the results demonstrated that systems using IVCBS with

a dynamically reconfigured load-balancing broker policy, as shown in Appendix 7 (Figure 7),

differ in performance from those using the Intelligent Validation Cloud Broker System (IVCBS)

optimized for response times. As shown in Appendix 7 (Figure 8), This variance primarily stems

from the dynamics of reconfiguration itself. The dynamic reconfiguration strategy routes user

requests to data centers within the same geographic area as the users, often leading to increased

processing delays. This occurs as requests queue up, awaiting available virtual machines for

reconfiguration. Additionally, in some regions, having only one data center acts as a bottleneck,

exacerbating delays during peak demand periods. In contrast, the optimized response time policy

excels by delivering superior round-trip times and more efficient processing. Moreover, our

analysis is grounded in Amazon's real-world distribution of data center locations globally,

95

utilizing eight virtual machines (VMs) in North America, one in South America, eight in Europe,

ten in the Asia Pacific and Australia, and four in Africa and the Middle East. This strategic

distribution facilitates the IVCBS's ability to redirect user requests to data centers with

appropriate VMs, optimized both for the characteristics of the user requests and for reduced

processing times, energy consumption, and costs. For example, small user requests, defined in

our study as 3 MB, are routed to VMs like the M6g.medium, while larger requests of 3 GB are

directed to more robust machines like the M6a.metal.

Table 7.6 Implementing IVCBS with optimize response time policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total

VM Cost

($)

Total

Data

Transfer

Cost ($)

M6g.medium 2475,8 2373,38 83,29 $298,59

M6g.Large 3853,10 3740,25 167,24 497,65

M6g.Xlarge 14325,08 10798,69 334,48 1255,96

M5.2XLarge 140667,03 137632,98 853,50 3483,46

M5.4XLarge 1010570,86 1031103,10 1707,06 6963,47

M6gd.8XLarge 2151917,72 1947568,70 3140,37 9966,88

M6gd.12XLarge 3684599,83 3335444,58 4709,26 13114,84

M6g.metal 38334990,80 38234416,58 5351,62 25236,98

M5d.metal 79337433,27 79315311,43 12090,55 14482,63

M6i.metal 93529270,35 93372293,67 13730,36 6863,40

M6a.metal 94549552,26 94331238,90 17150,67 3320,20

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 6353,58 6324,05 166,32 $298,59

M6g.Large 55390,42 55364 667,5 497,65

M6g.Xlarge 275390,88 270714,32 2666,54 1255,83

M5.2XLarge 2556092 2556270,05 8502,06 3483,45

M5.4XLarge 3252254,20 3255057,05 20401,48 6234,76

M6gd.8XLarge 3915809,21 3921022,05 43758,17 8915,92

M6gd.12XLarge 3573677,62 3584236,77 74944,34 11618,91

M6g.metal 37016372,94 37016688,54 95138,79 25828,65

M5d.metal 81818244,66 81883142,21 273382,89 14705,94

M6i.metal 93919067,50 93689019,40 379237,75 6796,75

M6a.metal 96334126,87 96128434,12 607000,72 3341,66

7.4.2.2 Traditional methods

96

This approach starkly contrasts with the intelligent methodology implemented by IVCBS. In both

the Optimize Response Time - Service Broker Policy and the Dynamic Reconfiguration with

Load Balancing, user requests of varying sizes are randomly distributed across the 31 data centers

without consideration for the specific type and specifications of the EC2 VMs. There is no

structured allocation across all DC-VMs. DC-VMs process requests with diverse parameters that

lack uniformity and fail to align with the request volumes of each user group (UBs), as detailed

in Appendix 7, Table 6. For instance, the high VM cost is expensive for users whose task

requirements are minor, thus failing to meet their basic needs adequately. Additionally, resources

like EC2-M6a.metal are allocated to execute small user requests that EC2-M6g.medium could

more efficiently handle. The setup and configuration of DCs for both methodologies are

facilitated by the CloudAnalyst simulation environment, outlined in Appendix 7 (Table 4). This

environment allows for configuring AWS-31 DC metrics, which differ between the proposed

and traditional methods. These metrics include VM cost, vCPUs count, storage, RAM, and

bandwidth. There are 11 scenarios in both methods, similar in setup but differing in the numerical

configuration of metrics for each EC2 instance. Employing the optimized response time policy

resulted in a higher average overall response time, average data center processing time, and total

virtual machine cost than our proposed IVCBS method. However, it was observed that the Total

Data Transfer Cost was either less than or equal to that of the proposed IVCBS method. These

findings are detailed in Table 7.8. When evaluating the results from applying the dynamic

reconfiguration policy with traditional methods, as detailed in Table 7.9, it is noted that the

overall response time is broader than that achieved by the proposed IVCBS method in specific

EC2 allocations (M5.4xlarge, m6gd.8xlarge, m6gd.12xlarge, m6g. metal, and m5d. metal).

However, in all scenarios concerning the Total Data Transfer Cost, the traditional methods

demonstrate lower costs than the IVCBS approach. Additionally, Appendix 7 (Figure 9) displays

the regional average response times for the 10 user bases, showcasing the performance of the

traditional Optimized Response Time Policy. Meanwhile, Appendix 7 (Figure 10) visualizes the

regional average response times under the dynamic reconfiguration with load policy. Both figures

highlight that these traditional methods were less effective than the results of the proposed

IVCBS method. Furthermore, Appendix 7 (Figure 12) illustrates the outcomes when the

traditional method incorporates the Dynamic Reconfiguration Policy. By comparing these

findings with those from the proposed IVCBS method, it is evident that the IVCBS generally

provides better Data Center Request Servicing Times. This improvement significantly impacts

energy efficiency in the computing environment, showcasing the advantages of the proposed

method over conventional strategies. This enhances the IVCBS's effectiveness, demonstrating its

potential to accommodate future growth in cloud systems while ensuring efficient and cost-

effective user request processing within the cloud computing environment. Simultaneously,

Appendix 7 (Figure 11) displays the average Data Center Request Servicing Time results across

the 31 data centers in our study, applied in 11 different scenarios using the traditional Optimized

Response Time Policy.

 Table 7. 8 Implementing traditional with optimize response time policy.

97

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total

VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 2648,32 2544,20 5039,17 298,59

M6g.Large 3979,79 3866,43 5039,17 497,65

M6g.Xlarge 16565,20 16507,91 5039,17 995,31

M5.2XLarge 200877,44 206148,60 5039,17 3483,25

M5.4XLarge 1012024,16 1045751,95 5039,17 6965,51

M6gd.8XLarge 2784038,22 2523254,74 5039,17 9907,33

M6gd.12XLarge 4246474,38 3977103,11 5039,17 13054,04

M6g.metal 44420610,74 43609256,19 5039,17 17375,69

M5d.metal 80927473,71 80639117,03 5039,17 7093,73

M6i.metal 95412416,34 95769447,44 5039,17 3711,87

M6a.metal 97606171,17 98736234,17 5039,17 1686,10

Table 7.9 Implementing traditional with Dynamic reconfiguration policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 2950,74 2918.84 137867,12 298,59

M6g.Large 4501,42 4481,36 137962,28 497,65

M6g.Xlarge 49465,79 49405,39 137677,42 995,31

M5.2XLarge 1275803,03 1276385,26 137762,59 3483,52

M5.4XLarge 3599233,17 3600108,32 137634,08 6234,08

M6gd.8XLarge 5282197,57 5322005,63 137742,44 8914,56

M6gd.12XLarge 7432190,15 7473084,39 137624,85 11566,42

M6g.metal 48005803,13 47769425,91 136059,33 14250,25

M5d.metal 84937790,73 85306107,68 134039,80 5810,42

M6i.metal 93010845,72 93028448,77 131046,97 3042,69

M6a.metal 91124687,42 90537061,27 124762,54 1462,37

7.5 Summary

This research delves into crucial cloud computing aspects such as optimizing resource use during

peak and off-peak periods, minimizing data processing and transfer times and costs and reducing

the average response time from different geographical regions. A novel simulation was

developed to improve cloud computing's response times by adjusting virtual machine (VM)

attributes to match user request sizes and evenly distributing workloads as per Service Level

Agreement (SLA) standards. This approach considers the current and future workloads and the

available resources on each AWS-EC2 instance, aiming to distribute user request across VM

98

uniformly to ensure balanced system utilization and avoid over- or underutilization. A significant

part of the study introduces the Intelligent Validation Cloud Broker System (IVCBS). Which

enhances the proximity routing policy for data center selection by considering both VM attributes

and the size of user requests. This modification allows for more efficient handling of variable

request sizes, optimizing network delay, VM, and data transfer costs, and selecting data centers

with minimal delay while considering real-time bandwidth, EC2 attribute diversity, and expected

processing times. This refined approach improves upon traditional performance-optimized

routing policies by including job size in its considerations, thereby achieving better response and

processing times. The Intelligent Validation Cloud Broker System (IVCBS), evaluated using the

Cloud Analyst simulator, demonstrated notable improvements compared to existing policies. The

adoption of a throttled load balancing policy could further enhance the system's effectiveness,

highlighting its potential to support future growth in cloud systems while ensuring the efficient

and cost-effective processing of user requests within the cloud computing environment. This

approach can be expanded upon in the next contribution of this thesis. Specifically, incorporating

job size and classifying the workload into performance-optimized routing policies lead to

significant improvements in both response and processing times in cloud systems. This addition

provides a critical layer of optimization that directly impacts key performance metrics, including

response and processing times, which are integral to cloud system efficiency. Furthermore, the

introduction of the throttled load balancing policy serves as a natural extension of the proposed

approach, facilitating more efficient workload management and distribution, particularly during

peak demand periods.

99

Chapter 8 A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual

Machine Allocation

Chapter 8 introduces a broker-driven approach integrating fuzzy logic to optimize virtual

machine (VM) allocation in cloud environments. This method dynamically adjusts VM

distribution based on incoming request packet sizes and CPU utilization. It utilizes Google's

General-purpose machine family for Compute Engine - T2D standard machine types,

configured with specifications including VCPU, RAM (GB), Storage (GB), BW (GBPS), and

Price per hour ($), as applied in this study. Employing fuzzy logic, this system intelligently

assigns VMs to user requests within the user base, ensuring alignment with appropriate sizes

and cost considerations for the allocated VMs. In contrast, the traditional method relies on

random VM allocation, disregarding user request sizes and assigning available VMs arbitrarily

to execute tasks.

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery

In the realm of cloud computing, the efficient allocation of virtual machines (VMs) is

paramount for optimizing resource utilization and ensuring high performance. The rapid

proliferation of cloud services has necessitated sophisticated strategies to manage the dynamic

and heterogeneous nature of cloud workloads. Traditional methods, which often prioritize

metrics such as CPU, memory, and storage capacities, frequently overlook the varying sizes of

request packets. This oversight can lead to suboptimal resource usage and potential

performance bottlenecks, thereby hindering the overall efficiency and responsiveness of cloud

services [208][209]. The complexity of cloud environments requires innovative approaches to

VM allocation that can adapt to fluctuating workloads and diverse user demands. Recent

advancements in cloud resource management have emphasized the need for intelligent and

adaptive systems capable of making real-time decisions based on workload characteristics

[210][211]. In this field, one promising direction is dynamically optimizing resource

distribution by analyzing the size and nature of incoming request packets [212][213], approach

leverages a centralized broker to monitor, analyze, and direct network traffic to the appropriate

VMs based on the size of the request packets. This method not only enhances VM efficiency

but also reduces latency and improves overall system performance. By incorporating a fuzzy

logic system that uses imprecise inputs to make informed decisions, the broker can dynamically

adjust VM allocation better to match the real-time demands of the cloud environment

[214][76]. The Cloud Analyst tool provides a robust platform for implementing and simulating

broker driven VM allocation strategies. It allows for detailed modeling and analysis of cloud

computing environments, facilitating the evaluation of various allocation methods under

different scenarios. The Cloud Analyst tool integrates fuzzy logic [215], [216], and [217]. As

discussed in the previous contribution, propose a novel approach to virtual machine (VM)

allocation that optimizes resource utilization, reduces latency, and enhances overall system

performance. This research aims to advance the field of cloud resource management by

addressing the limitations inherent in traditional VM allocation strategies. By focusing on the

dynamic optimization of VM allocation based on request packet size and workload

classification, the proposed broker-driven approach seeks to provide high-quality cloud

services while ensuring efficient resource use.

100

8.2 Current Issues and Challenges

Research on advanced VM allocation strategies aims to optimize resource utilization and

performance in cloud computing, addressing the limitations of traditional strategies that often

overlook the impact of varying request packet sizes. Sangaiah, Arun Kumar, et al. (2023)

propose an intelligent dynamic resource allocation method that integrates TSK neural-fuzzy

systems with ACO techniques to reduce energy consumption in cloud networks. This method,

which uses real-time data, significantly enhances efficiency and performance in virtual

machine migration [218]. However, existing methods often fail to consider the varying sizes

of request packets, which can significantly impact network performance. In contrast, broker-

driven approaches enhance network performance by dynamically allocating virtual machines

(VMs) based on request packet sizes. This allows for real-time optimization of resource

distribution and reduces latency, effectively addressing the limitations of traditional

methods.[219] proposes a broker-based mechanism to connect cloud service providers with

customers, analyzing task tendencies and assigning resources. This model uses multi-criteria

decision-making to maximize profits, ensure customer satisfaction, and reduce energy

consumption in cloud data centers. [220] highlights the increasing demand for cloud services,

which necessitates a flexible and dynamic design for data center deployment. Traditional traffic

engineering approaches are inadequate for efficiently utilizing IT and network resources. The

study suggests two fuzzy logic controllers for efficient virtual machine allocation. These

controllers are based on the Mamdani and Sugeno inference processes. Preliminary simulation

tests validate the effectiveness of the proposed approach. The Cloud Analyst tool simulates

cloud computing environments, evaluates VM allocation strategies, and simulates broker-

driven approaches. It is used in a study [221], which discusses the widespread adoption of cloud

computing for web applications. The study uses virtualization concepts and resource allocation

policies to manage resources in a cloud computing environment. They use a GUI tool called

Cloud Analyst to simulate the cloud environment, focusing on energy consumption

minimization and class diagram design. Furthermore, integrating advanced algorithms with

broker-driven approaches has shown significant promise for optimizing VM allocation. [222]

proposes DeepBS, a DRL-based scheduler, to address the inherent uncertainties in cloud broker

VM scheduling due to on-demand IaaS VMs. Their study demonstrates that DeepBS improves

cost optimization by learning from experience and enhancing scheduling strategies in

unpredictable environments, showcasing its potential in dynamic cloud computing. Several

recent studies have further expanded on these concepts. For instance, [223] emphasizes the

significance of mobile terminal cloud computing migration technology in addressing evolving

computer and cloud computing demands. They highlight the necessity for efficient data access,

storage, and minimal time delays. They also introduce machine learning-based virtual machine

migration optimization and dynamic resource allocation as key research directions in cloud

computing. Similarly, [224] introduces a resource allocation model called IMARM, which uses

an intelligent multi-agent system and reinforcement learning. Combining multi-agent

characteristics and Q-learning, IMARM dynamically allocates resources based on changing

consumer demands and optimizes VM placement. Experimental results indicate that IMARM

outperforms other algorithms in energy consumption, fault tolerance, load balancing, and

execution time.[225] reviews resource allocation and service provisioning in multi-agent cloud

101

robotics. They provide a taxonomy of resource allocation strategies, covering resource pooling,

computation offloading, and task scheduling. The paper discusses challenges such as

heterogeneous energy consumption rates and data transmission delays and suggests future

research directions to advance the field. The authors emphasize addressing research gaps and

mitigating data transmission delays for efficient service provisioning. [226] notes that cloud

computing has revolutionized resource management, but challenges remain due to scalability,

heterogeneity, and dynamic environments. Artificial intelligence (AI) technology has emerged

as a solution to improve efficiency. This paper reviews AI techniques for resource

management, including machine learning, reinforcement learning, predictive analytics, natural

language processing, and genetic algorithms. It discusses AI-based strategies for efficient

resource management, including automated resource provisioning, intelligent workload

planning, predictive maintenance, and energy-efficient management. The paper also discusses

evaluation metrics, performance analysis techniques, ethical considerations, and future

directions for AI integration. VM allocation research has also focused on energy efficiency.

[227] explores energy-efficient resource allocation using a hybrid heuristic algorithm, showing

substantial improvements in energy consumption. Finally,[228] reviews the state-of-the-art and

research challenges in cloud computing, providing a comprehensive overview of current trends

and future directions in VM allocation and resource management.

8.3 Broker-Driven Methodology in Cloud Computing

The proposed methodology for optimizing virtual machine (VM) allocation in cloud computing

environments leverages a broker-driven approach, enhanced with a fuzzy logic system, to

dynamically optimize resource distribution based on the size of incoming request packets. This

method is designed to improve VM efficiency, reduce latency, and enhance overall system

performance. The following sections detail the key components of the methodology: broker

design, fuzzy logic system, integration with the Cloud Analyst tool, and evaluation metrics.

Table 8.1, shows the Workload Sizes alongside the specifications for the Google Cloud

Platform's t2d-standard machine type, using data from the Google Cloud Compute Engine

Pricing. The system leverages real-time data for smart VM allocation, demonstrating its

adaptability by adjusting resource distribution in response to changes in network conditions

and workload demands.

Table 8.1 workload size machine series specifications.

Workload Size Machine type

Series

VCPU RAM

(GB)

Storage

(GB)

BW

(GBPS)

Price per

hour ($)

Small (<1 GB) t2d-Standard-1 1 4 2 2 0.054427

Medium (1-10 GB) t2d-Standard-2 2 8 10 4 0.108854

Large (10-100 GB) t2d-Standard-4 4 16 16 8 0.217708

Very Large (>100

GB)
t2d-Standard-8 8 32 32 10 0.435416

Massive (Big Data

Processing)

t2d-Standard-

16
16 64 100 14 0.870832

8.3.1 Design and Architecture of the Broker System

102

Design and Architecture of the Broker System, Integrating Traffic Monitoring, Data Analysis,

and Traffic Routing. The proposed methodology utilizes the Optimized Response Time Service

Broker Policy (ORSP) with a load balancing approach, facilitated by the Cloud Analyst

simulator. The broker acts as a mediator that monitors and analyzes incoming request packets.

Its primary functions include:

● Traffic Monitoring: continuously monitoring network traffic to collect data on packet

sizes and associated metrics.

● Data Analysis: analyzing the collected data in real-time to identify patterns and trends in

request packet sizes.

● Traffic Routing: directing traffic to the appropriate VMs based on the analysis, ensuring

optimal resource allocation [229][230].

The broker features advanced data analytics to manage the varied and dynamic cloud

workloads effectively.

8.3.2 Implementation of Fuzzy Logic

The Fuzzy Logic system is integrated into the broker to handle the uncertainty and variability

inherent in cloud environments [76][231]. The model's input parameters were crafted using the

Fuzzy Logic Designer, adhering to the methodological framework introduced in Chapter 4.

However, for this chapter, adjustments were made to the division of the universe of discourse

to align with the specific primitives and structural prerequisites of the developed model. This

chapter focuses on utilizing two primary inputs and single outputs, categorized as VM

categories. Five defined triangular membership functions characterize each input.

First input (Workload- Request Packet Size)

Represented by the size of incoming request packets.

Small: [0 0.9 5]; Medium: [1 10 50]; Large: [10 100 150]; V.Large: [100 150 200];

Massive: [150 200 250]

i. Second input (CPU Utilization)

Current utilization levels of the available VMs.

Poor: [10 30 40]; Fair: [30 50 60]; High: [50 70 80]; V.High: [70 85 90]; Excellent: [85

100 100]

ii. Output (T2D standard machine types-Levels)

Simple: [0 0.1 0.2]; Moderate: [0.2 0.3 0.4]; Good: [0.4 0.5 0.6]; V.Good: [0.6 0.7 0.8]

High-Performance: [0.8 1 1]

These functions allow the system to evaluate the inputs and produce a set of fuzzy rules,

illustrated in Appendix 8 (Figure 1), that determine the optimal VM allocation strategy. The

outputs of the Fuzzy Logic system include VM classes, which categorize VMs based on their

suitability for handling the current workload and CPU utilization levels [232]. Table 8.2.

Illustrated the fuzzy logic output – Decision making.

Table 8.2 Rules – Decision making.

CPU

Utilization

Poor Fair High V.High Excellent

103

Request

Packet

Size

Output (T2D standard machine types-Levels)

Small Simple Simple Simple Moderate Moderate

Moderate Moderate Simple Moderate Moderate Good

Large Moderate Moderate Good Good V. Good

V.Large Good Good V. Good V. Good H.Perf.

Massive V.Good V.Good H.Perf. H.Perf. H.Perf.

8.3.3 Integration with Cloud Analyst Tool

The Cloud Analyst tool is employed to simulate and evaluate the proposed broker-driven

approach. This tool provides a robust platform for modelling cloud computing environments

and testing various VM allocation strategies [233]. The integration process involves:

8.3.3.1 Cloud Environment Modeling

Configuring a simulated cloud environment in Cloud Analyst involves setting up data centers

with single VMs and associated user bases. This setup is tested across five scenarios, each

employing the proposed broker technique to assess performance and efficiency. The process is

illustrated in Appendix 8 (Tables 1 and 2).

8.3.3.2 Throttling Algorithm

In cloud computing, throttling plays a pivotal role in managing system loads and sustaining

service quality while also keeping operational costs in check. This process is vital for scaling

computing resources efficiently. Through the application of diverse algorithms, throttling

ensures that cloud services remain scalable, dependable, and fair. Specifically, it regulates the

allocation of critical computing resources such as CPU, bandwidth, and memory. This control

helps prevent any single user or application from monopolizing resources, thereby avoiding

system overloads and ensuring equitable performance across all users [234].

8.3.3.3 Broker Policy for Response Time

In cloud environments typically involves strategically managing resource allocation to

minimize latency. This policy ensures that the broker prioritizes tasks or requests that are

critical for performance, dynamically adjusting resource distribution based on real-time

demands. Doing so effectively reduces waiting times for resource-intensive operations,

ensuring that all processes are executed as swiftly as possible, thus enhancing overall system

efficiency and user satisfaction [200].

● Implementing Broker Logic: embedding the broker’s traffic monitoring, analysis, and

direction functionalities into the Cloud Analyst simulation.

● Incorporating Fuzzy Logic: integrating the Fuzzy Logic system with the broker within

Cloud Analyst to dynamically adjust VM allocation based on real-time data.

8.4 Simulation and Evaluation of Results and Discussion

104

The proposed methodology was rigorously evaluated through extensive simulations conducted

using the Cloud Analyst tool [235]. In the proposed methodology, five distinct scenarios were

executed, each involving the implementation of ten user bases as outlined in this study. In the

initial scenario, the user's request was within this amount. (500,000,000) Bytes were processed

using t2d-Standard-1. Moving to the second scenario, requests within this amount of a

workload of 1,000,000,000 bytes were allocated to t2d-Standard-2. The third scenario handled

requests within the workload of 10,000,000,000 bytes assigned to t2d-Standard-4.

Subsequently, requests amounting to 150,000,000,000 bytes in the fourth scenario were

managed using t2d-Standard-8. Finally, in the fifth scenario, where requests amounted to

200,000,000,000 bytes, t2d-Standard-16 was allocated for execution. Similar parameters were

utilized when implementing the traditional method scenarios, as in the proposed method

concerning user base logins to the computing environment, defined by Peak hours Start-End

and Avg. Peak Users On-Off. However, the traditional approach diverges from the proposed

method in how it distributes and processes user requests and workloads, as detailed in Table

8.3.

Table 8.3 Basics of applying the traditional method.

Scenario

number

User

Bases

Request Packet

Size (Byte)

Machine

type

Series

Price per

hour($)

Load

balance

Algorithm

Broker

policy

1
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

1

0.054427
Throttling

algorithm.

Optimize

response

time.

2
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

1

0.108854
Throttling

algorithm.

Optimize

response

time.

3
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

4

0.217708
Throttling

algorithm.

Optimize

response

time.

4
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

8

0.435416
Throttling

algorithm.

Optimize

response

time.

5
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

16

0.870832
Throttling

algorithm.

Optimize

response

time.

A variety of workload scenarios were implemented, each featuring distinct request packet sizes

and VM resource demands. These simulations were designed to assess the robustness,

adaptability, and practical viability of the broker-driven approach, particularly in comparison

to traditional VM allocation strategies. The experimental setup modeled a realistic cloud

environment where the dynamic nature of cloud workloads was replicated to test how

effectively the system responds under varying operating conditions. The broker-driven system

incorporates a fuzzy logic mechanism that utilizes workload packet size and CPU utilization

as key input parameters to dynamically allocate virtual machines (VMs) based on their

classification across five levels of workload intensity. Appendix 8 (Figure 2) visually

105

demonstrates the simulation execution process, while Appendix 8 (Figure 3) illustrates the

decision outcomes produced by the fuzzy logic system. Quantitative performance metrics were

collected, including overall response time, data center processing time, request serving time,

total VM costs, and total data transfer costs. The comparison between the traditional VM

allocation approach (summarized in Table 8.4) and the proposed method (detailed in Table 8.5)

clearly demonstrates significant improvements across all critical metrics. Specifically, the

proposed broker-driven system reduced response time by up to 68%, decreased processing and

serving times by an average of 20% and achieved substantial reductions in cost—most notably

in data transfer and VM provisioning. The novelty of this research lies in the introduction of a

broker-driven VM allocation model that uniquely integrates fuzzy logic with packet size

classification—an aspect widely neglected in conventional allocation approaches. Traditional

methods largely emphasize Resource scalability capabilities, yet they often fail to account for

the heterogeneity and variability of incoming packet sizes, which are essential determinants of

workload behavior. By incorporating packet size as a classification factor alongside real-time

CPU utilization, the proposed approach ensures a more granular and intelligent allocation of

cloud resources. Moreover, the integration of fuzzy logic contributes significant adaptability to

the decision-making process. The fuzzy inference engine enables the system to handle

uncertainty and imprecision, aligning resource allocation with dynamic demand patterns more

effectively than static rule-based methods. This enables the system not only to allocate

resources optimally but also to proactively prevent bottlenecks and reduce energy consumption

through more efficient VM utilization. The methodological innovation also includes a well-

defined classification scheme that translates request sizes and CPU usage into actionable VM

categories. This classification is mapped through triangular membership functions that support

interpretability and computational efficiency—key features for scalable cloud infrastructure.

The proposed approach has substantial practical implications. By dynamically aligning VM

allocations with workload characteristics, cloud providers can achieve better energy efficiency,

improve system responsiveness, and reduce operational costs. The ability to manage workloads

based on packet size and CPU load allows for a more equitable and efficient distribution of

cloud resources, enhancing the performance and reliability of services across heterogeneous

and high-demand environments. This study contributes to the advancement of intelligent cloud

resource management by offering a scalable, cost-effective, and energy-aware alternative to

traditional VM allocation. The results validate the theoretical principles underpinning this

model and position it as a promising solution for next-generation cloud systems where

adaptability and performance optimization are paramount.

Table 8.4 Summary of the results of the traditional method.

Scenario Overall

response

time

Avg(ms)

Datacenter

processing

time

Avg(ms)

Datacenter

request

serving

times

Avg(ms)

Total data

transfer cost

($)

1 571309,86 58,06 58,06 33959999,08

2 548272,30 59,31 59,31 30557098,39

3 565510,88 60,39 60,386 33791313,17

4 558790,62 58,03 58,026 33726768,49

106

5 574401,10 59,35 59,348 32435417,18

Table 8.5 Summary of the results of the proposed Method.

Scenario

Number

Overall

response

time

Avg(ms)

Datacenter

processing

time

Avg(ms)

Datacenter

request

serving times

Avg(ms)

Total data

transfer

cost

($)

1 333748,21 56,41 56,141 4186420,44

2 278151,12 49,88 49,875 6354904,17

3 183111 44,30 44,297 9916305,54

4 0 39,32 39,323 4909515,38

5 0 40,26 40,264 4531860,35

8.5 Summary

This study set out to address key inefficiencies in traditional virtual machine (VM) allocation

methods within cloud computing environments, particularly under the dynamic demands of

contemporary workloads. The main objectives were to evaluate the effectiveness of a broker-

driven approach enhanced by fuzzy logic for managing VM allocations based on the size of

incoming request packets, to validate this approach using real-world data from the Google

Cloud Platform’s Europe West3 region and t2d-Standard machine types, and to demonstrate

its technological advancement over traditional strategies. By leveraging the Cloud Analyst tool

to simulate various operational scenarios, the study provided a comprehensive comparison of

the proposed broker-driven system against traditional VM allocation methods across multiple

performance metrics. The findings confirmed that the broker-driven approach with fuzzy logic

significantly advances cloud computing technology, offering greater adaptability, efficiency,

and cost-effectiveness. The results of this study support the broader adoption and continued

development of such systems, emphasizing their practical utility and effectiveness in real-

world scenarios. Furthermore, the study validated the theoretical principles by demonstrating

the tangible benefits of incorporating fuzzy logic into a broker system for virtual machine (VM)

allocation. This approach significantly improves operational efficiency and cost management,

presenting a strong case for its integration into both current and future cloud infrastructures. In

conclusion, the study highlights the potential and practical advantages of a broker-driven, fuzzy

logic-enhanced VM allocation approach, advocating for its integration as a transformative

solution for resource management practices in cloud computing environments. Building on the

findings from this chapter and previous contributions, future solutions should include the

development of a fuzzy logic-based cloud brokerage technique to assist users in selecting the

most appropriate cloud service instances by evaluating factors such as user requirements and

service characteristics. The next contribution seeks to enhance decision-making processes for

cloud service selection by analyzing various scenarios, including those involving static and

mobile users, to assess the impact of user mobility on service quality. Additionally, the study

explores the effects of implementing a brokerage service that supports service migration and

optimizing cloud service management in dynamic environments. This represents a novel

contribution, which will be discussed in greater detail in the ninth and final chapter.

107

Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker

Due to the rapid increase in cloud service providers, users find it challenging to select a cloud

service that suits their needs and budget. Thus, having an intermediate entity between the two

in cloud broking services is more crucial than ever. Chapter 9 contributes. Proposes a cloud

broker that uses fuzzy logic to rank service instances and users, aiming to balance user needs

and service provider interests. It investigates the impact of user mobility on service quality by

analyzing scenarios involving stationary and mobile users. The study also explores the effects

of service migration on performance and cost, demonstrating the advantages of dynamic

resource management. The proposed broker ensures reliable service delivery with stable

performance and cost-efficient resource usage, outperforming traditional methods in mobility

and service migration scenarios.

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic

Remote processing has become increasingly popular in recent years with the rise of cloud

computing [236], multi-access edge computing [237], and fog computing platforms [238].

These paradigms are considered the main enablers for Ultra-Reliable Low Latency

Communications (URLLC), Enhanced Mobile Broadband (eMBB), and Massive Machine-

Type Communications (mMTC) services [239] that are promised for beyond 5G networks.

These kinds of services are more strict in Key Performance Indicators (KPIs), which can only

be achieved by overcoming the limitations of users’ equipment resources and exploiting the

unlimited cloud resources via remote processing. Notwithstanding the indisputable advantages

of these platforms, they also pose novel challenges for cloud service providers and their

customers. For example, the user who needs a certain service will have difficulty choosing

from the abundance of alternatives offered by the Cloud Service Provider s (CSPs). On the

other hand, CSP may also have difficulty promoting their services and efficiently allocating

their resources to accommodate more users. Therefore, mentioned in the previous chapters,

focusing on representing a third party is usually recommended in the form of a cloud broker,

which is an entity that acts as middleware between potential customers and CSP. The presence

of such an entity can help not only offer efficient and affordable services for users but also help

with resource management and load balancing cross-cloud or between different instances of

the service in the same cloud. Driven by the importance of having a broking service that takes

into account the customers' needs and the CSP's interests, present this study with several

contributions in mind.

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage

Cloud brokerage services have been widely discussed in academia, where numerous studies

have been conducted in search of the optimal broker. Focus-wise, some studies were customer-

centric, where the interest of the clients was considered the priority in terms of focusing on

improving the Quality of Service (QoS) provided for the users. Examples of these studies are

[240–244]. Other approaches were more focused on the broker profit [245–247]. This profit

can mainly be acquired by wisely managing the cloud’s resources or by exploiting the

difference in prices between on-demand and reserved service instances [247]. Some studies,

however, tried to find a balance between the broker’s and user’s interests [248, 249]. The

108

brokerage problem is viewed in some research studies as a resource provisioning and

management problem, which can be summed up as deciding which resources should be set

aside for the user and then distributing the load among the resources that the service provider

has available [250]. Thus, numerous studies focused on load balancing and efficient resource

allocation such as [251–254], Methodology-wise, many techniques were employed for the

brokerage service, such as game theory [255], reinforcement learning [256, 222], weighted

algorithm [257, 258], ontology [259], Analytic Hierarchy Process (AHP) in combination with

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [260] and fuzzy logic

[261–263]. The main issue in game theory approaches is that the negotiating process becomes

lengthy when the number of SLA parameters rises [264]. Similarly, the primary disadvantage

of reinforcement learning approaches is their lengthy execution time to reach a stable model,

which leads to a long learning phase in which the broker is not functioning. On the other hand,

weighted algorithms need predefined weights and criteria to select the service efficiently.

Setting a fixed value for these weights for all users may be unsatisfactory for some users.

Meanwhile, defining values that correspond to each user takes a lot of effort and time. In AHP

combined with TOPSIS approaches, the broker employs a multi-criteria decision-making

technique to choose a suitable cloud provider after evaluating each provider’s quality and

ranking each one according to the customer’s needs. Therefore, these approaches can be

confusing for nonprofessional users since they are forced to specifically define their priorities

and preferences. [250, 264]. Employing fuzzy logic systems can yield good results. However,

two problems will surface when many input parameters are taken into account. The first issue

is when the number of customers grows and online service selection is required, collecting this

data can become more challenging if not impossible. Additionally, some service providers

might be reluctant to divulge some parameters since doing so could reveal security flaws and

compromise the service provider’s integrity. The second problem is that as the number of rules

increases dramatically with the increase of input parameters, setting up the inference engine

will become more difficult and time-consuming. These problems can be identified in studies

such as the fuzzy-based brokers proposed in [261–263]. In our approach, combine two different

techniques for our cloud brokerage system. They are fuzzy logic and a modified version of

TOPSIS. In the study, various data centers from Amazon Web Services (AWS), Google Cloud

(GC), and Azure Cloud Services (AZURE) are distributed across different geographical

regions. These Cloud Service Providers (CSPs) offer a range of VM types, including general-

purpose, compute-optimized, memory-optimized, and accelerator-optimized instances. Our

approach uses fuzzy logic to classify and rank the service instance and the user, trying to satisfy

users’ and service providers’ interests and needs. Moreover, we only consider two easily

acquired parameters for each fuzzy system, reducing the rules required in the engine and

making the broker incorporation in the cloud environment more feasible. We associate the user

with an appropriate service instance based on this ranking. Further details on our proposed

brokerage system design are elaborated in the subsequent section.

9.3 System Design

The proposed system considers the user requirements as well as the service specifications

offered by different cloud providers. The proposed system architecture is illustrated in Figure

109

9.1, made an effort to build the system so that both novice and expert users could utilize the

broker with ease since the user interface is thought to be one of the most common problems

with commercial brokers [265].

FIGURE 9.1 PROPOSED SYSTEM ARCHITECTURE.

i. Clarification and Detailed Explanation of the Matching Process:

In the proposed fuzzy-based cloud brokerage system, the "Matching" phase constitutes

a critical step in the overall service allocation process. The matching procedure occurs

after two crucial prior stages, which are clearly described:

1. Service Discovery: Users specify their service requirements (type, budget, desired

quality), and the broker identifies relevant cloud service instances from available Cloud

Service Providers (CSPs).

2. Ranking (Classification):

o A fuzzy logic system is employed to independently classify Virtual Machines

(VMs) and users into distinct ranks: Gold, Silver, and Bronze.

o VM ranking considers CPU availability and cost; user ranking considers task size

and budget constraints.

Once these classifications are established, the "Matching" process explicitly associates users

with suitable VM service instances according to their respective ranks (Gold, Silver, Bronze).

This step ensures alignment between user expectations and VM capabilities.

ii. Detailed Explanation and Steps of the Matching Phase:

The matching operation specifically follows these structured steps:

Step 1: Independent Classification:

o VM Instances: Classified into Gold, Silver, or Bronze based on available CPU

resources and associated costs.

o Users: Classified into Gold, Silver, or Bronze based on their budget and task length

requirements.

Step 2: Rank-Based Matching: The system pairs users and VM instances according to

their corresponding ranks:

o Gold-ranked users are matched to Gold-ranked VM instances to ensure high-

quality service and resource availability.

o Silver-ranked users are matched to Silver-ranked VM instances, providing a

balanced trade-off between performance and affordability.

110

o Bronze-ranked users are matched to Bronze-ranked VM instances, satisfying

basic service requirements economically.

Step 3: Final Allocation: Once the matching pairs are established, the broker

executes resource allocation, ensuring optimal performance, service quality, and

cost-effectiveness for users and efficient resource utilization for providers.

iii. Reasoning for the Matching Process: The rank-based matching approach achieves

several key objectives:

o Optimal Compatibility: It ensures users receive appropriate resource types

matching their service quality and budget constraints.

o Balanced Load Distribution: Aligning user demands and VM capabilities helps

maintain balanced resource utilization.

o Enhanced User Satisfaction: The systematic matching ensures user needs are

accurately met, enhancing overall satisfaction.

o Efficiency in Decision Making: Utilizing predefined rankings simplifies the

decision-making process, enabling efficient real-time service allocation.

9.3.1 The broker’s Fuzzy-logic systems

In the proposed cloud broker, we used two fuzzy logic systems. One is designated to rank the

service, and the other is to rank the users. These two systems are detailed in the following

subsections.

9.3.1.1 VM ranking Fuzzy logic system

The Fuzzy Logic System (FLS) system used for VM ranking is illustrated in phase 2 in Figure

9.1. The input parameters for this system are the percentage of available Central Processing

Unit (CPU) on the VM, and the cost of the VM. These parameters go into the fuzzification

phase to be mapped into the linguistic values (low, medium, and high) according to the

membership functions illustrated in Figure 9.2 and Figure 9.3, used trapezoidal and triangular

fuzzy membership functions to map the crisp input variables into multivalued logic. After the

fuzzification phase, these resulting linguistic values will go through the inference engine. To

assess the fuzzy output variable indicating the VM ranking, the engine uses simple IF-THEN

rules with a condition and conclusion. For instance:

IF VM′s available CPU capacity is (Low)AND the VM cost per month is (Low) Then the VM

has a (Silver) ranking.

The VM will be classified as Gold, Silver, or Bronze according to its specification, Figure 9.4,

illustrate the VM’s ranking membership function. This rank is subjective and a typical user’s

assessment served as the basis for this classification. The set of fuzzy rules used in the inference

engine is depicted in Table 9.1. The resulting ranking is then converted to a crisp value using

the Center of Gravity (CG) technique.

111

FIGURE 9.2 THE VM’S AVAILABILITY MEMBERSHIP FUNCTION.

FIGURE 9.3 THE VM’S COST MEMBERSHIP FUNCTION.

Table 9.1 VM ranking FLS.

Available

CPU

Cost per

month

Service

classification

Low Low Silver

Low Medium Bronze

Low High Bronze

Medium Low Gold

Medium Medium Gold

Medium High Silver

High Low Gold

High Medium Gold

High High Silver

112

FIGURE 9.4 VM’S RANKING MEMBERSHIP FUNCTION.

9.3.1.2 User ranking Fuzzy logic system

These parameters include the client's budget and the task length, measured in the number of

instructions required. These fuzzy logic inputs are translated into Low, Medium, and High

linguistic values. Triangular and trapezoidal membership functions were employed to convert

the user budget and task length into fuzzy sets, depicted in Figure 9.5 and Figure 9.6,

respectively. Based on their requirements and financial constraints, the user type will be

classified as Gold, Silver, or Bronze.This rating is based on our estimation of what the service

provider would assign to that user. To compute the user ranking, which is the output parameter,

an IF-Then inference engine is used, with a set of rules summarized in Table 9.2. In the

defuzzification stage, the linguistic value representing the user’s rank and derived from the

inference engine is then mapped into a crisp value using the Center of Gravity (CG) method

for defuzzification. The membership function used for the user rank is depicted in figure 9.7.

FIGURE 9.5 TASK SIZE MEMBERSHIP FUNCTION.

Table 9.2 User ranking FLS.

Task size
Cost per

month

Service

classification

Low Low Silver

113

Low Medium Gold

Low High Gold

Medium Low Bronze

Medium Medium Silver

Medium High Gold

High Low Bronze

High Medium Bronze

High High Gold

FIGURE 9.6 USER BUDGET MEMBERSHIP FUNCTION.

FIGURE 9.7 USER RANK MEMBERSHIP FUNCTION.

9.4 Scenario Description

Used Edge CloudSim [266–269]. Simulator to implement the proposed cloud broker on Multi-

access Edge Computing (MEC) paradigm, made this choice as the services running on the

virtualized edge are more sensitive to delay and the broker selection of the appropriate service

instance will have a more significant impact in this kind of setting. In the scenario, have

different data centers belonging to Amazon Web Services (AWS), Google Cloud (GC), and

Azure Cloud Services (AZURE) and placed in different regions, namely: United State of

America (USA), western Europe and Southeast Asia and the data centers located in different

regions are connected via Wide Area Network (WAN) and the datacenters located in the same

region are connected by MAN network. Giant CSP have different types of VM, such as general

purpose, compute-optimized, memory-optimized, and accelerator-optimized instances. Thus,

114

tried to make the scenario more realistic by choosing one or more instances from these different

types. The chosen instances are detailed in Table 9.3. All the values in this table are taken from

the official websites of the three cloud providers. Four types of delay-intolerant services are

used in the simulation setup, with them specifications in terms of the generated traffic

characteristics mentioned in Table 9.4. The delay sensitivity is a value between 0 to 1 where

the value 1 indicates the application with the highest delay sensitivity. Each user requests a

specific type of service identifying his budget and his needs will be determined by his traffic

profile and more specifically his average tasks’ length measured in millions of instructions

(MI). This value is usually estimated based on the application he requested. Based on these

parameters, the cloud broker will identify the most appropriate service instance in the region

where the user is currently located. The user communicates with the datacenter where the

service is placed via a wireless local area network. This network is modeled as M/M/1 Queue.

EdgeCloudSim has realistic network measurements. In which, for WLAN delay, an access

point of 802.11 family was closely examined, and a fiber internet connection in Istanbul was

utilized to calculate WAN delays. The results of the empirical network delay analysis are

detailed in [266].

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites.

Name CSP Type
Number of

vcpu
Memory

T2A GC
General

purpose
2 4

E2 GC
Cost

optimized
2 1

M1 GC
Memory

optimized
40 961

C2 GC
Compute

optimized
4 6

A2 GC
Accelerator

optimized
12 85

t2. small AWS
General

purpose
1 2

i4i.large AWS
Storage

optimized
2 16

r7a.medium AWS
Memory

optimized
1 8

r7a.large AWS
Memory

optimized
2 16

c7a.medium AWS
Compute

optimized
1 2

c7a.large AWS
Compute

optimized
2 4

p3.2xlarge AWS
Accelerator

optimized
8 61

hpc7g.4xlarge AWS
HPC

optimized
16 128

B2ls v2 AZURE
General

purpose
2 4

115

F2s v2 AZURE
Compute

optimized
2 4

E2as v5 AZURE
Memory

optimized
2 16

L8as v3 AZURE
Storage

optimized
8 64

NC6 AZURE
GPU

optimized
6 56

H8 AZURE

High

performance

compute

8 56

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup.

Type

Average of

upload data

Average of

download data

Task Length

Delay

sensitivity

Health App 1500 25 9000 0.7

Augmented

Reality
20 1250 3000 0.9

Heavy

Computing
2500 200 45000 0.1

Infotainment 25 1000 15000 0.3

9.5 Results analysis

Compare the proposed system with two different approaches. They are, a random approach

where the user randomly chooses the service instance, and the second approach is when the

broker chooses the service instance with the highest capability in terms of processing power

available to associate the user with, compare these approaches focusing on two main metrics

which are the service delay experienced by the users and the cost the user needs to pay per

month, make this comparison in four distinct scenarios. They are:

• First scenario: the users are motionless. Upon selecting a service instance from a

certain CSP, the user establishes and maintains the association until the simulation time

expires. This represents the policy of reserved VM.

• Second scenario: the users are mobile and move around following a nomadic mobility,

spending a specific duration on one site before moving on to the next. In this scenario,

the service instance stays in the original data center with which it was associated and is

not migrated. The payment policy here is also a reserved instance policy.

• The third scenario involves clients moving around following a nomadic mobility model.

In this scenario, test a cross-cloud migration, where the broker seamlessly migrates the

service across multiple cloud providers ensuring the satisfaction of Service Level

Agreement (SLA) requirements defined by the user. The payment policy in this

scenario is pay-as-you-go policy (PAYG), where the user rent resources on-demand

and only pays for his usage.

For the first scenario, compare the proposed approach with two approaches. They are the Least

Loaded (LL), in which the VM that is least loaded and within the budget of the user is chosen

as a service instance. The second algorithm is a random selection, where the service instance

116

is chosen randomly. The simulation is performed for five runs and the average results for

service delay and the client’s budget savings are illustrated in figures Figure 9.8, and Figure

9.9. As shown in these figures, by employing our fuzzy logic approach, were able to achieve

better results regarding the average service delay. The increase in the delay in accordance to

the increase of the number of clients is normal due to the limited number of service instances

in the scenario.

FIGURE 9.8 AVERAGE SERVICE DELAY FOR IMMOBILE USERS.

FIGURE 9.9 THE AVERAGE OF MONTHLY CLIENT PAYMENT.

However, noted that our approach exhibits a more stable performance than both random and

least-loaded approaches, where the variation in the delay is unnoticeable compared to the other

two. This is a very important aspect from the service provider’s perspective as he is obligated

to respect certain QoS limits defined in the SLA. Thus, employing our approach can guarantee

more stable performance and prevent the violation of the SLA terms. The main reason why the

LL approach failed to perform well is because service migration and dynamic task offloading

are not supported in this scenario. Since each user is maintaining the association with the same

service instance for the whole time, the effectiveness of choosing the least loaded instance is

diminished. When comparing the proposed approach with the other two approaches regarding

the average cost each customer has to pay, noticed LL and random approaches forced the clients

to pay more as the number of clients increased. This is basically due to their imbalanced

policies where the cost was not considered, and more users were associated with more

117

expensive service instances. On the other hand, our approach surpassed both approaches and

the customer were still able to get the service with the same quality while maintaining the same

payment.

9.5.1 The effects of Client’s mobility

In the second scenario, we tested the three approaches on mobile clients. The clients follow a

nomadic mobility model, mimicking a normal person’s daily routine, where he goes to certain

points of interest such as the workplace, university, or home, spends some time there, and then

moves to other places. In this scenario, once the user is associated with a service instance, he

maintains his association regardless of his current location. This represents some broker’s

policy of no support for service migration. The results are illustrated in Fig. 10. All three

approaches were significantly affected by the client’s mobility as shown in Fig. 10. This is

mainly because the communication delay started to play a significant part in the overall delay

as none of the three approaches was able to mitigate the impact of the user’s getting further

away from the service instance. Our approach was not able to get notably better results in terms

of the average service delay. However, it was able to maintain a certain stability in the

performance, with less delay variation than both random and LL approaches. This is quite

important for preventing SLA breaches.

FIGURE 9.10 AVERAGE SERVICE DELAY FOR MOBILE USERS.

9.5.2 Effects of Service Migration on SLA Compliance

In the third scenario, examined the implementation of the three brokerage approaches on

mobile users with the support of service migration. As the service instance associated with the

user is changing in accordance with the user’s location, considered a pay-as-you-go pricing

policy in each location, where the minimum reservation time is one hour. The resulting average

service delay experienced by the clients as well as the average cost per user are illustrated in

Figure 9.11 and Figure 9.12. Our approach and LL selection-based broker gave a very close

performance in terms of service delay experienced by clients. The main advantage of our

approach was in having the clients maintain the same quality of service while paying the same

amount regardless of the number of users demanding the same service.

118

9.6 Real-World Implementation and Practical Implications

Estimate that our model can be integrated into the cloud computing environment easily. Using

fuzzy logic for ranking can facilitate the use of this broker for unprofessional users.

Nevertheless, several issues can arise. First, observed a significant amount of computation

when the number of users increased. This resulted in a longer simulation time than other

approaches such as the random and the LL service selection. When used in practice, this may

have an impact on scalability. However, when sufficient resources are allotted for the broker

to carry out fuzzy-logic-based ranking, significant computation time can be avoided.

FIGURE 9.11 AVERAGE SERVICE DELAY WITH MOBILE USERS AND SERVICE

MIGRATION.

FIGURE 9.12 AVERAGE MONTHLY PAYMENT IN CASE OF SERVICE MIGRATION.

To further reduce the computation needed, have several suggestions. Users can be clustered

and ranked as a single cluster to assist cut down on the amount of processing required for

ranking. One of our model’s primary input parameters for ranking a user is the average task

size of the application he utilizes. When multiple people use the same application, both group-

based and flow-based ranking are possible. For example, a group of video gamers at the same

119

location or a group of employees in a firm using the same application can be ranked as a cluster

using the aggregated flow specifications. Subsequently, a single service instance can be

assigned to this group instead of allocating an instance for each user. Computation can also be

minimized by employing user profiling and assigning a fixed rank for some clients based on

the sensitivity of their services. For instance, users of health applications can be assigned the

highest rank (Gold) due to the sensitivity and importance of the data transmitted.

9.7 Summary

In this contribution, introduce a novel fuzzy logic-based broker that considers both the interests

of the client and the service provider, analyze various scenarios, demonstrating the feasibility

of our approach. For future work, aim to enhance the design of the proposed broker by

incorporating additional parameters into the decision-making process, such as the delay

sensitivity of applications and the client's mobility profile. Our observations revealed that

network delay plays a significant role, especially in the absence of service migration support

for mobile users. To address this, plan to implement a new mechanism within the broker to

mitigate the impact of mobility on service quality. As discussed in previous chapters, utilizing

a third-party intermediary, typically in the form of a cloud broker, is widely recommended. A

cloud broker acts as middleware between potential customers and cloud service providers

(CSPs). The inclusion of such an entity facilitates the provision of efficient and cost-effective

services for users while also assisting with resource management and load balancing across

multiple clouds or between instances within the same cloud. Cloud broking is a rapidly growing

field driven by the increasing adoption of cloud computing. The cloud services broking (CSB)

market is expected to continue its expansion in the coming years. CSBs are instrumental in

managing multi-cloud and hybrid cloud environments, optimizing cloud expenditures, and

integrating advanced technologies such as artificial intelligence (AI), big data, and the Internet

of Things (IoT). Future advancements in cloud broking are expected to focus on deeper AI

integration, enhanced security measures, expansion into emerging markets, and greater

automation. This positions cloud broking as a dynamic and promising area of growth and

innovation in the future.

120

Chapter 10 Theses

Cloud computing is pivotal in contemporary IT infrastructure, providing scalable resource

access through Service Level Agreements (SLAs) that dictate performance assurances.

However, compliance, vendor lock-in, and varying Quality of Service (QoS) hinder decision-

making and operational efficiency. The expanding footprint of cloud data centers intensifies

energy consumption concerns, underscoring the need for energy-efficient management

strategies. Geographical distances between data centers impact round-trip times (RTT) and

service reliability, compounded by qualitative rather than quantitative network performance

data from Cloud Service Providers (CSPs). Efficient cloud-to-user latency management and

network optimization are crucial for global service reliability. Furthermore, distributed

transaction management must balance reliability and consistency amidst hardware failures,

network disruptions, and latency fluctuations. Intelligent and adaptive cloud service

management, including advanced resource allocation, SLA optimization, and predictive

modeling, is crucial for enhancing performance, reducing latency, and ensuring scalable, cost-

effective, and sustainable cloud services aligned with evolving IT demands. The Intelligent

Validation Cloud Broker System (IVCBS) enhances cloud computing efficiency through

advanced fuzzy logic-based decision-making. It introduces a flexible mathematical model that

reduces complexity and costs while improving accuracy in dynamically optimizing VM

allocation. Leveraging a broker-driven approach enhanced with fuzzy logic, the system

optimizes VM distribution based on incoming request packet sizes, enhancing VM efficiency,

reducing latency, and improving overall system performance. Similarly, the Intelligent Cloud

Brokerage System utilizes fuzzy logic and a TOPSIS-based approach to optimize service

selection and resource management across diverse CSP offerings. Acting as an intermediary,

it balances user preferences with provider capabilities to enhance service quality, affordability,

and operational efficiency. This study contributes significant advancements in system

development, scenario analysis, and the evaluation of service migration benefits, addressing

critical challenges in cloud service optimization. In summary, the three primary theses of our

research focus on enhancing cloud computing efficiency through innovative fuzzy logic-based

decision-making in VM allocation and service selection, thereby improving overall system

performance and operational efficiency.

I. Intelligent SLA Guarantee Model for Cloud Computing: A Fuzzy Logic-Based

Approach to RTT Estimation and SLA Classification

The suggested Intelligent SLA Guarantee Model for Cloud Computing is a fuzzy logic-

based approach, which is suitable for round trip time (RTT) estimation and service level

agreement (SLA) classification using a human-friendly linguistic term format.

II. Intelligent Validation Cloud Broker System (IVCBS): A Fuzzy Logic-Based

Approach for Optimizing Virtual Machine Allocation and Enhancing Cloud

Computing Efficiency

The suggested Intelligent Validation Cloud Broker System (IVCBS) is a fuzzy logic-based

approach that is suitable for virtual machine allocation and cloud computing efficiency

optimization.

III. Intelligent Cloud Brokerage System: A Fuzzy Logic and TOPSIS-Based Approach

for Optimized Service Selection and Resource Management

121

The suggested Intelligent Cloud Brokerage System is a Fuzzy Logic and TOPSIS-based

approach that is suitable for cloud computing service selection and resource management

optimization.

10.1 Future Research Direction

• Future research should focus on integrating IoT, edge computing, and 5G to enhance

cloud computing scalability and interoperability. Real-world testing is crucial to

evaluate performance, adaptability, and SLA management. Incorporating machine

learning and fuzzy logic can optimize SLA classification and QoS adjustments,

improving efficiency and reliability. Additionally, adaptive traffic management should

be explored to enhance QoS, resource allocation, and fault recovery. Further research

on SLA prioritization will optimize cloud resource utilization and user satisfaction.

These advancements will contribute to intelligent, adaptive, and efficient cloud

brokerage systems, ensuring better service selection and resource optimization in

dynamic cloud environments.

• Enhance cross-cloud compatibility through standardized integration methods, ensuring

seamless workload distribution across heterogeneous platforms for individual users and

enterprises. This will also improve energy efficiency, reducing data centers' carbon

footprint while maintaining high performance. Leveraging machine learning-driven

workload distribution enables real-time optimization, dynamically adapting to service

demands and enhancing resource efficiency. Addressing security and compliance

challenges is crucial to mitigating vulnerabilities, improving data privacy, and

maintaining regulatory standards in multi-cloud environments. Additionally, context-

aware decision-making in cloud brokerage systems should incorporate application

delay sensitivity and client mobility profiles. Developing adaptive mechanisms to

adjust resource allocation dynamically will help mitigate network delay, ensuring

seamless service quality, minimal latency, and optimal performance in mobile cloud

environments.

122

Appendices

Appendix 1: Cloud Computing

APPENDIX 1: 0.1 FIGURE 1. NIST CLOUD COMPUTING REFERENCE MODEL.

APPENDIX 1: 0.2 FIGURE 2. THE ESSENTIAL CHARACTERISTICS OF CLOUD

COMPUTING.

Appendix 2: Adoption and Implementation of Cloud Platforms

APPENDIX 2: 0.1 FIGURE 1. (A) SINGLE APPLICATION SERVER. (B) VIRTUALIZED

SERVER.

123

APPENDIX 2: 0.2 FIGURE 2. HARDWARE SERVER COMPONENTS.

APPENDIX 2: 0.3 FIGURE 3. TYPE1 HYPERVISOR.

APPENDIX 2: 0.4 FIGURE 4. TYPE2 HYPERVISOR.

124

APPENDIX 2: 0.5 FIGURE 5. DATA CENTER NETWORK ARCHITECTURE.

Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA.

Hardware availability month 99% uptime in a calendar month

Power availability 99.99% of the time in a calendar month

Data center network

availability
99.99% of the time in a calendar month

Backbone network

availability
99.999% of the time in a calendar month

Service credit for

unavailability

Refund of service credit prorated on

downtime period

Outage notification

guarantee

Notification of customer within 1 hr. of

complete downtime

Internet latency

guarantee

When latency is measured at 5-min

intervals to an upstream

provider, the average doesn’t exceed 60

msec

Packet loss guarantee Shall not exceed 1% in a calendar month

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA.

Service-level

parameter metric

• Web site response time (e.g., max of 3.5 sec

per user request)

• Latency of web server (WS) (e.g., max of

0.2 sec per request)

• Latency of DB (e.g., max of 0.5 sec per

query)

Function • Average latency of WS= (latency of web

server 1+latency of web server 2) /2

• Web site response time= Average latency of

web server+ latency of database

Measurement

directive

• DB latency available via

http://mgmtserver/em/latency

• WS latency available via

http://mgmtserver/ws/instanceno/latency

Service-level

objective

Service Assurance

Penalty • web site latency, 1 sec when concurrent

connection, 1000 Penalty.

• 1000 USD for every minute while the SLO

was breached

Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation

125

APPENDIX 3: 0.1 FIGURE 1. RTT PROCESS.

The RTT calculation, The ensuing diagram and equations provide a visual representation of

how the round-trip time is computed

Server RTT:

• RTTs1 = t2 - t1

• RTTs2 = t5 - t4

Client RTT:

• RTTc1 = t3 - t2

• RTTc2 = t7 - t6

Average Server RTT = (RTTs1 + RTTs2)/2

Average Client RTT = (RTTc1 + RTTc2)/2

Average Total RTT = avRTTs + avRTTc

126

APPENDIX 3: 0.2 FIGURE 2. PING TESTING PROCESS.

APPENDIX 3: 0.3 FIGURE 3. AWS LATENCY TEST.

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions.

http://aws.amazon.com/
http://aws.amazon.com/

127

No
Region

name

Distance

(KM)
Latitude

Longitude Endpoint

1 Bahrain 862.94 26.0667 50.5577 ec2.me-south-1.amazonaws.com

2
UAE –

Dubai

1234.23 25.276987 55.296249 ec2.me-central-1.amazonaws.com

3 Mumbai 3089.72 19.0760 72.8777 ec2.ap-south-1.amazonaws.com

4 Milan 3428.79 45.4642 9.1900 ec2.eu-south-1.amazonaws.com

5 Zurich 3525.01 47.3769 8.5417 ec2.eu-central-2.amazonaws.com

6 Frankfurt 3601.23 50.1109 8.6821 ec2.eu-central-1.amazonaws.com

7 Paris 3607.54 48.8566 2.3522 ec2.eu-west-3.amazonaws.com

8 London 4009.87 51.5074 -0.1278 ec2.eu-west-2.amazonaws.com

9 Spain 4202.65 41.6488 -0.8891 ec2.eu-south-2.amazonaws.com

10 Ireland 4238.49 53.3331 -6.2489 ec2.eu-west-1.amazonaws.com

11 Stockholm 4682.33 59.3293 18.0686 ec2.eu-north-1.amazonaws.com

12
Hong

Kong

5981.25 22.3193 114.1694 ec2.ap-east-1.amazonaws.com

13 Hyderabad 6012.87 17.3850 78.4867 ec2.ap-south-2.amazonaws.com

14 Osaka 6789.34 34.6937 135.5023 ec2.ap-northeast-

3.amazonaws.com

15 Seoul 7056.22 37.5665 126.9780 ec2.ap-northeast-

2.amazonaws.com

16 Singapore 7289.64 1.3521 103.8198 ec2.ap-southeast-

1.amazonaws.com

17 Tokyo 7435.78 35.6895 139.6917 ec2.ap-northeast-

1.amazonaws.com

18 Jakarta 7832.90 -6.2088 106.8456 ec2.ap-southeast-

3.amazonaws.com

19
Kuala

Lumpur

8053.21 3.1390 101.6869 ec2.ap-southeast-

4.amazonaws.com

20

Canada

Central –

Ottawa

8923.45 45.4215 -75.6972 ec2.ca-central-1.amazonaws.com

21
N.

Virginia

10023.67 38.0336 -78.5080 ec2.us-east-1.amazonaws.com

22 Ohio 10289.47 39.9612 -82.9988 ec2.us-east-2.amazonaws.com

128

23
N.

California

12345.89 37.7749 -122.4194 ec2.us-west-1.amazonaws.com

24 Oregon 12678.56 45.5234 -122.6762 ec2.us-west-2.amazonaws.com

25 Melbourne 13756.90 -37.8136 144.9631 ec2.ap-southeast-

4.amazonaws.com

26 Sydney 14321.76 -33.8688 151.2093 ec2.ap-southeast-

2.amazonaws.com

27
Cape

Town

14989.34 -33.9249 18.4241 ec2.af-south-1.amazonaws.com

28 São Paulo 15478.65 -23.5505 -46.6333 ec2.sa-east-1.amazonaws.com

❖ Haversine Formula

The formula to compute the distance d between two points (lat1, lon1) and (lat2, lon2) is:

𝑑 = 2𝑅. arcsin (√𝑠𝑖𝑛2 (
Δφ

2
) + cos(φ1) . cos(φ2) . 𝑠𝑖𝑛2 (

Δλ

2
))

Where:

• d = distance between the two points (in kilometers or miles).

• R = Earth's radius (mean radius = 6371 km or 3958.8 miles).

• φ1, φ2 = latitudes of the two points in radians.

• λ1, λ2 = longitudes of the two points in radians.

• Δφ =φ2−φ1 (difference in latitudes).

• Δλ =λ2−λ1 (difference in longitudes).

APPENDIX 3: 0.5 FIGURE 4. DEFINE FIRST INPUT (DISTANCE).

129

APPENDIX 3: 0.6 FIGURE 5. DEFINE SECOND INPUT (NETWORK-CONGESTION).

APPENDIX 3: 0.7 FIGURE 6. DEFINE OUTPUT (RTT-EXPECTATION).

APPENDIX 3: 0.8 FIGURE 7. RULE BASE SYSTEM.

Appendix 4: Quality of Service (QoS) Availability Assessment for Optimal SLA

Selection

130

Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels.

Years of

continuous

operations

1 2 3

Availability Maximum allowable downtime

99.0000% (2–

9s)

3 d 15 h 36 min

0 s

7 d 7 h 12 min 0

s

10 d 22 h 48 min

0 s

99.9000% (3–

9s)
8 h 45 min 15 s 17 h 31 min 12 s

1 d 2 h 16 min 48

s

99.9900% (4–

9s)
52 min 34 s 1 h 45 min 7 s 2 h 37 min 41 s

99.9990% (5–

9s)
5 min 15 s 10 min 31 s

15 min 46 s

99.9999% (6–

9s)
32 s 1 min 3 s 1 min 3 s 1 min 35 s

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs.

The universe of discourse for both (Computing and networking) inputs

90 93.39966 96.79932

90.09999 93.49965 96.89931

90.19998 93.59964 96.9993

90.29997 93.69963 97.09929

90.39996
93.79962

97.19928

90.49995
93.89961

97.29927

90.59994 93.9996 97.39926

90.69993
94.09959

97.49925

90.79992 94.19958 97.59924

90.89991 94.29957 97.69923

131

90.9999 94.39956 97.79922

91.09989 94.49955 97.89921

91.19988 94.59954 97.9992

91.29987 94.69953 98.09919

91.39986
94.79952

98.19918

91.49985 94.89951 98.29917

91.59984 94.9995 98.39916

91.69983 95.09949 98.49915

91.79982 95.19948 98.59914

91.89981 95.29947 98.69913

91.9998 95.39946 98.79912

92.09979 95.49945 98.89911

92.19978 95.59944 98.9991

92.29977 95.69943 99.09909

92.39976 95.79942 99.19908

92.49975 95.89941 99.29907

92.59974 95.9994 99.39906

92.69973 96.09939 99.49905

92.79972 96.19938 99.59904

92.89971 96.29937 99.69903

92.9997 96.39936 99.79902

93.09969 96.49935 99.89901

93.19968 96.59934

99.999 93.29967

96.69933

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime.

132

U
p
ti

m
e%

D
ay

U
p
ti

m
e

D
ay

D
o
w

n
ti

m
e

W
ee

k

U
p
ti

m
e

W
ee

k

D
o
w

n
ti

m
e

M
o
n
th

U
p
ti

m
e

M
o
n
th

D
o
w

n
ti

m
e

Y
ea

r

U
p
ti

m
e

Y
ea

r

D
o
w

n
ti

m
e

9
0
 %

2
1
:3

6
:0

0

2
:2

4
:0

0

1
5
1
:1

2
:0

0

1
6
:4

8
:0

0

6
4
8
:0

0
:0

0

7
2
:0

0
:0

0

7
8
8
4
:0

0
:0

0

8
7
6
:0

0
:0

0

9
1
%

2
2
:0

4
:4

7

1
:5

5
:1

2

1
5
4
:3

3
:3

4

1
3
:2

6
:2

5

6
6
2
:2

3
:5

4

5
7
:3

6
:0

5

8
0
5
9
:1

0
:5

6

7
0
0
:4

9
:0

3

9
2
%

2
2
:1

9
:1

1

1
:4

0
:4

8

1
5
6
:1

4
:2

2

1
1
:4

5
:3

7

6
6
9
:3

5
:5

2

5
0
:2

4
:0

7

8
1
4
6
:4

6
:2

5

6
1
3
:1

3
:3

4

9
3
%

2
2
:3

3
:3

5

1
:2

6
:2

4

1
5
7
:5

5
:0

9

1
0
:0

4
:5

0

6
7
6
:4

7
:4

9

4
3
:1

2
:1

0

8
2
3
4
:2

1
:5

3

5
2
5
:3

8
:0

6

9
4
%

2
2
:4

7
:5

9

1
:1

2
:0

0

1
5
9
:3

5
:5

6

8
:2

4
:0

3

6
8
3
:5

9
:4

7

3
6
:0

0
:1

2

8
3
2
1
:5

7
:2

2

4
3
8
:0

2
:3

7

9
5
%

2
3
:0

2
:2

3

0
:5

7
:3

6

1
6
1
:1

6
:4

4

6
:4

3
:1

5

6
9
1
:1

1
:4

4

2
8
:4

8
:1

5

8
4
0
9
:3

2
:5

0

3
5
0
:2

7
:0

9

9
6
%

2
3
:1

6
:4

7

0
:4

3
:1

2

1
6
2
:5

7
:3

1

5
:0

2
:2

8

6
9
8
:2

3
:4

1

2
1
:3

6
:1

8

8
4
9
7
:0

8
:1

9

2
6
2
:5

1
:4

0

9
7
%

2
3
:3

1
:1

1

0
:2

8
:4

8

1
6
4
:3

8
:1

9

3
:2

1
:4

0

7
0
5
:3

5
:3

9

1
4
:2

4
:2

0

8
5
8
4
:4

3
:4

7

1
7
5
:1

6
:1

2

133

9
8
%

2
3
:4

5
:3

5

0
:1

4
:2

4

1
6
6
:1

9
:0

6

1
:4

0
:5

3

7
1
2
:4

7
:3

6

7
:1

2
:2

3

8
6
7
2
:1

9
:1

6

8
7
:4

0
:4

3

9
9
.9

9
9

2
3
:5

9
:5

9

0
:0

0
:0

0

1
6
7
:5

9
:5

3

0
:0

0
:0

6

7
1
9
:5

9
:3

4

0
:0

0
:2

5

8
7
5
9
:5

4
:4

4

0
:0

5
:1

5

• EX: In equation form for 90% uptime in a single day:

Uptime in seconds:

 Uptime=Total Time per day × Uptime percentage; Where:

Total Time per day = 86,400 seconds (for 24 hours),

 Uptime percentage = 0.90 for 90%.

Downtime in second:

 Downtime=Total Time per day × (1- Uptime percentage); Where:

 Downtime percentage=1 - 0.90

 Downtime= 0.10

Then In equation form for 90% Uptime in a single day:

 Uptime = 86,400 × 0.90 =77,760 seconds

 Downtime = 86,400 × (1-0.90)

 Downtime = 8,640 seconds

To convert seconds into hours, minutes, and seconds:

▪ Uptime:77,760 seconds =21 hours,36 minutes.

▪ Downtime:8,640 seconds = 2 hours,2 minutes.

These equations provide a clear way to calculate uptime and downtime for any

percentage of uptime over any given period (e.g., a day, week, month, or year).

Appendix 5: Implementation details of the three proposed algorithms for the system

Appendix 5:0.1 Detailed Analysis of the First Algorithm

▪ Maximum value: 67,170

▪ Point1 = Maximum value / 4

▪ Point2 = 2 * Point1

▪ Point3 = 3 * Point1

134

▪ Point4 = 4 * Point1

▪ 𝜇small: [0 0 point2]

▪ 𝜇medium: [point1 point2 point3]

▪ 𝜇big: [point2 point4 point4]

▪ When 0 ≤ value ≤point1

Consider input value is 165

Calculate Small Membership function:

𝜇small (165) =(- value/point2)+1

𝜇small (165) =(-165/33585)+1

𝜇small (165) = -0.00491+1

𝜇small (165) = 0.995087092

" 𝜇medium (165) " remains 0 since the input value falls within the 0 to Point1 range.

" 𝜇big (165) " remains 0 since the input value falls within the 0 to Point1 range.

• When point1 ≤ value ≤point2 then:

Consider input value is 20892

Calculate Small Membership function:

𝜇small (20892) = (- value/point2)+1

𝜇small (20892) = - 0.6218+1

𝜇small (20892) = 0.377936579

Calculate α

α= value – point2

α=20892 – 33585

α= - 12693

Calculate medium Membership function:

𝜇medium (20892) = (-1/point2 - point1). | α |+1

𝜇medium (20892) = (-1/33585– 16792.5). |12693|+1

𝜇medium(20892)= (-1/16792.5) . 12693+1

𝜇medium(20892)= - 0.7560+1

𝜇medium(20892)=0.244126842

" 𝜇big(20892)" remains 0 since the input value falls within the Point1 to Point2 range.

Appendix 5:0.2 Detailed Analysis of the Second Algorithm

• Maximum value: 67,170

135

• Point1 = Maximum value / 5

• Point2 = 2 * Point1

• Point3 = 3 * Point1

• Point4 = 4 * Point1

• Point5 =5 * point1

• 𝜇small: [0 0 point1 point2]

• 𝜇medium: [point1 point2 point3 point4]

• 𝜇big: [point3 point4 point4 point5]

• When 0 ≤ value ≤point1 then:

𝜇small (value) = 1

" 𝜇medium (value) " remains 0 since the input value falls within the 0 to Point1 range.

" 𝜇big(value) " remains 0 since the input value falls within the 0 to Point1 range.

• When point1 ≤ value ≤point2

Consider input value is 17132

Calculate Small Membership function degree:

𝜇small (value) = (- value/point2)+1

𝜇small (17132) = (- 17132/33585)+1

𝜇small (17132) = - 0.6376+1

𝜇small (17132) = 0.362364151

Calculate α:

α= value – point2

α=17132 – 26868

α= - 9736

Calculate medium Membership function degree:

𝜇medium (17132) = (-1/point2 - point1). | α |+1

𝜇medium (17132) = (-1/26868 – 13434). |- 9736 |+1

𝜇medium (17132) = (-1/13434). 9736+1

𝜇medium (17132) = -0.7248+1

𝜇medium (17132) =0.275271699

" 𝜇big (17132)" remains 0 since the input value falls within the Point1 to Point2 range.

Appendix 5:0.3 Detailed Analysis of the Third Algorithm

• Maximum value: 67,170

• Point1=0

136

• Point2=Maximum value/2

• Point4=Maximum value

• Standard Deviation 𝜎 =16339

• Small center= csmall=point1

• 𝜇small: [𝜎 𝑝𝑜𝑖𝑛𝑡1]

• Medium center= cmedium=point2

𝜇medium: [𝜎 𝑝𝑜𝑖𝑛𝑡2]

• Big center= cbig=point4

𝜇big: [𝜎 𝑝𝑜𝑖𝑛𝑡4]

Consider input value is 11381

• Calculate Small membership function degree

𝜇small (11381) =Exp (-(11381-0)2/2. (16339)2)

Calculate the squared difference:

(11381-0)2=129564361

Compute 2. 𝜎2=2. (16339)2

=533906642

Divide and apply the exponent:

𝜇small (11381) =Exp (-129564361/533906642)

𝜇small (11381) =Exp (-0.2426)

𝜇small(11381) =0.784590058

• Calculate Medium membership function degree

𝜇medium (11381) =Exp (-(11381-33585)2/2.(16339)2)

Calculate the squared difference:

(11381-33585)2=494383296

Divide and apply the exponent:

𝜇medium (11381) =Exp (-494383296/533906642)

 𝜇medium =Exp(-0.9263)

 𝜇medium = 0.397173449

• Calculate Big membership function degree

𝜇big (11381) =Exp (-(11381-67170)2/2. (16339)2)

Calculate the squared difference:

(11381-67170)2=3104115681

Divide and apply the exponent:

𝜇big (11381) =Exp (-3104115681/533906642)

𝜇big (11381) =Exp (-5.8146)

𝜇big (11381) = 0.002940142

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in

Uncertain Domains

137

APPENDIX 6: 0.1 FIGURE 1. DATABASE ADDRESSES.

APPENDIX 6: 0.2 FIGURE 2. USER TASK BEFORE CLASSIFY.

APPENDIX 6: 0.3 FIGURE 3. MAMDANI TRIANGULAR MF.

138

APPENDIX 6: 0.4 FIGURE 4. MAMDANI TRAPEZOIDAL MF.

APPENDIX 6: 0.5 FIGURE 5. MAMDANI GAUSSIAN MF.

Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs.

EC2-

families

AWS-General-Purpose Instance -features

Resource

efficiency

Instance

Storage

Enhance Security

M6g AWS

Nitro

system

EBS or Nonvolatile

Memory express (NVMe)

based solid-state drive

(SSD) storage

NVMe SSDs

256-bit DRAM

encryption

M5

AWS

Nitro

system

EBS or NVMe SSDs XTS-AES-256 Cipher

M6i

AWS

Nitro

system

EBS or NVMe SSDs Total Memory

Encryption (TME)

M6a

AWS

Nitro

system

Elastic Block Store (EBS) AMD Transparent

Single key Memory

Encryption (TSME)

139

Appendix 7: 0.2 Table 2. AWS data centers and general costs.

6-Geographical

(31-Regions)

EC2-General purpose cost

M
6
g
.m

ed
u
im

M
6
g
.l

ar
g
e

M
6
g
.x

la
rg

e

M
5
.2

x
la

rg
e

M
5
.4

x
la

rg
e

M
6
g
d
.8

x
la

rg
e

M
6
g
d
.1

2
x
la

rg
e

M
6
g
.m

et
al

M
5
d
.m

et
al

M
6
i.

m
et

al

M
6
a.

m
et

al

R0-N. Virgina
$
0
.0

3
8
5

$
0
.0

7
7

$
0
.1

5
4

$
0
.3

8
4

$
0
.7

6
8

$
1
.4

4
6
4

$
2
.1

6
9
6

$
2
.4

6
4

$
5
.4

2
4

$
6
.1

4
4

$
8
.2

9
4
4

R0- Ohio

$
0
.0

3
8
5

$
0
.0

7
7

$
0
.1

5
4

$
0
.3

8
4

$
0
.7

6
8

$
1
.4

4
6
4

$
2
.1

6
9
6

$
2
.4

6
4

$
5
.4

2
4

$
6
.1

4
4

$
8
.2

9
4
4

R0- N.

California

$
0
.0

4
4
8

$
0
.0

8
9
6

$
0
.1

7
9
2

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

9
6

$
2
.5

4
4

$
2
.8

6
7
2

$
6
.3

8
4

$
7
.1

6
8

$
9
.6

7
6
8

R0- Oregon

$
0
.0

3
8
5

$
0
.0

7
7

$
0
.1

5
4

$
0
.3

8
4

$
0
.7

6
8

$
1
.4

4
6
4

$
2
.1

6
9
6

$
2
.4

6
4

$
5
.4

2
4

$
6
.1

4
4

$
8
.2

9
4
4

R0- Canada

Central

$
0
.0

4
2
8

$
0
.0

8
5
6

$
0
.1

7
1
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

3
9
2

$
6
.0

4
8

$
6
.8

4
8

$
9
.2

4
4
8

R0- Canada

west (Calgary)

$
0
.0

4
2
8

$
0
.0

8
5
6

$
0
.1

7
1
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

3
9
2

$
6
.0

4
8

$
6
.8

4
8

$
8
.3

9
2
2

R0- AWS

GovCloud (US-

East)

$
0

.0
4
8
4

$
0

.0
9
6
8

$
0

.1
9
3
6

$
0

.4
8
4

$
0

.9
6
8

$
1

.7
1
6
8

$
2

.5
6
4
4

$
3

.0
9
7
6

$
6

.8
6
4

$
7

.7
4
4

$
9

.1
4
2
8

R0- AWS

GovCloud (US-

West)

$
0
.0

4
8
4

$
0
.0

9
6
8

$
0
.1

9
3
6

$
0
.4

8
4

$
0
.9

6
8

$
1
.7

1
6
8

$
2
.5

6
4
4

$
3
.0

9
7
6

$
6
.8

6
4

$
7
.7

4
4

$
9
.3

6
4
8

R1- São Paulo

$
0
.0

6
1
2

 $
0
.1

2
2
4

 $
0
.2

4
4
8

 $
0
.6

1
2

 $
1
.2

2
4

 $
2
.3

0
4

 $
3
.4

5
6

 $
3
.9

1
6
8

 $
8
.6

4

 $
9
.7

9
2

 $
1
3
.2

1
9
2

R2- Frankfurt

$
0
.0

4
6

$
0
.0

9
2

$
0
.1

8
4

$
0
.4

6

$
0
.9

2

$
1
.7

4
4

$
2
.6

1
6

$
2
.9

4
4

$
6
.5

2
8

$
7
.3

6

$
9
.9

3
6

140

R2- Ireland

$
0
.0

4
3

$
0
.0

8
6

$
0
.1

7
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

5
2

$
6
.0

4
8

$
6
.8

4
8

$
9
.2

4
4
8

R2- London

$
0
.0

4
4
4

$
0
.0

8
8
8

$
0
.1

7
7
6

$
0
.4

4
4

$
0
.8

8
8

$
1
.6

7
6
8

$
2
.5

1
5
2

$
2
.8

4
1
6

$
6
.2

8
8

$
7
.1

0
4

$
9
.5

9
0
4

R2- Milan
$
0
.0

4
4
8

$
0
.0

8
9
6

$
0
.1

7
9
2

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

8
9
6

$
2
.5

3
4
4

$
2
.8

6
7
2

$
6
.3

3
6

$
7
.1

6
8

$
9
.6

7
6
8

R2- Paris

$
0
.0

4
5

$
0
.0

9

$
0
.1

8

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

8
9
6

$
2
.5

3
4
4

$
2
.8

8

$
6
.3

3
6

$
7
.1

6
8

$
9
.6

7
6
8

R2- Spain

$
0
.0

4
3

$
0
.0

8
6

$
0
.1

7
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2

8

$
2
.4

1
9

2

$
2
.7

5
2

$
6
.0

4
8

$
7
.1

7
2

$
9
.6

8
6

5

R2- Stockholm

$
0
.0

4
1

$
0
.0

8
2

$
0
.1

6
4

$
0
.4

0
8

$
0
.8

1
6

$
1
.5

3
6

$
2
.3

0
4

$
2
.6

2
4

$
5
.7

6

$
6
.5

2
8

$
9
.5

9
8
0

R2- Zurich

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.2

0
2
4

$
0
.5

0
6

$
1
.0

1
2

$
1
.9

1
8
4

$
2
.8

7
7
6

$
3
.2

3
8
4

$
7
.1

8
1

$
8
.0

9
6

$
9
.6

8
7
8

R3- Hong Kong

$
0
.0

5
3

$
0
.1

0
6

$
0
.2

1
2

$
0
.5

2
8

$
1
.0

5
6

$
1
.9

8
4

$
2
.9

7
6

$
3
.3

9
2

$
7
.4

4

$
8
.4

4
8

$
9
.7

1
3
6

R3- Hyderabad

$
0
.0

2
5
3

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.4

0
4

$
0
.8

0
8

$
0
.9

6
6
4

$
1
.4

4
9
6

$
1
.6

1
9
2

$
5
.8

5
6

$
6
.4

6
4

$
5
.3

3
2
8

R3-Jakarta

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

0
8

$
2
.7

1
2

$
3
.0

7
2

$
6
.7

6
8

$
7
.6

8

$
5
.3

3
2
8

R3- Melbourne

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

2
4

$
2
.7

3
6

$
3
.0

7
2

$
6
.8

1
6

$
7
.6

8

$
1
0
.3

6
8

R3- Mumbai

$
0
.0

2
5
3

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.4

0
4

$
0
.8

0
8

$
0
.9

6
6
4

$
1
.4

4
9
6

$
1
.6

1
9
2

$
5
.8

5
6

$
6
.4

6
4

$
5
.3

3
2
8

141

R3- Osaka

$
0
.0

4
9
6

$
0
.0

9
9
2

$
0
.1

9
8
4

$
0
.4

9
6

$
0
.9

9
2

$
1
.8

6
8
8

$
2
.8

0
3
2

$
3
.1

7
4
4

$
7
.0

0
8

$
7
.9

3
6

$
1
0
.7

1
3
6

R3- Seoul

$
0
.0

4
7

$
0
.0

9
4

$
0
.1

8
8

$
0
.4

7
2

$
0
.9

4
4

$
1
.7

7
9
2

$
2
.6

6
8
8

$
3
.0

0
8

$
6
.6

7
2

$
7
.5

5
2

$
1
0
.8

9
4
4

R3- Singapore

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

0
8

$
2
.7

1
2

$
3
.0

7
2

$
6
.7

6
8

$
7
.6

8

$
1
0
.3

6
8

R3- Sydney

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

2
4

$
2
.7

3
6

$
3
.0

7
2

$
6
.8

1
6

$
7
.6

8

$
1
0
.3

6
8

R3- Tokyo

$
0
.0

4
9

5

$
0
.0

9
9

$
0
.1

9
8

$
0
.4

9
6

$
0
.9

9
2

$
1
.8

7
2

$
2
.8

0
8

$
3
.1

6
8

$
7
.0

0
8

$
7
.9

3
6

$
1
0
.7

1
3
6

R4- Cape town

$
0
.0

5
0
8

$
0
.1

0
1
6

$
0
.2

0
3
2

$
0
.5

0
8

$
1
.0

1
6

$
1
.9

2

$
2
.8

8

$
3
.2

5
1
2

$
7
.2

0

$
8
.1

2
8

$
9
.5

1
3

R4- Bahrain

$
0
.0

4
7

$
0
.0

9
4

$
0
.1

8
8

$
0
.4

7
1

$
0
.9

4
2

$
1
.7

7
4
1

$
2
.6

6
1
1

$
3
.0

0
8

$
6
.6

5
3

$
8
.4

4
8

$
9
.5

1
0

R4- Israel

$
0
.0

4
5
2

$
0
.0

9
0
3

$
0
.1

8
0
6

$
0
.4

4
9

$
0
.8

9
9

$
1
.6

9
3
4

$
2
.5

4
0
2

$
2
.8

8
9
6

$
6
.3

5

$
7
.1

9
0
4

$
8
.2

5
1
2

R4- UAE

$
0
.0

4
7
3

$
0
.0

9
4
6

$
0
.1

8
9
2

$
0
.4

7
1

$
0
.9

4
2

$
1
.7

7
2
8

$
2
.6

5
9
2

$
3
.0

2
7
2

$
6
.6

5
3

$
7
.5

3
2
8

$
8
.4

1
1
7

Appendix 7: 0.3 Table 3. Delay matrix.

Geographic-

Regions

R0 R1 R2 R3 R4 R5

R0 3,27

 ms

117,23

ms

94,24

ms

190,95

ms

227,74

ms

199,16

ms

R1 117,23

ms

2,63

ms

205,77

ms

299,86

ms

341,07

ms

312,32

ms

R2 94,24

ms

205,77

ms

4,99

ms

128,66

ms

155,91

ms

248,86

ms

R3 190,95

ms

299,86

ms

128,66

ms

3,51

ms

270,64

ms

153,24

ms

142

R4 227,74

ms

341,07

ms

155,91

ms

270,64

ms

8,1 ms 415

ms

R5 199,16

ms

312,32

ms

248,86

ms

153,24

ms

415

ms

4,42

ms

Appendix 7: 0.4 Table 4. Fundamental Data Center.

31-AWS

(DC-

single

instance)

Geographic

Regions
Arch OS VMM

Data

transfer

cost

Physical

HW-

units

DC1 R0-N.virgina X86 Linux Xen 0,02 1

DC2 R0- Ohio X86 Linux Xen 0,02 1

DC3 R0-N.California X86 Linux Xen 0,02 1

DC4 R0- Oregon X86 Linux Xen 0,02 1

DC5 R0- Canada Central X86 Linux Xen 0,02 1

DC6 R0-Canada west(Calgary) X86 Linux Xen 0,02 1

DC7 R0-AWS GovCloud(US-

East)

X86 Linux Xen 0,02 1

DC8 R0-AWS GovCloud(US-

West)

X86 Linux Xen 0,02 1

DC9 R1- São Paulo X86 Linux Xen 0,02 1

DC10 R2- Frankfurt X86 Linux Xen 0,02 1

DC11 R2- Ireland X86 Linux Xen 0,02 1

DC12 R2- London X86 Linux Xen 0,02 1

DC13 R2- Milan X86 Linux Xen 0,02 1

DC14 R2- Paris X86 Linux Xen 0,02 1

DC15 R2- Spain X86 Linux Xen 0,02 1

DC16 R2- Stockholm X86 Linux Xen 0,02 1

DC17 R2- Zurich X86 Linux Xen 0,02 1

DC18 R3- Hong Kong X86 Linux Xen 0,02 1

DC19 R3- Hyderabad X86 Linux Xen 0,02 1

DC20 R3-Jakarta X86 Linux Xen 0,02 1

DC21 R3- Melbourne X86 Linux Xen 0,02 1

DC22 R3- Mumbai X86 Linux Xen 0,02 1

DC23 R3- Osaka X86 Linux Xen 0,02 1

DC24 R3- Seoul X86 Linux Xen 0,02 1

DC25 R3- Singapore X86 Linux Xen 0,02 1

DC26 R3- Sydney X86 Linux Xen 0,02 1

DC27 R3- Tokyo X86 Linux Xen 0,02 1

DC28 R4- Cape town X86 Linux Xen 0,02 1

DC29 R4- Bahrain X86 Linux Xen 0,02 1

DC30 R4- Israel X86 Linux Xen 0,02 1

DC31 R4- UAE X86 Linux Xen 0,02 1

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class specifications.

11-AWS-EC2

Instances

Data Centers Utilized for Execution within

the EC2 Class Specification

143

of

DCs

of

VM

VM policy

M6g.medium 31 1 Time-Shared

M6g.large 31 1 Time-Shared

M6g.xlarge 31 1 Time-Shared

M5.2xlarge 31 1 Time-Shared

M5.4xlarge 31 1 Time-Shared

M6gd.8xlarg 31 1 Time-Shared

M6gd.12xlarge 31 1 Time-Shared

M6g.metal 31 1 Time-Shared

M5d.metal 31 1 Time-Shared

M6i.metal 31 1 Time-Shared

M6a.metal 31 1 Time-Shared

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods.

31-AWS

(DC-

single

instance)

Geographic

Regions

EC2 Cost ($) Physical

HW-units

DC1 R0-N.virgina M6g.medium 0.0385 1

DC2 R0- Ohio M6g.xlarge 0.154 1

DC3 R0-N.California M5.4xlarge 0.896 1

DC4 R0- Oregon M6gd.12xlarge 2.1696 1

DC5 R0- Canada Central M5d.metal 6.048 1

DC6 R0-Canada west(Calgary) M6a.metal 8.3922 1

DC7 R0-AWS GovCloud(US-

East)

M6g.large 0.0968 1

DC8 R0-AWS GovCloud(US-

West)

M5.2xlarge 0.484 1

DC9 R1- São Paulo M6gd.8xlarg 2.304 1

DC10 R2- Frankfurt M6g.metal 2.944 1

DC11 R2- Ireland M6i.metal 6.848 1

DC12 R2- London M6g.medium 0.0444 1

DC13 R2- Milan M6g.xlarge 0.1792 1

DC14 R2- Paris M5.4xlarge 0.896 1

DC15 R2- Spain M6gd.12xlarge 2.4192 1

DC16 R2- Stockholm M5d.metal 5.76 1

DC17 R2- Zurich M6a.metal 9.6878 1

DC18 R3- Hong Kong M6g.large 0.106 1

DC19 R3- Hyderabad M5.2xlarge 0.404 1

DC20 R3-Jakarta M6gd.8xlarg 1.808 1

DC21 R3- Melbourne M6g.metal 3.072 1

DC22 R3- Mumbai M6i.metal 6.464 1

DC23 R3- Osaka M6g.medium 0.0496 1

DC24 R3- Seoul M6g.xlarge 0.188 1

DC25 R3- Singapore M5.4xlarge 0.96 1

DC26 R3- Sydney M6gd.12xlarge 2.736 1

DC27 R3- Tokyo M5d.metal 7.008 1

DC28 R4- Cape town M6a.metal 9.513 1

144

DC29 R4- Bahrain M6g.large 0.094 1

DC30 R4- Israel M5.2xlarge 0.449 1

DC31 R4- UAE M6gd.8xlarg 1.7728 1

This MATLAB code serves as a foundational tool for analyzing and improving cloud

resource allocation, playing a crucial role in system enhancement, have demonstrated that

similar to previous examples, the following steps outline the configuration of the trapezoidal

membership function. This continuation ensures a comprehensive understanding of our

approach.

• Data Import and Initialization

This section initializes the fuzzy inference system to explore the intelligent features built into

the Intelligent Validation Cloud Broker System (IVCBS), looked into the complex sorting of

VCPU sources, using them as a key example. This strict method is used the same way for all

VM resources and user requests,. This makes sure that the SLA-level classification is correct

and reliable. Moreover, to demonstrate the alignment of our mathematical model with the

trapezoidal membership function, referenced this approach in the discussion on initializing

and depicting the membership function. This MATLAB code is crucial, serving as a

foundational tool for the analysis and enhancement of cloud resource allocation.

APPENDIX 7:0.7 FIGURE 1. VCPU CLASSIFICATION CODE.

clear; close all; CLC; warning off fis = newfis('Classification'); d = xlsread('VCPU.xlsx');

Input-Value = d(:,1); MAX = max(Input-Value);

(fis) and reads input data from an Excel file ('VCPU.xlsx'), extracting the 'Input-Value' column
and determining the maximum value for normalization.

• Defining Membership Functions

pV1 = 1; pV2 = 2; pV3 = 4; pV4 = 8; pV5 = 16 ;

pV6 = 32; pV7 = 48; pV8 = 64; pV9 = 96; pV10 = 128; pV11 = 192 ;

fis = addvar(fis, 'input', 'VCPU', [0 MAX]) ;

fis = addmf(fis, 'input', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ;

fis = addmf(fis, 'input', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ;

145

fis = addmf(fis, 'input', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ;

fis = addmf(fis, 'input', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ;

fis = addmf(fis, 'input', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]) ;

fis = addvar(fis, 'output', 'VCPU Level', [0 MAX]);

fis = addmf(fis, 'output', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ;

fis = addmf(fis, 'output', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ;

fis = addmf(fis, 'output', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ;

fis = addmf(fis, 'output', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ;

fis = addmf(fis, 'output', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]);

Membership functions (MFs) for the input and output variables are defined using trapezoidal

membership functions (trapmf). These functions categorize the VCPU values into linguistic

variables: Poor, Fair, Good, Very Good, and Excellent.

• Visualization

figure

plotmf(fis, 'input', 1);

This visualizes the trapezoidal membership functions. Finally, the specific MATLAB software

and libraries, along with the parameters and functions examined in the Intelligent Cloud Broker

Validation System, were represented. After the broker finalizes the classification of user

requests and SLA resources using the classification algorithm, it then performs precise

matching of the validation results, ensuring that all outcomes equate to 1. This is accomplished

through a specialized matching algorithm. This section delves into both algorithms, showcasing

their crucial role in guaranteeing intelligent SLA selection for executing corresponding user

requests. The following context in this section illustrates both algorithms.

APPENDIX 7:0.8 FIGURE 2. APPLY THE TRAPEZOIDAL PROPOSED MODEL OF

CPU LEVELS.

146

APPENDIX 7:0.9 FIGURE 3. IVCBS-RESPONSE TIME BY REGION (OPTIMIZE

RESPONSE TIME POLICY).

APPENDIX 7:1.0 FIGURE 4. IVCBS-RESPONSE TIME BY REGION (RECONFIGURE

DYNAMICALLY POLICY).

147

APPENDIX 7:1.1 FIGURE 5. IVCBS DC- REQUEST SERVICING TIME (OPTIMIZE

RESPONSE TIME POLICY).

APPENDIX 7:1.2 FIGURE 6. IVCBS DC- REQUEST SERVICING TIME (DYNAMIC

RECONFIGURATION POLICY).

APPENDIX 7:1.3 FIGURE 7. ROUTING STRATEGY BY THE DYNAMIC

RECONFIGURATIONS POLICY.

148

APPENDIX 7:1.4 FIGURE 8. ROUTING STRATEGY BY THE OPTIMIZED RESPONSE

TIME POLICY.

APPENDIX 7:1.5 FIGURE 9. TRADITIONAL-RESPONSE TIME BY REGION

(OPTIMIZE RESPONSE TIME POLICY).

APPENDIX 7:1.6 FIGURE 10. TRADITIONAL-RESPONSE TIME BY REGION

(RECONFIGURE DYNAMICALLY POLICY).

149

APPENDIX 7:1.7 FIGURE 11. TRADITIONAL DC- REQUEST SERVICING TIME

(OPTIMIZE RESPONSE TIME POLICY).

APPENDIX 7:1.8 FIGURE 12. TRADITIONAL DC- REQUEST SERVICING TIME

(DYNAMIC RECONFIGURATION POLICY).

Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven

Approach

150

APPENDIX 8:0.1 FIGURE 1. FUZZY RULE BASE.

Appendix 8:0.2 Table 1. User base configuration.

User Bases Geographic-

Regions

Requests-

per users

per Hour

Peak Hours

(GMT)

Avg

peak

users

Avg

Off-

peak

users

Start End

UB1 :1000 R0: North

America

60 12 15 800 100

UB2 :1000 R1: South

America

60 14 17 1000 100

UB3 :1000 R2: Europe 60 19 22 1000 100

UB4 :1000 R3: Asia 60 0 3 700 100

UB5 :1000 R4: Africa and

middle east

60 20 23 900 100

UB6 :1000 R5: Africa 60 8 11 1000 100

UB7:1000 R0: North

America

60 6 9 1000 100

UB8:1000 R1: South

America

60 12 15 500 100

UB9 :1000 R2: Europe 60 18 21 750 100

UB10 :1000 R3: Asia 60 7 9 1000 100

Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center.

R
eq

u
es

t

P
ac

k
et

S
iz

e
(B

y
te

)

U
se

r
fa

ct
o
r

in
 U

B
S

R
eq

u
es

t

fa
ct

o
r

in

D
C

E
x
ec

u
ta

b
le

re
q
u
es

t

(b
y
te

)

L
o
ad

b
al

an
ce

A
lg

o
ri

th
m

B
ro

k
er

p
o
li

cy

5
0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

ti
m

e.

1
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

 t
im

e.

1
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

 t
im

e.

151

1
5
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e
re

sp
o
n
se

ti
m

e.

2
0
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e
re

sp
o
n
se

ti
m

e.

APPENDIX 8:0.4 FIGURE 2. SIMULATION PROCESS.

APPENDIX 8:0.5 FIGURE 3. SURFACE VIEWER FOR FUZZY MODEL OUTPUT.

152

Author’s Publication

1. Sekh, I., & Nehéz, K. (2024). Intelligent SLA Selection Through the Validation Cloud

Broker System. IEEE Access. DOI: 10.1109/ACCESS.2024.3439617.

2. Sekhi, I. R., Abdah, H., & Nehéz, K. (2025). Reliable and Cost-Effective Fuzzy-Based

Cloud Broker. International Journal of Networked and Distributed Computing, 13(1), 1-9.

https://doi.org/10.1007/s44227-024-00052-x.

3. Sekhi, I. (2023). Estimating Cloud Computing Round-Trip Time (RTT) Using Fuzzy Logic

for Inter-Region Distances. International Journal on Cybernetics & Informatics

(IJCI), 12(12), 95.

4. Sekhi, I. (2023). Selecting the SLA guarantee by evaluating the QOS

availability. MULTIDISZCIPLINÁRIS TUDOMÁNYOK: A MISKOLCI EGYETEM

KÖZLEMÉNYE, 13(4), 80-102. https://doi.org/10.35925/j.multi.2023.4.8

5. Efficient Broker-Driven Request Packet Size - Under review at International Journal on

Informatics Visualization journal. (Accepted for publication)

6. Sekhi, I., Kovács, S., & Nehéz, K. (2025). Enhancing Decision-making in Uncertain

Domains through Optimized Fuzzy Logic Systems. Periodica Polytechnica Electrical

Engineering and Computer Science, 69(1), 63-78. https://doi.org/10.3311/PPee.38729

Journal name
Impact

Score

H-

Index
SJR

Overall

ranking

1) IEEE Access-(Q1) 4.64 242 0.96 4760

2) International Journal of Networked and

Distributed Computing-(Q3)

2.23 11 0.42 12527

3) Periodica Polytechnica Electrical

Engineering and Computer Science-(Q3)

1.16 16 0.293 15951

4) International Journal on Informatics

Visualization-(Q3)

1.38 15 0.211 19367

5) University of Miskolc: MultiScience - microCAD International Multidisciplinary

Scientific Conference - Special Issue Part III.

6) INTERNATIONAL JOURNAL ON CYBERNETICS & INFORMATICS(IJCI):

IJCI Conference Proceedings

https://doi.org/10.1109/ACCESS.2024.3439617
https://doi.org/10.1007/s44227-024-00052-x
https://doi.org/10.35925/j.multi.2023.4.8
https://doi.org/10.3311/PPee.38729
https://pp.bme.hu/eecs/index
https://pp.bme.hu/eecs/index

153

References

[1] Aravinth, S. S., Krishnan, A. S. R., Ranganathan, R., Sasikala, M., Kumar, M. S., & Thiyagarajan, R. (2024). Cloud

Computing—Everything as a Cloud Service in Industry 4.0. In Digital Transformation: Industry 4.0 to Society 5.0 (pp.

103-121). Singapore: Springer Nature Singapore.

[2] Qazi, F., Kwak, D., Khan, F. G., Ali, F., & Khan, S. U. (2024). Service Level Agreement in cloud computing:

Taxonomy, prospects, and challenges. Internet of Things, 101126.

[3] Sissodia, R., Rauthan, M. S., & Barthwal, V. (2024). Service Level Agreements (SLAs) and Their Role in Establishing

Trust. In Analyzing and Mitigating Security Risks in Cloud Computing (pp. 182-193). IGI Global.

[4] Fernandes, S. (2017). Performance evaluation for network services, systems and protocols (pp. 1-175). Heidelberg:

Springer.

[5] Bose, R., Sengupta, S., & Roy, S. (2023). Interpreting SLA and related nomenclature in terms of Cloud Computing: a

layered approach to understanding service level agreements in the context of cloud computing. Lambert Academic

Publishing.

[6] Shan, L., Sun, L., & Rezaeipanah, A. (2024). Towards a novel service broker policy for choosing the appropriate data

center in cloud environments. Computer Communications, 107939.

[7] Mendel, J., & Wu, D. (2010). Perceptual computing: aiding people in making subjective judgments. John Wiley &

Sons.

[8] Tallón-Ballesteros, A. J., & Beltrán-Barba, R. (Eds.). (2023). Fuzzy Systems and Data Mining IX: Proceedings of

FSDM 2023 (Vol. 378). IOS Press.

[9] Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010, April). Cloudanalyst: A cloudsim-based visual modeller for

analysing cloud computing environments and applications. In 2010 24th IEEE international conference on advanced

information networking and applications (pp. 446-452). IEEE.

[10] Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: An environment for performance evaluation of edge computing

systems. Transactions on Emerging Telecommunications Technologies 29(11), 3493 (2018).

[11] Rampérez, V., Soriano, J., Lizcano, D., Aljawarneh, S., & Lara, J. A. (2022). From SLA to vendor‐neutral metrics:

An intelligent knowledge‐based approach for multi‐cloud SLA‐based broker. International Journal of Intelligent

Systems, 37(12), 10533-10575.

[12] Malla, P. A., & Sheikh, S. (2023). Analysis of QoS aware energy‐efficient resource provisioning techniques in cloud

computing. International Journal of Communication Systems, 36(1), e5359.

[13] Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D., Persico, V., & Pescapé, A. (2021). Characterization and analysis of

cloud-to-user latency: The case of Azure and AWS. Computer Networks, 184, 107693.

[14] Choudhary, R., & Sharma, P. (2023). Data Transmission Reliability in Distributed Cloud Environments: Challenges

and Solutions. Future Generation Computer Systems, 147, 300-315.

[15] Zhang, C., Wang, Y., Lv, Y., Wu, H., & Guo, H. (2019). An Energy and SLA‐Aware Resource Management Strategy

in Cloud Data Centers. Scientific Programming, 2019(1), 3204346.

[16] Navandar, R. K. (2024). Enhancing Cloud Computing Environments with AI-Driven Resource Allocation

Models. Advances in Nonlinear Variational Inequalities, 27(3), 541-557.

[17] Rakib, A., & Uddin, I. (2019). An efficient rule-based distributed reasoning framework for resource-bounded

systems. Mobile Networks and Applications, 24(1), 82-99.

[18] Faiz, M., & Daniel, A. K. (2024). A multi-criteria cloud selection model based on fuzzy logic technique for

QoS. International Journal of System Assurance Engineering and Management, 15(2), 687-704.

[19] Reyes-García, C. A., & Torres-Garcia, A. A. (2022). Fuzzy logic and fuzzy systems. In Biosignal Processing and

Classification Using Computational Learning and Intelligence (pp. 153-176). Academic Press.

[20] Kaur, H., & Gargrish, S. (2024). DRAP-CPU: a novel VM migration approach through a dynamic prioritized resource

allocation strategy. Microsystem Technologies, 1-12.

[21] Buyya, R., Ilager, S., & Arroba, P. (2024). Energy‐efficiency and sustainability in new generation cloud computing: A

vision and directions for integrated management of data centre resources and workloads. Software: Practice and

Experience, 54(1), 24-38.

[22] Al-E'mari, S., Sanjalawe, Y., Al-Daraiseh, A., Taha, M. B., & Aladaileh, M. (2024). Cloud Datacenter Selection

Using Service Broker Policies: A Survey. CMES-Computer Modeling in Engineering & Sciences, 139(1).

[23] Kavis, M. (2014). Architecting the cloud: design decisions for cloud computing service models (SaaS, PaaS, and

IaaS). John Wiley & Sons, Inc., Hoboken, New Jersey.

[24] Ikram, M. A., & Hussain, F. K. (2018). Software as a service (saas) service selection based on measuring the shortest

distance to the consumer’s preferences. In Advances in Internet, Data & Web Technologies: The 6th International

Conference on Emerging Internet, Data & Web Technologies (EIDWT-2018) (pp. 403-415). Springer International

Publishing.

154

[25] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST cloud computing reference

architecture. NIST special publication, 500(2011), 1-28.

[26] Wang, L., Ranjan, R., Chen, J., & Benatallah, B. (Eds.). (2011). Cloud computing: methodology, systems, and

applications. CRC press.

[27] Rountree, D., & Castrillo, I. (2013). The basics of cloud computing: Understanding the fundamentals of cloud

computing in theory and practice. Newnes.

[28] Cloud, H. (2011). The nist definition of cloud computing. National institute of science and technology, special

publication, 800(2011), 145.

[29] Chandrasekaran, K. (2014). Essentials of cloud computing. CrC Press.

[30] Kingsley, M. S. (2023). Cloud Technologies and Services: Theoretical Concepts and Practical Applications. Springer

Nature.

[31] L'Esteve, R. C. (2023). The cloud leader's handbook: strategically innovate, transform, and scale organizations.

[32] Wagdy, M., Babulak, E., & Al-Dabass, D. (2021). Network function virtualization over cloud-cloud computing as

business continuity solution. Intechopen, Published: July 14th.

[33] Hiran, K. K., Doshi, R., Fagbola, T., & Mahrishi, M. (2019). Cloud computing: master the concepts, architecture and

applications with real-world examples and case studies. Bpb Publications.

[34] Amankwah, R., Asianoa, R., & Birago, B. Virtualization and Cloud Computing. International Journal of Computer

Applications, 975, 8887.

[35] Kocaleva, M., Zlatanovska, B., Karamazova Gelova, E., & Zlatev, Z. (2024). Cloud computing and virtualization: can

cloud computing exist separately from virtualization?.

[36] Furht, B., & Escalante, A. (2010). Handbook of cloud computing (Vol. 3). New York: springer.

[37] Zerwas, J., Györgyi, C., Blenk, A., Schmid, S., & Avin, C. (2023). Duo: A high-throughput reconfigurable datacenter

network using local routing and control. Proceedings of the ACM on Measurement and Analysis of Computing

Systems, 7(1), 1-25.

[38] Haddadou, K., & Pujolle, G. (2024). Cloud et Edge Networking. ISTE Group.

[39] Dutt, D. G. (2019). Cloud native data center networking: architecture, protocols, and tools. O'Reilly Media.

[40] Dab, B., Fajjari, I., Belabed, D., & Aitsaadi, N. (2021). Architectures of Data Center Networks:

Overview. Management of Data Center Networks, 1-27.

[41] Alkhatib, A., Shaheen, A., & Albustanji, R. N. (2024). A Comparative Analysis of Cloud Computing Services: AWS,

Azure, and GCP. International Journal of Computing and Digital Systems, 16(1), 1-23.

[42] Borra, P. (2024). Comparison and Analysis of Leading Cloud Service Providers (AWS, Azure and

GCP). International Journal of Advanced Research in Engineering and Technology (IJARET), 15(3).

[43] Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing: Principles and paradigms. John Wiley &

Sons.

[44] Nicolazzo, S., Nocera, A., & Pedrycz, W. (2024). Service Level Agreements and Security SLA: A Comprehensive

Survey. arXiv preprint arXiv:2405.00009.

[45] Ludwig, H. (2003, December). Web services QoS: external SLAs and internal policies or: how do we deliver what we

promise?. In Fourth International Conference on Web Information Systems Engineering Workshops, 2003.

Proceedings. (pp. 115-120). IEEE.

[46] D. Chaudhary and B. Kumar, “Cost optimized Hybrid Genetic-Gravitational Search Algorithm for load scheduling in

Cloud Computing,” Appl. Soft Compute. J., vol. 83, 2019.

[47] S. Mathew and J. Varia, “Overview of amazon web services,” Amazon Whitepapers, vol. 105, no.1, p. 22, 2014.

[48] Ben-Yehuda, O. A., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. The Rise of RaaS: The Resource-as-a-Service Cloud

In the RaaS cloud, virtual machines trade in fine-grain resources on the fly.

[49] Mishra, P. (2023). Advanced AWS Services. In Cloud Computing with AWS: Everything You Need to Know to be an

AWS Cloud Practitioner (pp. 247-277). Berkeley, CA: Apress.

[50] Kadaskar, H. R., & Kamthe, V. R. (2024). An overview of AWS. International Journal of Scientific Research in

Modern Science and Technology, 3(7), 22-30.

[51] Patibandla, K. R. (2024). Design and Create VPC in AWS. Journal of Artificial Intelligence General science (JAIGS)

ISSN: 3006-4023, 1(1), 273-282.

[52] Talluri, S., & Makani, S. T. (2023). Managing Identity and Access Management (IAM) in Amazon Web Services

(AWS). Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-159. DOI: doi. org/10.47363/JAICC/2023

(2), 147, 2-5.

[53] Amazon Web Services. (2024, June 27). AWS Well-Architected Framework: Cost Optimization Pillar.

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html.

[54] Amazon Web Services. (2024). AWS account management: Reference guide.

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html.

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

155

[55] Hunter, T., & Porter, S. (2018). Google Cloud Platform for developers: build highly scalable cloud solutions with the

power of Google Cloud Platform. Packt Publishing Ltd.

[56] Borra, P. (2024). A Survey of Google Cloud Platform (GCP): Features, Services, and Applications. International

Journal of Advanced Research in Science, Communication and Technology (IJARSCT), 4(3), 191-199.

[57] Haq, M. N. U. (2023). CLOUD SERVICE PROVIDERS AND THE ECOSYSTEM (Doctoral dissertation, School of

Science and Technology, Glocal University).

[58] Deshpande, A., Kumar, M., & Chaudhari, V. (2020). Hands-On Artificial Intelligence on Google Cloud Platform:

Build Intelligent Applications Powered by TensorFlow, Cloud AutoML, BigQuery, and Dialogflow. Packt Publishing

Ltd.

[59] Google Cloud. (2024). Compute Engine: Documentation, guides - Regions and zones.

https://cloud.google.com/compute/docs/regions-zones.

[60] BlueXP by NetApp. (2021). Google Cloud pricing: The complete guide. https://bluexp.netapp.com/blog/gcp-cvo-blg-

google-cloud-pricing-the-complete-guide.

[61] Andersson, J. C. (2023). Learning Microsoft Azure. " O'Reilly Media, Inc.".

[62] Boneder, S. (2023). Evaluation and comparison of the security offerings of the big three cloud service providers

Amazon Web Services, Microsoft Azure and Google Cloud Platform (Doctoral dissertation, Technische Hochschule

Ingolstadt).

[63] Falck, O., & Wass, L. (2024). Azure App Service Plan Optimization: Cloud Resource optimization.

[64] Ascensão, P., Neto, L. F., Velasquez, K., & Abreu, D. P. (2024, June). Assessing Kubernetes Distributions: A

Comparative Study. In 2024 IEEE 22nd Mediterranean Electrotechnical Conference (MELECON) (pp. 832-837).

IEEE.

[65] Soueidi, C. (2015). Microsoft Azure Storage Essentials. Packt Publishing Ltd.

[66] Ramesh, R. S. (2024). Scalable Systems and Software Architectures for High-Performance Computing on cloud

platforms. arXiv preprint arXiv:2408.10281.

[67] Mäenpää, J. (2009, April). Cloud computing with the Azure platform. In TKK T-110.5190 Seminar on Internet

Working.

[68] Borra, P. (2024). Microsoft Azure Networking: Empowering Cloud Connectivity and Security. International Journal

of Advanced Research in Science, Communication and Technology (IJARSCT) Volume, 4.

[69] Borra, P. (2024). Advancing Data Science and AI with Azure Machine Learning: A Comprehensive

Review. International Journal of Research Publication and Reviews, 5(6), 1825-1831.

[70] Borra, P. (2024). Impact and Innovations of Azure IoT: Current Applications, Services, and Future

Directions. International Journal of Recent Technology and Engineering (IJRTE) ISSN, 2277-3878.

[71] Sabharwal, N., Barua, S., Anand, N., & Aggarwal, P. (2019). Developing Cognitive Bots Using the IBM Watson

Engine: Practical, Hands-on Guide to Developing Complex Cognitive Bots Using the IBM Watson Platform. Apress.

[72] Vehniä, V. J. (2020). Implementing Azure Active Directory Integration with an Existing Cloud Service.

[73] Microsoft. (2024, March 20). Azure geographies: Availability zones overview. https://learn.microsoft.com/en-

us/azure/reliability/availability-zones-overview?tabs=azure-cli.

[74] Microsoft. (2024). Microsoft Azure official site: Pricing. https://azure.microsoft.com/en-us/pricing.

[75] Shukla, S., Hassan, M. F., Tran, D. C., Akbar, R., Paputungan, I. V., & Khan, M. K. (2023). Improving latency in

Internet-of-Things and cloud computing for real-time data transmission: a systematic literature review (SLR). Cluster

Computing, 1-24.

[76] Marinescu, D. C. (2022). Cloud computing: theory and practice. Morgan Kaufmann.

[77] Dang, T. K., Mohan, N., Corneo, L., Zavodovski, A., Ott, J., & Kangasharju, J. (2021, November). Cloudy with a

chance of short RTTs: analyzing cloud connectivity in the internet. In Proceedings of the 21st ACM Internet

Measurement Conference (pp. 62-79).

[78] Selimi, M., Freitag, F., Cerdà‐Alabern, L., & Veiga, L. (2016). Performance evaluation of a distributed storage service

in community network clouds. Concurrency and Computation: Practice and Experience, 28(11), 3131-3148.

[79] Yadav, R. K., Chattopadhyay, S., Jaidka, P., & Upadhyay, P. (2024, March). Performance Analysis of Cloud-Assisted

Resource Allocation Algorithms in 6G Networks. In 2024 2nd International Conference on Disruptive Technologies

(ICDT) (pp. 1038-1043). IEEE.

[80] Arslan, S., Li, Y., Kumar, G., & Dukkipati, N. (2023). Bolt:{Sub-RTT} Congestion Control for {Ultra-Low} Latency.

In 20th USENIX Symposium on Networked Systems Design and Implementation (NSDI 23) (pp. 219-236).

[81] Buyya, R., Yeo, C. S., & Venugopal, S. (2008, September). Market-oriented cloud computing: Vision, hype, and

reality for delivering it services as computing utilities. In 2008 10th IEEE international conference on high performance

computing and communications (pp. 5-13). Ieee.

[82] Padmanabhan, V. N., & Subramanian, L. (2001, August). An investigation of geographic mapping techniques for

Internet hosts. In Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for

computer communications (pp. 173-185).

https://cloud.google.com/compute/docs/regions-zones
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-pricing-the-complete-guide
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-pricing-the-complete-guide
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview?tabs=azure-cli
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview?tabs=azure-cli
https://azure.microsoft.com/en-us/pricing

156

[83] Rak, J. Resilient Routing in Communication Networks: A Systems Perspective. Springer Nature.

[84] Haitjema, M. A. (2013). Delivering Consistent Network Performance in Multi-tenant Data Centers. Washington

University in St. Louis.

[85] McCabe, J. D. (2010). Network analysis, architecture, and design. Elsevier.

[86] Bathini, R., & Vurukonda, N. (2024). A survey to build framework for optimize and secure migration and

transmission of cloud data. Bulletin of Electrical Engineering and Informatics, 13(2), 812-820.

[87] Mark, J., & Bommu, R. (2024). Tackling Environmental Concerns: Mitigating the Carbon Footprint of Data

Transmission in Cloud Computing. Unique Endeavor in Business & Social Sciences, 3(1), 99-112.

[88] Jin, H., Ibrahim, S., Bell, T., Gao, W., Huang, D., & Wu, S. (2010). Cloud types and services. Handbook of cloud

computing, 335-355.
[89] Hopgood, A. A. (2021). Intelligent systems for engineers and scientists: a practical guide to artificial intelligence.

CRC press.

[90] Le Thi, H. A., Le, H. M., Dinh, T. P., & Nguyen, N. T. (2015). Advanced computational methods for knowledge

engineering. Cham: Springer International Publishing.
[91] Chandrasekaran, E., Anandan, R., Suseendran, G., Balamurugan, S., & Hachimi, H. (2021). Fuzzy Intelligent

Systems: Methodologies, Techniques, and Applications. Scrivener Publishing. https://www.scrivenerpublishing.com.

https://doi.org/10.1002/9781119763437

[92] Shehu, A., & Maraj, A. (2012). Fuzzy logic approach for QoS routing analysis. Fuzzy Logic-Algorithms, Techniques

and Implementations, 149-172.

[93] Nithya, S., Maithili, K., Kumar, T. S., Nethani, S., Sharath, M. N., Gupta, K. G., & Bhuvaneswari, G. (2024). A fuzzy

logic and cross-layered optimization for effective congestion control in wireless sensor networks to improve efficiency

and performance. In MATEC Web of Conferences (Vol. 392, p. 01145). EDP Sciences.

[94] Huang, H., Wang, Y., Cai, Y., & Wang, H. (2024). A novel approach for energy consumption management in cloud

centers based on adaptive fuzzy neural systems. Cluster Computing, 1-24.

[95] Goel, u., wittie, m. P., claffy, k. C., & le, a. (2015). Survey of end-to-end mobile network measurement testbeds, tools,

and services. Ieee communications surveys & tutorials, 18(1), 105-123.

[96] Mirkovic, d., armitage, g., & branch, p. (2018). A survey of round-trip time prediction systems. Ieee communications

surveys & tutorials, 20(3), 1758-1776.

[97] GeeksforGeeks. (2023, April 13). What is RTT (Round-Trip Time)? GeeksforGeeks.

https://www.geeksforgeeks.org/what-is-rttround-trip-time.

[98] Klir, g. J., & yuan, b. (1996). Fuzzy sets and fuzzy logic: theory and applications. Possibility theory versus probab.

Theory, 32(2), 207-208.https://doi.10.5860/choice.33-2786.

[99] Pedrycz, w. (1994). Why triangular membership functions? Fuzzy sets and systems, 64(1), 21-30.

Https://doi.org/10.1016/0165-0114(94)90003-5

[100] Baliyan, N., & Kumar, S. (2013, October). Quality assessment of software as a service on cloud using fuzzy logic.

In 2013 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM) (pp. 1-6). IEEE.

https://doi: 10.1109/CCEM.2013.6684439

[101] Alhamad, M., Dillon, T., & Chang, E. (2011). A trust-evaluation metric for cloud applications. International Journal

of Machine Learning and Computing, 1(4), 416. https://doi: 10.7763/IJMLC. 2011.V1.62

[102] Xiaoyong, Y., Ying, L., Tong, J., Tiancheng, L., & Zhonghai, W. (2015, July). An analysis on availability

commitment and penalty in cloud sla. In 2015 IEEE 39th Annual Computer Software and Applications

Conference (Vol. 2, pp. 914-919). IEEE. https://doi:10.1109/COMPSAC.2015.39

[103] Kihuya, W. B., Otieno, C., & Rimiru, R. Analysis of Computer Network Quality of Experience Using Fuzzy Logic

Model: A Survey. https://doi:10.9790/1813-0804028596

[104] Al Moteri, M. A. (2017). Decision Support for Shared Responsibility of Cloud Security Metrics.

[105] Abery, B., Bonner, M., Fossum, P., Koch, T., Montie, J., Nordness, K., ... & Vandercook, T. (1998). The Shared

Responsibility Framework of Social Interaction for Collective Investment: Introducing a Model To Enhance School

Improvement.

[106] Qiqing, F., Xiaoming, P., Qinghua, L., & Yahui, H. (2009, May). A global qos optimizing web services selection

algorithm based on moaco for dynamic web service composition. In 2009 International forum on information

technology and applications (Vol. 1, pp. 37-42). IEEE. https://doi: 10.1109/IFITA.2009.91
[107] Tran, V. X., & Tsuji, H. (2008, October). QoS based ranking for web services: Fuzzy approaches. In 2008 4th

international conference on next generation web services practices (pp. 77-82). IEEE.

https://doi: 10.1109/NWeSP.2008.41

[108] Patel, P., Ranabahu, A. H., & Sheth, A. P. (2009). Service level agreement in cloud computing.

[109] Alhamad, M., Dillon, T., & Chang, E. (2010, April). Conceptual SLA framework for cloud computing. In 4th IEEE

international conference on digital ecosystems and technologies (pp. 606-610). IEEE.

https://doi:10.1109/DEST.2010.5610586

https://www.scrivenerpublishing.com/
https://doi.org/10.1002/9781119763437
https://www.geeksforgeeks.org/what-is-rttround-trip-time.
https://doi.org/10.1016/0165-0114(94)90003-5
https://doi.org/10.1109/CCEM.2013.6684439
https://doi.org/10.7763/IJMLC.2011.V1.62
https://doi.org/10.1109/COMPSAC.2015.39
https://doi.org/10.1109/IFITA.2009.91
https://doi.org/10.1109/NWeSP.2008.41
https://doi.org/10.1109/DEST.2010.5610586

157

[110] Qiu, M. M., Zhou, Y., & Wang, C. (2013, June). Systematic analysis of public cloud service level agreements and

related business values. In 2013 IEEE International Conference on Services Computing (pp. 729-736). IEEE.

https://doi: 10.1109/SCC.2013.24

[111] Brunnström, K., Beker, S. A., De Moor, K., Dooms, A., Egger, S., Garcia, M. N., ... & Zgank, A. (2013). Qualinet

white paper on definitions of quality of experience.

[112] Baset, S. A. (2012). Cloud SLAs: present and future. ACM SIGOPS Operating Systems Review, 46(2), 57-66.

https://doi.org/10.1145/2331576.2331586

[113] Godhrawala, H., & Sridaran, R. (2023). Apriori Algorithm Based Approach for Improving QoS and SLA Guarantee

in IaaS Clouds Using Pattern-Based Service-Oriented Architecture. SN Computer Science, 4(5), 700.

[114] Akbari-Moghanjoughi, A., Amazonas, J. R. D. A., Santos-Boada, G., & Solé-Pareta, J. (2023). Service level

agreements for communication networks: A survey. arXiv preprint arXiv:2309.07272.

[115] Saqib, M., Elbiaze, H., & Glitho, R. (2024). Adaptive In-Network Traffic Classifier: Bridging the Gap for Improved

QoS by Minimizing Misclassification. IEEE Open Journal of the Communications Society.

[116] Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing. John Wiley & Sons.

[117] Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of computational systems, volume I:

performance and background. Chapman and Hall/CRC.

[118] Nabi, M., Toeroe, M., & Khendek, F. (2016). Availability in the cloud: State of the art. Journal of Network and

Computer Applications, 60, 54-67. https://doi.org/10.1016/j.jnca.2015.11.014

[119] Toeroe, M., & Tam, F. (Eds.). (2012). Service availability: principles and practice. John Wiley & Sons.

[120] Hauer, T., Hoffmann, P., Lunney, J., Ardelean, D., & Diwan, A. (2020). Meaningful availability. In 17th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 20) (pp. 545-557).

[121] Hanczewski, S., Stasiak, M., & Weissenberg, M. (2024). High-Accuracy Analytical Model for Heterogeneous Cloud

Systems with Limited Availability of Physical Machine Resources Based on Markov Chain. Electronics, 13(11), 2161.

[122] Aceto, G., Botta, A., Marchetta, P., Persico, V., & Pescapé, A. (2018). A comprehensive survey on internet

outages. Journal of Network and Computer Applications, 113, 36-63.

[123] Miracle, N. O. (2024). The role of network monitoring and analysis in ensuring optimal network

performance. International Research Journal of Modernization in Engineering Technology and Science. https://doi.

org/10.56726/irjmets59269.

[124] Strauss, J., & Kaashoek, M. F. Estimating Bulk Transfer Capacity.

[125] Ramos, J., del Río, P. S., Aracil, J., & de Vergara, J. L. (2011). On the effect of concurrent applications in bandwidth

measurement speedometers. Computer Networks, 55(6), 1435-1453.

[126] Barney, D. (2024, June 10). 12 network metrics and KPIs you should probably care about. Network Computing.

Retrieved from https://www.networkcomputing.com.

[127] Abts, D., & Kim, J. (2022). High performance datacenter networks: Architectures, algorithms, and opportunities.

Springer Nature.

[128] Schmidt, F. (2015). Heuristic Header Error Recovery for Corrupted Network Packets. Shaker Verlag.

[129] Kim, D., & Cho, I. H. (1998). An Optimal COG Defuzzification Method for A Fuzzy Logic Controller. In Soft

Computing in Engineering Design and Manufacturing (pp. 401-409). Springer London.https://doi. DOI:10.1007/978-1-

4471-0427-8_44

[130] Regaya, C. B., Farhani, F., Hamdi, H., Zaafouri, A., Chaari, A. "Robust ANFIS vector control of induction motor

drive for high-performance speed control supplied by a photovoltaic generator," WSEAS Transactions on Systems and

Control, 15(37), pp. 356–365, 2020. https://doi.org/10.37394/23203.2020.15.37

[131] Tahmasebi, M., Gohari, M., Emami, A. "An autonomous pesticide sprayer robot with a color-based vision system,"

International Journal of Robotics and Control Systems, 2(1), pp. 115–123, 2022. https://doi.org/10.31763/ijrcs.v2i1.480

[132] Chakchouk, W., Ben Regaya, C., Zaafouri, A., Sellami, A. "Fuzzy supervisor approach design-based switching

controller for pumping station: Experimental validation," Mathematical Problems in Engineering, 2017(1), Article ID

3597346, 2017. https://doi.org/10.1155/2017/3597346

[133] Regaya, C. B., Farhani, F., Zaafouri, A., Chaari, A. "High-performance control of IM using MRAS-fuzzy logic

observer," International Journal of Tomography and Simulation, 30(2), pp. 40–52, 2017. ISSN 0973-7294.

[134] Ben Regaya, C., Zaafouri, A., Chaari, A. "Electric drive control with rotor resistance and rotor speed observers based

on fuzzy logic," Mathematical Problems in Engineering, 2014(1), Article ID 207826, 2014.

https://doi.org/10.1155/2014/207826

[135] Sharma, R., Gaur, P., Mittal, A. P. "Design of two-layered fractional order fuzzy logic controllers applied to robotic

manipulator with variable payload," Applied Soft Computing, 47, pp. 565–576, 2016.

https://doi.org/10.1016/j.asoc.2016.05.043

https://doi.org/10.1109/SCC.2013.24
https://doi.org/10.1145/2331576.2331586
https://doi.org/10.1016/j.jnca.2015.11.014
https://www.networkcomputing.com/
https://doi.org/10.1007/978-1-4471-0427-8_44
https://doi.org/10.1007/978-1-4471-0427-8_44
https://doi.org/10.37394/23203.2020.15.37
https://doi.org/10.31763/ijrcs.v2i1.480
https://doi.org/10.1155/2017/3597346
https://doi.org/10.1155/2014/207826
https://doi.org/10.1016/j.asoc.2016.05.043

158

[136] Berkachy, R. "Fuzzy Rule-Based Systems," In: The Signed Distance Measure in Fuzzy Statistical Analysis, Fuzzy

Management Methods, Springer, Cham, 2021, pp. 35–45. ISBN 978-3-030-76915-4 https://doi.org/10.1007/978-3-030-

76916-1_3

[137] Zuliana, E., Abadi, A. M. "Sugeno fuzzy inference method and MATLAB application program for simulation of

student performance evaluation in the elementary mathematics learning process," International Journal of Advanced

Trends in Computer Science and Engineering, 9, pp. 4223–4228, 2020. ISSN 2278-3091.

https://doi.org/10.30534/ijatcse/2020/08942020

[138] Petrović, V. M. "Artificial intelligence and virtual worlds–toward human-level AI agents," IEEE Access, 6, pp.

39976–39988, 2018. https://doi.org/10.1109/ACCESS.2018.2855970

[139] Voskoglou, M. "Fuzzy logic: History, methodology and applications to education," Sumerianz Journal of Education,

Linguistics and Literature, 1(1), pp. 10–18, 2018. ISSN (p): 2617-1732.
[140] Mounika, G., Rajyalakshmi, K., Rajkumar, G. V. S., Sravani, D. "Prediction and optimization of process parameters

using design of experiments and fuzzy logic," International Journal on Interactive Design and Manufacturing (IJIDeM),

18(4), pp. 2333–2343, 2024. https://doi.org/10.1007/s12008-023-01446-x

[141] Valdés, L. V. "Methods and elements of graph theory and fuzzy logic for communication network management,"

PhD, Universidad de Málaga, 2022.

[142] Lagunes, M. L., Castillo, O., Soria, J. "Optimization of membership function parameters for fuzzy controllers of an

autonomous mobile robot using the firefly algorithm," In: Castillo, O., Melin, P., Kacprzyk, J. (eds.) Fuzzy Logic

Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications, Springer, Cham,

2018, pp. 199–206. ISBN 978-3-319-71008-2 https://doi.org/10.1007/978-3-319-71008-2_16

[143] Nadeem, A., Rizvi, A. A., Noor, M. Y. "Applying a higher number of output membership functions to enhance the

precision of a fuzzy system," IEEE Transactions on Emerging Topics in Computational Intelligence, 1, pp. 1–12, 2024.

https://doi.org/10.1109/TETCI.2024.3425309

[144] Ying, H. "Fuzzy Control and Modeling: Analytical Foundations and Applications," Wiley-IEEE Press, 2000. ISBN

0780334973. https://doi.org/10.1109/9780470544730

[145] Zadeh, L. A. "Fuzzy sets," Information and Control, 8(3), pp. 338–353, 1965. https://doi.org/10.1016/S0019-

9958(65)90241-X

[146] Dubois, D., Prade, H. Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980. ISBN 0-12-222750-

6.

[147] Gupta, K., Kumar, P., Upadhyaya, S., Poriye, M., Aggarwal, S. "Fuzzy logic and machine learning integration:

Enhancing healthcare decision-making," International Journal of Computer Information Systems and Industrial

Management Applications, 16(3), pp. 20–20, 2024.

[148] Zheng, Y., Xu, Z., Wu, T., et al. "A systematic survey of fuzzy deep learning for uncertain medical data," Artificial

Intelligence Review, 57, pp. 230, 2024. https://doi.org/10.1007/s10462-024-10871-7

[149] Herrera, F., Martínez, L. "A 2-tuple fuzzy linguistic representation model for computing with words," IEEE

Transactions on Fuzzy Systems, 8(6), pp. 746–752, 2000. https://doi.org/10.1109/91.890332

[150] Marín Díaz, G., Galdón Salvador, J. L. "Group decision-making model based on 2-tuple fuzzy linguistic model and

AHP applied to measuring digital maturity level of organizations," Systems, 11(7), p. 341, 2023.

https://doi.org/10.3390/systems11070341

[151] Wang, L. X., Mendel, J. M. "Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,"

IEEE Transactions on Neural Networks, 3(5), pp. 807–814, 1992. https://doi.org/10.1109/72.159070

[152] Al-qaysi, Z. T., Albahri, A. S., Ahmed, M. A., Salih, M. M. "Dynamic decision-making framework for

benchmarking brain–computer interface applications: a fuzzy-weighted zero-inconsistency method for consistent

weights and VIKOR for stable rank," Neural Computing and Applications, 36(17), pp. 10355–10378, 2024.

https://doi.org/10.1007/s00521-024-09605-1

[153] Perera, L. P., Carvalho, J. P., Soares, C. G. "Solutions to the failures and limitations of Mamdani fuzzy inference in

ship navigation," IEEE Transactions on Vehicular Technology, 63(4), pp. 1539–1554, 2013.

https://doi.org/10.1109/TVT.2013.2288306

[154] Raju, M. R., Mothku, S. K. "Delay and energy aware task scheduling mechanism for fog-enabled IoT applications: A

reinforcement learning approach," Computer Networks, 224, Article ID 109603, 2023.

https://doi.org/10.1016/j.comnet.2023.109603

[155] Pedrycz, W. "Evolvable fuzzy systems: Some insights and challenges," Evolving Systems, 1, pp. 73–82, 2010.

https://doi.org/10.1007/s12530-010-9002-1

[156] Kovacic, Z., Bogdan, S. "Fuzzy controller design: theory and applications" [e-book], CRC Press, 2018. ISBN

9781315221144. https://doi.org/10.1201/9781420026504

[157] Dong, T., Li, H., Zhang, Z. "The using effect of fuzzy analytic hierarchy process in project engineering risk

management," Neural Computing and Applications, pp. 1–11, 2023. https://doi.org/10.1007/s00521-023-09046-2

https://doi.org/10.1007/978-3-030-76916-1_3
https://doi.org/10.1007/978-3-030-76916-1_3
https://doi.org/10.30534/ijatcse/2020/08942020
https://doi.org/10.1109/ACCESS.2018.2855970
https://doi.org/10.1007/s12008-023-01446-x
https://doi.org/10.1007/978-3-319-71008-2_16
https://doi.org/10.1109/TETCI.2024.3425309
https://doi.org/10.1109/9780470544730
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s10462-024-10871-7
https://doi.org/10.1109/91.890332
https://doi.org/10.3390/systems11070341
https://doi.org/10.1109/72.159070
https://doi.org/10.1007/s00521-024-09605-1
https://doi.org/10.1109/TVT.2013.2288306
https://doi.org/10.1016/j.comnet.2023.109603
https://doi.org/10.1007/s12530-010-9002-1
https://doi.org/10.1201/9781420026504
https://doi.org/10.1007/s00521-023-09046-2

159

[158] Seddik, H. M., Rachid, C. "Fuzzy approach and possibility to solve uncertainty weaknesses in conventional

quantitative risk assessment," Soft Computing, 27(10), pp. 6109–6133, 2023. https://doi.org/10.1007/s00500-023-

07960-0

[159] Sahoo, S. K., Goswami, S. S. "A comprehensive review of multiple criteria decision-making (MCDM) methods:

advancements, applications, and future directions," Decision Making Advances, 1(1), pp. 25–48, 2023.

https://doi.org/10.31181/dma1120237

[160] He, S. F., Pan, X. H., Wang, Y. M., Zamora, D. G., Martínez, L. "A novel multi-criteria decision-making framework

based on evidential reasoning dealing with missing information from online reviews," Information Fusion, 106, Article

ID 102264, 2024. https://doi.org/10.1016/j.inffus.2024.102264

[161] Gen, M., Lin, L. "Genetic algorithms and their applications," In: Pham, H. (ed.) Springer Handbook of Engineering

Statistics, Springer Handbooks, Springer, London, 2023, pp. 635–674. ISBN 978-1-4471-7502-5.

https://doi.org/10.1007/978-1-4471-7503-2_33

[162] Guerrero Granados, B., Quintero M, C. G., Núñez, C. V. "Improved genetic algorithm approach for coordinating

decision-making in technological disaster management," Neural Computing and Applications, 36(9), pp. 4503–4521,

2024. https://doi.org/10.1007/s00521-023-09218-0

[163] Zadeh, L. A. "Fuzzy logic = computing with words," IEEE Transactions on Fuzzy Systems, 4(2), pp. 103–111, 1996.

https://doi.org/10.1109/91.493904

[164] Mitiku, T., Manshahia, M. S. "Neuro fuzzy inference approach: A survey," International Journal of Scientific

Research in Science, Engineering and Technology, 4(7), pp. 505–519, 2018. Print ISSN: 2395-1990, Online ISSN:

2394-4099.

[165] Zadeh, L. A., Klir, G. J., Yuan, B. "Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers," World Scientific,

1996. ISBN: 978-981-02-2421-9. https://doi.org/10.1142/2895

[166] Hasan, M. H., Jaafar, J., Hassan, M. F. "Fuzzy C-Means and two clusters' centers method for generating interval

type-2 membership function," In: 2016 3rd International Conference on Computer and Information Sciences

(ICCOINS), Kuala Lumpur, Malaysia, 2016, pp. 627–632. https://doi.org/10.1109/ICCOINS.2016.7783288

[167] Takagi, T., Sugeno, M. "Fuzzy identification of systems and its applications to modeling and control," IEEE

Transactions on Systems, Man, and Cybernetics, 15(1), pp. 116–132, 1985.

https://doi.org/10.1109/TSMC.1985.6313399

[168] Abramowitz, M., Stegun, I. A. (eds.) Handbook of Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, US Government Printing Office, 1988. https://doi.org/10.1119/1.15378

[169] Oluborode, K. O. "Adaptive neuro-fuzzy controller for double lane traffic intersections," PhD, Federal University of

Technology Akure, 2021. https://doi.org/10.30534/ijatcse/2020/330942020

[98] Klir, G., Yuan, B. "Fuzzy Sets and Fuzzy Logic," Prentice Hall, New Jersey, 1995. ISBN 0-13-101171-5.

[170] Simon, M. K. "Probability distributions involving Gaussian random variables: A handbook for engineers and

scientists," Kluwer Academic Publishers, Boston-Dordrecht-London, 2002. ISBN 978-0-387-34657-1.

[171] Miller, S. "Probability and random processes: With applications to signal processing and communications,"

Academic Press, 2012. ISBN 978-0-12-386981-4.

[172] Elgendi, M. "PPG signal analysis: An introduction using MATLAB®" [e-book], CRC Press, 2020. ISBN

9780429449581. https://doi.org/10.1201/9780429449581

[173] Ruparelia, N. B. (2023). Cloud computing. Mit Press.

[174] Rao, M. N. (2015). Cloud computing. PHI Learning Pvt. Ltd.

[175] Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z. (2010, September). The characteristics of cloud computing.

In 2010 39th International Conference on Parallel Processing Workshops (pp. 275-279). IEEE.

[176] Bharti, P., Ranjan, R., & Prasad, B. (2021). Broker-based optimization of SLA negotiations in cloud

computing. Multiagent and Grid Systems, 17(2), 179-195.

[177] Nagarajan, R., Vinothiyalakshmi, P., & Thirunavukarasu, R. (2023). An Intelligent Cloud Broker with Service

Ranking Algorithm for Validation and Verification of Cloud Services in Multi-cloud Environment.

[178] Dilli, R., Argou, A., Pilla, M., Pernas, A. M., Reiser, R., & Yamin, A. (2018, April). Fuzzy logic and MCDA in IoT

resources classification. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (pp. 761-766).

[179] Ghasemi, A., Toroghi Haghighat, A., & Keshavarzi, A. (2023). Enhanced multi-objective virtual machine

replacement in cloud data centers: combinations of fuzzy logic with reinforcement learning and biogeography-based

optimization algorithms. Cluster Computing, 26(6), 3855-3868.

[180] Mongia, V., & Sharma, A. (2021). Performance and resource-aware virtual machine selection using fuzzy in cloud

environment. In Progress in Advanced Computing and Intelligent Engineering: Proceedings of ICACIE 2020 (pp. 413-

426). Springer Singapore.

[181] Singh, H., Tyagi, S., & Kumar, P. (2021). Comparative analysis of various simulation tools used in a cloud

environment for task-resource mapping. In Proceedings of the International Conference on Paradigms of Computing,

Communication and Data Sciences: PCCDS 2020 (pp. 419-430). Springer Singapore.

https://doi.org/10.1007/s00500-023-07960-0
https://doi.org/10.1007/s00500-023-07960-0
https://doi.org/10.31181/dma1120237
https://doi.org/10.1016/j.inffus.2024.102264
https://doi.org/10.1007/978-1-4471-7503-2_33
https://doi.org/10.1007/s00521-023-09218-0
https://doi.org/10.1109/91.493904
https://doi.org/10.1142/2895
https://doi.org/10.1109/ICCOINS.2016.7783288
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1119/1.15378
https://doi.org/10.30534/ijatcse/2020/330942020
https://doi.org/10.1201/9780429449581

160

[182] Mohanty, S., Patra, S., Sarkar, S., Dube, P., & Pattnaik, P. K. (2024, February). Load Balancing in Cloud

Environment to Minimize Average Response Time. In 2024 International Conference on Emerging Systems and

Intelligent Computing (ESIC) (pp. 187-192). IEEE.

[183] Garg, R., Sharma, R. K., Dalip, D., Singh, T., Malik, A., & Kumpsuprom, S. (2023). Optimization of Cloud Services

Performance using Static and Dynamic Load Balancing Algorithms.
[184] Zhao, W., Peng, Y., Xie, F., & Dai, Z., Modeling and simulation of cloud computing: A review. In 2012 IEEE Asia

Pacific cloud computing congress (APCloudCC) (pp. 20-24). IEEE. (2012)

[185] Chauhan, S. S., Pilli, E. S., Joshi, R. C., Singh, G., & Govil, M. C., Brokering in interconnected cloud computing

environments: A survey. Journal of Parallel and Distributed Computing, 133, 193-209. (2019)

[186] Ahmad, S. G., Iqbal, T., Munir, E. U., & Ramzan, N., Cost optimization in cloud environment based on task

deadline. Journal of Cloud Computing, 12(1), 9. (2023)

[187] Yao, J., Yang, M., Deng, T., & Guan, H., The Cloud Service Broker in Multicloud Demand Response. IEEE Cloud

Computing, 5(6), 80-91. (2018)

[188] Cinar, B., The Role of Cloud Service Brokers: Enhancing Security and Compliance in Multi-cloud Environments.

Journal of Engineering Research and Reports, 25(10), 1-11. (2023)

[189] Petcu, D., Portability and interoperability between clouds: challenges and case study. In Towards a Service-Based

Internet: 4th European Conference, ServiceWave 2011, Poznan, Poland, October 26-28, 2011. Proceedings 4 (pp. 62-

74). Springer Berlin Heidelberg. (2011)

[190] Chafai, Z., Nacer, H., Lekadir, O., Gharbi, N., & Ouchaou, L., A performance evaluation model for users’

satisfaction in federated clouds. Cluster Computing, 1-22. (2024)

[191] Calheiros, R. N., Toosi, A. N., Vecchiola, C., & Buyya, R., A coordinator for scaling elastic applications across

multiple clouds. Future Generation Computer Systems, 28(8), 1350-1362. (2012)

[192] El Karadawy, A. I., Mawgoud, A. A., & Rady, H. M., An empirical analysis on load balancing and service broker

techniques using cloud analyst simulator. In 2020 international conference on innovative trends in communication and

computer engineering (ITCE) (pp. 27-32). IEEE. (2020)

[193] Achhra, S. N. M., Shah, R., Tamrakar, A., & Joshi, P. K., Prof Sowmiya Raksha,“Analysis OF Service Broker And

Load Balancing In Cloud Computing,”. International Journal Of Current Engineering And Scientific Research

(IJCESR), 2(4), 92-98. (2015)

[194] Wittig, A., & Wittig, M. (2023). Amazon Web Services in Action: An in-depth guide to AWS. Simon and Schuster.

[195] Manvi, S., & Shyam, G. (2021). Cloud computing: Concepts and technologies. CRC Press.

[196] Ahmed, A., & Sabyasachi, A. S., Cloud computing simulators: A detailed survey and future direction. In 2014 IEEE

international advance computing conference (IACC) (pp. 866-872). IEEE. (2014).

[197] Srujana, R., Roopa, Y. M., & Mohan, M. D. S. K., Sorted round robin algorithm. In 2019 3rd International

Conference on Trends in Electronics and Informatics (ICOEI) (pp. 968-971). IEEE. (2019)

[198] Youm, D. H., & Yadav, R., Load balancing strategy using round robin algorithm. Asia-pacific Journal of Convergent

Research Interchange, 2(3), 1-10. (2016)

[199] Patel, H., & Patel, R., Cloud analyst: an insight of service broker policy. International Journal of Advanced Research

in Computer and Communication Engineering, 4(1), 122-127. (2015)

[200] Gaur, A.; Garg, K. Survey paper on cloud computing with load balancing policy. Int. J. Eng. Res. 2015, 2, 7.

[201] Arseniev, D. G., Overmeyer, L., Kälviäinen, H., & Katalinić, B. (Eds.), Cyber-Physical Systems and Control (Vol.

95). Springer Nature. (2019)

[202] Puri, T., Challa, R. K., & Sehgal, N. K., Energy-efficient delay-aware preemptive variable-length time slot allocation

scheme for WBASN (edpvt). In Proceedings of 2nd International Conference on Communication, Computing and

Networking: ICCCN 2018, NITTTR Chandigarh, India (pp. 183-194). Springer Singapore. (2019)

[203] Benlalia, Z., Beni-hssane, A., Abouelmehdi, K., & Ezati, A. A new service broker algorithm optimizing the cost and

response time for cloud computing. Procedia Computer Science, 151, 992-997. (2019)

[204] Radi, M., Efficient service broker policy for large-scale cloud environments. arXiv preprint arXiv:1503.03460.

(2015)

[205] Mesbahi, M. R., Hashemi, M., & Rahmani, A. M., Performance evaluation and analysis of load balancing algorithms

in cloud computing environments. In 2016 Second International Conference on Web Research (ICWR) (pp. 145-151).

IEEE. (2016)

[206] Khalil, K. M., Abdel-Aziz, M., Nazmy, T. T., & Salem, A. B. M., Cloud simulators–an evaluation study.

International Journal Information Models and Analyses, 6(1). (2017)

[207] Nayak, S., & Patel, P., Analytical Study for Throttled and Proposed Throttled Algorithm of Load Balancing in

Cloud Computing using Cloud Analyst. International Journal of Science Technology & Engineering, 1(12), 90-100.

(2015)

161

[208] Bahwaireth, K., Tawalbeh, L. A., Benkhelifa, E., Jararweh, Y., & Tawalbeh, M. A. (2016). Experimental

comparison of simulation tools for efficient cloud and mobile cloud computing applications. EURASIP Journal on

Information Security, 1-14. (2016)

[209] Mondal, S., Faruk, F. B., Rajbongshi, D., Efaz, M. M. K., & Islam, M. M. (2023). GEECO: Green Data Centers for

Energy Optimization and Carbon Footprint Reduction. Sustainability, 15(21), 15249.

[210] Liu, J., Yan, L., Yan, C., Qiu, Y., Jiang, C., Li, Y., ... & Cérin, C. (2023). Escope: An energy efficiency simulator

for internet data centers. Energies, 16(7), 3187.

[211] Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems. Network and

Communication Technologies, 4(4), 1-10.

[212] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation Computer Systems,

25(6), 599-616.

[213] Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of

Internet Services and Applications, 1(1), 7-18.

[214] Biswas, A., Majumdar, S., Nandy, B., & El-Haraki, A. (2017). A hybrid auto-scaling technique for clouds processing

applications with service level agreements. Journal of Cloud Computing, 6, 1-22.

[215] Hwang, K., Fox, G. C., & Dongarra, J. (2012). Distributed and cloud computing: From parallel processing to the

internet of things. Morgan Kaufmann.

[216] Calheiros, R. N., Ranjan, R., De Rose, C. A. F., & Buyya, R. (2009). CloudSim: A toolkit for modeling and

simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice

and Experience, 41(1), 23-50.

[217] Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. Y. (2011). A taxonomy and survey of energy-efficient data

centers and cloud computing systems. Advances in Computers, 82, 47-111.

[218] Xiao, Z., Song, W., & Chen, Q. (2013). Dynamic resource allocation using virtual machines for cloud computing

environment. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1107-1117.

[219] Kansal, N. J., & Chana, I. (2012). Cloud load balancing techniques: A step towards green computing. International

Journal of Computer Science Issues, 9(1), 238-246.

[220] Wided, A., Çelebi, N., & Fatima, B. (2023). Effective Cloudlet Scheduling Algorithm for Load Balancing in Cloud

Computing Using Fuzzy Logic. In Privacy Preservation and Secured Data Storage in Cloud Computing (pp. 226-243).

IGI Global.

[221] Sangaiah, A. K., Javadpour, A., Pinto, P., Rezaei, S., & Zhang, W. (2023). Enhanced resource allocation in

distributed cloud using fuzzy meta-heuristics optimization. Computer Communications, 209, 14-25.

[222] Aljuhani, A., & Alhubaishy, A. (2023). Dynamic Cloud Resource Allocation: A Broker-Based Multi-Criteria

Approach for Optimal Task Assignment. Applied Sciences, 14(1), 302.

[223] Adami, D., Gabbrielli, A., Giordano, S., Pagano, M., & Portaluri, G. (2015, December). A fuzzy logic approach for

resources allocation in cloud data center. In 2015 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE.

[224] Zaidi, R. T. (2018). Virtual Machine Allocation Policy in Cloud Computing Environment using

CloudSim. International Journal of Electrical & Computer Engineering (2088-8708), 8(1).

[225] Li, X., Pan, L., & Liu, S. (2023). A DRL-based online VM scheduler for cost optimization in cloud brokers. World

Wide Web, 26(5), 2399-2425.

[226] Gong, Y., Huang, J., Liu, B., Xu, J., Wu, B., & Zhang, Y. (2024). Dynamic resource allocation for virtual machine

migration optimization using machine learning. arXiv preprint arXiv:2403.13619.

[227] Belgacem, A., Mahmoudi, S., & Kihl, M. (2022). Intelligent multi-agent reinforcement learning model for resources

allocation in cloud computing. Journal of King Saud University-Computer and Information Sciences, 34(6), 2391-

2404.

[228] Afrin, M., Jin, J., Rahman, A., Rahman, A., Wan, J., & Hossain, E. (2021). Resource allocation and service

provisioning in multi-agent cloud robotics: A comprehensive survey. IEEE Communications Surveys &

Tutorials, 23(2), 842-870.

[229] Huang, J., Chen, X., & Wang, H. (2020). Edge computing-based VM allocation for latency-sensitive applications in

cloud environments. IEEE Internet of Things Journal, 7(8), 7345-7357.

[230] Kang, J., Yu, S., & Yang, K. (2020). Energy-efficient resource allocation for cloud data centers using a hybrid

heuristic algorithm. Journal of Supercomputing, 76(3), 1631-1649.

[231] Zhang, Q., Cheng, L., & Boutaba, R. (2020). Cloud computing: State-of-the-art and research challenges. Journal of

Internet Services and Applications, 11(1), 1-23.

[232] Taheri, H., Abrishami, S., & Naghibzadeh, M. (2023). A cloud broker for executing deadline-constrained periodic

scientific workflows. IEEE Transactions on Services Computing.

[233] Balachandar, S., & Chinnaiyan, R. (2023). Intelligent Broker Design for IoT Using a Multi-Cloud Environment.

In Convergence of Deep Learning and Internet of Things: Computing and Technology (pp. 23-41). IGI Global.

162

[234] Ramakrishnan, S. (Ed.). (2017). Modern Fuzzy Control Systems and Its Applications. BoD–Books on Demand.

[235] Mateen, M., Hayat, S., Tehreem, T., & Akbar, M. A. (2020). A self-adaptive resource provisioning approach using

fuzzy logic for cloud-based applications. International Journal of Computing and Digital Systems, 9(03).

[236] Shahid, M. A., Alam, M. M., & Su’ud, M. M. (2023). A systematic parameter analysis of cloud simulation tools in

cloud computing environments. Applied Sciences, 13(15), 8785.

[237] Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering cloud computing: foundations and applications

programming. Newnes.

[238] Singh, A., & Kumar, R. (2020, January). Performance evaluation of load balancing algorithms using cloud analyst.

In 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 156-162).

IEEE.

[239] Velte, A.T.V.T.J., Elsenpeter, P.D.R.: Cloud Computing, (2010)

[240] Giust, F., Costa-Perez, X., Reznik, A.: Multi-access edge computing: An overview

of etsi mec isg. IEEE 5G Tech Focus 1(4), 4 (2017)

[241] Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things. In: Proceedings of

the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16 (2012)

[242] Zhu, Z., Li, X., Chu, Z.: Three major operating scenarios of 5g: embb, mmtc, urllc. Intell. Sens. Commun. Internet

Everything 1, 15–76 (2022)

[243] Bellavista, P., Carella, G., Foschini, L., Magedanz, T., Schreiner, F., Campowsky,K.: Qos-aware elastic cloud

brokering for ims infrastructures. In: 2012 IEEE Symposium on Computers and Communications (ISCC), pp. 000157–
000160 (2012). IEEE

[244] D’Agostino, D., Galizia, A., Clematis, A., Mangini, M., Porro, I., Quarati, A.: A qos-aware broker for hybrid clouds.

Computing 95, 89–109 (2013)

[245] Devgan, M., Dhindsa, K.S.: Qos and cost aware service brokering using pattern-based service selection in cloud

computing. International Journal of Soft Computing and Engineering 3, 441–446 (2014)

[246] Anastasi, G.F., Carlini, E., Coppola, M., Dazzi, P.: Qos-aware genetic cloud brokering. Future Generation Computer

Systems 75, 1–13 (2017)

[247] Li, X., Pan, L., Liu, S.: An online service provisioning strategy for container-based cloud brokers. Journal of

Network and Computer Applications 214, 103618, (2023)

[248] Rogers, O., Cliff, D.: A financial brokerage model for cloud computing. Journal of Cloud Computing: Advances,

Systems and Applications 1(1), 1–12 (2012)

[249] Wang, X., Wu, S., Wang, K., Di, S., Jin, H., Yang, K., Ou, S.: Maximizing the profit of cloud broker with priority

aware pricing. In: 2017 IEEE 23rd International Conference on Parallel and Distributed Systems (ICPADS), pp. 511–
518, (2017). IEEE

[250] Mei, J., Li, K., Tong, Z., Li, Q., Li, K.: Profit maximization for cloud brokers in cloud computing. IEEE

Transactions on Parallel and Distributed Systems 30(1),190–203, (2018)

[251] Sathish, A., Dsouza, D., Ballal, K., Archana, M., Singh, T., Monteiro, G.:Advanced mechanism to achieve qos and

profit maximization of brokers in cloud computing. EAI Endorsed Transactions on Cloud Systems 7(20) (2021)

[252] Iturriaga, S., Nesmachnow, S., Dorronsoro, B.: Optimizing the profit and qos of virtual brokers in the cloud. Cloud

Computing: Principles, Systems and Applications, 277–300 (2017)

[253] Li, X., Pan, L., Liu, S.: A survey of resource provisioning problem in cloud brokers. Journal of Network and

Computer Applications 203, 103384 (2022)

[254] Jyoti, A., Shrimali, M.: Dynamic provisioning of resources based on load balancing and service broker policy in

cloud computing. Cluster Computing 23(1), 377–395 (2020)

[255] Valarmathi, R., Sheela, T.: Differed service broker scheduling for data centres in cloud environment. Computer

Communications 146, 186–191 (2019)

[256] Jyoti, A., Shrimali, M., Tiwari, S., Singh, H.P.: Cloud computing using load balancing and service broker policy for

it service: a taxonomy and survey. Journal of Ambient Intelligence and Humanized Computing 11, 4785–4814 (2020)

[257] Alwada’n, T., Al-Tamimi, A.-K., Mohammad, A.H., Salem, M., Muhammad, Y.:Dynamic congestion management

system for cloud service broker. International Journal of Electrical and Computer Engineering (IJECE) (2023)

[258] Ray, B.K., Khatua, S., Roy, S.: Negotiation based service brokering using game theory. In: 2014 Applications and

Innovations in Mobile Computing (AIMoC), pp. 1–8 (2014). IEEE

[259] Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service brokering in multi-cloud via

deep reinforcement learning. In: Service-Oriented Computing: 19th International Conference, ICSOC 2021, Virtual

Event,November 22–25, 2021, Proceedings 19, pp. 756–764 (2021). Springer

[260] Shannaq, F., Alshorman, A., Al-Sayyed, R., Shehab, M., Alomari, W.: Weighted service broker algorithm in cloud

environment. Informatica 48(7) (2024)

[261] Chauhan, S.S., Pilli, E.S., Joshi, R.C.: Bss: a brokering model for service selection using integrated weighting

approach in cloud environment. Journal of Cloud Computing 10, 1–14 (2021)

163

[262] Singh, N.K., Jain, A., Arya, S., Bhambu, P., Shruti, T., Chaudhary, V.K.: Cloud service broker using ontology-based

system. Engineering Proceedings 59(1), 11 (2023)

[263] Achar, R., Thilagam, P.S.: A broker based approach for cloud provider selection.In: 2014 International Conference

on Advances in Computing, Communications and Informatics (ICACCI), pp. 1252–1257 (2014). IEEE

[264] Vimercati, S.D.C., Foresti, S., Livraga, G., Piuri, V., Samarati, P.: A fuzzy-based brokering service for cloud plan

selection. IEEE Systems Journal 13(4), 4101–4109 (2019)

[265] Shivakumar, U., Ravi, V., Gangadharan, G.: Ranking cloud services using fuzzy multi-attribute decision making. In:

2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8 (2013). IEEE

[266] Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of user feedback and quantitative

performance assessment. In: 2013 IEEE International Conference on Services Computing, pp. 152–159 (2013). IEEE

[267] Vakili, M., Jahangiri, N., Sharifi, M.: Cloud service selection using cloud service brokers: approaches and

challenges. Frontiers of Computer Science 13, 599–617 (2019)

[268] Ionescu, S.: Best cloud broker of 2024 (2023). https://www.techradar.com/best/best-cloud-brokers

[269] Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: An environment for performance evaluation of edge computing

systems. Transactions on Emerging Telecommunications Technologies 29(11), 3493 (2018)

