

University of Miskolc

Faculty Of Mechanical Engineering And Informatics

Efficiency Analysis And Optimization Of Concept
Lattice Reduction Methods

Ph.D Dissertation

József Hatvany Doctoral School of Information Science,
Engineering and Technology

Research Area

Applied Computer Science

Research Group
Data and Knowledge Bases

Author:
Mohammed Ali Daash Alwersh
M.Sc in Computer Science

Head Of Doctoral School:
Prof. Dr. Jenő Szigeti

Academic Supervisor:
Prof. Dr. László Kovács

Miskolc, Hungary 2025

Declaration

 II

Declaration

The author hereby declares that this thesis has not been submitted, either in the same or
in a different form, to this or to any other university for obtaining a PhD degree. The author
affirm that the submitted work is his own and the appropriate credit has been given where
reference has been addressed to the work of others.

Miskolc, 2025.

Mohammed Ali Daash Alwersh

Acknowledgments

 III

Acknowledgments

I am deeply grateful to my supervisor, Prof. Dr. László Kovács, for his ongoing support,
guidance, and encouragement throughout the past years. His invaluable insights, patience,
and expertise have significantly contributed to the development of this dissertation. This
work is a reflection of his mentorship as well as the sustained effort and dedication invested
over the past four years.

I am also profoundly grateful to the faculty and staff of the Faculty of Mechanical
Engineering and Informatics at the University of Miskolc, within the Research Field of
Applied Computer Science, for providing the necessary resources and fostering an
environment conducive to academic excellence. Their support and expertise have greatly
enriched my research experience. I also acknowledge the financial support provided by
Stipendium Hungaricum (SH), which helped me successfully complete my research and
focus on the academic pursuits essential to this dissertation.

I extend my heartfelt appreciation to my family, my sons, Mustafa Alwersh and Kadhim
Alwersh, and special thanks to my wife, Maryam Alwersh, for her unwavering support and
for standing by me every step of the way to achieve my goal. Despite the challenges and
difficulties I encountered, her constant support and encouragement have been a steadfast
source of motivation, helping me navigate the inevitable ups and downs of the research
process.

Thank you all for your contributions and for being an integral part of this academic
endeavor.

Mohammed Ali Daash Alwersh

Table of Contents

 IV

Table of Contents

DECLARATION .. II

ACKNOWLEDGMENTS ... III

TABLE OF CONTENTS ... IV

LIST OF FIGURES .. VII

LIST OF TABLES ... VIII

LIST OF ABBREVIATIONS .. IX

PREFACE .. 1

CHAPTER 1: INTRODUCTION .. 3

1.1. RESEARCH CONTEXT .. 3
1.2. PROBLEM STATEMENT .. 4
1.3. RESEARCH OBJECTIVES .. 5
1.4. RESEARCH QUESTIONS ... 6
1.5. SIGNIFICANCE OF THE STUDY ... 6
1.6. SCOPE AND LIMITATIONS ... 6
1.7. THESIS STRUCTURE .. 7

CHAPTER 2: FOUNDATIONS OF FORMAL CONCEPT ANALYSIS 8

2.1. OVERVIEW ... 8
2.2. STRUCTURE OF CONCEPT LATTICES ... 8

2.2.1. Data Representation as Input ... 9
2.2.2. Operators for Concept Formation ... 9
2.2.3. From Formal Concepts to the Concept Lattice .. 11
2.2.4. Hasse Diagram .. 14
2.2.5. Properties of FCA ... 15
2.2.6. Central Theorem on Lattices ... 16

2.3. OVERVIEW OF FCA ALGORITHMS .. 17
2.3.1. Batch-Style Computation ... 17
2.3.2. Incremental Techniques for Update .. 18
2.3.3. Assembling Algorithms ... 19
2.3.4. General Remarks on FCA Algorithm’s Performance 20

2.4. EXTENSIONS AND APPLICATIONS OF FCA MODEL ... 21
2.5. EMERGING ISSUES IN FCA AND THE NECESSITY FOR REDUCTION METHODS 22

2.5.1. High-Dimensional and Complex Datasets ... 22
2.5.2. Adapting to Varied Data Forms Through Scaling ... 23
2.5.3. Handling Uncertainty: Noise and Missing Values 23

2.6. SUMMARY .. 25

CHAPTER 3: LITERATURE REVIEW .. 26

3.1. OVERVIEW OF EXISTING LATTICE REDUCTION TECHNIQUES IN FCA 26
3.2. RESEARCH GAPS AND MOTIVATION ... 30
3.3. SUMMARY .. 32

 V

CHAPTER 4: FOUNDATIONAL PILLARS OF OUR PROPOSED STRATEGIES 33

4.1. OVERVIEW ... 33
4.2. KERNEL CONCEPTS IN CONCEPT LATTICES .. 33

4.2.1. Definition of Kernel Concepts ... 33
4.2.2. Role and Importance of Kernel Concepts .. 34

4.3. DIJKSTRA’S ALGORITHM IN CONCEPT LATTICE REDUCTION .. 35
4.3.1. Background and Motivation .. 35
4.3.2. Dijkstra-Based Distance in FCA .. 37

4.4. BASELINE GREEDY ALGORITHM FOR KERNEL CONCEPTS SELECTION 39
4.4.1. Kernel Concepts Selection ... 39
4.4.2. Baseline Greedy Algorithm Steps .. 40
4.4.3. Experimental Setup and Methodology ... 41

4.5. SUMMARY .. 44

CHAPTER 5: CLUSTERING-BASED REDUCTION STRATEGIES FOR FCA 46

5.1. INTRODUCTION ... 46
5.2. K-MEANS ALGORITHM AND ITS EXTENSIONS .. 48
5.3. THE PROPOSED METHODS ... 52

5.3.1. K-means Dijkstra on Lattice (KDL) ... 52
5.3.2. K-Means Vector on Lattice (KVL) ... 56
5.3.3. Clustering Algorithm ... 58

5.4. EXPERIMENTAL RESULTS ... 60
5.4.1. Testing and Evaluation of the Dijkstra-Based Distance 60
5.4.2. Clustering Performance .. 64
5.4.3. Scalability Test Results Analysis ... 66
5.4.4. Scalability in Relation to the Number of Formal Concepts 67

5.5. SUMMARY ... 68

CHAPTER 6: KERNEL CONCEPTS SELECTION FOR EFFICIENT LATTICE REDUCTION ... 70

6.1. INTRODUCTION ... 70
6.2. KERNEL CONCEPT SET APPROACH .. 70

6.2.1. Optimized Greedy Algorithm for Determining a Kernel Concept Set 73
6.3. EXPERIMENTAL SETUP AND METHODOLOGY ... 75

6.3.1. Clustering Performance .. 75
6.3.2. Influence of Lattice Size on Runtime .. 77
6.3.3. Experiment with the Teaching Assistant Evaluation Dataset 77

6.4. SUMMARY .. 80

CHAPTER 7: MINING KERNEL CONCEPTS: A COST-OPTIMIZED CONCEPT SET
GENERATION METHOD .. 81

7.1. INTRODUCTION ... 81
7.2. PROPOSED METHOD .. 82

7.2.1. Kernel Set 𝐶𝑀 .. 82
7.2.2. Kernel Selection Method ... 83
7.2.3. Optimization of the Genetic Algorithm ... 84

7.3. PRACTICAL APPLICATION IN WORD-LEVEL CONCEPT REPRESENTATION 88
7.3.1. Problem Description .. 88
7.3.2. Attribute Reduction .. 90

7.4. EXPERIMENTAL EVALUATION .. 91
7.4.1. Scalability Evaluation Across Varying Lattice Dimensions 92

 VI

7.4.2. Influence of Kernel Concept Size on Overall Generation Cost 93
7.4.3. Impact of Frequency Distribution on Algorithm Performance 94
7.4.4. GA and SA Convergence in Concept Lattice Reduction 96

7.5. SUMMARY .. 96

CHAPTER 8: CONCLUSION ... 98

8.1. SUMMARY .. 98
8.2. CONTRIBUTIONS ... 98
8.3. FUTURE WORKS .. 99

AUTHOR’S PUBLICATIONS ... 100

REFRENCES .. 101

APPENDIX A .. 105

List of Figures

 VII

List of Figures

FIGURE 2.1. HASSE DIAGRAM OF THE CONCEPT LATTICE DERIVED FROM THE EXTENDED LAPTOP CONTEXT

 ... 14
FIGURE 2.2. REPRESENTATIVE TOOLS FOR CONCEPT LATTICE VISUALIZATION [41] 24
FIGURE 4.1. COST ANALYSIS FOR GREEDY ALGORITHM ACROSS KERNEL CONCEPT SET SIZES 42
FIGURE 4.2. RUNTIME ANALYSIS FOR GREEDY ALGORITHM ACROSS KERNEL CONCEPT SET SIZES 43
FIGURE 4.3. PERFORMANCE ANALYSIS OF THE BASELINE GREEDY ALGORITHM ON DERIVATION COST AND

RUNTIME ACROSS DIFFERENT LATTICE SIZES ... 44
FIGURE 5.1. AVERAGE RUNTIME VS. LATTICE SIZE FOR RANDOM CONTEXTS 62
FIGURE 5.2. MEAN DISTANCE VS. LATTICE SIZE FOR RANDOM CONTEXTS .. 62
FIGURE 5.3. AVERAGE RUNTIME VS. LATTICE SIZE FOR REAL-WORLD DATASETS 63
FIGURE 5.4. MEAN DISTANCE VS. LATTICE SIZE FOR REAL-WORLD DATASETS 64
FIGURE 5.5. SILHOUETTE SCORES BY DATASET AND METHOD .. 66
FIGURE 5.6. DBI SCORES BY DATASET AND METHOD ... 66
FIGURE 5.7. KVL SCALABILITY VS. CLUSTER COUNT (CAR EVALUATION DATASET WITH 8001 CONCEPTS) 67
FIGURE 5.8. KVL SCALABILITY WITH AN INCREASING NUMBER OF FORMAL CONCEPTS 67
FIGURE 5.9. KDL SCALABILITY WITH INCREASING NUMBER OF CLUSTERS ... 68
FIGURE 5.10. KDL SCALABILITY WITH INCREASING NUMBER OF FORMAL CONCEPTS 68
FIGURE 6.1. SILHOUETTE SCORES BY DATASET AND METHOD. ... 76
FIGURE 6.2. DBI SCORES BY DATASET AND METHOD ... 76
FIGURE 6.3. COMPARATIVE PERFORMANCE ANALYSIS OF KCS AND KDL METHODS ACROSS DIVERSE

LATTICE SIZES .. 77
FIGURE 6.4. CONCEPT LATTICE DERIVED FROM THE FORMAL CONTEXT OF TAE DATASET TABLE 5.4. 79
FIGURE 6.5. TREND OF DECREASING DERIVATION COST WITH INCREMENTAL EXPANSION OF KERNEL SET

SIZE (𝑆𝑐) ... 80
FIGURE 7.1. MLP FRAMEWORK FOR FITNESS APPROXIMATION .. 87
FIGURE 7.2. LOSS FUNCTION IN THE TRAINING PROCESS .. 87
FIGURE 7.3. EFFICIENCY IMPROVEMENT OF THE RELEVANCE-BASED SELECTION 88
FIGURE 7.4. STRUCTURE OF THE LIVE IN WATER ONTOLOGY ... 90
FIGURE 7.5. STRUCTURE OF THE RESULTED TREE STRUCTURES AFTER SELECTION OF THE KERNEL CONCEPTS

 ... 91
FIGURE 7.6. WORD-LEVEL REPRESENTATION OF THE CONCEPTS AFTER ATTRIBUTE REDUCTION 91
FIGURE 7.7. A RUNTIME COMPARISON OF GENETIC ALGORITHM (GA) AND SIMULATED ANNEALING (SA)

ON MULTIPLE DATASETS ... 93
FIGURE 7.8. VARIATION OF TOTAL GENERATION COST () WITH KERNEL CONCEPT SIZE (%) FOR GA AND SA

 ... 94
FIGURE 7.9. AVERAGE COST COMPARISON OF GA AND SA ACROSS FREQUENCY DISTRIBUTIONS 95
FIGURE 7.10. RUNTIME PERFORMANCE OF GA AND SA ACROSS FREQUENCY DISTRIBUTIONS 95
FIGURE 7.11. GA AND SA CONVERGENCE IN CONCEPT LATTICE REDUCTION 96

List of Tables

 VIII

List of Tables

TABLE 2.1. CROSS TABLE .. 9
TABLE 2.2. DETERMINE ADDITIONAL CONCEPT ... 11
TABLE 2.3. THE EXTENDED LAPTOP FORMAL CONTEXT (CROSS-TABLE REPRESENTATION) 13
TABLE 4.1. LATTICE CHARACTERISTICS: ... 41
TABLE 5.1. MATRIX CORRESPONDING TO THE RELATION I .. 56
TABLE 5.2. CHARACTERISTICS OF RANDOM AND REAL-WORLD FORMAL CONTEXTS. 61
TABLE 5.3. FORMAL CONCEPTS GENERATED FROM THE FORMAL CONTEXTS IN TABLE 5.2 61
TABLE 5.4. CHARACTERISTICS OF THE GENERATED LATTICES ... 61
TABLE 5.5. SILHOUETTE COEFFICIENT OUTCOMES FOR KDL AND KVL ACROSS VARIOUS DATASETS 65
TABLE 5.6. DBI RESULTS FOR KDL AND KVL ACROSS DIFFERENT DATASETS 65
TABLE 6.1. LATTICE CHARACTERISTICS .. 75
TABLE 6.2. SILHOUETTE SCORES COMPARING KDL AND KCS METHODS ACROSS DATASETS 76
TABLE 6.3. DBI INDEX SCORES COMPARING KDL AND KCS METHODS ACROSS DATASETS 76
TABLE 6.4. FORMAL CONTEXT ABOUT SUBSET OF TAS DATASET .. 78
TABLE 7.1. LATTICE CHARACTERISTICS .. 92
TABLE 7.2 IMPACT OF KERNEL CONCEPT SIZE ON OPTIMIZATION PERFORMANCE OF GA AND SA .. 94

A. 1. THE FORMAL CONCEPTS DERIVED FROM THE CROSS-TABLE DESCRIBED IN TABLE 2.3 105
A. 2. KERNEL CONCEPT SET ANALYSIS OF TA ASSIGNMENTS (𝑆𝑐 SET TO 5%) 106
A. 3. KERNEL CONCEPT SET ANALYSIS OF TA ASSIGNMENTS (𝑆𝑐 SET TO 8%) 106
A. 4. LIST OF GENERATED CONCEPT LATTICES ... 107

List of Abbreviations

 IX

List of Abbreviations

FCA Formal Concept Analysis
CL Concept Lattice
KDL K-Means Dijkstra on Lattice
KVL K-Means Vector on Lattice
KCS Kernel Concept Set
ICFCA International Conference on Formal Concept Analysis
ICCS International Conference on Conceptual Structures
CLA Concept Lattices and their Applications
SVD Singular Value Decomposition
CbO Close-by-One
FcbO Fast Close-by-One
RDF Resource Description Framework
DM Data Mining
OWL Web Ontology Language
SparQL SPARQL Protocol and RDF Query Language
IR Information Retrieval
CC Conceptual Clustering
DBI Davies-Bouldin Index
CS Concept Similarity
EMO-CC Multiobjective Evolutionary Conceptual Clustering Methodology
KDD Knowledge Discovery in Databases
GA Genetic Algorithm
SA Simulated Annealing
MLP Multi-Layer Perceptron
NLP Natural Language Processing

Preface

 1

Preface

This dissertation embodies a focused endeavor in the realm of knowledge engineering,
particularly at the intersection of data mining and Formal Concept Analysis (FCA). Since its
inception in the early 1980s by Rudolf Wille, FCA has been recognized as a powerful
mathematical tool for representing and analyzing the relationships between objects and
attributes within formal contexts. By structuring information into concept lattices,
hierarchical diagrams that capture the relationships between objects and attributes, FCA
facilitates the discovery of meaningful patterns in diverse fields, including software
engineering, information retrieval, e-learning systems, bioinformatics, and beyond.

Yet, as datasets expand in size and complexity, the concept lattices derived from them
can grow exponentially, posing formidable computational and interpretive challenges.
Traditional FCA methods, while theoretically elegant, often become computationally
intensive and cognitively overwhelming, hindering the effective utilization of these
structures in large-scale data analytics. This dissertation addresses these challenges head-on
through a series of three integrated contributions, each representing a strategic step toward
more scalable, efficient, and human-centered FCA methodologies.

A key groundwork is first laid out, establishing several foundational pillars that guide the
methods proposed here. These include the notion of kernel concepts, specially chosen
concepts that serve as anchors for understanding and reducing a concept lattice, alongside
an asymmetrical distance metric that adapts Dijkstra’s algorithm for cost-aware navigation.
A baseline greedy framework for concept selection further sets the stage for the more
specialized methods and cognitively aligned reduction strategies that follow.

The first contribution introduces two novel extensions of the k-means algorithm, K-
Means Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL), to adapt
clustering-based reduction strategies for FCA. KDL leverages the inherent hierarchical
structure of categorical data by incorporating a graph-based distance measure derived from
FCA. This ensures that reductions remain faithful to the underlying conceptual relationships,
yielding more interpretable and structurally consistent lattices. In contrast, KVL transforms
formal concepts into numerical vectors, allowing the application of conventional k-means
clustering at scale. While this vectorization simplifies complexity and improves
computational efficiency, careful consideration is given to preserving lattice quality.
Together, KDL and KVL mark an initial leap toward practical, data-driven lattice reduction
that balances complexity management with interpretability.

Building on these foundations, the second contribution, the Kernel Concept Set (KCS)
approach proposes a frequency- and cost-based strategy for selecting a core subset of
concepts. By determining a kernel that covers the most critical and frequently occurring
attributes, KCS optimizes reduction while maintaining essential structure. This approach
goes beyond the first step’s clustering-centric views, providing a more refined selection
mechanism that directly addresses the trade-off between completeness and efficiency.

Preface

 2

Finally, the third contribution introduces cognitive and linguistic strategies for scalable
concept lattice reduction. Inspired by human language optimization principles, this model
employs a finite “vocabulary” of high-frequency conceptual units (kernel concepts) and an
injective mapping function to ensure each concept is represented uniquely and meaningfully.
By integrating Genetic Algorithms and Simulated Annealing alongside a learning-based
module, the model identifies an optimal kernel subset that minimizes total generation cost,
a measure reflecting both computational and cognitive resources. This interdisciplinary
approach not only reduces lattice size but also aligns the resulting structures with human
cognitive processes, making the reduced lattices both computationally feasible and
intuitively comprehensible.

Collectively, these three contributions form a coherent research trajectory. Starting from
harnessing clustering methods for initial complexity control (KDL and KVL), moving
through a frequency- and cost-informed selection of pivotal concepts (KCS), and
culminating in a linguistically and cognitively oriented optimization framework, this
dissertation offers a comprehensive toolkit for addressing the scalability, efficiency, and
interpretability challenges inherent in FCA.

By fusing computational heuristics, cognitive insights, and linguistic principles into the
FCA reduction process, this work advances FCA from a theoretically compelling method to
a practical, user-aligned analytical framework. It lays the groundwork for broader adoption
of FCA in large-scale data analysis, equipping researchers and practitioners with strategies
to navigate, understand, and ultimately derive more meaningful insights from complex and
voluminous dat

Introduction

 3

Chapter 1: Introduction

1.1. Research Context

In recent decades, the exponential growth of data across diverse domains, from healthcare
and finance to e-learning and social media, has necessitated increasingly sophisticated
methods to extract, represent, and interpret meaningful patterns. The convergence of data
mining, machine learning, and knowledge engineering has driven researchers and
practitioners to seek frameworks that not only handle vast amounts of information efficiently
but also facilitate human understanding of underlying structures and relationships. Among
these frameworks, Formal Concept Analysis (FCA) [1] has emerged as a mathematically
rigorous and conceptually rich approach to organizing and interpreting complex datasets.

FCA operates by mapping data described as objects and attributes into a conceptual
hierarchy known as a concept lattice. This lattice encodes the inherent relationships within
the data, revealing clusters of attributes that co-occur among sets of objects. The resulting
structure is more than just a visualization tool; it serves as a knowledge representation
mechanism that can inform decision-making, discovery of patterns, and the identification of
subtle dependencies. However, as data complexity intensifies, due to high dimensionality,
large numbers of objects, or the intricate interplay of attributes, the concept lattices
constructed from such datasets often become prohibitively large and complex. Despite their
theoretical elegance, these massive lattices pose practical challenges: they demand
substantial computational resources to construct and manipulate, and they may overwhelm
human analysts attempting to derive insights. The problem is compounded by the fact that
many fields relying on FCA, such as bioinformatics or software engineering, frequently
involve large-scale and evolving datasets [2].

In light of these considerations, the need for concept lattice reduction methods becomes
evident. By judiciously streamlining the concept lattice to retain essential structural and
informational properties while discarding redundancies and less critical elements, these
reduction methods pave the way for more efficient analysis and clearer interpretability.
Achieving a balance between lattice complexity and informational fidelity is a non-trivial
challenge, especially as reduction techniques must ensure that critical patterns and
relationships remain intact for meaningful analysis.

The quest for more efficient and interpretable FCA-based frameworks does not exist in
isolation. The broader landscape of knowledge engineering and data analytics is also
grappling with scalability and accessibility issues. Just as natural language processing
research has evolved to manage complexities of informal language on social media [3], and
intelligent tutoring systems have integrated sophisticated knowledge models to adapt
learning materials [4], [5], so too must FCA methodologies evolve. These parallel efforts
underscore a universal trend: as data grows in volume and complexity, analytical approaches
must become more adaptive, intelligent, and scalable.

This dissertation seeks to tackle these intertwined issues of scalability and interpretability
in FCA. It does so by developing and refining foundational pillars for lattice reduction, chief
among them kernel concepts (centrally important nodes in a lattice) and cost-aware distance
metrics, and building upon these to propose multiple specialized reduction strategies. The

Introduction

 4

overarching ambition is to fortify FCA’s practical utility in handling large-scale data,
transforming an elegant theoretical framework into a truly accessible tool for knowledge
discovery in complex domains.

1.2. Problem Statement

Formal Concept Analysis (FCA) provides a mathematically sound and conceptually
intuitive framework for representing complex data through concept lattices hierarchical
structures that reveal intricate relationships between objects and attributes. While FCA has
demonstrated considerable value in various domains, from knowledge engineering and
intelligent tutoring systems to social media analysis and sentiment mining, its practical
application is often hampered by a critical and persistent issue: the exponential growth in the
number of formal concepts and, consequently, the size and complexity of the resulting
concept lattice.

As datasets become more extensive, heterogeneous, and dynamic, the concept lattices
derived from them can become prohibitively large and unwieldy. This exponential
complexity leads to significant computational overheads in lattice construction,
maintenance, and navigation. It also creates formidable interpretability challenges. Analysts,
domain experts, and automated reasoning tools struggle to extract meaningful insights from
a lattice that is both visually and structurally dense, rife with redundancies, and difficult to
navigate.

Existing reduction techniques have attempted to mitigate these challenges by pruning less
relevant concepts, applying frequency-based filters, or introducing abstraction mechanisms
to simplify the lattice structure. However, these approaches often face notable limitations:

- Computational Inefficiency: Many reduction algorithms fail to operate efficiently at
scale, leading to prohibitive runtime and memory consumption, particularly for large
or evolving datasets.

- Inadequate Balance Between Complexity and Fidelity: Some methods overly
simplify the lattice, potentially discarding critical information and undermining the
reliability of subsequent analyses.

- Limited Interpretability Enhancements: While certain reduction strategies diminish
lattice size, they may not sufficiently improve the cognitive accessibility or linguistic
clarity of the resulting structure, leaving users still grappling with complex, opaque
representations.

- Fragmented Approaches: Current methods lack a unifying framework that can
seamlessly integrate computational optimization, cognitive and linguistic strategies,
and systematic selection criteria for core concepts. As a result, practitioners must rely
on ad hoc or domain-specific solutions that may not generalize well across different
data sources or application domains.

This gap in the literature, where scalability, efficiency, interpretability, and adaptability

to varying contexts remain only partially addressed, represents the crux of the problem. It
underscores the urgent need for holistic, optimized reduction techniques that not only
streamline concept lattices but also retain their informational richness and align more closely
with human cognitive processes.

In essence, the challenge is to develop robust, scalable, and cognitively aligned concept
lattice reduction methodologies that fulfill multiple objectives simultaneously: to

Introduction

 5

significantly improve computational performance, to maintain or enhance interpretability,
to preserve essential relationships and data patterns, and to integrate seamlessly into diverse
application scenarios. This dissertation aims to tackle this core problem head-on, proposing
innovative solutions, ranging from specialized k-means-based lattice clustering algorithms
and kernel concept set selection to cognitive and linguistic optimization frameworks, that
collectively advance the state of the art in FCA-based data analysis.

1.3. Research Objectives

The overarching aim of this research is to advance concept lattice reduction in Formal
Concept Analysis (FCA) by making it more computationally efficient, scalable, and aligned
with human interpretive processes. In pursuit of this aim, the research is guided by the
following objectives:

1. Assess the Limitations of Existing Reduction Methods: Begin by thoroughly
examining current approaches to concept lattice reduction, identifying where they
fall short in terms of scalability, computational efficiency, and clarity. This
evaluation will highlight gaps in the literature and inform the strategic direction for
new reduction methodologies.

2. Enhance Computational Efficiency and Scalability: Develop and refine reduction
techniques that significantly decrease the time and resource requirements for
constructing and managing concept lattices, enabling the application of FCA to large-
scale, high-dimensional datasets.

3. Preserve Structural Integrity and Informational Fidelity: Ensure that the proposed
reduction methods maintain the essential hierarchical relationships and key data
patterns within the lattice. By doing so, the resulting reduced structures continue to
serve as meaningful representations of the underlying dataset.

4. Improve Interpretability and Cognitive Alignment: Apply principles inspired by
human language optimization to identify a minimal yet expressive subset of core
concepts. This approach seeks to streamline the lattice, making it more accessible
and understandable, ultimately enhancing its usability for human analysts.

5. Establish a Unified, Adaptable Framework for Reduction Techniques: Integrate
various reduction strategies into a cohesive framework that supports flexible
adjustments based on domain-specific needs, data characteristics, or interpretive
goals. This unified perspective encourages systematic exploration and tuning of
different approaches.

6. Empirically Validate and Benchmark Reduction Methods: Employ rigorous
experiments, standardized evaluation metrics, and representative datasets to
systematically assess the performance of the proposed methodologies. Through
comprehensive benchmarking, demonstrate their effectiveness, versatility, and
relevance to multiple application scenarios.

By achieving these objectives, the research aims to transform FCA from a theoretically
appealing but computationally intensive approach into a more agile, interpretable, and
widely applicable framework for knowledge representation and data-driven decision-
making.

Introduction

 6

1.4. Research Questions
Building upon the problem statement and research objectives, this study seeks to address

key questions that probe into the theoretical and practical dimensions of concept lattice
reduction in Formal Concept Analysis (FCA). The research questions are framed to guide
the investigation towards more efficient, interpretable, and integrative reduction
methodologies:

1. What are the limitations of current concept lattice reduction methods in terms of
computational efficiency, scalability, and interpretability, and how do these
constraints hinder their widespread adoption in real-world scenarios?

2. How can reduction techniques be optimized or reimagined to handle increasingly
large and complex datasets without imposing prohibitive computational costs,
thereby making FCA a more viable option for big data contexts?

3. In the process of simplifying the lattice, how can essential hierarchical relationships
and the core informational content be preserved, ensuring that reduced lattices
remain faithful, reliable representations of the underlying data?

4. How can concepts inspired by human linguistic efficiency be employed to identify a
minimal yet expressive set of core concepts, thereby enhancing the interpretability
and cognitive accessibility of the resulting reduced lattice?

5. Can diverse reduction strategies, including kernel concepts identification, and
cognitively informed models, be integrated into a unified framework that allows
flexible adaptation across various data domains, analytical objectives, and resource
constraints?

6. How can the performance and utility of the proposed reduction techniques be
rigorously evaluated against standardized metrics and representative datasets, and to
what extent can these methods be generalized across different application areas?

1.5. Significance of the Study
This research is significant as it enhances both the theoretical and practical dimensions

of Formal Concept Analysis. Theoretically, it introduces refined reduction methodologies
that address longstanding challenges of computational complexity and interpretability,
thereby advancing the core understanding of FCA’s scalability. Practically, by producing
more manageable and cognitively accessible lattices, the work broadens FCA’s usefulness
across various domainsranging from knowledge management to data-driven decision-
making, enabling clearer insights from large and complex datasets.

1.6. Scope and Limitations

The scope of this research encompasses the development, integration, and empirical
evaluation of concept lattice reduction techniques within the framework of Formal Concept
Analysis. The focus lies on enhancing computational efficiency, ensuring interpretability,
and retaining essential structural properties of the lattice. The study involves testing various
datasets and employing standardized performance metrics to validate proposed
methodologies. However, certain limitations apply. The research does not aim to cover all
possible data types or application domains, and the selection of evaluation metrics may not
capture every facet of reduction quality. Moreover, while the proposed methods strive for

Introduction

 7

broad applicability, domain-specific customization may still be required. These constraints
acknowledge the complexity and evolving nature of data challenges, guiding realistic
expectations for the results.

1.7. Thesis Structure
This dissertation is organized into eight chapters. Chapter 1 introduces the research

context, outlining the problem, objectives, significance, scope, and key research questions.
Chapter 2 lays the theoretical foundation of Formal Concept Analysis (FCA), defining
formal contexts and concepts, discussing various algorithmic strategies, and addressing
challenges in managing large-scale data with lattice reduction methods. In Chapter 3, a
literature review examines existing techniques for reducing concept lattices, such as
redundancy removal and clustering-based strategies, highlighting the need for novel
approaches that balance scalability with interpretability. Chapter 4 presents the core
principles of our proposed methods, introducing kernel concepts, a cost-based distance
metric adapted from Dijkstra’s algorithm, and a baseline greedy selection process to
underpin our advanced reduction strategies. Chapter 5 introduces two clustering algorithms,
KDL and KVL adapted from K-Means for FCA, detailing their theoretical bases and
experimental evaluations on synthetic and real-world datasets. Building on this, Chapter 6
proposes the Kernel Concept Set (KCS) method, which leverages frequency metrics and
derivation costs to identify pivotal concepts, thereby reducing complexity while preserving
structural relationships. Chapter 7 further refines lattice reduction by incorporating heuristic
and machine-learning approaches, such as Genetic Algorithms and Simulated Annealing, to
optimize kernel concept selection while ensuring human-aligned representations. Finally,
Chapter 8 concludes the dissertation by summarizing the primary achievements and
outlining future research directions.

Foundations of Formal Concept Analysis

 8

Chapter 2: Foundations of Formal Concept
Analysis

2.1. Overview

Formal Concept Analysis (FCA) was introduced by Rudolf Wille in 1982 as a specialized
subfield emerging from applied mathematics, grounded in the notions of “concept” and
“concept hierarchy.” Over time, FCA has evolved into an unsupervised machine learning
approach adept at uncovering and representing conceptual structures embedded within data.
Its initial mathematical underpinnings have broadened FCA’s appeal, making it well-known,
particularly in computer science, though its influence also extends to fields such as data
mining [6], [7], knowledge representation [8], information management [9], and beyond.
Since its inception, FCA has inspired hundreds of scholarly publications and has been
supported by foundational texts, most notably the work of Ganter and Wille [10] provided
the mathematical foundation of FCA, as well as key volumes by Davey and Priestley [11].
Historically, the Darmstadt research group in Germany played a pivotal role in FCA’s early
development, and today, FCA research spans the globe, supported by annual international
conferences including the International Conference on Formal Concept Analysis (ICFCA),
the International Conference on Conceptual Structures (ICCS), and the Concept Lattices and
their Applications (CLA) meeting series. FCA’s diverse range of applications now includes
not only computer science but also statistics, applied mathematics, medicine, psychology,
social science [12], [13], [14], artificial intelligence, and information retrieval [9].

At its core, FCA provides a methodology for analyzing binary data, where data is
represented by objects and attributes, and uncovering the fundamental patterns,
dependencies, and implications present in this data. In practice, FCA takes a binary context
(a set of objects and their associated attributes) as input and produces sets of “natural
clusters” of objects and attributes as output. These conceptual clusters can then be visually
represented as a Hasse diagram (or line diagram), also known as a concept lattice or Galois
lattice. This lattice representation reveals the intrinsic structural relationships concealed
within the binary data. By offering a graphical and conceptual viewpoint, FCA enables
clearer and more meaningful interpretations of complex datasets. Essentially, from a given
collection of objects and attributes, FCA facilitates the extraction of a relevant ontology a
systematic, philosophically grounded representation of entities and their interrelations
enhancing the transparency and informational value of the data under study. For an in-depth
exploration of FCA's role in knowledge discovery and information science, readers are
directed to a detailed survey available in [15].

2.2. Structure of Concept Lattices
In this section, we establish the fundamental notions underlying Formal Concept Analysis

(FCA), starting with the definition of a formal context and moving toward the concept lattice
that emerges from it. We introduce key elements such as formal concepts, which pair sets of
objects and attributes, and explain how these concepts form a concept lattice that reveals the
inherent structure of the data. To ground these ideas, we explore the mathematical constructs
that support FCA, including Galois connections and closure operators, along with their

Foundations of Formal Concept Analysis

 9

essential properties. This theoretical foundation paves the way for understanding how
concepts relate to one another and how the lattice embodies a complete and well-organized
representation of the given dataset.

2.2.1. Data Representation as Input

At the heart of FCA lies a binary data representation often called a cross-table or
incidence table. This table links a set of objects (usually placed along rows) to a set of
attributes (usually placed along columns). Each cell in the table marks whether a given object
possesses a particular attribute, commonly indicated by a symbol (e.g., “×”). If the cell is
empty, the object does not have that attribute [10].

As a simple illustration, consider a collection of laptop models (objects) and a selection
of their attributes (characteristics) as shown in Table 2.1. Suppose we have four laptops 𝐿!,
𝐿", 𝐿#, 𝐿$, and four attributes: “Touchscreen” (T), “Backlit Keyboard” (B), “Solid-State
Drive (SSD)” (S), and “Detachable Screen” (D). We might arrange them as follows:

Table 2.1. Cross Table

 T B S D
𝐿! × × ×
𝐿" × ×
𝐿# × × ×
𝐿$ × ×

In this example, the symbol “×” in the cell for 𝐿! and T means 𝐿! (Laptop 1) has a

touchscreen, whereas the blank cell for 𝐿" and T means 𝐿" does not have a touchscreen. By
capturing objects and attributes in this manner, FCA can methodically derive formal
concepts and the resulting lattice that reveals the underlying conceptual structure within the
dataset.

Definition 2.1 (Formal Context):

A formal context is a triple (𝐺,𝑀, 𝐼) where 𝐺 is a non-empty set of objects, 𝑀 is a non-
empty set of attributes, and 𝐼 ⊆ 𝐺 ×𝑀 is a binary relation. If (𝑔,𝑚) ∈ 𝐼, it indicates that the
object 𝑔 ∈ 𝐺 has attribute 𝑚 ∈ 𝑀. Each “×” in the cross-table corresponds to a pair (𝑔,𝑚) ∈
	𝐼 [10].

In essence, a cross-table provides a straightforward and intuitive representation of data
suitable for applying FCA. From this foundation, one can extract the conceptual structures
known as formal concepts and arrange them into a concept lattice, thereby uncovering and
visualizing meaningful patterns and relationships in the data.

2.2.2. Operators for Concept Formation

From each formal context (𝐺,𝑀, 𝐼), where 𝐺 is a non-empty set of objects, 𝑀 is a non-
empty set of attributes, and 𝐼 ⊆ 𝐺 ×𝑀 is the incidence relation, we derive two fundamental
operators that map subsets of objects to subsets of attributes and vice versa. These are known
as the concept forming operators, and they are central to identifying the formal concepts that
constitute a concept lattice.

Foundations of Formal Concept Analysis

 10

Definition 2.2 (Concept Forming Operators):

Consider a formal context (𝐺,𝑀, 𝐼). For any subset of objects 𝑋 ⊆ 𝐺 and any subset of
attributes 𝑌 ⊆ 𝑀, define:

𝑋↑ = {𝑚 ∈ 𝑀 ∣ ∀𝑔 ∈ 𝑋, (𝑔,𝑚) ∈ 𝐼}

𝑌↓ = {𝑔 ∈ 𝐺 ∣ ∀𝑚 ∈ 𝑌, (𝑔,𝑚) ∈ 𝐼}

In other words, 𝑋↑ is the set of attributes common to every object in 𝑋, and 𝑌↓ is the set
of all objects that have every attribute in 𝑌 [10].

Remarks:

- The operator (⋅)↑maps subsets of objects in 𝐺 to subsets of attributes in 𝑀.
Intuitively, if 𝑋 ⊆, then 𝑋↑ returns the intersection of attributes shared by all objects
in 𝑋.

- The operator (⋅)↓ is its dual: it takes subsets of attributes 𝑌 ⊆ 𝑀 and returns all
objects in 𝐺 that possess all attributes in 𝑌.

Example 2.1:

Recall our earlier example with laptops as objects and their features as attributes. Let:

- 𝐺 = {𝐿!, 	𝐿", 	𝐿#, 	𝐿$} represent four laptop models.
- 𝑀 = {𝑇	(𝑇𝑜𝑢𝑐ℎ𝑠𝑐𝑟𝑒𝑒𝑛), 	𝐵	(𝐵𝑎𝑐𝑘𝑙𝑖𝑡	𝐾𝑒𝑦𝑏𝑜𝑎𝑟𝑑), 	𝑆	(Solid −

State	Drive), 	𝐷	(𝐷𝑒𝑡𝑎𝑐ℎ𝑎𝑏𝑙𝑒	𝑆𝑐𝑟𝑒𝑒𝑛)}.
- The relation 𝐼	(indicated by “×”) is given as shown in the formal context in Table1 :

From this context:

1 Consider 𝑋 = {𝐿!, 	𝐿#}. L1 has {𝑇, 𝐵, 𝑆}, and 𝐿# has {𝑇, 𝑆, 𝐷}. The attributes common to
both 𝐿! and 𝐿# are 𝑇 and 𝑆, so {𝐿1, 	𝐿3}

↑={𝑇, 𝑆}.
2 Consider a single-object set 𝑋 = {𝐿$}. 𝐿$ has {𝑇, 𝑆}. Thus, {𝐿4}

↑= {𝑇, 𝑆}.

For attributes:

- Let 𝑌 = {𝐵, 𝑆}. We want all objects that have both a Backlit Keyboard and an Solid-
State Drive. 𝐿! and 𝐿" fit this description, hence {𝐵, 𝑆}↓ = {𝐿1, 𝐿2}.

- Let 𝑌 = {𝑆}. All laptops with an Solid-State Drive are 𝐿!, 𝐿", 𝐿#, and 𝐿$, so {𝑆}↓ =
{𝐿1, 𝐿2, 𝐿3, 𝐿4}.

These concept-forming operators are crucial building blocks. By capturing which
attributes characterize a set of objects, and which objects exhibit a particular combination of
attributes, they enable us to define and understand formal concepts. Ultimately, these
concepts can be combined to form a concept lattice, a structured representation that reveals
intricate relationships within the data.

Foundations of Formal Concept Analysis

 11

2.2.3. From Formal Concepts to the Concept Lattice

A central pillar of Formal Concept Analysis is the notion of formal concepts. These
represent well-defined clusters of objects and attributes derived from the given formal
context, embodying the intuitive idea of concepts, each concept corresponds to a group of
objects sharing a precisely matching set of attributes [10].

Definition 2.3 (Formal Concept):

Given a formal context (𝐺,𝑀, 𝐼), a formal concept is a pair (𝑋, 𝑌) with 𝑋 ⊆ 𝐺 and 𝑌 ⊆ 𝑀
such that:

𝑋↑ = 𝑌, 𝑌↓ = 𝑋

In other words, (𝑋, 𝑌) forms a formal concept if and only if 𝑋 contains just objects sharing
all attributes from 𝑌 and 𝑌 contains just attributes shared by all objects from 𝑋, with no
extraneous elements. Here, 𝑋 is called the extent and 𝑌 is called the intent of the concept.
Extents are precisely the objects that share all attributes in 𝑌, and the intent 𝑌 represents all
attributes that these objects 𝑋 have in common.

Example 2.2:

Consider the laptops example in the formal context in Table1:
Let’s take 𝑋 = {𝐿!, 𝐿"}. These two laptops share at least the attributes {𝑆𝑆𝐷, 𝐵𝑎𝑐𝑘𝑙𝑖𝑡}

because both have these attributes. Indeed, 𝑋↑ = {𝑆𝑆𝐷, 𝐵𝑎𝑐𝑘𝑙𝑖𝑡} = 𝑌. Conversely, 𝑌↓ =
{𝐿!, 𝐿"} = 𝑋. Hence, (𝑋!, 𝑌!) = ({𝐿!, 𝐿"}, {𝑆𝑆𝐷, 𝐵𝑎𝑐𝑘𝑙𝑖𝑡}) forms a formal concept. This
concept pairs a set of objects (the laptops 𝐿! and 𝐿") with the exact set of attributes they
share (SSD and Backlit). In practice, a formal concept acts as a “fixpoint”: no other attributes
are missing or superfluous for the chosen set of objects, and no other objects outside 𝑋 share
exactly these attributes.

Moreover, more formal concepts exist, with three represented by the highlighted
rectangles in Table 2.2 below:

Specifically, (𝑋", 𝑌") = (({𝐿!, 𝐿#, 𝐿$}, {𝑇, 𝑆})), (𝑋#, 𝑌#) = (({𝐿#}, {𝑇, 𝑆, 𝐷})) and
(𝑋$, 𝑌$) = (({𝐿!, 𝐿", 𝐿#, 𝐿$}, {𝑆}))

Beyond individual concepts, FCA also provides a way to arrange them into a hierarchy.
Concepts are naturally ordered by a subconcept-superconcept relation, reflecting the
intuitive idea that some concepts are more specialized (fewer objects, more attributes) and
others more general (more objects, fewer attributes).

 T B S D
	𝐿! × × ×
	𝐿" × ×
𝐿# × × ×
𝐿$ × ×

 T B S D
	𝐿! × × ×
	𝐿" × ×
𝐿# × × ×
𝐿$ × ×

 T B S D
	𝐿! × × ×
	𝐿" × ×
𝐿# × × ×
𝐿$ × ×

Table 2.2. Determine Additional Concept

Foundations of Formal Concept Analysis

 12

Definition 2.4 (Subconcept-Superconcept Ordering) [10]:

For two formal concepts (𝑋!, 𝑌!) and (𝑋", 𝑌") in (𝐺,𝑀, 𝐼):

(𝑋!, 𝑌!) 	≤ (𝑋", 𝑌")  ⟺  𝑋! ⊆ 𝑋"  ⟺	 𝑌" ⊆ 𝑌!

If one concept’s extent is contained in another’s, it is deemed more specific (a
subconcept). If we think of real-world categories like “High-End Laptops” being a
subconcept of “All Laptops with SSD,” this aligns perfectly: “High-End Laptops” is more
specialized, fitting strictly inside a larger, more general category. Collecting all formal
concepts of a formal context and ordering them by ≤ (represents the subconcept-
superconcept ordering) yields a concept lattice. This lattice organizes all concepts into a
cohesive structure, displaying the entire “map” of how concepts relate in terms of specificity
and generality.

Definition 2.5 (Concept Lattice):

The collection of all formal concepts of a formal context (𝐺,𝑀, 𝐼), denoted by ℬ(𝐺,𝑀, 𝐼),
along with the ordering ≤ defined above, forms a concept lattice. This concept lattice is a
key structure in FCA:

ℬ(𝐺,𝑀, 𝐼) = {(𝑋, 𝑌) ∈ 2	+ × 2, ∣ 𝑋↑ = 𝑌, 𝑌↓ = 𝑋}

Equipped with the ≤ order, ℬ(𝐺,𝑀, 𝐼) is indeed a lattice, a mathematical structure in
which any two concepts have a unique greatest lower bound (meet) and a unique least upper
bound (join).

In addition to simply being a partially ordered set, a concept lattice is, by definition, a
lattice. In general lattice theory, a lattice is a partially ordered set (poset) in which every pair
of elements has both a greatest lower bound (meet) and a least upper bound (join). When we
say that (ℬ(𝐺,𝑀, 𝐼), ≤) is a lattice, we mean that for any two formal concepts in this set,
there is a well-defined concept that serves as their greatest lower bound and another that
serves as their least upper bound [10].

- Greatest Lower Bound (Meet or Infimum):

Consider two formal concepts (𝑋!, 𝑌!)		and (𝑋", 𝑌") in the concept lattice ℬ(𝐺,𝑀, 𝐼).
Their meet, denoted (𝑋!, 𝑌!)	∧ (𝑋", 𝑌"), is a formal concept that lies below or equal to both
(𝑋!, 𝑌!)		and (𝑋", 𝑌") in the ordering ≤, and it is the greatest such concept with this property.
Intuitively, this meet concept represents the most specific (or “lowest”) concept that is still
a common "descendant" of both (𝑋!, 𝑌!)		and (𝑋", 𝑌") . In practical terms, the meet
corresponds to the concept formed by taking the intersection of the object sets and
determining which attributes remain common to those objects, thus ensuring you get the
greatest common "lower" concept.

- Least Upper Bound (Join or supremum):

Similarly, the join, denoted (𝑋!, 𝑌!) 	∨ (𝑋", 𝑌"), is the least upper bound of the two
concepts. It is a formal concept that ranks above or equal to both (𝑋!, 𝑌!)		and (𝑋", 𝑌") and

Foundations of Formal Concept Analysis

 13

is the least such concept with this property. Intuitively, the join concept represents the most
general (or “highest”) concept that can be seen as a common "ancestor" of both (𝑋!, 𝑌!)		and
(𝑋", 𝑌"). Concretely, you can think of it as taking the union of their attribute sets and finding
all objects that share these combined attributes. This ensures you obtain the smallest concept
higher than both initial concepts.

Because every pair of concepts in ℬ(𝐺,𝑀, 𝐼) has a unique meet and a unique join, the
structure (ℬ(𝐺,𝑀, 𝐼), ≤) qualifies as a lattice.

Definition 2.6 (Extents and Intents):

- The set of all extents of the concept lattice is 𝐸𝑥𝑡(𝐺,𝑀, 𝐼) = {𝑋 ⊆ 𝐺 ∣ (𝑋, 𝑌) ∈
ℬ(𝐺,𝑀, 𝐼), 𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑌}

- The set of all intents is 𝐼𝑛𝑡(𝐺,𝑀, 𝐼) = {𝑌 ⊆ 𝑀 ∣ (𝑋, 𝑌) ∈ ℬ(𝐺,𝑀, 𝐼)	𝑓𝑜𝑟	𝑠𝑜𝑚𝑒	𝑋}.

In summary, starting from a formal context, we derive formal concepts that pair subsets
of objects with subsets of attributes, forming a concept lattice when organized by the natural
subconcept-superconcept relation. This lattice provides a complete and structurally rich
representation of the relationships present in the original data.

Example 2.3 (Extended Laptop Scenario):

To further illustrate the process of deriving a concept lattice, let’s consider an expanded
example using a set of laptops and additional attributes. Suppose we have the following set
of objects (laptops) and attributes:

Objects (Laptops):
 𝐺 = {𝐿!, 𝐿", 𝐿#, 𝐿$, 𝐿-, 𝐿., 𝐿/,	𝐿0},

Attributes:
 𝑀 = {𝑇(𝑇𝑜𝑢𝑐ℎ𝑠𝑐𝑟𝑒𝑒𝑛), 𝐵(𝐵𝑎𝑐𝑘𝑙𝑖𝑡), 𝑆(𝑆𝑆𝐷), 𝐷(𝐷𝑒𝑡𝑎𝑐ℎ𝑎𝑏𝑙𝑒), 𝐿(𝐿𝑖𝑔ℎ𝑡𝑤𝑒𝑖𝑔ℎ𝑡),
𝑀(𝑀𝑒𝑡𝑎𝑙	𝐶ℎ𝑎𝑠𝑠𝑖𝑠), 𝐺(𝐺𝑎𝑚𝑖𝑛𝑔)}

Assume the incidence relation 𝐼 (indicated by "×") is given by the cross-table in Table
2.3:

Table 2.3. The Extended Laptop Formal Context (Cross-Table Representation)
 T B S D L M G
𝐿! X X X X

𝐿" X X X

𝐿# X X X X
𝐿$ X

𝐿% X X X X

𝐿& X X X

𝐿' X X X X
𝐿(X X X X X

The corresponding formal context (𝐺,𝑀, 𝐼) for our expanded laptop example yields a set

of formal concepts. All formal concepts derived from the cross-table described in Table 2.3
are presented in Table A.1 of Appendix A.. Each concept provides insight into how certain

Foundations of Formal Concept Analysis

 14

groups of laptops share defining attributes, ultimately forming the building blocks of the
concept lattice.

The corresponding concept lattice ℬ(𝐺,𝑀, 𝐼)is depicted in the following Figure 2.1, as a
Hasse diagram. Each node corresponds to one of the formal concepts listed above, and edges
illustrate the subconcept-superconcept ordering.

Figure 2.1. Hasse Diagram of the Concept Lattice Derived from the Extended Laptop Context

2.2.4. Hasse Diagram

The Hasse diagram derived from a formal context is a graphical representation that
organizes all formal concepts into a hierarchy defined by the subconcept-superconcept
relation. Each node in the diagram corresponds to a formal concept, which is composed of
an extent (a set of objects) and an intent (a set of attributes). This visual structure allows one
to understand how concepts relate to each other, moving from broader, more general
concepts near the bottom to narrower, more specific concepts near the top.

A standard labeling convention is employed to improve readability and interpretation.
Formal concepts that correspond exactly to a single object and all its associated attributes
are called object concepts. For an object 𝑔 ∈ 𝐺, such an object concept is represented as
({𝑔}′′, {𝑔}′), and denoted by 𝛾(𝑔). In the diagram, the object’s identifier 𝑔 is placed below
its corresponding node. As an illustration, if we have an object concept ({𝐿!}′′, {𝐿!}′) from
the laptop formal context above, describing a particular laptop 𝐿! and its attributes
{𝑇, 𝐵, 𝑆, 𝐿}, the node in the Hasse diagram would be labeled simply as “𝐿!” beneath it as
shown in Figure 2.1, making it immediately clear that this concept is tightly linked to a single
object 𝐿!.

Conversely, formal concepts that correspond exactly to a single attribute and all objects
sharing it are called attribute concepts. For an attribute 𝑚 ∈ 𝑀, such an attribute concept is
represented as ({𝑚}′, {𝑚}′′) and denoted by 𝜇(𝑚). The attribute’s identifier 𝑚 is placed
above its corresponding node. For example, if there is an attribute concept ({{𝐿!, 𝐿", 𝐿-,
𝐿0}, {B}) focusing on all laptops that have the attribute 𝐵, the node would be labeled simply

L1L2 L3L5 L7 L8

L6

M DGB

L4

S

TL

Foundations of Formal Concept Analysis

 15

“𝐵” above it as shown in Figure 2.1, signaling that this concept captures the essence of
attribute 𝐵.

This labeling approach, objects below and attributes above is not only consistent but
highly informative. It allows for quick identification of object concepts and attribute
concepts. At a glance, one can recognize pure object or attribute concepts by their placement
of labels. However, not every concept fits neatly into these two categories. Many formal
concepts arise from more complex intersections of multiple objects and attributes. Such
concepts may represent meaningful clusters or patterns in the data without corresponding
purely to one object or one attribute. These intermediate nodes often remain unlabeled or
require more careful interpretation of their extents and intents [16], [17].

By traversing the diagram from bottom to top, one moves from general concepts (which
may have many objects and fewer attributes) to more specialized concepts (fewer objects,
more attributes). The topmost node often represents a concept characterized by a maximal
set of attributes (sometimes all attributes), and possibly no objects at all, while the
bottommost node often represents a concept containing all objects and possibly no attributes.
Intermediate nodes show how objects group together under shared attribute sets and how
attribute sets apply to particular object subsets.

In summary, the Hasse diagram’s layout and labeling conventions provide a clear,
intuitive framework for interpreting complex data relationships. Object labels below nodes,
attribute labels above nodes, and unlabeled intersections work together to reveal how objects
and attributes interact, cluster, and form meaningful concepts. This makes the concept lattice
an invaluable tool for gaining insights, identifying patterns, and informing decision-making
in a wide range of application domains.

2.2.5. Properties of FCA

Let (𝐺,𝑀, 𝐼) be a formal context, with 𝐺 as a non-empty set of objects, 𝑀 as a non-empty
set of attributes, and 𝐼 ⊆ 𝐺 ×𝑀 denoting the incidence relation. Consider arbitrary subsets
𝑋, 𝑋!, 𝑋" ⊆ 𝐺 and 𝑌, 𝑌!, 𝑌" ⊆ 𝑀. Recall the concept-forming operators: for 𝑋 ⊆ 𝐺, define

𝑋↑ = {𝑚 ∈ 𝑀 ∣ ∀𝑔 ∈ 𝑋, (𝑔,𝑚) ∈ 𝐼}

and for 𝑌 ⊆ 𝑀, define

𝑌↓ = {𝑔 ∈ 𝐺 ∣ ∀𝑚 ∈ 𝑌, (𝑔,𝑚) ∈ 𝐼}
These operators (⋅)′ map subsets of objects to subsets of attributes and vice versa. From

the definitions of (⋅)′ and related properties, the following fundamental relationships hold
[10]:

- Monotonicity of Derivations (for Objects):
If	𝑋! ⊆ 𝑋" ⊆ 𝐺, then

𝑋!′ ⊇ 𝑋"′

In other words, enlarging the set of objects cannot produce a larger attribute set. Instead,
it can only stay the same size or become smaller.

Foundations of Formal Concept Analysis

 16

- Monotonicity of Derivations (for Attributes):
If 	𝑌! ⊆ 𝑌" ⊆ 𝑀, then

𝑌!′ ⊇ 𝑌"′
Analogously, increasing the set of attributes leads to a smaller or equal set of objects

sharing all of them.

- Closure-like Properties of Double Derivations:
For any 𝑋 ⊆ 𝐺, we have

𝑋 ⊆ 𝑋11𝑎𝑛𝑑		𝑋′ = 𝑋′′′

Similarly, for any 𝑌 ⊆ 𝑀,

𝑌 ⊆ 𝑌11𝑎𝑛𝑑		𝑌′ = 𝑌′′′

Here, 𝑋′′ = (𝑋′)′ and 𝑋′′′ = (𝑋′′)′ are iterated derivations. The equality 𝑋′ = 𝑋′′′ and
𝑌′ = 𝑌′′′ indicate a closure-like behavior of these operators.

- Galois Connection-Style Equivalences:
The up and down derivations (⋅)′ satisfy a Galois connection between subsets of 𝐺
and subsets of 𝑀. Specifically,

𝑋 ⊆ 𝑌′	  ⟺ 	 𝑋′ ⊆ 𝑌

This property encapsulates the fundamental duality: a set of objects 𝑋 is included in the
down-set of a set of attributes 𝑌 if and only if the attribute set 𝑋′ is included in 𝑌.

Formal Concepts as Fixpoints: A pair (𝑋, 𝑌) with 𝑋 ⊆ 𝐺 and 𝑌 ⊆ 𝑀 forms a formal

concept if and only if

𝑋1 = 𝑌	and 𝑌1 = 𝑋	

This fixpoint condition ensures that (𝑋, 𝑌) captures a perfectly correlated cluster of
objects and attributes, no object outside 𝑋 shares all attributes of 𝑌, and no attribute outside
𝑌 is common to all objects in 𝑋. Formal concept analysis encompasses a broad range of
properties and advanced structures. For more intricate details, mathematical proofs, and
generalizations, authoritative references include [11], which provides a comprehensive
mathematical foundation, as well as Carpineto and Romano [18], among others.

2.2.6. Central Theorem on Lattices

The main theorem by Wille (1982) provides a fundamental characterization of concept
lattices [1]:

Theorem (Main Theorem of Concept Lattices):

Let (𝐺,𝑀, 𝐼) be a formal context and ℬ(𝐺,𝑀, 𝐼)	its set of formal concepts. Then:

Foundations of Formal Concept Analysis

 17

1. Completeness:
(ℬ(𝐺,𝑀, 𝐼), ≤) is a complete lattice. For any collection of formal concepts {(𝑋2 , 𝑌2
)}2∈4:

Z(𝑋2 , 𝑌2)
2∈4

=	[\𝑋2
2∈4

, []𝑌2
2∈4

^

11

^ , _(𝑋2 , 𝑌2)
2∈4

=	[[]𝑋2
2∈4

^

11

,\𝑌2
2∈4

^

2. Representation of Complete Lattices:

Any complete lattice (𝑉, ≤) can be represented as a concept lattice ℬ(𝐺,𝑀, 𝐼) if there
exist mappings 𝛾: 𝐺 → 𝑉 and 𝜇:𝑀 → 𝑉 such that:

- 𝛾(𝐺) is supremum-dense (⋁−𝑑𝑒𝑛𝑠𝑒) in 𝑉 and 𝜇(𝑀) is infimum-dense
(⋀−dense) in 𝑉.

- 𝛾(𝑔) ≤ 𝜇(𝑚) if and only if (𝑔,𝑚) ∈ 𝐼.

The theorem ensures ℬ(𝐺,𝑀, 𝐼) is always a complete lattice, with well-defined
supremum and infimum operations. It also shows that concept lattices are universal: any
complete lattice can be modeled as a concept lattice by choosing appropriate objects and
attributes. Labeling the lattice by assigning each object 𝑔 to its object concept 𝛾(𝑔) and each
attribute 𝑚 to its attribute concept 𝜇(𝑚) preserves all original information. This result
anchors concept lattices as a core mathematical structure in FCA, ensuring no loss of
information and offering a canonical form for representing complete lattices.

2.3. Overview of FCA algorithms

Computing all formal concepts from a given formal context can be challenging. A naive
approach would examine every subset of attributes 𝑌 ⊆ 𝑀 to determine if it forms a closed
set. This would be computationally prohibitive since there are 2|,| subsets of attributes.
Instead, FCA algorithms incorporate strategies like canonical test conditions, lexicographic
ordering of subsets, and efficient data structures to prune the search space. Formal Concept
Analysis (FCA) encompasses a variety of algorithms designed to efficiently construct
concept lattices from formal contexts. These algorithms can be broadly categorized into
three classes: Batch-Style Computation, Incremental Techniques for Update, and
Assembling Algorithms. Each class employs distinct methodologies tailored to specific
computational and application requirements. This section provides an exploration of these
algorithmic classes, highlighting their operational principles [19].

2.3.1. Batch-Style Computation

Batch-style algorithms are foundational in FCA, generating the entire set of formal
concepts from scratch by processing the complete formal context in a single run. These
algorithms typically operate in a top-down or bottom-up manner, either beginning with
minimal intents and progressively building towards maximal intents or vice versa. A notable
technique within this category is the lexicographic ordering of attribute subsets, which serves
to streamline the concept generation process by preventing redundant computations.

One of the most prominent batch algorithms is Ganter’s NextClosure algorithm,
introduced by [20]. The algorithm employs a lexicographic order to systematically explore

Foundations of Formal Concept Analysis

 18

subsets of attributes, ensuring that each formal concept is generated exactly once in a
canonical form. The key idea is to traverse the space of attribute subsets in a predetermined
order, applying closure operations to identify and confirm formal concepts.

Algorithm 2.1: NextClosure
𝐼𝑛𝑝𝑢𝑡:	𝐴	𝑠𝑢𝑏𝑠𝑒𝑡	𝑌	 ⊆ 	𝑀	
𝑂𝑢𝑡𝑝𝑢𝑡:	𝐴𝑙𝑙	𝑓𝑜𝑟𝑚𝑎𝑙	𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠	𝑑𝑒𝑟𝑖𝑣𝑒𝑑	𝑓𝑟𝑜𝑚	𝑌	

	
1. 𝑏𝑒𝑔𝑖𝑛	

17. /∗ 	𝑂𝑢𝑡𝑝𝑢𝑡	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑓𝑜𝑟𝑚𝑎𝑙	𝑐𝑜𝑛𝑐𝑒𝑝𝑡	 ∗/	
18. 𝑝𝑟𝑖𝑛𝑡(< 	𝑌′	, 𝑌	 >)	
19. 𝑖	 ← 	 |𝑀|	

5.					𝑠𝑢𝑐𝑐𝑒𝑠𝑠	 ← 	𝐹𝑎𝑙𝑠𝑒	
20. 𝑤ℎ𝑖𝑙𝑒	𝑛𝑜𝑡	𝑠𝑢𝑐𝑐𝑒𝑠𝑠	𝑎𝑛𝑑	𝑖	 > 	0	𝑑𝑜	
21. 𝑖	 ← 	𝑖	– 	1	
22. 𝑖𝑓	𝑛𝑜𝑡	𝑌[𝑖]	𝑡ℎ𝑒𝑛	

9.													𝐷	 ← 	𝑌	 ∪	{𝑖}	
10.												𝐶	 ← 	𝐷′′	
11.												𝑖𝑓	𝐶	\	𝑌	𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠	𝑛𝑜	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	 < 	𝑖	𝑡ℎ𝑒𝑛	
12.																𝑁𝑒𝑥𝑡𝐶𝑙𝑜𝑠𝑢𝑟𝑒(𝐶)	
13.																𝑠𝑢𝑐𝑐𝑒𝑠𝑠	 ← 	𝑇𝑟𝑢𝑒	
14.												𝑒𝑛𝑑	𝑖𝑓	
15.								𝑒𝑛𝑑	𝑖𝑓	
16.				𝑒𝑛𝑑	𝑤ℎ𝑖𝑙𝑒	
17. 𝑒𝑛𝑑	

NextClosure operates with a time complexity of 𝑂(∣ 𝐺 ∣"⋅	∣ 𝑀 ∣	⋅	∣ 𝐿 ∣), where ∣ 𝐿 ∣ is the
number of formal concepts. Its polynomial delay of 𝑂(∣ 𝐺 ∣"⋅	∣ 𝑀 ∣) makes it efficient for
contexts with moderate sizes.

Another significant batch algorithm is the Close-by-One (CbO) family, which enhances
the concept generation process by incorporating efficient canonicity tests and leveraging
data structures to store intermediate results. The original CbO algorithm, detailed in [21],
focuses on reducing redundant computations through strategic exploration of the attribute
space. The Fast Close-by-One (FcbO) algorithm, introduced by [22], enhances CbO by
implementing an additional canonicity test to eliminate redundant computations. FcbO
employs a breadth-first search strategy to propagate canonicity failures, thereby significantly
reducing the number of attribute comparisons required. Another advanced variant is the In-
Close algorithm [23], which optimizes closure operations by incrementally computing
closures and employing matrix searching techniques. The In-Close2 version [24] further
refines this approach by propagating attribute tests downward and reordering the context
table to group maximal rectangles, resulting in performance gains over FcbO.

Batch algorithms like NextClosure and CbO are powerful for generating complete
concept lattices from static contexts. However, their performance can degrade with large
datasets due to the exponential number of possible attribute subsets. Despite optimizations,
these algorithms require re-computation from scratch whenever the formal context changes,
limiting their applicability in dynamic environments.

2.3.2. Incremental Techniques for Update

Incremental algorithms address the limitations of batch algorithms by efficiently updating
the concept lattice in response to changes in the formal context, such as the addition or
removal of objects or attributes. These algorithms build the concept lattice incrementally,

Foundations of Formal Concept Analysis

 19

modifying the existing structure with minimal computational overhead rather than
reconstructing it entirely.

One of the earliest incremental algorithms is Norris’ Algorithm [25], which updates the
concept lattice by sequentially incorporating new objects. The algorithm maintains the lattice
structure by identifying and adjusting affected concepts when a new object is introduced.
AddIntent [26] is another algorithm enhances incremental updates by employing heuristics
to identify modified and generator concepts. It traverses the concept lattice graph
recursively, ensuring that each new concept is processed exactly once and that canonicity is
maintained throughout the update process. Another approach is presented in [27], where an
optimized incremental concept lattice construction method improves update efficiency by
integrating features from Ferre and InClose algorithms. This approach reduces
computational complexity through context reduction techniques, enabling faster concept set
updates. The method outperforms existing incremental techniques in specific parameter
ranges, making it particularly effective for dynamic datasets that require frequent
modifications.

Incremental algorithms provide a robust solution for maintaining concept lattices in
dynamic environments. By updating the lattice incrementally, these algorithms offer
substantial performance improvements over batch algorithms, especially in scenarios with
frequent data modifications. Their ability to efficiently handle updates makes them
indispensable for applications involving real-time data streams and evolving datasets.

2.3.3. Assembling Algorithms

Assembling algorithms represent an evolution of incremental techniques, focusing on
constructing concept lattices by combining partial structures derived from segmented parts
of the formal context. This approach is particularly advantageous for large-scale and
distributed datasets, as it allows for parallel processing and efficient aggregation of results.

The Divide & Conquer algorithm [28] exemplifies this class by partitioning the formal
context into smaller, manageable segments, computing concept lattices for each segment
independently, and subsequently merging these partial lattices into a cohesive whole. This
method leverages parallelism, enabling significant scalability and efficiency gains by
distributing the computational load across multiple processors or machines.
Key Steps of Assembling Algorithms:

1. Partitioning the Formal Context:
- The formal context (𝐺,𝑀, 𝐼) is divided either vertically (by attributes) or

horizontally (by objects) into smaller subcontexts.
2. Computing Partial Lattices:

- For each subcontext, a partial concept lattice is constructed using batch or
incremental algorithms.

3. Merging Partial Lattices:
- The partial lattices are then combined, ensuring consistency and maintaining

the overall lattice structure. This often involves resolving overlaps and
integrating shared concepts.

Advantages of Assembling Algorithms:
- Parallel Processing: Enables concurrent computations on different segments of the

formal context, significantly reducing total computation time.

Foundations of Formal Concept Analysis

 20

- Scalability: Efficiently handles large datasets by distributing the processing
workload, making it suitable for big data applications.

- Flexibility: Can be adapted to various partitioning strategies, allowing optimization
based on specific dataset characteristics and computational resources.

Assembling algorithms extend the capabilities of incremental and batch methods by

facilitating the construction of concept lattices from segmented data. Their inherent
parallelism and scalability make them particularly suited for handling extensive and complex
datasets, ensuring that FCA remains effective even as data volumes grow.

2.3.4. General Remarks on FCA Algorithm’s Performance

The computational efficiency of FCA algorithms is influenced by several parameters
associated with the formal context (𝐺,𝑀, 𝐼). Key factors include:

• The cardinalities |𝐺| and |𝑀|.
• The size of the incidence relation 𝐼.
• The density 𝜌 = 	 |6|

|+|	.		|,|	
, which measures how densely attributes occur in objects.

Empirical evaluations [19] indicate that certain algorithms excel under specific

conditions. For contexts where |𝐺| and |𝑀| are large and 𝜌 is high (dense contexts), bottom-
up algorithms like CloseByOne and NextClosure, as well as Norris’ incremental algorithm,
often yield superior performance. Conversely, for contexts where |𝐺| and |𝑀| remain small
and 𝜌 is low (sparse contexts), incremental methods such as Godin’s algorithm can be more
effective, thereby minimizing unnecessary computations.

Constructing the entire lattice, including its partial order, imposes an additional
computational burden. Algorithms solely generating the set of formal concepts 𝐶 often
exhibit lower runtime complexity than those that must also determine the ordering relations
≤ among concepts. This is because the calculation of minimal upper neighbors and lower
neighbors for each concept in 𝐶 introduces extra steps beyond the initial concept generation.

Preventing redundant concept computations is essential for efficiency. Let 𝐶 be the set of
all formal concepts derived from (𝐺,𝑀, 𝐼). Without careful checks, an algorithm might
attempt to recompute concepts it has already enumerated. To address this, suitable data
structures and canonicity checks are employed. For instance, Godin’s algorithm organizes
concepts by the cardinality of their intents, enabling quick lookups and pruning strategies.

A commonly used technique to accelerate set operations involves representing attribute
subsets as fixed-length bit arrays. Each attribute 𝑚 ∈ 𝑀 corresponds to a particular bit
position. For two subsets 𝑋, 𝑌 ⊆ 𝑀, the set intersection 𝑋 ∩ 𝑌 translates directly to a bitwise
AND operation on their corresponding bit arrays. This representation reduces set-theoretic
operations to 𝑂(∣ 𝑀 ∣/𝑤) time, where 𝑤 is the word size of the machine. For example, if
𝑀 = {𝑎 < 𝑏 < 𝑐 < 𝑑 < 𝑒 < 𝑓} and 𝑆 = {𝑎, 𝑐, 𝑑, 𝑒}, one can encode 𝑆 as a binary vector
𝑣(𝑆) = 101110, where the position of each bit corresponds to an attribute in lexicographic
order. Then, 𝑋 ∩ 𝑌 is computed as 𝑣(𝑋) ∧ 𝑣(𝑌), a single bitwise operation.

Additionally, reordering rows and columns of the context (𝐺,𝑀, 𝐼) can yield substantial
improvements. Sorting attributes by frequency and rearranging objects to minimize
Hamming distances between their bit-array representations enhances spatial locality and

Foundations of Formal Concept Analysis

 21

cache utilization. Such techniques, as implemented in In-Close2 [24], demonstrate
performance gains in excess of 30% for large datasets.

In conclusion, the performance of FCA algorithms depends not only on the choice of
algorithmic strategy, bottom-up vs. incremental, but also on data representation techniques,
the selection and design of indexing structures, and preprocessing steps like ordering and
clustering of attributes and objects. By judiciously combining these strategies, FCA
computations can scale more efficiently to handle increasingly large and dense formal
contexts.

2.4. Extensions and Applications of FCA Model

This section explores various extensions and applications of the FCA model, highlighting
advancements that enhance both its theoretical foundations and practical utility. One
significant extension is the concept of box elements in a concept lattice, introduced as a
refinement of Formal Concept Analysis (FCA) [29]. This work focuses on constructing the
box lattice of a given concept lattice ℬ(𝐺,𝑀, 𝐼), which serves as a structured framework for
classification systems. The box lattice, derived from a CJ-generated complete lattice, allows
for an alternative decomposition of concept lattices into atomistic components, enhancing
the classification hierarchy's representation. The study establishes the equivalence between
classification lattices and box lattices, proving that any classification lattice can be
reconstructed from an atomistic complete lattice. Additionally, the paper proposes an
algorithmic approach for computing box elements, which is particularly useful in cluster
analysis and group technology applications. This extension of FCA provides a novel method
for structuring and analyzing classification systems within concept lattices.

Building upon this, an important computational enhancement of FCA is presented in [30],
where the authors introduce an incremental method for constructing box extents in a concept
lattice. This research improves the efficiency of box element construction by refining the
one-object extension method, demonstrating that box extents can be incrementally generated
while avoiding exponential growth in complexity. A key result is that the box extent lattice
can be order-embedded in the lattice of atomic extents, further strengthening FCA’s
mathematical foundation for classification tasks. The paper contributes a computationally
feasible algorithm that improves the practical applicability of FCA in data classification,
clustering, and engineering applications, particularly in Group Technology. By optimizing
the successive extension of box extents, this work significantly enhances the scalability and
usability of FCA-based classification systems.

Beyond the crisp (binary) framework of traditional FCA, another key extension into the
fuzzy domain is presented in [31]. This work explores the lattice structure of fuzzy rough
sets with crisp reference sets, integrating fuzzy logic with FCA principles to handle graded
membership and uncertainty in classification. The study establishes an isomorphism
between the lattice of fuzzy rough sets and the lattice of rough sets for a crisp equivalence
relation, preserving fundamental order-theoretic properties crucial to FCA. By bridging
fuzzy rough set theory with concept lattice structures, this extension allows FCA to be
applied in uncertain knowledge representation, particularly in machine learning, data
classification, and artificial intelligence. This adaptation expands the scope of FCA beyond
traditional binary relations, enabling its use in complex, real-world scenarios where
uncertainty must be considered.

FCA’s diverse applications extend beyond computer science to statistics, medicine,
psychology, social sciences [12], [13], [14], artificial intelligence, and information retrieval

Foundations of Formal Concept Analysis

 22

[9]. In education, FCA is applied to student assessment by constructing concept lattices from
a Student Assessment Matrix (SAM) and a Question Skill Matrix (QSM) [32]. This approach
visualizes student knowledge hierarchies, enabling objective grading, personalized learning,
and effective group formation based on complementary skills. By integrating FCA into
educational evaluation, this method offers a data-driven framework for assessing student
performance and knowledge representation. Beyond education, FCA has been effectively
applied in industrial engineering [33], particularly in solving the machine-part grouping
problem in cellular manufacturing. By analyzing a binary incidence matrix, formal concepts
and extent partitions are used to optimize manufacturing cells, improving machine utilization
and reducing inter-cell movements, this application further demonstrates FCA's versatility
in addressing complex, real-world industrial challenges. In Natural Language Processing
(NLP), FCA is applied to part-of-speech (POS) classification by constructing concept
lattices to generate classification rules [34]. This FCA-based approach replaces traditional
decision trees and neural networks, identifying maximal consistent nodes to improve
classification accuracy and efficiency. Experimental results show that the FCA-based
classifier outperforms neural networks in execution time and accuracy, making it a viable
alternative for morphological classification and linguistic analysis. A closely related
application in string transformation rule induction uses FCA to generalize morphological
transformations by constructing concept lattices [34]. This approach improves rule induction
efficiency by organizing transformation rules hierarchically, enabling compact and
generalized rule extraction. The optimized incremental concept lattice construction enhances
pattern recognition and linguistic processing, making FCA a valuable tool in text analysis
and NLP.

These extensions and applications highlight FCA’s adaptability and effectiveness in
diverse fields, demonstrating its potential for advancing both theoretical research and
practical problem-solving across multiple domains.

2.5. Emerging Issues in FCA and the Necessity for Reduction
Methods

FCA’s relevance in complex data analysis is tempered by practical constraints,
particularly as datasets grow in size, complexity, and heterogeneity. The following
subsections highlight key challenges that underscore why reduction techniques are integral
to the next generation of FCA methodologies. These insights reflect the ongoing dialogue in
the literature regarding computational bottlenecks, data transformation strategies, and
maintaining representational fidelity [19], [24].

2.5.1. High-Dimensional and Complex Datasets

As datasets expand in both volume and complexity, the practical application of Formal
Concept Analysis (FCA) faces intensified challenges. The sheer scale of modern data
potentially encompassing hundreds of thousands of objects and attributes drives exponential
growth in the number of formal concepts and the resultant concept lattice [35]. In essence,
each new object or attribute can significantly multiply the possible combinations of object-
attribute pairs, creating a combinatorial explosion that places tremendous computational
burdens on lattice construction and subsequent analysis.

Foundations of Formal Concept Analysis

 23

This surge in complexity is particularly evident in domains where data is inherently large-
scale and intricate. For example, in bioinformatics and genomics research, ever-increasing
datasets contain vast numbers of genes or proteins, each associated with a myriad of
attributes such as functional annotations, experimental conditions, and genomic variants
[36], [37]. Similarly, space telemetry data, streaming in real time from numerous sensors,
and massive e-learning repositories, recording the activities and proficiencies of thousands
of learners, yield datasets too extensive for conventional FCA techniques to handle
efficiently. Without suitable reduction strategies, the concept lattice may become
prohibitively large and overwhelming, making it difficult for analysts to extract meaningful
patterns or insights.

Moreover, high-dimensional data often includes attributes of varying scales, types, and
significance. Some attributes may be redundant or represent fine-grained distinctions that,
while statistically present, hold limited analytical value. Others may be essential but
obscured by a plethora of less relevant details. The presence of these “noisy” or low-impact
attributes further exacerbates the complexity by producing a multitude of extra concepts that
are not necessarily relevant for the task at hand [38].

In response to these challenges, FCA must be equipped with sophisticated reduction
techniques designed to operate at scale. For instance, heuristic filtering can prune attributes
or objects that fall below a certain frequency threshold, ensuring that only the most
prominent and impactful elements remain [30]. Clustering-based approaches can collapse
sets of similar rows or columns to simplify the formal context, thereby yielding a more
compact and cognitively manageable lattice structure [39], [40], [41]. Additionally,
computational methods like Singular Value Decomposition (SVD) or Non-negative Matrix
Factorization can compress the data matrix into a reduced representation, though these
factorization-based approaches must be applied carefully to preserve interpretability and
handle noise gracefully [42].

Ultimately, handling high-dimensional and complex datasets requires a balanced synergy
between computational optimization, conceptual abstraction, and selective filtering. By
integrating robust reduction methods, FCA can maintain its core strength as a formal,
structured approach to understanding complex data relationships, even in environments
characterized by massive scale and multifaceted data attributes.

2.5.2. Adapting to Varied Data Forms Through Scaling

FCA traditionally requires binary input data, but many real-world problems involve
continuous, many-valued, or more complex data types [43]. Scaling bridges this gap by
transforming non-binary attributes into a suitable form. However, determining effective
scaling parameters and intervals, particularly in dynamic data scenarios like data streams
remains non-trivial [24]. As new data arrives or attribute ranges shift, scaling must be
repeated or updated, further straining computational resources. Efficient incremental or
distributed scaling approaches become essential for maintaining performance and achieving
timely analysis results.

2.5.3. Handling Uncertainty: Noise and Missing Values

Real-world datasets often contain outliers, incorrect measurements, or incomplete
information. Such imperfections can inflate the number of formal concepts, as even slight
deviations generate additional, and frequently irrelevant, concepts [44]. Mitigating these

Foundations of Formal Concept Analysis

 24

effects calls for strategies that tolerate a controlled level of exceptions fault-tolerant FCA
methods or that apply smoothing, filtering, or imputation techniques to ensure the resulting
lattice remains both accurate and concise [38].

Beyond these fundamental issues, FCA grapples with other complexities as data volumes
grow:

- Parallel and Distributed Computation: Efficiently computing concept lattices in
parallel or distributed environments is crucial as datasets become too large for single-
node solutions [45]. Distributed algorithms and load-balancing strategies can
significantly improve scalability.

- Data Stream Processing: The high velocity of streaming data demands incremental
updating and approximation methods to keep up with new objects and attributes
without recomputing entire lattices [46].

- Visualization of Large Lattices: As concept lattices grow large, traditional Hasse
diagrams become visually overwhelming and hinder user comprehension [47]. While
tools like Toscana and ConExp provide basic visualizations, they offer limited
interactivity and struggle with large-scale contexts. Figure 2.2 (referenced in the
literature) illustrates some default visualization strategies, demonstrating that
straightforward approaches are insufficient for extensive datasets.
More advanced solutions integrate interaction and progressive disclosure.
ConfExplore introduces animated transitions and incremental lattice exploration,
while Facettice enables faceted navigation and multidimensional taxonomy
browsing. However, these solutions often operate independently of reduction
techniques.
To fully capitalize on lattice simplification, visualization must be coupled with
dynamic, interactive tools. Shortcuts like zooming, filtering, and clustering,
combined with careful visual encoding and guided interactions, can help users
navigate and interpret complex lattices more.

Figure 2.2. Representative Tools for Concept Lattice Visualization [48]

In conclusion, as FCA encounters increasingly complex, large-scale, and evolving

datasets, it must integrate refined reduction methods, advanced scaling strategies, and robust

Foundations of Formal Concept Analysis

 25

mechanisms for noise handling and concept filtering. These enhancements will ensure that
FCA remains both a powerful and practical framework for knowledge discovery in
challenging data-driven environments.

2.6. Summary

This chapter provided a comprehensive foundation for Formal Concept Analysis (FCA),
detailing the theoretical underpinnings that make it a powerful framework for knowledge
representation. After introducing the essential constructs, it examined how FCA identifies
conceptual structures within data and organizes them into concept lattices.

Subsequently, the chapter reviewed key algorithmic paradigms, batch computation,
incremental updates, and lattice assembly, emphasizing how each approach addresses
different computational challenges. Techniques to enhance algorithmic performance, such
as efficient data structures, attribute reordering, and heuristic filtering, were highlighted as
essential tools for managing complexity.

The chapter then focused on the pressing challenges FCA faces in contemporary big data
contexts, where high-dimensional, noisy, and evolving datasets demand more scalable and
flexible solutions. This necessitates robust reduction methods, advanced scaling techniques
for complex data types, and approaches to handle noise and missing values. Recognizing
these obstacles sets the stage for developing refined methodologies that preserve FCA’s
conceptual clarity and interpretability, even as data grows in scale and complexity.

Literature Review

 26

Chapter 3: Literature Review

3.1. Overview of Existing Lattice Reduction Techniques in FCA

Formal Concept Analysis (FCA) has, since its conception by Wille in 1982 [1], evolved
into a powerful tool for knowledge extraction and structural data analysis. Its mathematical
foundations enable the organization of data into concept lattices, revealing intricate
relationships that have proved beneficial across a wide range of domains, data mining [6],
neural networks [49], and social network analysis [12], [13], [14], among others. Yet, as
FCA applications have expanded, the complexity of the resulting lattices has become a
significant concern. Reducing the complexity of concept lattices derived from Formal
Concept Analysis (FCA) is a critical challenge in knowledge engineering. As FCA extracts
formal concepts and arranges them into a concept lattice, the resulting structure can become
prohibitively large and intricate, often rendering it computationally demanding and difficult
for humans to interpret. Therefore, the quest for effective reduction techniques, approaches
that simplify these lattices while retaining their essential conceptual relationshipsm is at the
forefront of FCA research.

Various reduction methodologies have been proposed to manage and simplify concept
lattices [50]. They generally fall into three categories: redundancy removal, simplification,
and selection-based strategies. Redundancy removal methods focus on eliminating
unnecessary objects, attributes, or incidences, ensuring the resulting lattice remains
isomorphic to the original but reduced in scale [51], [52], [53]. However, while these
methods can yield smaller, structurally similar lattices, they often remain computationally
heavy for very large datasets and do not always provide a significantly more interpretable
structure. A straightforward reduction method in this category involves merging multiple
objects that share exactly the same attributes into a single representative object, or merging
multiple attributes that appear together across identical sets of objects into one attribute. By
removing these redundancies, the resulting formal context becomes “clarified” while
retaining the same conceptual structure [10]. Another type of reduction that maintains the
lattice’s overall structure is to remove any attribute that can be represented by other existing
attributes, referred to as a reducible attribute[10]. Formally, if there is an attribute 𝑚	 ∈ 𝑀
and a subset of attributes 𝐵 ⊆ 𝑀, with 𝑚 ∉ 𝐵, such that 𝑚1 = 𝐵1, then 𝜇𝑚 (the attribute
concept of mmm) is the infimum of the attribute concepts 𝜇𝑏 for all 𝑏 ∈ 𝐵. Consequently, if
attribute 𝑚 is removed, the resulting concept lattice remains equivalent to the original one,
both in structure and relational ordering. In a similar way, eliminating reducible objects from
a formal context can yield a smaller context whose associated concept lattice is still
isomorphic to that of the original. Specifically, an object 𝑔 ∈ 𝐺 for which 𝛾(𝑔) is the
infimum of 𝛾(𝑎) over some set 𝐴 ⊆ 𝐺 and 𝑔	 ∉ 𝐴, 𝑎	 ∈ 𝐴 ,can be removed without changing
the isomorphism class of the resulting [10]. To further minimize the size of formal contexts
while preserving the underlying concept lattice, various strategies have been developed. One
such strategy, proposed in [54], uses a “discernibility matrix” to determine a minimal subset
of attributes. This approach treats (𝐺,𝑀, 𝐼) as a formal context and looks at pairs of concepts
(𝐴!, 𝐵!), (𝐴", 𝐵") ∈ ℬ(𝐺,𝑀, 𝐼). The symmetric difference of their intention parts, = (𝐵! ∪
𝐵")\(𝐵! ∩ 𝐵"), defines their “discernibility.” Once the discernibility matrix is constructed,
a minimal set of attributes 𝐵 ⊆ 𝑀 can be chosen so that the resulting lattice ℬ(𝐺,𝑀, 𝐼1)		
remains isomorphic to ℬ(𝐺,𝑀, 𝐼). Here, 𝐼1 = 𝐼 ∩ (𝐺 × 𝐴), and 𝐴 denotes the minimal set of

Literature Review

 27

attributes having the smallest cardinality. Building on this, Qi [55] presented guidelines to
reduce the number of discernibility computations, still ensuring the possibility of obtaining
a minimal set of attributes. Furthermore, [54] categorize attributes of a formal context as
“absolutely necessary,” “relatively necessary,” or “absolutely unnecessary.” An attribute
that appears in every minimal set is deemed absolutely necessary; if it appears in at least one
but not all minimal sets, it is relatively necessary; and if an attribute appears in none of the
minimal sets, it is considered absolutely unnecessary.

Simplification or abstraction approaches attempt to approximate or restructure the lattice
to emphasize its most essential features while accepting some information loss. These
include clustering similar objects or attributes to form more compact representations [56],
employing algebraic reductions like SVD or non-negative matrix factorization [57], and
leveraging approximation operators such as neighborhood-based concept lattices [58]. The
discernibility matrix-based reduction algorithm [59] and sophisticated factorization methods
[60] represent key efforts to minimize complexity. Linguistic-valued layered lattice
simplifications that consider three-way decision methods [61], as well as attribute reduction
in Pythagorean Fuzzy formal contexts leveraging optimized Apriori-algorithm variants [62],
reflect ongoing innovation in this area. Yet, these simplification methods may rely on
assumptions (e.g., pseudo similarities) or introduce computational burdens that limit their
practical use. An interesting approach related to focusing on a sublattice of concept lattices
rather than enumerating all concepts, was presented by [29]. They consider row-reduced
contexts and define the so-called box lattice, 𝐵𝑜𝑥(𝐵(𝐺,𝑀, 𝐼)), which retains exactly those
concepts relevant for classification systems, leading to an atomistic sublattice. Their method
identifies and generates these ‘box elements’ by finding the atoms of 𝐵𝑜𝑥(𝐵(𝐺,𝑀, 𝐼)). This
atom-based decomposition provides a systematic framework to study or build classification
lattices in a potentially more manageable subset, thereby extending formal concept analysis
techniques to clustering and grouping tasks where classification systems play a key role.

Selection-based techniques provide another promising avenue for lattice reduction.
Instead of attempting to maintain or approximate the entire structure, selection strategies
isolate only those concepts or attributes deemed most relevant for a given analysis [17], [50].
A notable example is the filtering techniques like the iceberg lattice technique [17], which
filters concepts by applying a single support threshold (minsupp). Specifically, the support
of a concept (𝐴, 𝐵) is defined as 𝑠𝑢𝑝𝑝(𝐵) =∣ 𝐵′ ∣/∣ 𝐺 ∣, where 𝐵′ is the set of objects having
exactly the attributes in 𝐵. Any concept whose support does not meet or exceed minsupp is
pruned, leaving only the “topmost” or most frequent portion of the lattice. While this
approach offers a straightforward means of reducing lattice size and highlights frequently
occurring concepts, it does not account for derivation costs; concepts with the same high
support remain equally in the lattice, even if one is far more central for deriving other
concepts.. By narrowing down the concept set, these methods can achieve more manageable
and interpretable lattices. In many scenarios, there is additional knowledge about the sets of
objects and attributes. Some selection techniques use this knowledge to guide the reduction
process, focusing on objects or attributes that satisfy particular constraints. For instance,
some methods leverage attribute weighting [64], hierarchical structures [65], to further refine
which concepts are retained. Recent efforts, such as the tri-granularity model introduced in
[66], highlight a layered approach that organizes the lattice at multiple granularity levels
global, local, and elementary, to systematically perform attribute reduction. Other selection
methods consider the relationships between specific attributes [67], or rely on frequency
thresholds and structural constraints [40], [68], [69] to highlight only the most significant
concepts. Although these strategies improve upon simplistic pruning mechanisms, they often

Literature Review

 28

treat the selection criteria as static filters and do not fully consider the dynamic aspect of
concept derivation within the lattice.

Conceptual clustering has been identified as a viable approach for concept lattice
reduction. By grouping similar concepts, one can approximate or replace large sets of related
concepts with fewer, representative “cluster centers,” thereby simplifying the overall lattice.
Traditionally, data clustering has focused on numerical datasets, leveraging geometric
distance measures such as Euclidean or Manhattan distances to partition objects into
meaningful clusters. However, the straightforward geometric notions of distance do not
translate well to datasets characterized by categorical attributes, such as gender, location, or
product categories, nor do they inherently capture the hierarchical and relational nuances of
FCA-generated concepts. This limitation has prompted a surge of interest in adapting
clustering methods to handle categorical data effectively [70], [71], [72]. For categorical
datasets, similarity typically relies on equality checks rather than continuous-valued metrics.
A simple matching measure, counting how many attributes match exactly, forms a baseline
approach [73]. Yet, equality-based similarity treats all mismatches equally, ignoring subtle
categorical variations and overlooking the hierarchical relationships that FCA captures [74].
Standard clustering algorithms designed for continuous vector spaces must therefore be
reimagined to both accommodate categorical data and align with FCA’s conceptual
structures. The widely known k-means algorithm [75] exemplifies these challenges. While
k-means is celebrated for its simplicity and efficiency, it cannot directly process categorical
attributes without transformations that risk information loss. This shortcoming has led to the
development of several k-means variants designed for categorical data. The k-modes
algorithm [72], for example, replaces mean-based cluster centers with modes and employs a
simple matching measure. Although k-modes can handle categorical attributes, it often faces
stability issues in defining unique cluster modes and may not exploit any underlying
hierarchy present in the data.

Subsequent adaptations, such as k-representative [76] and k-centers [77], introduce more
refined definitions of cluster “centers.” K-representative constructs representatives by
considering the distribution of categorical values within a cluster, while k-centers estimates
cluster centers as sets of probability distributions derived from kernel density estimations.
These methods try to preserve important categorical relationships, but they still rely on
vector-like representations or frequency counts that can obscure latent hierarchies or lead to
loss of crucial relational information. Other refined variants include fuzzy k-modes [78],
scalable k-modes [79], and probabilistic k-modes [80]. These extensions enhance clustering
flexibility and scalability, incorporate uncertainty modeling, and improve computation
times. Yet, despite these advancements, the primary focus often remains on adapting k-
means to categorical domains rather than integrating hierarchical structures like those found
in FCA. Concept lattices derived from FCA inherently encode hierarchical and relational
aspects that these clustering methods do not fully utilize. This gap suggests an opportunity:
rather than simply clustering categorical data, we can employ the hierarchical, relational
structures of FCA to guide clustering-based reduction. Formal Concept Analysis can
represent data as a concept lattice, where each concept is formed by a set of attributes (intent)
and a set of objects (extent). If we treat the concept lattice itself, or the underlying datasets
it emerges from, as input to a clustering procedure adapted for categorical data, the resulting
“cluster centers” can serve as approximations of the original concept sets. This approach can
reduce the number of concepts that need to be explicitly represented, thus simplifying the
lattice without completely discarding the essential information.

While these reduction techniques have advanced FCA, a notable gap remains in
incorporating human language optimization principles, such as the principle of least effort

Literature Review

 29

[81] and Zipf’s law, into lattice reduction. These linguistic insights reveal how humans
naturally favor concise, high-frequency elements to minimize cognitive load [82]. By
drawing on this perspective, it becomes possible to enhance both computational efficiency
and cognitive accessibility in concept lattice reduction, aligning the resulting structures more
closely with natural human information processing. Authors in [82], presents a pivotal study
demonstrating that average information content is a superior predictor of word length in
human languages compared to mere word frequency. This challenges the traditional Zipf’s
law, which posits that word length is primarily determined by frequency of use, with more
frequent words being shorter. The authors argue that human languages optimize words
lengths to achieve efficient communication by accounting for the statistical dependencies
between words, aligning with principles from information theory. They introduce a formal
measure of a word’s average information content 𝐼(𝑤), calculated as:

𝐼(𝑤) = 	−w𝑃(𝑐𝑡|𝑤) log 𝑃(𝑤|𝑐𝑡)

9:

Where, 𝑃(𝑐𝑡|𝑤) is the probability of context 𝑐 given word 𝑤, and 𝑃(𝑤|𝑐𝑡) is the

probability of word 𝑤 given context 𝑐. This formula captures the expected amount of
information a word conveys across different contexts, reflecting its unpredictability and
communicative value. Their empirical analysis across multiple languages using N-gram
models reveals that words with higher average information content tend to be longer. This
suggests that languages allocate longer word forms to convey more complex or less
predictable meanings, thereby optimizing the balance between communicative efficiency
and cognitive effort.

The authors in [83], explores the emergence of Zipf’s law in human language through
the lens of the principle of least effort. They propose that language evolution is driven by a
trade-off between the efforts of the speaker and the hearer, leading to an optimized
communication system. In their model, they represent language as a binary matrix 𝐴 = {𝑎;2},
where 𝑎;2 = 1 if signal 𝑠; refers to object 𝑟2, and 𝑎;2 = 0 otherwise. This matrix captures the
associations between a set of signals 𝑆 = {𝑠!, 𝑠", . . . , 𝑠<} and a set of objects 𝑅 =
{𝑟!, 𝑟!, . . . , 𝑟=}. They define two key entropy measures to represent the efforts of the speaker
and the hearer:

- Speaker’s Effort: Measured by the entropy of the signal distribution, reflecting

the effort in producing and retrieving signals.

𝐻<(𝑆) = −∑ 𝑃(𝑠;) log< 𝑃(𝑠;)<
;>!

Where 𝑃(𝑠;) is the probability of signal 𝑠;.

- Hearer’s Effort: Measured by the average conditional entropy of objects given a

signal, capturing the ambiguity from the hearer’s perspective.

𝐻=(𝑅|𝑆) = ∑ 𝑃(𝑠;) H=(𝑅|𝑠;)<
;>!

with,

H=(𝑅|𝑠;) = −∑ 𝑃�𝑟2|𝑠;� log= 𝑃�𝑟2|𝑠;�=
;>!

Literature Review

 30

The authors introduce a cost function that combines these two efforts:

𝛷(𝜆) = 𝜆𝐻=(𝑅 ∣ 𝑆) + (1 − 𝜆)𝐻<(𝑆)

where 𝜆 ∈ [0,1] is a parameter that balances the importance of the hearer’s effort versus
the speaker’s effort. By minimizing this cost function, they find that at a critical value 𝜆∗,
the system undergoes a phase transition. At this point, the frequency distribution of signals
follows Zipf’s law, indicating that efficient communication arises naturally from optimizing
the balance between speaker and hearer efforts.

3.2. Research Gaps and Motivation
While the techniques surveyed in the previous section have significantly advanced the

quest for more manageable concept lattices, several notable shortcomings remain. Chiefly,
existing methods often lack a dynamic understanding of how concepts relate within the
hierarchical framework of FCA; they may also neglect how easily one concept can be
derived from another, a factor critical to both computational efficiency and interpretability.
Additionally, approaches that do tackle categorical data or incorporate clustering frequently
rely on distance metrics ill-suited for FCA’s relational structure, leading to potential
information loss.

To address these gaps, this dissertation introduces many strategies, including two novel
extensions of the k-means algorithm, K-means Dijkstra on Lattice (KDL) and K-means
Vector on Lattice (KVL), that aim to preserve the categorical richness and hierarchical
relationships of FCA-based structures. Unlike previous methods that treat categorical
attributes as flat symbols, our methods integrate the relational structure derived from FCA,
using it as a guide for identifying meaningful cluster representatives, i.e., reduced concept
sets. KDL exploits the lattice structure constructed from FCA by considering formal
concepts as nodes and their hierarchical order as edges. Instead of relying on geometric
distances, KDL uses a shortest-path computation (via a customized Dijkstra’s algorithm) on
the lattice to measure distances between concepts. By substituting Euclidean distance with
path costs on the concept lattice, KDL identifies cluster “centroids” that faithfully represent
underlying conceptual relationships, effectively capturing and preserving the data’s
hierarchical complexity. These centroids act as representative concepts that can replace large
sets of similar concepts, thus reducing the scale of the lattice. While KDL leverages a graph-
based perspective, KVL transforms each formal concept into a “concept description vector.”
This vectorization step, guided by FCA insights, ensures that the attributes and relationships
critical to the lattice’s structure are not lost. KVL then applies conventional k-means
clustering to these vectors. The carefully constructed vector space retains key structural
features of the lattice, enabling k-means to group related concepts into clusters. The resulting
cluster centers approximate the original concept sets, contributing to lattice reduction by
replacing numerous related concepts with a fewer number of centroids.

Both KDL and KVL serve as reduction tools, going beyond standard clustering
adaptations. They incorporate FCA’s relational context to generate more interpretable,
stable, and structure-preserving cluster centers. Whereas earlier categorical clustering
methods focused primarily on defining suitable similarity measures or handling uncertainty,
KDL and KVL integrate FCA’s conceptual hierarchy to maintain the interpretability and
essential properties of the concept lattice. By doing so, they transform the clustering process
into a powerful lattice reduction technique.

Literature Review

 31

The Kernel Concept Set (KCS) approach in this study, arises from the need to address the
limitations found in traditional selection-based methods. Unlike frequency-only or attribute-
centric selection techniques, the KCS method integrates both the frequency of concepts and
their derivation cost. The concept of “derivation cost” introduces a crucial dynamic element:
rather than merely counting how often a concept appears or which attributes it possesses,
KCS evaluates how easily one concept can be derived from another, acknowledging the
hierarchical and directional relationships in the lattice. This perspective enables a more
holistic assessment of concept importance and interconnectivity.

One key innovation of KCS lies in its flexible derivation cost function. By refining the
notion of similarity into a more general, flexible distance measure, one that can account for
both usage-level patterns and internal structural details, the KCS approach transcends the
limitations of static, frequency-based methods. This broader scope of application offers a
nuanced understanding of concept relationships, capturing complexities that would
otherwise remain hidden. Whereas earlier selection-based methods might only consider
whether a concept is “frequent enough” or “fits certain attribute criteria,” KCS factors in
how “expensive” it is to navigate from one concept to another within the lattice, using a
shortest-path interpretation influenced by Dijkstra-based measures [40].

Another distinguishing feature of the KCS approach is its capacity to identify kernel
concepts that serve as conceptual “centers” or anchors. Much like centroids in clustering
algorithms, these kernel concepts become reference points around which other concepts can
be grouped. This reframing of concept selection as a clustering-like process separates KCS
from standard selection strategies and sets it apart from conventional clustering methods that
require vector spaces or rely on ad-hoc distance metrics. Instead, KCS operates efficiently
within a general metric space, providing a more natural fit for the hierarchical structures
inherent in FCA lattices. By doing so, it avoids the information loss commonly associated
with vectorization, and also foregoes the computationally expensive steps seen in standard
agglomerative clustering methods.

The KCS approach, therefore, surpasses traditional methods in several critical aspects:

- It does not require a vector space; a general metric space is sufficient.
- It has a lower cost compared to the standard agglutinative clustering methods.
- Flexible distance interpretation
- It provides the cluster centroids not only the cluster members.

By combining frequency measures, derivation costs, and a robust notion of concept

similarity, the KCS approach offers a more sophisticated and holistic strategy than earlier
selection or simplification methods. It not only selects a minimal and representative kernel
subset but also ensures that the chosen concepts form a stable backbone from which the
entire lattice can be understood or reconstructed. This capability positions KCS as a novel
clustering methodology tailored explicitly for concept lattices, representing a significant step
forward in the quest to reduce lattice complexity while maintaining meaningful and
interpretable structures.

While these reduction techniques have advanced the field of FCA, there remains a gap
in leveraging principles from human language optimization to enhance both computational
efficiency and cognitive accessibility. Another proposed model in this study addresses this
gap by drawing inspiration from first, linguistic theories that examine how human languages
evolve to balance expressiveness with efficiency, such as the principle of least effort [81], a
concept suggesting that humans naturally seek to minimize the amount of work they do,

Literature Review

 32

including in language use. Zipf observed that the frequency of word usage in a language is
inversely proportional to its rank in a frequency table, a phenomenon now known as Zipf’s
law. This means that a few words are used extremely frequently, while the vast majority are
used rarely, and second, the information theory in linguistics [82]. In human language, words
and structures are optimized to convey maximum meaning with minimal cognitive load and
resource expenditure.

3.3. Summary
This chapter provided an overview of various strategies designed to manage and reduce

the complexity of concept lattices in Formal Concept Analysis (FCA). Early methods
focused on removing redundant information or simplifying the lattice through algebraic or
approximation techniques. While these approaches improved scalability or interpretability
to some extent, they often did not fully leverage the hierarchical relationships inherent in the
data or consider human cognitive factors.

As research progressed, attention turned to clustering-based approaches that more
effectively handle categorical attributes and incorporate the relational structures that FCA
encodes. Recent work integrates frequency, derivation costs, and insights from cognitive and
linguistic studies, refining concept selection into a dynamic, cognitively aligned process. By
doing so, these newer techniques achieve more human-intelligible lattice reductions, better
balancing complexity, interpretability, and structural fidelity than earlier methods.

Foundational Pillars of Our Proposed Strategies

 33

Chapter 4: Foundational Pillars of Our Proposed
Strategies

4.1. Overview
This chapter delves into the principal building blocks underpinning our proposed

strategies for concept lattice reduction: the kernel concepts framework and the adaptation of
Dijkstra’s algorithm for computing distances within concept lattices. By understanding these
components, we establish the logical foundation for subsequent analyses and demonstrate
how each element contributes to an efficient and interpretable workflow in Formal Concept
Analysis (FCA).

4.2. Kernel Concepts in Concept Lattices
4.2.1. Definition of Kernel Concepts

A kernel concept in Formal Concept Analysis (FCA) is a strategically chosen formal
concept within a concept lattice that serves as a pivotal “building block” for efficiently
representing and deriving other concepts. Kernel concepts are deliberately selected based on
additional criteria to minimize overall complexity. Typically, these criteria involve:

- Frequency: How often or how prominently a concept appears in the domain,
indicating its global importance or prevalence.

- Derivation Cost: The computational or structural effort required to derive one
concept from another, reflecting each concept’s “navigational” significance in the
lattice.

Formally, if 𝐶 is the set of all formal concepts in a lattice and 𝐶, ⊂ 𝐶 is a subset limited
by size or cost constraints, then each concept in 𝐶, is called a kernel concept. Together,
these kernel concepts act as anchor points or centroids that can approximate or generate all
other concepts with minimal overall cost. Typically, kernel concepts are subject to a capacity
constraint, ∣𝐶,∣	= 	𝑆9 , which ensures that the subset of chosen concepts does not grow too
large. This limit 	𝑆9 can be specified according to resource constraints, interpretability
requirements, or domain-specific guidelines. The process of selecting 𝐶, then boils down to
minimizing an aggregate cost function such as:

𝑚𝑖𝑛 �w𝑓(𝑐)	𝑑(𝐶, , 𝑐)|	𝐶, ⊂ 𝐶	, |𝐶,| = 	𝑆9
9	∈@

�

where

𝑓(𝑐) indicates how “valuable” or “frequent” a concept 𝑐 is,

𝑑(𝐶, , 𝑐) is the minimal cost to derive concept 𝑐 from any concept in the kernel set 𝐶,.

Foundational Pillars of Our Proposed Strategies

 34

In essence, each kernel concept helps minimize the total “distance” needed to generate
or approximate all other concepts while still respecting the size or capacity limit. Positioning
kernel concepts among reduction methods, numerous methods exist to simplify or reduce
concept lattices ranging from redundancy removal to abstracting hierarchies or filtering by
frequency thresholds. The well-known iceberg lattice strategy, for instance, filters the
concept lattice based on a single support threshold minsupp, typically minsupp ∈ [0,1].

Formally, consider a formal context (𝐺,𝑀, 𝐼), where 𝐺 is the set of objects, 𝑀 is the set
of attributes, and 𝐼 ⊆ 𝐺 ×𝑀 is the incidence relation indicating which objects possess which
attributes. For any concept (𝐴, 𝐵) in this context, its support is measured as 𝑠𝑢𝑝𝑝(𝐵) = AB!A

|+|
,

where 𝐵1 is the set of all objects in 𝐺 that share exactly the attributes in 𝐵. If the support
𝑠𝑢𝑝𝑝(𝐵) meets or exceeds the minimum threshold minsuppupp, then (𝐴, 𝐵) remains in the
iceberg lattice; otherwise, it is pruned. This straightforward criterion provides a practical
means of reducing the size of the concept lattice, retaining only those concepts whose intent
is sufficiently frequent in the dataset.This approach:

- Focuses purely on frequency: Only concepts that appear “often enough” are kept.
- Captures top-level groupings: The “topmost portion” of the concept lattice

becomes explicit, offering a higher-level but frequency-centric view of the data.
- Does not account for derivation cost: Two concepts with the same high support

remain equally in the lattice even if one concept is much more “central” for
deriving other concepts.

In iceberg, The primary criterion revolves around the condition 𝑠𝑢𝑝𝑝(𝐵) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝𝑝,
whereby each concept’s support value must exceed a fixed threshold. Consequently, the
method prunes all concepts falling below that global frequency requirement. Conceptually,
this can be seen as filtering the lattice down to its “topmost” or “most frequent” portion.
However, this design choice also entails a caveat: while it efficiently isolates those concepts
that appear very often in the data, it may discard concepts with lower support that are
structurally pivotal in deriving or relating other parts of the lattice. Moreover, no inherent
metric accounts for derivation cost or traversal complexity.

In contrast, kernel selection depends on a more nuanced blend of concept frequency 𝑓()
and derivation 𝑐𝑜𝑠𝑡	𝑑(). By focusing on a combined or weighted measure of usage and
“hubness,” kernel selection aims to locate a small but influential set of “centroid” concepts
from which the entire lattice can be efficiently derived or approximated. This balanced
approach provides a richer interpretation, ensuring each chosen concept is both sufficiently
frequent and well-connected within the conceptual structure. Naturally, one trade-off is that
it demands an auxiliary cost metric 𝑑(), adding a layer of optimization that typically involves
more complex computations than a simple frequency threshold.

4.2.2. Role and Importance of Kernel Concepts

Kernel concepts serve as the linchpin in effectively managing, interpreting, and
streamlining large concept lattices within Formal Concept Analysis (FCA). Their selection,
driven by criteria such as frequency and derivation cost, brings multiple advantages:

1. Structural Backbone: By design, each kernel concept often functions as a “hub” for
deriving or approximating numerous other concepts. This positions kernel concepts
as the structural backbone of the lattice, ensuring that the essential relationships and

Foundational Pillars of Our Proposed Strategies

 35

crucial data patterns remain intact even after significant reductions in overall lattice
size.

2. Computational Efficiency: Concept lattices can grow exponentially with the size of
the dataset, imposing high computational and memory demands. Identifying a
minimal kernel set that still covers or approximates the entire lattice substantially
reduces computational overhead. In many cases, one can generate or retrieve non-
kernel concepts on-demand from kernel concepts through derivation, thus avoiding
explicit enumeration of all possible concepts.

3. Balanced Criterion Beyond Frequency Alone: Simple thresholds (e.g., iceberg
approaches) focus on frequency, risking the exclusion of structurally pivotal but less
frequent concepts. Kernel concepts, however, account not just for how often a
concept appears (its frequency) but also for how readily (or “inexpensively”) it can
serve as a representative. This dual perspective often yields a more faithful
representation of the lattice's inherent relationships, balancing global relevance with
local connectivity.

4. Interpretability and Usability: Large and dense concept lattices can overwhelm users
seeking patterns or insights. By highlighting the kernel subset, analysts can more
easily navigate “anchor points” within the data, making subsequent visualization,
exploration, or domain-specific interpretations more straightforward. This enhanced
clarity is crucial in fields such as knowledge discovery, ontology learning, and
database marketing, where decision-makers must interpret and act on complex data
structures.

5. Facilitating Further Analysis: Kernel concepts frequently serve as natural “centroids”
or “cluster centers” in conceptual clustering and approximation tasks. Once
determined, they can be integrated into downstream workflows such as generating
bases of association rules or supporting user queries without recomputing or storing
the full lattice. This modularity fosters efficient iterative analyses, allowing repeated
refinement or extended exploration of the data’s conceptual organization.

In essence, kernel concepts play an essential role in bridging the gap between complete
conceptual representation and practical scalability. They constitute a carefully chosen subset
that simultaneously conserves the key structural and semantic properties of the lattice and
promotes more efficient knowledge processing.

4.3. Dijkstra’s Algorithm in Concept Lattice Reduction
4.3.1. Background and Motivation

Dijkstra’s algorithm, introduced in 1959 by Edsger W. Dijkstra, is a cornerstone method
for computing shortest paths in directed, weighted graphs. Its efficiency and general
applicability have led to its adoption across multiple fields, including Internet routing where
it determines optimal data traversal paths between network nodes, and various transportation
and logistics applications that require identifying fast, cost-effective routes [84]. Given a
directed weighted graph 𝐺 = (𝑉, 𝐸), where V is a set of vertices and E is a set of edges, each
edge e∈E has a non-negative weight representing its traversal cost. Dijkstra’s algorithm
systematically calculates the shortest path from a source vertex to every other vertex in V,
offering a reliable solution to a wide range of shortest-path problems.

The algorithm marks vertices as either “temporary” or “visited,” continually updating
tentative distances from the source. It terminates once all vertices have been processed.

Foundational Pillars of Our Proposed Strategies

 36

However, the algorithm cannot handle negative edge weights directly, potentially limiting
its accuracy if such edges are present [85]. Another practical consideration is the choice of
data structures for managing priority queues, which influences the algorithm’s time
complexity:

- Using a Fibonacci Heap: Complexity:

O(|V|log|V| 	+	 |E|)

In this case, DeleteMin operations take 𝑂(1) amortized time, providing theoretically
optimal performance.

- Using a Standard Binary Heap: Complexity:

O(|E|log|V|)

Here, the algorithm performs |E| updates for the standard heap, typically yielding
efficient performance in many real-world scenarios.

- Using a Priority Queue (e.g., array-based): Complexity:

O(|V|²)

This arises from repeated scans of the unordered set New Frontier, up to |𝑉| times to
find the vertex with the minimum temporary distance (sDist) value.

Beyond the standard Dijkstra’s method, several variants cater to specific conditions. The
Bellman-Ford algorithm [86] accommodates negative-weight edges at a higher
computational cost. The Floyd-Warshall algorithm [87], [88] uses dynamic programming to
manage both positive and negative weights comprehensively. Johnson’s algorithm [88]
employs Bellman-Ford to reweight edges, eliminating negatives and reducing execution
time for sparse graphs. The A* algorithm integrates heuristics with breadth-first search
principles, potentially increasing efficiency in certain contexts, albeit with some risk to
completeness or absolute accuracy [84]. The appropriate choice among these methods
depends on factors such as graph density, edge weight properties, and performance
requirements.

However, when applying Formal Concept Analysis (FCA) to complex categorical
datasets, traditional Euclidean or frequency-based distance measures often fail to reflect the
nuanced hierarchical relationships encoded in the concept lattice. To address this gap,
adapting Dijkstra’s algorithm to measure distances within the lattice proves advantageous.
In this adapted view:

1. Vertices (Nodes) become formal concepts derived from the FCA context.
2. Edges represent hierarchical relationships (e.g., the partial order ≤ between

concepts), with assigned weights corresponding to upward or downward moves in
the lattice.

Foundational Pillars of Our Proposed Strategies

 37

This integration ensures that path costs capture not just the frequency of concepts (as in
simpler pruning methods) but also their relative “distance” or “effort” within the lattice’s
structure.

4.3.2. Dijkstra-Based Distance in FCA

The Dijkstra-based distance measure plays a pivotal role in our proposed frameworks,
providing a more suitable alternative to the conventional metrics, Dijkstra’s algorithm
operates directly on the concept lattice derived from categorical data through Formal
Concept Analysis (FCA). By incorporating the inherent structure of the lattice, the method
considers direction-sensitive costs, typically assigning a higher cost to upward (parent-to-
child) movements than to downward (child-to-parent) transitions. This directional weighting
more accurately reflects the hierarchical nature of the data. To enhance efficiency, the
algorithm employs a min-heap-based priority queue, ensuring that calculations for shortest
paths, are performed both effectively and with minimal computational overhead.

Formally, consider a concept lattice ℬ(𝐶,<), and its corresponding graph ℋ(𝐶, 𝐸),
where 𝐶 represents the set of formal concepts and 𝐸 denotes the edges signifying hierarchical
relationships. Let 𝐶C and 𝐶D be two distinct formal concepts in 𝐶, with 𝐶C	serving as the
starting point and 𝐶D 	as the endpoint for the path calculation. Each concept 𝑐 ∈ 𝐶 has an
associated cost 𝑑(𝑐) that represents the cost of reaching 𝑐 from 𝐶C. To differentiate the
directionality of traversal along the lattice edges, two cost parameters are defined: “UpCost”
for moving from a concept to a more specific (child) concept, and “DownCost” for moving
from a concept to a more general (parent) concept.

Within this framework, the Dijkstra-based distance measure relies on a priority queue Q,
implemented as a min-heap keyed by 𝑑(𝑐), and a set 𝑉 tracking visited nodes. The cost
function 𝑓:	𝐶 × 𝐶 → 	ℝ ∪ {∞} evaluates the cost of moving from one concept c to an
adjacent concept c′ based on their relation:

𝑓(𝑐, 𝑐1) = � 𝑈𝑝𝐶𝑜𝑠𝑡,							𝑖𝑓	𝑐 ⊇ 	 𝑐
1

𝐷𝑜𝑤𝑛𝐶𝑜𝑠𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Combining these costs over a sequence of concepts forms the basis for calculating the

shortest path. Thus, for all paths (𝑐!, 𝑐", …, 𝑐<) from 𝐶C to 𝐶D, the Dijkstra-based distance
measure 𝑑(𝐶C, 𝐶D) selects the path with the minimal cumulative cost:

𝑑(𝐶C, 𝐶D) = 𝑚𝑖𝑛 �		w𝑓(𝑐; , 𝑐;E!)
<F!

;>!

|	(𝑐!, 𝑐", … , 𝑐<)𝑖𝑠	𝑎	𝑝𝑎𝑡ℎ	𝑓𝑟𝑜𝑚	𝐶C	𝑡𝑜	𝐶D�

Here, the measure 𝑑(𝐶C, 𝐶D) represents the minimal cost required to navigate the lattice

from the starting concept 𝐶C to the target concept 𝐶D, effectively encapsulating both the
structure of the concept lattice and the directional constraints inherent in the data’s hierarchy.
The algorithm functions as follows:

Algorithm 4.1: The Dijkstra-based distance measure algorithm on the concept lattice.
Inputs: 𝐶), 𝐶*, ℋ(𝐶, 𝐸), UpCost, DownCost.
Output: minimum cost from 𝐶) to 𝐶*
Initialize:

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐	𝑖𝑛	ℋ:	
					𝑑(𝑐) 	← 	∞	
𝐸𝑛𝑑𝐹𝑜𝑟	

Foundational Pillars of Our Proposed Strategies

 38

𝑑(𝐶)) 	← 	0	
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒	𝑃	𝑎𝑛𝑑	𝑉	 ← 	∅	
𝐼𝑛𝑠𝑒𝑟𝑡	(0, 𝐶))	into	𝑄	

While 𝑄	 ≠ 	∅	𝑑𝑜:
		(𝑑(𝑐), 𝑐) 	← 	𝐷𝑒𝑞𝑢𝑒𝑢𝑒(𝑄)	
		𝐼𝑓	𝑐	 = 	𝐶𝑒	𝑡ℎ𝑒𝑛:	

Return 𝑑(𝐶*).
𝐸𝑛𝑑𝐼𝑓
𝐼𝑓	𝑐	𝑛𝑜𝑡	𝑖𝑛	𝑉	𝑡ℎ𝑒𝑛:

	𝐴𝑑𝑑	𝑐	𝑡𝑜	𝑉	
𝐸𝑛𝑑𝐼𝑓
𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑢	𝑜𝑓	𝑐	𝑑𝑜:	

𝐼𝑓	 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟	𝑛𝑜𝑡	𝑖𝑛	𝑉:
𝐼𝑓	𝑐	𝑖𝑠	𝑎	𝑠𝑢𝑝𝑒𝑟𝑠𝑒𝑡	𝑜𝑓	𝑢	𝑡ℎ𝑒𝑛:	

𝑐𝑜𝑠𝑡	 ← 	𝑑(𝑐) 	+ 	𝑈𝑝𝐶𝑜𝑠𝑡
𝐸𝑙𝑠𝑒:

𝑐𝑜𝑠𝑡	 ← 	𝑑(𝑐) 	+ 	𝐷𝑜𝑤𝑛𝐶𝑜𝑠𝑡
𝐸𝑛𝑑𝐼𝑓
𝐼𝑓	𝑐𝑜𝑠𝑡	 < 	𝑑(𝑢)	𝑡ℎ𝑒𝑛:

𝑑(𝑢) 	← 	𝑐𝑜𝑠𝑡
𝑃(𝑢) 	← 	𝑐
𝐸𝑛𝑞𝑢𝑒𝑢𝑒	(𝑑(𝑢), 𝑢)	𝑖𝑛𝑡𝑜	𝑄

𝐸𝑛𝑑𝐼𝑓
𝐸𝑛𝑑𝐼𝑓

𝐸𝑛𝑑𝐹𝑜𝑟
𝐸𝑛𝑑𝑊ℎ𝑖𝑙𝑒

In the presented framework, 𝐶C represents the starting concept from which the shortest
path calculation begins, and 𝐶D designates the target concept. The structure ℋ(𝐶, 𝐸)
symbolizes the concept lattice, comprising the set of concepts 𝐶 and their connecting edges
𝐸. Within this framework, UpCost and DownCost are predefined metrics quantifying the
cost of transitioning upward or downward along the lattice edges. The shortest path distances
from 𝐶C to any given concept 𝑐 are stored in 𝑑(𝑐), while a predecessor map 𝑃 indicates the
immediate predecessor of 𝑐 along the shortest path, ensuring a traceable route from 𝐶C to 𝐶D.
The priority queue 𝑄 manages pending concepts to explore, and the set 𝑉 records already
visited nodes. Due to the lattice’s inherent connectivity, the algorithm always identifies a
path between 𝐶C	and 𝐶D.

The time complexity of this approach, 𝑂(𝐸	 + 	𝐶	𝑙𝑜𝑔(𝐶)), reflects the interplay of the
number of edges 𝐸 and concepts 𝐶, combined with efficient operations on the min-heap-
based priority queue. By capitalizing on the lattice’s structured relationships and integrating
directionally-sensitive cost functions, this Dijkstra-based distance measure more precisely
captures categorical dissimilarities. Consequently, it supports a more streamlined clustering
procedure and improves the accuracy and interpretability of the resulting cluster
assignments.

By adapting Dijkstra’s algorithm to work directly on concept lattices, we achieve a
structure-aware distance measure that elevates categorical data analysis beyond simpler
frequency-based or geometric approaches. Each path cost reflects not just how often a
concept appears or how large its extent might be, but also how structurally central it is. This
distance measure undergirds various parts of our proposed FCA-based reduction framework:
it guides kernel concept selection, steers the clustering of concepts, and helps maintain a
manageable yet conceptually rich representation of high-dimensional, complex datasets.

Foundational Pillars of Our Proposed Strategies

 39

4.4. Baseline Greedy Algorithm for Kernel Concepts Selection
This section introduces a baseline Greedy Algorithm for identifying a kernel concept set

within a large formal concept lattice. While simpler and less optimized than the advanced
methods detailed in subsequent chapters, this algorithm demonstrates how integrating
concept frequency and derivation costs can produce a smaller, yet structurally significant,
subset of concepts. It selects the most beneficial concept at each step based on two key
measures: frequency and derivation cost. Despite its simplicity, the algorithm can become
time-consuming when applied to larger datasets or kernel sizes, highlighting the necessity
for more advanced or optimized approaches.

4.4.1. Kernel Concepts Selection

In the kernel concept selection process, we focus on two measures for each concept 𝑐 ∈
𝐶 (the set of all concepts in the lattice):

1. Frequency  𝑓(𝑐)
A positive real-valued function

𝑓 : 𝐶  →  ℝE,

quantifying how relevant or frequently a concept 𝑐 appears. This metric highlights
concepts that are crucial within the domain.

2. Derivation Cost  𝑑()
A function

𝑑: 𝐶 × 𝐶  →  ℝE,

indicating the “cost” of deriving one concept from another within the lattice.

• Self-Cost: 𝑑	(𝑐, 𝑐) 	= 	0, for any concept c within the lattice, indicating no cost for
self-derivation.

• Asymmetric Cost: For two different concepts 𝑐# and 	𝑐$, 𝑑(𝑐#, 𝑐$) ≠
	𝑑	(𝑐$, 𝑐#),	reflecting the directional nature of derivation within the lattice. 	

• Integration of Dijkstra-Based Distance Measure: To refine the calculation of
asymmetric costs between concepts, we have employed the Dijkstra-Based
Distance Measure from. This approach computes the shortest path in the lattice
considering the direction and cost of the path. Specifically, we have set the cost for
upward transitions (parent-to-child) in the lattice as 2 and for downward transitions
(child-to-parent) as 1. This integration adds a layer of sophistication to our function
𝑑, allowing it to more accurately represent the complexities involved in navigating
the concept lattice.

3. Frequency-Weighted Derivation Cost

For a subset of concepts 𝐾9 ⊆ 𝐶, let

Foundational Pillars of Our Proposed Strategies

 40

𝑑	(𝐾G, 𝑐) 	= 	𝑚𝑖𝑛	9"∈H#{𝑑	(𝑐I, 𝑐)	|	𝑐I ∈ 𝐾G},

Then the frequency-weighted derivation cost becomes:

𝑑	J(𝐾G, 𝑐) = 	𝑓(𝑐) ∙ 	𝑑(𝐾G, 𝑐)

This expression captures both (a) how important 𝑐 is, and (b) how far 𝑐 lies from the
chosen set 𝐶K.

4. Kernel Concept Set: Optimization Constraint

We seek a kernel set 𝐾LIM of maximum size 𝑆9 that minimizes the sum of frequency-
weighted distances over all concepts:

𝐾=;<=𝑎𝑟𝑔𝑚𝑖𝑛H$⊂@{∑ 𝑑	J(𝐾G, 𝑐)|	|𝐾G| =9	∈@ 	𝑆9}

In simpler notation, define:

𝐴𝑔𝑔𝐶𝑜𝑠𝑡(𝐾G) = w(𝑓(𝑐) ∙ 	𝑑(𝐾G, 𝑐))
9∈@	

	

We want 𝐾=;< such that 𝐴𝑔𝑔𝐶𝑜𝑠𝑡(𝐾G)	is minimized and 	|𝐾G| = 	 𝑆9.

4.4.2. Baseline Greedy Algorithm Steps

A greedy approach offers a direct, though not always optimal, way to find a suitable
kernel set. Below are the main steps:

Algorithm 4.2: Baseline Greedy Concepts Kernel Selection
Input:

- The set of all coencepts 𝐶
- Frequency Value for each 𝑐	 ∈ 𝐶 	
- Maximum Core Set Size 𝑆+	
- Transition	Cost:	upward ← 2, downward ← 1	

Output:
- Kernel Concept Set 𝐾,

Algorithm Steps:
1. Initialization:

- Initialize 𝐾, ← 𝑁𝑜𝑛𝑒.
2. Derivation Cost Calculation:

- For each concept 𝑐 in the lattice, calculate the minimal derivation cost to every other concept
using Dijkstra's algorithm. Apply the Dijkstra-Based Distance Measure, for asymmetric cost
calculation between concepts, as:

𝑑	(𝐾-, 𝑐) 	= 	𝑚𝑖𝑛	+!∈/"{𝑑	(𝑐0, 𝑐)	|	𝑐0 ∈ 𝐾-}

3. Aggregated Derivation Cost Computation:

For a given subset 𝐾+⊂ 𝐾, calculate the aggregated derivation cost using the formula:

Foundational Pillars of Our Proposed Strategies

 41

𝐴𝑔𝑔𝐶𝑜𝑠𝑡(𝐾-) = v(𝑓(𝑐) ∙ 	𝑑(𝐾-, 𝑐))

+∈,	

4. Kernel Set Identification:

- Define 𝑆+, the maximum size for the Kernel set.
- Initialize best_cost ← (∞), best_candidate ← None.
- Iteratively add concepts to 𝐾, using a greedy algorithm approach:

- Select the concept that most reduces the aggregated derivation cost.
- Update best_cost and best_candidate as optimal options are found.
- Continue until |𝐾, |=|𝑆+| or no further reduction in the aggregated derivation cost is

possible.
5. Result Analysis:

- The final 𝐾, represents the kernel concept set that minimizes the aggregated derivation cost,
adhering to the constraint |𝐾, |=|𝑆+|.

One major bottleneck in the baseline Greedy Algorithm is the repeated shortest-path
derivation cost calculation, typically carried out via Dijkstra’s algorithm at 𝑂(𝑉") per
concept (where 𝑉 denotes the total number of concepts). If performed naively for every pair
of concepts, this cost may inflate to 𝑂(𝑉#). Consequently, the baseline method can become
prohibitively slow on large or dense lattices, underscoring the need for more efficient or
optimized approaches in practical FCA scenarios.

4.4.3. Experimental Setup and Methodology
4.4.3.1. Impact of Kernel Set Size on Derivation Cost and

Execution Time

In our study, we analyze how the baseline greedy algorithm in Formal Concept Analysis
(FCA) responds to varying sizes of the kernel concepts set. By systematically adjusting the
kernel concepts set size between 15% and 30% of the total number of concepts in each lattice
(Table 4.1), we observe its impact on two main metrics:

1. Derivation Cost

- Reflects the aggregated resources needed to derive all relevant concepts once
the kernel set is chosen.

- We hypothesize that increasing the kernel concepts set size, thus
encompassing more concepts in the core set, simplifies the structure and
lowers derivation cost.

2. Runtime
- The time required by the greedy algorithm to identify the kernel set.
- As the kernel set size grows, we expect more steps and candidate checks,

leading to higher runtime.

To ensure robustness, each lattice configuration in Table 4.1 is tested multiple times,
varying the kernel set proportion (15%, 20%, 25%, 30% of total concepts). The results are
captured (Figure 4.1), illustrating how changes in kernel size affect derivation cost and
runtime.

Table 4.1. Lattice Characteristics:

Formal Contexts #Object #Attributes Density # Formal concepts #Edges

Balance-Scale 625 20 0.18 1070 3822

Foundational Pillars of Our Proposed Strategies

 42

As shown in Figure 4.1, the experimental results reveal that enlarging the kernel set
consistently reduces derivation cost, indicating that a more encompassing core set effectively
simplifies the effort required to derive remaining concepts. However, this advantage is
counterbalanced by growing computational demands: each added concept triggers more
candidate checks, causing runtime to increase noticeably at higher kernel sizes as shown in
Figure 4.2. Although the baseline greedy method remains a practical solution for moderate
datasets, its scalability begins to wane when kernel proportions approach 30%, especially in
contexts with many formal concepts (e.g., Car Evaluation).

Figure 4.1. Cost Analysis for Greedy Algorithm across Kernel Concept Set sizes

Breast Cancer 286 43 0.20 2132 7818
Tae 151 101 0.05 276 619

Car Evaluation 1728 21 0.20 3596 14917

Foundational Pillars of Our Proposed Strategies

 43

Figure 4.2. Runtime Analysis for Greedy Algorithm across Kernel Concept Set sizes

4.4.3.2. Impact of Lattice Size on Derivation Cost and Runtime

We further examine the baseline greedy algorithm by varying the size and complexity of
the lattices themselves, as detailed in Table 4.1. This step explores how the number of formal
concepts and overall lattice density affect two main metrics:

1. Derivation Cost: The aggregated effort required for concept derivation once the
kernel is chosen.

2. Runtime: The total time the baseline greedy method takes to select a kernel set of
fixed proportion (e.g., 30%) from the lattice.

In particular, Figure 4.3 visually captures these relationships across the four different
datasets from Table 4.1. When considering smaller lattices (e.g., Breast Cancer or Tae, each
with fewer than a thousand formal concepts), the baseline greedy algorithm strikes a
reasonable balance between lowering derivation cost and keeping runtime manageable.
However, with larger lattices (e.g., Car Evaluation, featuring over two thousand formal
concepts), runtime escalates rapidly, highlighting the baseline algorithm’s limited
scalability.

From these results, several observations emerge:

Foundational Pillars of Our Proposed Strategies

 44

- Stable Performance on Small Lattices: As seen in Figure 4.3 for Breast Cancer or
Tae, when the lattice has fewer concepts, the baseline greedy approach effectively
reduces derivation cost with minimal runtime growth.

- Sharp Runtime Increases in Larger Lattices: For datasets like Car Evaluation, Figure
4.3 shows a more dramatic rise in runtime, suggesting that repeated cost
computations and candidate checks become exponentially more expensive.

- Consistent Reduction in Derivation Cost: Regardless of lattice size, the method
reliably lowers derivation cost particularly beneficial in moderately sized lattices
though the runtime penalty intensifies in bigger ones.

-

Figure 4.3. Performance Analysis of the Baseline Greedy Algorithm on Derivation Cost and Runtime Across Different
Lattice Sizes

Overall, Figure 4.3 underscores that while the baseline greedy algorithm adeptly
decreases derivation cost across the studied datasets, it becomes noticeably slower for
extensive lattices containing large numbers of formal concepts. These findings confirm that
the baseline approach remains a viable choice for small to medium lattice sizes but may
require optimization or alternative methods to maintain feasible runtimes in large-scale FCA
applications.

4.5. Summary
this chapter lays out the essential building blocks, kernel concepts and Dijkstra-based

distance calculations, alongside a baseline Greedy Algorithm that demonstrates how these
ideas can reduce concept lattices effectively. However, its runtime limitations pave the way
for the more sophisticated techniques discussed in the following chapters, ensuring that
concept-lattice reduction remains both computationally tractable and structurally insightful
even in large-scale FCA applications.

Data Availability:

- The data we used for evaluation can be found at the following links:

Foundational Pillars of Our Proposed Strategies

 45

Balance-Scale dataset: https://archive.ics.uci.edu/dataset/12/balance+scale
(accessed on 14 December 2023),

- Breast Cancer dataset: https://archive.ics.uci.edu/dataset/14/breast+cancer
(accessed on 14 December 2023),

- Tae Dataset: https://archive.ics.uci.edu/dataset/100/teaching+assi stant+evaluation
(accessed on 14 December 2023),

- Car Evaluation dataset: https://archive.ics.uci.edu/dataset/19/car+evaluation
(accessed on 14 December 2023)

https://archive.ics.uci.edu/dataset/12/balance+scale
https://archive.ics.uci.edu/dataset/14/breast+cancer
https://archive.ics.uci.edu/dataset/100/teaching+assistant+evaluation
https://archive.ics.uci.edu/dataset/19/car+evaluation

Clustering-Based Reduction Strategies for FCA

 46

Chapter 5: Clustering-Based Reduction Strategies
for FCA

5.1. Introduction

Concept management is a key dimension of knowledge engineering, where ontologies
play a central role in structuring and representing domain-specific knowledge [89]. Widely
adopted standards such as RDF, OWL, SparQL, and Description Logic [90] provide
powerful tools for describing concepts, relationships, and constraints. However, these
frameworks typically rely on human experts to define atomic concepts and derivation rules,
offering limited automation for concept generation from raw data.

Beyond ontologies, automated concept generation is pursued through various analytical
approaches. Two prominent families are Conceptual Clustering (CC) and Formal Concept
Analysis (FCA). Conceptual clustering [91] partitions unlabeled objects into meaningful
clusters, each described by conceptual patterns or attributes. Traditional conceptual
clustering methods often rely on numerical taxonomies and distance-based measures. While
effective for numerical features, these techniques face substantial limitations when dealing
with categorical data. The resulting clusters may not be well-characterized in intuitive,
human-readable conceptual terms [92].

To address these shortcomings, multiple variants of conceptual clustering have emerged.
These include [41]:

- Distance optimization methods: These approaches start with an initial set of clusters
and incrementally refine them by minimizing a predefined distance-based objective
function. At each step, elements may be reassigned to different clusters if such a
move leads to a lower overall cost. The algorithm iterates this process until it reaches
a stable configuration where no further improvement can be made. The resulting
clusters are thus formed by continuously optimizing for minimal intra-cluster
distances, often leading to well-defined groupings that reflect the underlying data
structure.

- Interesting-pattern discovery methods: In these techniques, the focus shifts from
purely geometric measures to identifying significant recurring patterns within the
data. Methods inspired by frequent itemset mining [93] search for commonly co-
occurring attribute values across different objects. By filtering out infrequent or
irrelevant patterns, the algorithm highlights the most characteristic and
discriminative features of clusters. Consequently, concepts and clusters emerge from
these frequent patterns, providing richer semantic descriptions than those relying
solely on numeric similarity.

- Tree-based approaches: Tree-based conceptual clustering techniques, such as
RUMMAGE [92], employ a hierarchical partitioning strategy. The dataset is
recursively split into subsets based on the values of certain attributes, effectively
building a conceptual tree structure. At each branching point, an attribute or attribute-
value condition forms a “conceptual description” for the subsets. This top-down
approach ensures that the resulting clusters are not only distinct from one another but
also described by meaningful, interpretable attribute-based rules.

- Evolutionary strategies: Evolutionary approaches like the Multiobjective
Evolutionary Conceptual Clustering Methodology (EMO-CC) [94] apply bio-
inspired techniques, such as genetic algorithms, to guide the clustering process.

Clustering-Based Reduction Strategies for FCA

 47

Candidate clusterings are represented as individuals in a population. Through
operations akin to mutation and crossover, as well as selection pressures favoring
clusters with desirable properties (e.g., compactness and interpretability), the method
evolves increasingly refined clusterings over time. The multiobjective aspect
accommodates simultaneous optimization of multiple criteria, balancing various
quality measures to yield conceptually rich and well-organized clusters.

- Statistical methods: Statistical-based methods, exemplified by COBWEB [95],
incrementally form a hierarchical classification tree by adding objects one at a time.
Each node in the tree corresponds to a probabilistic concept—a distribution of
attribute values—that reflects a particular class of objects. A heuristic measure
known as category utility guides the tree growth and partitioning decisions. Category
utility rewards partitions that improve the predictive power of attribute values for
object classification. This probabilistic and heuristic-driven approach results in a tree
of concepts that are both statistically coherent and conceptually meaningful, enabling
intuitive comprehension of the data’s structure.

In practice, the widely acclaimed k-means algorithm [75] excels in simplicity and
efficiency, particularly for large numerical datasets. However, its direct application to
categorical data is problematic. Adaptations like k-modes [72], k-representative [76], and k-
centers [77] have been proposed. While these adaptations can handle categorical data by
redefining “cluster centers” and “similarity measures,” they often require data
transformations that risk losing hierarchical relationships inherent in the data.

On another front, Formal Concept Analysis (FCA) models data as objects and binary
attributes, producing a concept lattice that captures all possible formal concepts [15]. Despite
offering a comprehensive view, the resultant concept lattice can be excessively large,
complicating both computation and interpretability. Efficient reduction of concept lattices,
preserving only essential concepts, is a key research direction. Moreover, real-world
concepts seldom derive from a single consistent attribute set. Instead, multiple attribute
subsets might characterize a concept under different conditions, suggesting that non-crisp,
flexible construction methods would be beneficial.

Integrating the strengths of conceptual clustering and FCA presents new opportunities.
Conceptual clustering can manage object partitions efficiently, while FCA provides a
structured representation of hierarchical concept relationships. Merging these approaches
demands methods adept at categorical and hierarchical data handling, which is where our
contributions lie, and specifically, we leverage the idea of extracting a smaller set of
“centroids” or kernel concepts to achieve effective lattice reduction while retaining essential
structure.

This chapter introduces two novel extensions of the k-means algorithm for categorical
data within the FCA framework, K-means Dijkstra on Lattice (KDL) and K-means Vector
on Lattice (KVL), with the overarching goal of reducing the original concept lattice to a
smaller kernels subset. These methods aim to integrate hierarchical conceptual structures
with efficient clustering, thereby retaining critical relationships while improving
manageability and interpretability:

- KDL leverages FCA to construct a graph of formal concepts and employs a
customized Dijkstra algorithm to measure distances within this lattice. It identifies
centroids (kernels) that are formal concepts with minimal intra-cluster distance,
accurately capturing hierarchical and categorical relationships.

Clustering-Based Reduction Strategies for FCA

 48

- KVL, on the other hand, translates formal concepts into numerical concept
description vectors, applying traditional k-means for scalability at the possible
expense of overlooking some hierarchical nuances.

By combining these methods with a parameterized distance function, we gain flexible
control over the size of the resulting concept hierarchy and the degree of approximation it
provides. Notably, this approach also enables an approximate reduction of formal concept
lattices, resulting in a more manageable, kernel-based view of the data. In essence, KDL and
KVL bring together conceptual clustering and FCA, automating the generation of a
streamlined concept set that preserves interpretability and remains grounded in human-
centric conceptualization.

5.2. K-Means Algorithm and Its Extensions

The k-means algorithm [75] is a well-known partitional clustering technique frequently
employed in various data analysis scenarios. It assumes a dataset 𝐷 composed of 𝑁
numerical objects and aims to separate them into k non-empty, disjoint clusters (with 𝑘	 ≤
	𝑁). A core objective of k-means is to minimize the total within-cluster variation, typically
measured as the sum of squared distances from each object to the center (centroid) of the
cluster it belongs to.

Mathematically, k-means can be framed as an optimization problem. Let 𝑈	 = [𝑢;,2]
denote the partition matrix, where 𝑢;,2 is a binary indicator that specifies whether object 𝑋; 	is
assigned to cluster 𝑆2. Let 𝑍	 = 	 {𝑍!, 𝑍", . . . , 𝑍P} represent the set of cluster centers.
Typically, the squared Euclidean distance dis(𝑋;, 𝑍2) [96] is used to quantify how far each
data point is from a given cluster center.

The cost function to be minimized, 𝑃(𝑈, 𝑍), is given by:

𝑃(𝑈, 𝑍) = 	ww𝑢;,2 	𝑑𝑖𝑠�𝑋; , 𝑍2�
Q

;>!

P

2>!

This minimization is subject to constraints ensuring that each object 𝑋; belongs to exactly
one cluster:

w𝑢;,2

P

2>!

= 1, 1 ≤ 𝑖 ≤ 𝑁.	

𝑢;,2 ∈ {0,1}, 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑗 ≤ 𝑘	
	

Here, 𝑢;,2 = 1 if 𝑋; is assigned to 𝑆2, and 0 otherwise. The cluster centers 𝑍2 correspond
to the mean positions of objects assigned to that cluster.

The k-means algorithm proceeds iteratively through four main steps:
- Initialize cluster centers as 𝑍R= 𝑍!R,..., 𝑍PR, and set 𝑡	 = 	0.

- With fixed cluster centers 𝑍:, solve 𝑃(𝑈, 𝑍:) to obtain partition matrix 𝑈:. Each
object 𝑋; is assigned to the cluster with the nearest cluster center.

- With fixed partition matrix 𝑈:, generate updated cluster centers 𝑍:E! to minimize P
(𝑈:, 𝑍:E!). The new cluster centers are computed as the mean of the objects within
each cluster.

Clustering-Based Reduction Strategies for FCA

 49

- If convergence is reached or a stopping criterion is satisfied, output the final result
and terminate. Otherwise, increment 𝑡 by 1 and go back to step 2.

By repeatedly adjusting both cluster memberships and centers, k-means converges to a
local minimum of the objective function. Although highly effective for numerical data, k-
means encounters difficulties when dealing directly with categorical data. The fundamental
challenge lies in the absence of a natural numeric representation and a meaningful way to
compute means or geometric distances for categorical variables. This motivates the
development of specialized extensions and adaptations of k-means to handle categorical data
more appropriately.

A range of extensions and modifications have been introduced to the k-means algorithm
to enable its application to categorical data. One of the most prominent approaches is the K-
modes algorithm [72]. In contrast to the original k-means method, which depends on
Euclidean distance metrics, K-modes utilizes a dissimilarity measure specifically designed
for categorical attributes. Instead of treating data as points in a Euclidean space, K-modes
employs a simple matching distance and defines “cluster centers” in terms of modes rather
than means.

For two categorical objects X and Y, each described by M categorical attributes, the K-
modes dissimilarity is computed by counting how many attribute values differ. Formally:

𝑑𝑖𝑠(𝑋, 𝑌) =w𝛿(𝑋; , 𝑌;)
,

;>!

where,

𝛿(𝑋; , 𝑌;) = �0											𝑖𝑓		𝑋; = 𝑌; 		
1												𝑖𝑓		𝑋; ≠ 𝑌;

Within a cluster composed of 𝑁 categorical objects {𝑋!, ..., 𝑋Q}, where 𝑋; = (𝑥;!, ...,

𝑥;,) and 1	 ≤ 	𝑖	 ≤ 	𝑁 is determined by selecting the most frequently occurring category for
each attribute position 𝑚 1	 ≤ 	𝑚	 ≤ 	𝑀 across the cluster’s objects {𝑥!=, ..., 𝑥Q=}. These
alterations, introduced in [72], adapt the clustering process for categorical data while
preserving the fundamental iterative nature of k-means. Nonetheless, it is important to note
that the mode for a given cluster may not be unique, potentially introducing variability in
the clustering outcome based on how modes are chosen.

For a given cluster composed of categorical objects {𝑋!, ..., 𝑋Q}, with each object
represented as 𝑋; = (𝑥;!, ..., 𝑥;,) for 1	 ≤ 	𝑖	 ≤ 	𝑁, the K-modes algorithm determines the
cluster’s mode 𝑍	 = 	 (𝑜!, . . . , 𝑜,) by selecting 𝑜=, 1	 ≤ 	𝑚	 ≤ 	𝑀, as the attribute value that
occurs most frequently in the set {𝑥!=, ..., 𝑥Q=}. This approach, introduced by the authors
in [3], adapts the standard K-means framework to handle categorical attributes by replacing
numerical means with modes. However, it is important to note that a given cluster’s mode
may not be uniquely defined, multiple attribute values can share the same highest frequency.
This potential ambiguity can introduce instability into the clustering process, as the final
outcome may depend on the particular mode chosen from among several equally frequent
candidates.

The k-Representative algorithm [76] represents a further adaptation of the K-means
framework, introducing the concept of cluster representatives to handle categorical data.
Instead of using a single mode to characterize a cluster, as done in K-modes, the k-

Clustering-Based Reduction Strategies for FCA

 50

Representative approach defines a representative that captures the distribution of attribute
values within the cluster.

Consider a cluster 𝑆 consisting of 𝑝 categorical objects: 𝑆	 = 	 {𝑋!, . . . , 𝑋S}., where each
object (𝑥;!, ..., 𝑥;,) with the condition 1	 ≤ 	𝑖	 ≤ 	𝑝, and each 𝑥;, corresponds to the value
of the m-th attribute. For each attribute 𝑚 (1	 ≤ 	𝑚	 ≤ 	𝑀), we define 𝑂=T as the set of
distinct categorical values that attribute 𝑚 can take within cluster 𝑆. In other words, 𝑂=T =
{o_m1, ..., o_ml}, where each o_ml is a unique category observed in the m-th attribute across
all objects in S.

Consider a cluster 𝑆 composed of 𝑝 categorical objects: 𝑆	 = 	 {𝑋!, . . . , 𝑋S}, where each
object 𝑋U = (𝑥;!, ..., 𝑥;,) for i=1,...,p, and 𝑀 denotes the number of attributes. For each
attribute 𝑚 (1	 ≤ 	𝑚	 ≤ 	𝑀), we define 𝑂=T 	as the set of all distinct categorical values that
the m-th attribute takes on within cluster S. In other words, 𝑂=T is derived by examining the
m-th attribute values {𝑥!=, ..., 𝑥S=} of every object in 𝑆 and collecting the unique categories
observed. This set 𝑂=T 	thus represents all the different categorical values that attribute m can
assume across the entire cluster 𝑆.

For example, consider a cluster S containing three objects:

- Object 1: (Red, Circle, Large)
- Object 2: (Blue, Circle, Medium)
- Object 3: (Red, Square, Medium)

Focusing on attribute 1 (Color), we encounter the values “Red” and “Blue” among these
objects. Thus, 𝑂!T= {Red, Blue}, capturing the distinct color categories present in the cluster.
Similarly, 𝑂"T (for Shape) would be {Circle, Square}, and 𝑂#T (for Size) would be {Large,
Medium}. The cluster 𝑆 representative 𝑍T 	= 	 (𝑧!T, . . . , 𝑧,T), is then defined by assigning to
each attribute 𝑚 a set of category-frequency pairs:

𝑧=T 	= 	 {(𝑜=V , 𝑓𝑆(𝑜=V))	|	𝑜=V 	𝑖𝑠	𝑎𝑛	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑜𝑓	𝑂=T }

The term 𝑓𝑆(𝑜=V) denotes the proportional frequency of category 𝑜=V in the m-th

attribute of cluster 𝑆. To compute 𝑓𝑆(𝑜=V), we count how many objects in 𝑆	possess the
attribute value 𝑜=V for attribute 𝑚 (denoted #𝑆(𝑜=V)) and divide that count by 𝑝, the total
number of objects in the cluster:

𝑆(𝑜=V) = #𝑆(𝑜=V) / 𝑝

In essence, 𝑧=T 	is not a single value but a probability-like distribution over the categories

of the m-th attribute, reflecting how frequently each category occurs in that cluster.
To determine the similarity between a new object 𝑋	 = 	 (𝑥!, . . . , 𝑥,)	and the cluster

representative 𝑍T	, the k-Representative algorithm uses a simple matching-based
dissimilarity measure. For each attribute 𝑚, we consider all category values 𝑜=V 	in 𝑂=T and
their frequencies 𝑓𝑆(𝑜=V). The dissimilarity 𝑑𝑖𝑠(𝑋, 𝑍T)is defined as:

𝑑𝑖𝑠(𝑋, 𝑍T) 	= 	 ww 𝑓𝑆(𝑜=V) 	 ⋅ 	𝛿(𝑥=, 𝑜=V)	
W%&∈	X%'

,

=>!

Clustering-Based Reduction Strategies for FCA

 51

Here, 𝛿(𝑥=, 𝑜=V)	 is 0 if 𝑥= = 𝑜=V, and 1 otherwise. This means the dissimilarity is
influenced both by whether 𝑥= matches a commonly occurring category in 𝑆 (in which case
the contribution is low) and by how frequent that category is within the cluster (less common
categories influence the sum differently).

To illustrate, returning to our example cluster 𝑆 and considering a new object: Object 4:

(Blue, Circle, Small)
The representative 𝑍T derived from 𝑆 would look like this:
- For attribute 1 (Color): {(‘Red’, 0.67), (‘Blue’, 0.33)}

- For attribute 2 (Shape): {(‘Circle’, 0.67), (‘Square’, 0.33)}

- For attribute 3 (Size): {(‘Large’, 0.33), (‘Medium’, 0.67)}

Calculating the dissimilarity step-by-step:
For attribute 1 (Color):

𝑜=V in 𝑂!T: {(‘Red’), (‘Blue’)}

𝑓𝑆(𝑜=V): {0.67, 0.33}
δ (‘Blue’, ‘Red’) =1, δ (‘Blue’, ‘Blue’) =0

Contribution for attribute 1:

𝑓𝑆(′Red’) ⋅ δ (‘Blue’, ‘Red’) + 𝑓𝑆(′Blue′) ⋅ δ (‘Blue’, ‘Blue’) = 0.67 ⋅ 1 + 0.33 ⋅ 0
= 0.67

For attribute 2 (Shape):

𝑜=V in 𝑂"T: {(‘Circle’), (‘Square’)}

𝑓𝑆(𝑜=V): {0.67, 0.33}
δ (‘Circle’, ‘Circle’) = 0, δ (‘Circle’, ‘Square’) =1

Contribution for attribute 2:

𝑓𝑆(′Circle′) ⋅ δ (‘Circle’, ‘Circle’) + 𝑓𝑆(′Square′) ⋅ δ (‘Circle’, ‘Square’)= 0.67 ⋅ 0
+ 0.33 ⋅ 1= 0.33

For attribute 3 (Size):

𝑜=V in 𝑂#T: {(‘Large’), (‘Medium’)}

𝑓𝑆(𝑜=V): {0.33, 0.67}

δ (‘Small’, ‘Large’) = 1, δ (‘Small’, ‘Medium’) =1

Contribution for attribute 2:

𝑓𝑆(′Large′) ⋅ δ (‘Small’, ‘Large’) + 𝑓𝑆(′Medium′) ⋅ δ (‘Small’, ‘Medium’) = 0.33
⋅ 1 + 0.67 ⋅ 1 =1
Finally, sum up the contributions from all attributes:

Clustering-Based Reduction Strategies for FCA

 52

𝑑𝑖𝑠(𝑂𝑏𝑗𝑒𝑐𝑡4, 𝑉T) = 0.67 + 0.33 + 1 = 2

Since the total dissimilarity is 2, the cluster assignment of Object 4 depends on

comparing this value to the dissimilarities obtained with other cluster representatives. The
cluster for which this dissimilarity is minimal is where the object is assigned, indicating the
closest categorical “profile.”

Through this method, the k-Representative algorithm captures not only the predominant
attribute values within a cluster but also their distribution, providing a richer and more
flexible characterization of categorical clusters. Unlike methods that rely on a single mode
per attribute, k-Representative must manage and update a distribution for each attribute’s
categories. This can lead to increased computational overhead, particularly for large datasets
with many categories. Additionally, the complexity of interpreting frequency distributions
may pose challenges in understanding cluster representatives, making it less straightforward
for users to interpret cluster meanings.

Numerous specialized extensions have been introduced to address the inherent
complexities of clustering categorical data. One noteworthy variant is the k-Centers
algorithm [77], which treats cluster centers as probability distributions derived via kernel
density estimation. In this approach, indicator vectors and squared Euclidean distance are
employed to measure dissimilarities, thereby maintaining the core principles of k-means
while effectively accommodating categorical data characteristics.

Beyond k-Centers, additional techniques have emerged, each targeting specific
challenges. The fuzzy K-modes algorithm [78] introduces soft assignments, allowing data
objects to partially belong to multiple clusters. This flexibility can better capture nuances in
complex datasets. Meanwhile, scalable K-modes [79] enhances computational efficiency,
making it more practical for large-scale scenarios with vast numbers of objects and
attributes. The probabilistic K-modes method [80] integrates probabilistic models to handle
uncertainty and variability in categorical attributes, offering a more comprehensive
understanding of cluster membership.

These comprehensive efforts reflect ongoing research and innovation to adapt k-means-
style algorithms for categorical data analysis. By accommodating categorical attributes
through alternative distance measures, frequency-based distributions, or probabilistic
techniques, these methods significantly broaden the applicability of clustering algorithms.
As a result, they offer effective solutions in diverse areas where categorical data is prevalent,
ensuring that k-means and its variants remain integral tools in the data scientist’s toolkit. In
line with these developments, our approach aims to integrate the strengths of conceptual
clustering methods with the structural insights of Formal Concept Analysis (FCA), thus
enabling more effective clustering and generalization of categorical concepts within
complex lattice structures.

5.3. The Proposed Methods
5.3.1. K-means Dijkstra on Lattice (KDL)

The K-means Dijkstra on Lattice (KDL) approach introduces a form of conceptual
clustering tailored to categorical data, integrating Formal Concept Analysis (FCA) with a
modified Dijkstra algorithm. By leveraging the hierarchical structure of the concept lattice,
an intrinsic outcome of FCA-KDL advances beyond traditional clustering methods, ensuring

Clustering-Based Reduction Strategies for FCA

 53

that semantic relationships and conceptual hierarchies guide the clustering process. The core
phases and principles of the KDL methodology are as follows:

- Data Conversion to Formal Context: The initial step involves converting the

categorical dataset into a formal context. This is achieved by representing the data
as a binary incidence matrix, where each row corresponds to a distinct object and
each column represents an attribute. An entry of ‘1’ in the matrix indicates that the
object in that row possesses the attribute denoted by that column, whereas a ‘0’
signifies the absence of that attribute. This binary representation serves as the
foundational structure upon which Formal Concept Analysis is applied.

- Formal Concept Derivation: Once the formal context is defined, Formal Concept
Analysis identifies all the possible formal concepts, each capturing significant
relationships among objects and attributes. These concepts form a hierarchical
lattice structure that reveals the underlying data organization. Although the number
of concepts can grow rapidly, analytical approximations [27], [97] provide insights
into this growth, considering both the number of objects, attributes, and the overall
size of the context.

- Assigning Edge Weights: At this stage, a directional cost framework is introduced
to model the traversal between interconnected concepts within the lattice. By
assigning higher costs to certain transitions, such as moving from a parent concept
down to its children, this approach can emphasize the significance of particular
hierarchical moves. For instance, a downward step might carry a cost of 2, while an
upward step might only cost 1. These weighted relationships ensure that the
clustering algorithm accurately reflects the relative importance and complexity of
moving through different regions of the concept lattice.

- Utilizing Dijkstra’s Algorithm for Distance Computation: To evaluate the
conceptual distances within the lattice, the method integrates a modified Dijkstra’s
algorithm. Given the assigned edge weights, Dijkstra’s algorithm identifies the
shortest path and its associated minimum cost between any two formal concepts.
This ensures that the chosen distance metric is sensitive to the lattice’s structure,
allowing the clustering process to respect and leverage the inherent hierarchical
relationships when determining conceptual similarity.

- Deriving and Refining Cluster Centroids (kernels): Once distances within the lattice
are established, cluster centroids, elected formal concepts that best represent each
cluster are determined. These centroids undergo iterative refinement, with each
update recalculating which formal concept minimizes the total distance to all other
concepts in the cluster. This iterative process continues until the centroids converge,
ensuring that each cluster center is optimally aligned with the inherent structure and
relationships in the concept lattice.

The proposed clustering approach, which integrates Formal Concept Analysis (FCA) and

Dijkstra’s algorithm, leverages a key property of concept lattices: for any two concepts 𝑐!
and 𝑐" in a concept lattice, there is always at least one path connecting them. Since the lattice
is constructed from all possible formal concepts and their hierarchical interrelations, each
concept is reachable from any other through a sequence of edges. This ensures that the lattice
forms a connected structure, allowing continuous traversal from one concept to another.

To illustrate this, consider two concepts 𝑐! and 𝑐". If they share a direct connection (𝑐!
≤ 𝑐"	or 𝑐" ≤ 𝑐!), a path between them already exists. If not, we look at the sets of concepts
𝑅(𝑐!) and 𝑅(𝑐") that are reachable from 𝑐!1 and 𝑐", respectively. If these sets intersect, then

Clustering-Based Reduction Strategies for FCA

 54

there is at least one concept c in the intersection, guaranteeing a path 𝑐! → 	𝑐	 → 𝑐!. If no
immediate intersection is found, the search can be extended iteratively by exploring
additional reachable concepts until a common one is identified.

This pervasive connectivity is central to the clustering process. Since every concept pair
in the lattice is connected, it becomes feasible to compute the least-cost shortest path between
any two concepts using the Dijkstra-based distance measure. This, in turn, enables precise
cluster formation: each cluster’s centroid is identified through concepts that minimize intra-
cluster distances, and the inherent lattice structure ensures that these computations are both
meaningful and efficient. By exploiting the lattice’s connectivity, the proposed method can
effectively handle categorical data, respect the conceptual hierarchy, and produce coherent,
high-quality clusters.

5.3.1.1. Cluster Centers (Kernel Concepts)

Defining cluster centers, or centroids, within a concept lattice is crucial for effectively
applying the K-means Dijkstra on Lattice (KDL) method. These centroids must themselves
be formal concepts from the lattice. Their selection and iterative refinement play a key role
in minimizing the overall clustering cost. Consider a cluster 𝑆 composed of formal concepts
{𝑐; , … , 𝑐|T|} where 𝑖 = 1,2, . . . , |𝑆|. The chosen centroid 𝑍 is the concept within 𝑆 that yields
the smallest total distance to every other concept in 𝑆. Formally:

𝑍 = 𝑎𝑟𝑔𝑚𝑖𝑛Y∈T [w𝑑(𝑐; , 𝑍)
|T|

;>!

	^

Here, 𝑑(𝑐; , 𝑍)	represents the Dijkstra-based distance from each concept 𝑐; in the cluster

𝑆 to a candidate centroid 𝑍. The argmin operator identifies the representative formal concept
𝑍 in 𝑆 that achieves the minimal sum of distances to all other cluster members. Since 𝑍 must
be a member of 𝑆, this approach ensures an efficient search for the optimal centroid.

The existence of such a centroid is guaranteed by the properties of the Dijkstra-based
distance measure, making the method generally applicable, regardless of the set of formal
concepts at hand. By defining cluster centers as formal concepts, the approach provides both
mathematical rigor and practical utility. This strategy enhances the interpretability of
clustering results by selecting representative formal concepts for each cluster, ultimately
supporting a more comprehensive and insightful analysis of complex concept lattices.

5.3.1.2. The Clustering Algorithm

The K-Means Dijkstra on Lattice (KDL) clustering approach, anchored in Formal
Concept Analysis (FCA) and the Dijkstra-based distance framework, operates through a
systematic procedure that iteratively refines cluster assignments and identifies optimal
centroids rooted in the lattice’s conceptual structure.

Algorithm 5.1: K-Means Dijkstra on Lattice (KDL) clustering algorithm

Inputs: 𝑘, the number of clusters; ℬ, the lattice of formal concepts.
Output: The resulting clusters {𝑆!, 𝑆", . . . , 𝑆2}.
Initialize:

Clustering-Based Reduction Strategies for FCA

 55

Select 𝑘 formal concepts {𝑐!, 𝑐", . . . , 𝑐2} from the lattice ℬ randomly as the initial centroids of
the 𝑘 clusters.

Assignment:
𝐹𝑜𝑟	𝑒𝑎𝑐ℎ formal concept 𝑐 ∈ ℬ 𝑑𝑜:

Assign 𝑐 to the cluster 𝑆3 for which the Dijkstra-based distance measure 𝑑(𝑐, 𝑍3) is
minimized, where 𝑍3	is the centroid of cluster 𝑆3 .
Using Equations (7, 8)

Centroid Update:
𝐹𝑜𝑟	𝑒𝑎𝑐ℎ cluster 𝑆3 𝑑𝑜:

Recalculate the centroid 𝑍3 as the formal concept 𝑐 that minimizes the total distance to all
other concepts within 𝑆3

Iteration:
𝑊ℎ𝑖𝑙𝑒 centroids change between iterations 𝑑𝑜:
𝑅𝑒𝑝𝑒𝑎𝑡 steps 2 and 3.

Finalization:
 Output the resulting clusters {𝑆!, 𝑆", . . . , 𝑆2}.

5.3.1.3. Cost Analysis of KDL Method

This section provides an evaluation of the computational complexity associated with the
KDL method, examining each phase from initial cluster setup to the final cluster
assignments. Understanding this complexity offers valuable insights into the method’s
efficiency and scalability.

Let:

- 𝐾 denote the number of clusters,
- 𝑁 the number of objects,
- 𝐴 the number of attributes,
- 𝐶 the number of concepts,
- 𝐸 the number of edges in the lattice, and
- 𝐵 the maximum number of border elements considered in lattice construction.

Initially, the KDL procedure transforms the categorical dataset into a formal context, a
step that involves a binary conversion of each data entry. This preprocessing yields a
complexity of 𝑂(𝑁. 𝐴). Following this, the lattice is constructed from the derived formal
concepts, requiring operations over all border elements for each concept, resulting in a
worst-case complexity of 𝑂(𝐶. 𝐵).

The final stage involves a K-means-like clustering over the lattice-derived concepts.
Here, the main computational burden arises from repeatedly determining shortest paths
between concept pairs to update cluster assignments and recalibrate centroids. By employing
Dijkstra’s algorithm and assuming 𝐼 iterations until convergence, this portion contributes
𝑂(𝐼𝐾𝐶(𝐸	 + 	𝐶	𝑙𝑜𝑔	𝐶)) to the complexity.

Combining these components, the overall time complexity can be approximated as
𝑂(𝑁𝐴	 + 	𝐶𝐵	 + 	𝐼𝐾𝐶(𝐸	 + 	𝐶	𝑙𝑜𝑔	𝐶)). While this is a rough estimation and may vary based
on data characteristics and distributions, focusing on the dominant term for large-scale
scenarios simplifies the complexity to 𝑂(𝐼𝐾𝐶(𝐸	 + 	𝐶	𝑙𝑜𝑔	𝐶)).

In summary, the KDL method’s complexity grows primarily with the number of
concepts and edges in the lattice. Understanding this dependency is essential for selecting
suitable parameter values and optimizations to achieve efficient performance in practical
clustering scenarios.

Clustering-Based Reduction Strategies for FCA

 56

5.3.2. K-Means Vector on Lattice (KVL)

This method provides a systematic way to represent categorical data, originally
structured as formal concepts, within a numerical framework amenable to conventional
clustering techniques. Instead of dealing directly with categorical relationships, KVL
transforms each formal concept into a corresponding "concept description vector." In this
vectorization step, each concept, however abstract or categorical is represented by a real-
valued vector, where each dimension corresponds to a particular attribute. The magnitude of
the value in each dimension reflects the attribute’s prevalence or significance within that
concept.

Once these concept description vectors are obtained, the classical k-means algorithm can
be applied directly. By treating each vector as a point in a continuous, high-dimensional
space, the standard distance measures and iterative refinement steps of k-means become
applicable. Through this process, the concept description vectors are partitioned into k
clusters, with each cluster identified by a centroid vector. Vectors within a cluster share a
closer similarity to this centroid than to those in other clusters. Consequently, the KVL
approach enables the aggregation of related concepts, simplifies the intricate structure of the
original categorical data, and facilitates more intuitive, scalable, and numerically-driven
cluster analysis.

Definition 4.1 (Concept Description Vector):

Consider a formal concept 𝑐 = (𝑋, 𝑌), where 𝑋 ⊆ 𝐺, 𝑌 ⊆ 𝑀, and the given context 𝑇 =
(𝐺,𝑀, 𝐼) comprises a set of objects 𝐺 and a set of attributes 𝑀, with ∣ 𝑀 ∣= 𝑞 and ∣ 𝐺 ∣= 𝑟.
The incidence relation 𝐼 ⊆ 𝐺 ×𝑀 is represented by a binary matrix of dimensions 𝑟 × 𝑞,
where each entry in the matrix corresponds to whether an attribute is associated with an
object (1 if true, 0 if false). Labeling the rows by 𝑔!, 𝑔",…,	𝑔Z 	and the columns by 𝑚!,
𝑚",…,	𝑚[, this matrix provides the foundational structure linking objects and attributes. the
matrix can be defined as shown in Table 5.1 .

Table 5.1. Matrix Corresponding to The Relation I
Objects/Attributes 1𝒎𝟏 𝒎𝟐 … 𝒎𝒒

𝑔$ 𝐼(𝑔$, 𝑚$) 𝐼(𝑔$, 𝑚%) … 𝐼(𝑔$, 𝑚&)
𝑔% 𝐼(𝑔%, 𝑚$) 𝐼(𝑔%, 𝑚%) … 𝐼(𝑔%, 𝑚&)
… … … … …
𝑔' 𝐼(𝑔' , 𝑚$) 𝐼(𝑔' , 𝑚%) … 𝐼(𝑔' , 𝑚&)

A concept description vector 𝑐\ =	 (𝑣=(, 𝑣=) 	, . . . , 𝑣=*) captures the essence of the

concept 𝑐. For each attribute 𝑚] ∈ M, the component 𝑣=+ is computed as follows:

𝑣=+ = ´

1																																															𝑖𝑓	𝑚] ∈ 𝐵
1
𝑟
w𝐼�𝑔2 , 𝑚]�				𝑖𝑓	𝑚] ∉ 𝐵, ∀	𝑔2 ∈ 𝐺	
Z

2>!

Clustering-Based Reduction Strategies for FCA

 57

This definition distinguishes between attributes that form part of the concept’s intent 𝑌
and those that do not. Attributes in the intent are assigned a value of 1, reflecting their strong
defining role. Attributes not in the intent are assigned a value corresponding to their average
occurrence across all objects 𝐺. This frequency-based weighting provides a measure of the
attribute’s general relevance within the dataset. By constructing the concept description
vector in this manner, each vector component encodes how intrinsic an attribute is to the
concept. The resulting vector not only supports direct comparisons between concepts but
also enables the application of classical numerical clustering techniques, paving the way for
more flexible and insightful data analysis.

After constructing the concept description vectors, the KVL approach introduces a
concept similarity measure (𝐶𝑆), to evaluate how closely concepts relate to one another.
Following Definition 6, Concept Similarity is derived using the Euclidean distance between
any two concept description vectors 𝑉9! and 𝑉9". This measurement quantifies the proximity
of two concepts by considering each corresponding element of their vectors.

Definition 4.1. Concept Similarity (CS):
Let

𝑉9(= 	 µ𝑉9(=(
	, 𝑉9(=)

	, … , 𝑉9(=*
		¶

and

𝑉9) 	= 	 µ𝑉9)=(
	, 𝑉9)=)

	, … , 𝑉9)=*
		¶

be the concept description vectors of two distinct concepts 𝑐! and 𝑐". The Euclidean
distance, which serves as the basis for CS, is given by:

𝐶𝑆�𝑉9(, 𝑉9)�=·¸𝑉9(=(
	–	𝑉9)=(

	º
"
	+ 	¸𝑉9(=)

	–	𝑉9)=)
	º
"
	+	. . . +	µ𝑉9(=*

−	𝑉9)=*
	¶
"
	

Armed with the concept description vectors and the associated similarity measure, we

can apply the classical k-means clustering algorithm. In this process, each concept
description vector is treated as a data point in a q-dimensional space. The algorithm groups
these vectors into	𝑘 clusters such that concepts within the same cluster share greater
similarity than those in different clusters. Each cluster has a centroid 𝑍;, defined as the mean
of all concept description vectors assigned to that cluster:

𝑍; =
1
|𝑆;|

w𝑉\,

|T"|

2>!

, 𝑉\, ∈ 	𝑆;

where 𝑆; is the set of concept description vectors in the i-th cluster.

The objective of k-means is to minimize the within-cluster sum of squared distances
(WCSS) from each concept description vector to its corresponding centroid:

Clustering-Based Reduction Strategies for FCA

 58

Q =ww¼½𝑉\, − 𝑍;½¼
"

|T"|

2>!

P

;>!

,

where:

• 𝑆; is the set of concept description vectors assigned to the i-th cluster,
• 𝑍; is the centroid of cluster 𝑖, defined as the mean of all vectors in 𝑆;, and
• ∥⋅∥ denotes the Euclidean norm.

By repeatedly assigning vectors to their nearest centroids (based on the CS measure) and
then recalculating the centroids, the algorithm proceeds until it converges to a stable
configuration, thereby optimally partitioning the concept vectors into coherent, meaningful
clusters.

5.3.3. Clustering Algorithm

The clustering procedure unfolds as follows. Consider a formal context 𝑇 = (𝐺,𝑀, 𝐼)
and let 𝑉(𝑇)	represent the set of all derived concept description vectors. Suppose we aim to
form 𝐾 clusters. Initially, randomly select 𝐾 initial centroids, 𝑍:R= (𝐴: , 𝐵:) for (𝑡 =
1,2, . . . 𝐾), each corresponding to a preliminary cluster 𝑆:R= {𝑍:R}.

Next, assign each concept description vector 𝑣 ∈ 𝑉(𝑇)	to the cluster whose current
centroid is nearest to 𝑣 based on the chosen distance measure. After this initial assignment,
recompute each cluster’s centroid by taking the average of all vectors assigned to it, thereby
updating each cluster center.

This reassignment and centroid calculation process is repeated iteratively. In each
iteration, vectors may shift clusters if doing so reduces the overall clustering cost. The
process continues until the cluster memberships and their centroids remain stable across
consecutive iterations, indicating that the algorithm has converged. The algorithm steps are
as follows:

Algorithm 5.2. K-means clustering of concepts.

Input: All the description vectors of concepts in 𝑉(𝑇), 𝑘.
Output: The clusters and corresponding centers.
Initialize:

Set 𝑆!3 ← ∅, 𝑆"3 ← ∅, ..., 𝑆23 ← ∅;
 𝑖 ← 0,
Select initial center vectors of 𝐾 clusters: 𝑍!3 , 𝑍"3 ,…, 𝑍23 ;

Assignment:
𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝑣 ∈ 𝑉(𝑇)	𝑑𝑜:

-Find 𝑡 such that 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)|𝑣, 𝑍43} ≤ 𝐶𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)|𝑣, 𝑍53},	 (𝑗 =
1,2,… , 𝑘) then,
𝑣 ∈ 𝑆43;

𝐸𝑛𝑑𝐹𝑜𝑟
Centroid Update:

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ 𝑆43 𝑑𝑜:
 𝑍436! =

!
|8#|
∑ 𝑣)	,
|8#|
)9! 𝑣) ∈ 𝑆4

 𝑆436!=�𝑣 ∈ 𝑉(𝑇)|𝐶𝑆|𝑣, 𝑍436!} ≤ 𝐶𝑆|𝑣, 𝑍536!}�
𝐸𝑛𝑑𝐹𝑜𝑟

Clustering-Based Reduction Strategies for FCA

 59

Convergence Check:
𝐼𝑓 𝑍43=𝑍436!, 𝑆43=𝑆436!	, 𝑡 = 1,2, . . . , 𝐾, 𝑡ℎ𝑒𝑛
 Go to step5.
Else:
 𝑖 = 𝑖 + 	1,
 Go to Step 2.

Output: clusters 𝑆!3 , 𝑆"3 , ..., 𝑆23 and the corresponding centers 𝑍!3 , 𝑍"3 , …, 𝑍23 .

Once the clustering process is complete and stable clusters are formed, the concept

description vectors in each cluster can be mapped back to their corresponding original
concepts from the formal context. This backward mapping leverages the initial construction
of concept description vectors, ensuring that the clustering results can be interpreted and
analyzed in terms of the actual concepts they represent.

Algorithm 5.3: Mapping vectors to original concepts.

Input: The clusters 𝑆!3 , 𝑆"3 , …, 𝑆23 and the corresponding centers 𝑍!3 , 𝑍"3 ,…, 𝑍23 .
Output: Clusters of original concepts.
Initialize:
𝑁𝑆!, 𝑁𝑆", …𝑁𝑆2 ← ∅,
𝐹𝑜𝑟	𝑡	 = 	1	𝑡𝑜	𝑘	𝑑𝑜:	

For	each	description	vector	in	𝑆43	do:	
Map	back	to	its	original	concept	and	add	to	𝑁𝑆4.	
Using the relationship between the concept description vector and the
original concept established in Definition 5.	

EndFor	
Output: the new clusters 𝑁𝑆!, 𝑁𝑆", …𝑁𝑆2, each containing the original concepts.

This approximation and mapping technique enables efficient and interpretable clustering

of concepts within a given context, thereby clarifying the intricate relationships and
similarities among the different concepts.

5.3.3.1. Cost Analysis of the KVL Method

A complexity assessment of the KVL approach reveals multiple stages influencing
overall performance. Initially, the data undergoes preprocessing where each of the 𝑁 objects
with 𝐴 attributes is represented in binary form, resulting in a complexity of 𝑂(𝑁𝐴).
Following preprocessing, 𝐶 formal concepts are generated, and each concept is represented
as an A-dimensional vector, incurring 𝑂(𝐴𝐶) time.

Once these vectors are created, the algorithm selects 𝐾 initial centroids randomly from
the C concepts, which adds a cost of 𝑂(𝐾). Subsequent phases involve iterative refinement:
each iteration requires assigning 𝐶 concepts to their nearest centroid and then updating those
centroids, each iteration costing 𝑂(𝐶𝐾). With 𝐼 iterations until convergence, this totals
𝑂(𝐼𝐶𝐾).

In the final step, the algorithm maps the resulting concept vectors back to their original
formal concepts, contributing another 𝑂(𝐶𝐾) in complexity. Combining all these
components yields an approximate total complexity of 𝑂(𝑁𝐴	 + 	𝐴𝐶	 + 	𝐾	 + 	𝐼𝐶𝐾	 + 	𝐶𝐾).
Although this is a heuristic estimation, and real-world complexity may vary depending on
the data distribution, focusing on the dominant terms simplifies it to 𝑂(𝐼𝐾𝐶). This indicates
that the iterative centroid assignment and update phases primarily influence the scalability
and runtime efficiency of the KVL method.

Clustering-Based Reduction Strategies for FCA

 60

5.4. Experimental Results
This section provides empirical evaluations showcasing the effectiveness and scalability

of both the Dijkstra-Based Distance Measure and the two proposed clustering approaches:
K-means Dijkstra on Lattice (KDL) and K-means Vector on Lattice (KVL). All experiments
were conducted on a Mac system featuring an Apple M1 chip and 8GB of RAM, running
macOS 13.2.1. This setup ensures a stable and efficient environment for performance
assessment, allowing for consistent comparisons and insights into the practical utility of the
methods under real-world conditions.

5.4.1. Testing and Evaluation of the Dijkstra-Based Distance

The evaluation of the Dijkstra-based distance measure involved a systematic approach
to ensure both its reliability and adaptability across various data settings:

1. Random Generation of Formal Contexts:

Five distinct formal contexts were randomly generated, each differing in size and
density. Table 5.2 summarizes their characteristics. Density here represents the ratio
of filled entries (1s) to the total possible entries in the binary matrix, essentially
reflecting how much information each context encodes about object-attribute
relationships. For instance, Formal Context1 (600 objects, 125 attributes) has a
density of 0.10, implying a relatively sparse structure where only 10% of entries are
1. Lower density values indicate sparser relationships, while higher densities signify
more attributes per object, thus richer conceptual structures.

2. UCI Datasets Transformation:
Four well-known datasets from the UCI Machine Learning Repository were included
in the analysis. Before experimentation, these datasets were transformed into formal
contexts as indicated in Table 5.2. The chosen datasets—Balance-Scale, Breast
Cancer, Car Evaluation, and Tae—were selected for their public availability and the
categorical nature of their attributes:

- Balance-Scale: Instances reflect different tilt states of a balance scale.
- Breast Cancer: Instances are categorized as benign or malignant.
- Car Evaluation: Instances fall into four categories (unacc, acc, good, vgood).
- Tae (Teaching Assistant Evaluation): Represents teaching performance

across multiple semesters, with each instance categorized as low, medium, or
high.

3. Formal Concept Extraction:
The NextClosure algorithm [98] was applied to each formal context to derive all
possible formal concepts. The number of formal concepts obtained from each context
is listed in Table 5.3. This step is crucial for understanding the underlying patterns
and hierarchies within the data.

4. Graph Construction:
To visualize and analyze the relationships among the extracted formal concepts,
graphs were built. The Ipred algorithm [99] was employed to optimally arrange these
concepts, considering the influence of density on the resulting diagram’s complexity.

Clustering-Based Reduction Strategies for FCA

 61

A higher density often leads to more nodes and edges, reflecting a more intricate
concept lattice. In contrast, sparser contexts result in fewer concepts and simpler,
more manageable lattices, as illustrated in Table 5.4.

Overall, these preparation steps provided a comprehensive testing environment, ensuring
that the Dijkstra-based distance measure was evaluated across a range of densities, dataset
complexities, and structural scenarios.

Table 5.2. Characteristics Of Random And Real-World Formal Contexts.

Formal Contexts #objects #attributes density
Formal Context1 600 125 0.10
Formal Contex2 11000 30 0.10
Formal Context3 1350 120 0.05
Formal Context4 2000 20 0.15
Formal Context5 12000 20 0.23
Balance-Scale 625 20 0.20
Breast Cancer 182 35 0.25
Tae 151 101 0.04
Car Evaluation 1728 21 0.28

Table 5.3. formal concepts generated from the formal contexts in Table 5.2
Formal Contexts #formal concepts.
Formal Context1 29926
Formal Contex2 15117
Formal Context3 9882
Formal Context4 2989
Formal Context5 39931
Balance-Scale 1297
Breast Cancer 2569
Tae 276
Car Evaluation 8001

Table 5.4. Characteristics of the generated Lattices

Formal Contexts #formal concepts Inclusion relationship
between concepts (edges)

Concept lattice1 29926 122839
Concept lattice2 15117 67040
Concept lattice3 9882 36797
Concept lattice4 2989 12175
Concept lattice5 39931 228427
Balance-Scale 1297 4945
Breast Cancer 2569 9513

Tae 276 619
Car Evaluation 8001 38928

The evaluation process employed the Dijkstra-based distance measure on concept
lattices derived from five randomly generated formal contexts and four real-world datasets.
These formal contexts differed significantly in terms of objects, attributes, and density, while
the real-world datasets encompassed varied domains such as balance scale, breast cancer
classification, teaching assistant evaluation, and car evaluation. After establishing the
contexts and datasets, FCA techniques, specifically the NextClosure algorithm, were applied
to extract formal concepts. The number of resulting concepts ranged widely, from as few as
2989 in Formal Context 4 to as many as 39931 in Formal Context 5.

Each set of formal concepts was then represented as a concept lattice constructed via the
Ipred algorithm, highlighting the inclusion relationships among concepts. The complexity

Clustering-Based Reduction Strategies for FCA

 62

and size of each context influenced the lattice structure, reflected in the number of inclusion
relationships.

For the performance assessment, a subset of concept pairs 25% of the total concepts was
randomly selected from each lattice. The shortest paths and their costs were computed using
the Dijkstra-based measure across ten independent trials. The analysis recorded both the
average runtime and the mean distance, providing insights into the efficiency and scalability
of the distance measure under varying conditions.

In Figures 5.1 and 5.2, the Dijkstra-based distance measure was applied to lattices
derived from randomly generated formal contexts of varying sizes and densities, where in
Figure 5.1 shows that the algorithm’s runtime generally increases in larger lattices. More
objects and attributes produce a greater number of formal concepts, resulting in a lattice with
more nodes and edges hence, more computational effort is required for shortest-path
calculations. This relationship holds across the all lattices tested, making it clear that denser
or larger lattices pose higher computational demands.

Figure 5.2 further reveals a consistent pattern when comparing independently generated
lattices, often displaying a peak at certain sizes or densities. When a random context
produces a moderately sized but fragmented lattice, concept pairs tend to form clusters with
relatively few connecting links, increasing shortest-path lengths. In contrast, larger or denser
lattices tend to include overlapping attributes that create multiple bridges between clusters,
effectively reducing the overall mean distance. These findings highlight how varying
random context parameters generate diverse lattice topologies while still exhibiting
predictable trends in both runtime and distance.

Figure 5.1. Average runtime vs. lattice size for random contexts

Figure 5.2. Mean distance vs. lattice size for random contexts

Clustering-Based Reduction Strategies for FCA

 63

Figures 5.3 and 5.4 present analogous evaluations of the Car Evaluation, Balance-Scale,
Breast Cancer, and Tae datasets, highlighting how real-world categorical data influence both
lattice size and concept dispersion. First, Figure 5.3 shows that the runtime scales with the
number of concepts; as larger lattices incorporate more nodes and edges, each shortest-path
computation requires additional steps, thereby lengthening the average execution time.
Second, examining mean distance behaviors as shown in Figure 5.4 reveals that the Car
Evaluation dataset despite producing the largest number of formal concepts (8001), exhibits
a shorter mean distance than some smaller lattices, suggesting high interconnectivity due to
overlapping attributes and more numerous paths between concepts. In contrast, Balance-
Scale and Breast Cancer, despite fewer concepts, have higher mean distances, indicating
more fragmented lattices with fewer cross-links. As in the random contexts, these real-world
datasets can experience peaks in mean distance at certain sizes.

These observations underscore several key insights:

1. Structural Coherence vs. Sheer Size:
A dataset can generate a large concept lattice yet exhibit relatively short mean
distances if its attributes foster dense interconnections among concepts. Conversely,
smaller lattices may yield higher average distances when they remain fragmented
and lack sufficient bridging attributes.

2. Dynamic Interplay Between Density and Connectivity:
Across both random and real-world contexts, the layered nature of concept lattices
often produces peaks in mean distance. This occurs when there are enough concepts
to form loosely connected clusters—rather than fully integrated networks—but not
enough overlapping attributes to create extensive cross-links. As additional concepts
emerge and overlapping attributes increase, these clusters integrate further, resulting
in a decline in the overall mean distance.

3. Robustness of the Dijkstra-Based Approach:
The Dijkstra-based distance measure consistently captures these subtle structural
transitions, underscoring its robustness. Instead of smoothing over inherent
differences, it accurately reflects the organization of each dataset, making it a
valuable tool for understanding how real-world categorical data are layered or
interlinked. This, in turn, provides deeper insights into the topology and connectivity
of concept lattices.

Figure 5.3. Average runtime vs. lattice size for real-world datasets

Clustering-Based Reduction Strategies for FCA

 64

Figure 5.4. Mean distance vs. lattice size for real-world datasets

By integrating the Dijkstra-based distance measure with FCA, the approach effectively
leverages the hierarchical nature of categorical data. Instead of relying solely on Euclidean
metrics, this method interprets dissimilarities as shortest paths within a lattice, thereby more
accurately mirroring the relational patterns inherent in categorical datasets. Substituting
Euclidean distance with a Dijkstra-based measure in the K-means clustering framework
offers a more faithful representation of categorical relationships, enabling more precise
cluster identification and analysis. As a result, it provides a powerful, application-agnostic
tool for exploring and interpreting complex categorical data, opening up new opportunities
for research and practice in data-driven decision-making.

5.4.2. Clustering Performance

To assess clustering quality for categorical data, the Silhouette Coefficient and Davies-
Bouldin Index (DBI) are employed. Both measures operate without the need for ground truth
labels, making them valuable in practical scenarios.

The Silhouette Coefficient gauges how well each data point fits within its assigned
cluster compared to other clusters. Its values range from -1 to 1, where a high positive score
indicates that a point is well-assigned to its cluster, while a negative score suggests a
potential misclassification. Formally:

Silhouette	Score	 = (𝑏	 − 	𝑎)	/	𝑚𝑎𝑥	(𝑎, 𝑏)

Here, ‘a’ represents the average intra-cluster distance (the average distance from a point to
other points within the same cluster), and ‘b’ is the average distance from the point to the
points in the nearest neighboring cluster.

In contrast, the Davies-Bouldin Index (DBI) assesses how separated and compact the
clusters are. Lower DBI values indicate a more optimal clustering solution. To compute DBI,
we proceed as follows:

1. For each cluster 𝑆-, compute the average intra-cluster distance 𝑆𝐶-. This is the average
distance of all points in 𝑆- to the cluster’s centroid 𝑍-.

2. Determine the distance 𝑑-. 	between the centroids of each pair of clusters 𝑆- 	and 𝑆..
3. For each pair of clusters (𝑖, 𝑗), compute the ratio:

Clustering-Based Reduction Strategies for FCA

 65

𝑅-. = (𝑆𝐶-+𝑆𝐶.) / 𝑑-.

4. For each cluster 𝑆-, identify 𝑅- = max	(𝑅-.)	across all other clusters SjS_jSj.
5. Finally, the DBI is obtained by averaging all 𝑅- values across the clusters.

Formally:

DBI = ¸!
T
º	∑𝑅;

where: 𝑆 is the total number of clusters

A lower DBI score means clusters are more compact internally and better separated from
each other. Both the Silhouette Coefficient and DBI thus provide complementary
perspectives on the cluster quality, enabling a robust evaluation of clustering performance
in complex categorical data scenarios without requiring predefined labels.

By examining four real-world datasets, as detailed in Table 5.3 and reflected in both the
numerical results (Tables 5.5 and 5.6) and graphical trends (Figure. 5.5 and Figure. 5.6), the
number of clusters was set to align with each dataset’s inherent classes. Averaging the
performance across 100 runs per method provided clear insights into how K-means Dijkstra
on Lattice (KDL) compares to K-means Vector on Lattice (KVL) in practical clustering
scenarios.

Table 5.5. Silhouette coefficient outcomes for KDL and KVL across various datasets
Datasets KDL KVL #Clusters

Balance-Scale 0.406 0.128
0.090
0.092
0.106

3
Breast Cancer 0.239 2

Tae 0.300 3
Car Evaluation 0.563 4

Examining the Silhouette Coefficient (Table 5.5) clearly shows that KDL, which

inherently respects the lattice graph structure derived from categorical data, consistently
surpasses KVL. This advantage is further substantiated by the DBI results (Table 5.6), where
KDL again exhibits superior clustering quality by achieving lower index values across all
datasets.

Table 5.6. DBI results for KDL and KVL across different datasets
Datasets KDL KVL # Clusters

Balance-Scale 1.48 2,64
2,78
2.62
2.92

3
Breast Cancer 1.83 2
Tae 1.49 3
Car Evaluation 1.90 4

The core strength of KDL stems from its integration of Formal Concept Analysis (FCA)

and Dijkstra’s algorithm. FCA constructs a concept hierarchy reflecting the nuanced
relationships in categorical data, while Dijkstra’s algorithm finds optimal paths within this
hierarchy. By employing a distance measure based on the shortest path between formal
concepts, KDL captures the underlying data structure more accurately. This results in more
coherent and meaningful clusters.

Clustering-Based Reduction Strategies for FCA

 66

In contrast, the KVL method, despite simplifying the process by converting categorical
data into numerical vectors, may lose critical hierarchical information. Such abstraction can
lead to less effective clustering outcomes, as evidenced by higher DBI values and less
favorable Silhouette scores.

Figure 5.5. Silhouette Scores by dataset and method

Figure 5.6. DBI Scores by dataset and method

Together, these findings underscore the importance of leveraging the inherent structure

in categorical datasets. Although KVL remains a viable approach for certain scenarios, the
results strongly advocate for methods like KDL—especially when the goal is to preserve
and utilize the complex relationships implicit in categorical data. In essence, choosing
between KDL and KVL should hinge on data characteristics and analytical goals, ensuring
that the method aligns with the intrinsic nature of the data at hand.

5.4.3. Scalability Test Results Analysis

Exploring how both K-means Dijkstra on Lattice (KDL) and K-means Vector on Lattice
(KVL) respond to changes in the number of clusters provides valuable insights into their
scalability. All results reported are based on the average runtime from five independent runs,
ensuring the reliability of the performance assessment.

In this experiment, the number of clusters was varied from 2 to 18, while maintaining a
constant dataset size. Using the Car Evaluation dataset with 8001 formal concepts as a
benchmark, the KVL method displayed a near-linear increase in execution time, as
illustrated in Figure. 5.7. The runtime ranged roughly between 44.48 and 51.56 seconds,
indicating that KVL scales efficiently with an increasing number of clusters.

In contrast, Figure. 5.8 shows that the KDL method exhibited a steep rise in execution
time as the cluster count grew, escalating from about 1926.77 seconds for 2 clusters to
approximately 49600.10 seconds for 18 clusters. This substantial jump reflects the

Clustering-Based Reduction Strategies for FCA

 67

computational complexity introduced by navigating the rich lattice structure and multiple
concept relationships inherent in KDL.

These observations suggest that while KVL offers more favorable scalability and
computational efficiency with increasing cluster counts, KDL provides more nuanced
conceptual results. Ultimately, the choice between methods depends on the analytical
requirements and resource constraints, highlighting a trade-off between scalability and the
depth of conceptual structure captured in the clustering process.

Figure 5.7. KVL scalability vs. cluster count (Car Evaluation dataset with 8001 concepts)

Figure 5.8. KVL scalability with an increasing number of formal concepts

5.4.4. Scalability in Relation to the Number of Formal Concepts

When examining scalability with respect to the number of formal concepts, both KDL
and KVL methods were tested under a fixed number of clusters (three) across various real-
world datasets: Balance-Scale, Breast Cancer, Tae, and Car Evaluation. As illustrated in
Figure. 5.9 and Figure. 5.10, the execution times for KVL and KDL were recorded for
datasets containing 276, 1297, 2569, and 8001 formal concepts.

Figure. 5.10 reveals that KVL maintains relatively stable execution times as the number
of formal concepts grows, demonstrating impressive scalability. The average runtimes
remain within a narrow range (43.14 to 46.35 seconds), indicating that KVL efficiently
manages increasingly large datasets without substantial performance degradation.

Clustering-Based Reduction Strategies for FCA

 68

By contrast, Figure. 5.10 shows that KDL experiences a dramatic increase in runtime as
the number of formal concepts expands. The execution times escalate from 53.67 seconds
to over 2000 seconds, reflecting a substantial computational burden when handling large,
complex lattices. Although KDL may offer higher-quality conceptual clustering due to its
richer representation, this comes at the cost of reduced scalability.

In summary, while KDL potentially delivers more nuanced clustering results, it is
significantly more resource-intensive, limiting its scalability. Conversely, KVL, though
possibly less conceptually rich, proves to be far more scalable for larger and more complex
datasets. The choice between these methods depends on the priorities and constraints of a
given application. Future research could investigate strategies to combine the strengths of
both approaches, striving for a method that balances conceptual depth with computational
efficiency.

Figure 5.9. KDL scalability with increasing number of clusters

Figure 5.10. KDL scalability with increasing number of formal concepts

5.5. Summary

our investigation was guided by the overarching goal of leveraging Formal Concept
Analysis (FCA) within conceptual clustering frameworks to effectively reduce and manage
the complexity of concept lattices. The introduction of a Dijkstra-based distance measure
was pivotal, offering enhanced capability to capture hierarchical relationships in categorical
data and reveal deeper structural insights into concept lattices.

Clustering-Based Reduction Strategies for FCA

 69

We evaluated two clustering methods tailored for FCA contexts: K-means Dijkstra on
Lattice (KDL) and K-means Vector on Lattice (KVL). KDL, utilizing the Dijkstra-based
distance measure directly on the lattice structure, yielded conceptually rich clusters that
preserved inherent hierarchies. However, its scalability diminished as the lattice size grew.
In contrast, KVL demonstrated superior scalability but risked oversimplifying hierarchical
nuances by converting categorical data into numerical vectors.

Significantly, these methods show promise not only in conceptual clustering but also as
reduction tools for FCA concept lattices. Experimental results indicate that KDL and KVL
can achieve effective centroid selection from the FCA concept set. Although the execution
cost can surpass that of conventional FCA reduction algorithms, these methods still represent
viable approaches for concept lattice reduction, particularly when conceptual fidelity or
scaling requirements demand careful trade-offs.

Looking ahead, refining these approaches could strike a better balance between
conceptual rigor and scalability. Potential avenues include simplifying the lattice
construction for KDL or integrating more nuanced distance measures into KVL to preserve
categorical hierarchies. Moreover, further integrating the Dijkstra-based measure into k-
means could extend their applicability. Ultimately, these findings form a solid foundation
for developing clustering methodologies that maintain conceptual depth while efficiently
managing lattice complexity, moving closer to more scalable and conceptually sound
solutions in FCA-based applications.

Github: https://github.com/Mdaash/FCA-KVL-and-KDL-/tree/master/KDL_KVL_Methods

Publications : 𝑃!, 𝑃$

https://github.com/Mdaash/FCA-KVL-and-KDL-/tree/master/KDL_KVL_Methods

Kernel Concepts Selection for Efficient Lattice Reduction

 70

Chapter 6: Kernel Concepts Selection for Efficient
Lattice Reduction

6.1. Introduction

Formal Concept Analysis (FCA) provides a powerful framework for conceptualization,
its derived concept lattices can become unwieldy, limiting both scalability and insight.
Traditional approaches to simplifying these lattices, be they the removal of redundant
elements, structural simplifications, or selective filtering, can still struggle to accommodate
the dynamic, complex nature of many real-world datasets.

This paper introduces the Kernel Concept Set Approach (KCS), a novel selection-based
methodology designed to address these challenges by integrating concept frequency with a
derivation cost function. Unlike typical methods focusing solely on frequency or attribute
relevance, KCS offers a flexible cost framework that accounts for both conceptual usage and
internal structure. By highlighting specific concepts as cluster centers, the approach not only
supports efficient clustering in a general metric space but also preserves core structural
insights. Importantly, KCS can serve as a specialized clustering technique, especially within
FCA contexts, bringing substantial benefits in interpretability, reduced computational
expense, and flexible distance interpretation.

6.2. Kernel Concept Set Approach
The Kernel Concept Set (KCS) method addresses the inherent complexity of concept

lattices in Formal Concept Analysis (FCA), particularly when managing extensive lattices
where conventional techniques, such as removing arbitrary elements or selecting objects ad
hoc, may overlook critical structures. KCS focuses on two core attributes of each concept:
its frequency and the cost of deriving one concept from another. Frequency gauges a
concept’s prevalence and importance in the dataset, while the derivation cost assesses the
effort required to navigate between concepts in the lattice.

Central to KCS is the idea of identifying “kernel concepts,” high-frequency concepts
strategically positioned in the lattice. By singling out these pivotal elements, KCS preserves
both structural coherence and meaningful data relationships during lattice simplification.
Furthermore, KCS employs a flexible derivation cost function to measure similarity, thereby
accommodating both the real-world usage level of concepts and their internal structure. This
dual perspective enriches analysis by spotlighting concept clusters and pinpointing the most
essential information within the lattice.

In addition, KCS treats kernel concepts as cluster centroids, making it a powerful
clustering approach for formal concepts. This strategy operates in a general metric space,
avoiding the need for a vector space, and can yield cost savings relative to typical
agglomerative methods. Crucially, KCS not only isolates cluster members but also
designates central concepts as cluster representatives, highlighting the lattice’s crucial
“backbone.” Consequently, the KCS method offers a balanced, efficient means to reduce
and interpret large FCA lattices while protecting the most valuable insights embedded in the
data.

Kernel Concepts Selection for Efficient Lattice Reduction

 71

Definition 5.1 (Extended Concept Lattice):

Building upon the standard concept lattice model described in Definition 2.5, the
Extended Concept Lattice introduces additional elements to enrich Formal Concept Analysis
(FCA). Specifically, this extension incorporates two core components:

- A Frequency Value function, reflecting how often each concept appears or how
central it is within the dataset.

- A Derivation Cost function, quantifying the cost or complexity of reaching one
concept from another within the lattice’s structure.

Definition 5.2 (Frequency Value Function):

Let 𝐶 represent the set of formal concepts in the extended lattice. A function

𝑓: 𝐶	 → 	ℝE

assigns a positive real value to each concept 𝑐 ∈ 𝐶. The value 𝑓(𝑐) gauges the relative
frequency or importance of concept 𝑐 within the domain.

Definition 5.3 (Derivation Cost Function):

A second function

𝒹:	𝐶	 × 	𝐶 →	ℝE

captures the cost of deriving one concept from another. Here, 𝑑(𝑐!, 𝑐") reflects how
much “effort” or “distance” it takes to move from concept 𝑐! to concept 𝑐" in the lattice.

- Self-Cost:

𝑑	(𝑐, 𝑐) = 	0

No cost is incurred when deriving a concept from itself.

- Asymmetry:

𝑑(𝑐!, 𝑐") ≠ 	𝑑	(𝑐", 𝑐!)

The cost may differ depending on the direction of traversal, mirroring the lattice’s
hierarchy.

- Integration with a Dijkstra-Based Distance:
For more refined asymmetrical costs, the lattice edges are weighted so that upward
transitions (from child to parent) differ in cost from downward transitions (parent
to child). For instance, an upward move might have weight 2, while a downward
move might have weight 1. This scheme harnesses a Dijkstra-based shortest path
method to capture directional complexities accurately [40].

Definition 5.4 (Distance from a Subset):

Kernel Concepts Selection for Efficient Lattice Reduction

 72

For a subset of concepts 𝐾K ⊆ 𝐶, the distance

𝑑(𝐾K, 𝑐) 	= 	min	{𝑑	(𝑐I, 𝑐)	|	𝑐I ∈ 𝐾K}

denotes the minimal derivation cost from any concept in 𝐾K to a particular concept 𝑐.
This measure effectively accounts for the closest “anchor” in 𝐾K when assessing how easily
one can reach 𝑐.

Definition 5.5 (Frequency-Weighted Derivation Cost):

To incorporate both a concept’s significance (its frequency) and the structural cost to
reach it, define:

𝑑	J(𝐾K, 𝑐) = 	𝑓(𝑐) 	 ∙ 	𝑑(𝐾K, 𝑐)

This product-based metric balances how often a concept appears with the complexity of
accessing it within the lattice.

Definition 5.5 (Kernel Concept Set).

An extended lattice 𝔅(𝑑, 𝑓, 𝑑	J) uses these components to identify a Kernel Concept Set
𝐾C	 that satisfies the following:

- Capacity Constraint:

|𝐾C| = 𝑆9, where 𝑆9 is a predefined size limit.

- Optimization Constraint:

𝐾C should minimize the cumulative derivation cost across the lattice. Formally:

𝐾C=𝑎𝑟𝑔𝑚𝑖𝑛H/⊂H{	∑ 𝑑	J(𝐾K, 𝑐)|	|𝐾K| ≤9	∈H 	𝑆9 	}

This enforces an optimal coverage of the concept set using only 𝑆9 kernel concepts.

- Role in Lattice Simplification:

By focusing on these kernel concepts—which both appear often (high frequency)
and are strategically positioned (low derivation cost)—the approach zeroes in on the
lattice’s structural “backbone.” It thereby condenses the lattice into its most
informative subset, enhancing manageability and preserving core relationships
during analysis.

Overall, these definitions provide a systematic framework for extending an FCA concept
lattice with frequency-based prioritization and cost-aware navigation, enabling more
powerful reduction, clustering, and insight extraction in complex or large datasets.

Kernel Concepts Selection for Efficient Lattice Reduction

 73

6.2.1. Optimized Greedy Algorithm for Determining a Kernel
Concept Set

To address the significant computational demands often associated with large concept
lattices in Formal Concept Analysis (FCA), we introduce an Optimized Greedy Algorithm (
Algorithm 5.1) that efficiently identifies a Kernel Concept Set (KCS). The algorithm is
devised to systematically construct an optimal subset of concepts that minimizes total
derivation costs across the lattice. This total cost encapsulates the aggregate effort of
deriving every other concept from a chosen kernel set of core concepts. By focusing on such
pivotal concepts, the procedure inherently reduces the lattice’s size and complexity,
enhancing interpretability while retaining essential structural insights.

Algorithm 5.1: Optimized Greedy Algorithm

Input:
- Concept Lattice 𝔅 (K, ≤)
- Frequency Value Function 𝑓:	𝐶	 → 	𝑅6
- Maximum Core Set Size 𝑆+
- Transition Cost: 𝑢𝑝𝑤𝑎𝑟𝑑	 ← 	2, 𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑	 ← 	1

Output:
- Kernel Concept Set 𝐾)

Algorithm Steps:
1. Initialization:

- Construct the Concept Lattice 𝔅(𝐶,≤).
- Initialize Kernel Set 𝐾)	as an empty set.
- Assign Frequency Values 𝑓(𝑐) to each concept 𝑐 in the lattice.

2. Ancestors and Descendants Preprocessing:
- For each concept 𝑐 in the lattice, identify its ancestors and descendants.
- Prepare a memoization dictionary to store the minimal derivation costs.

3. Derivation Cost Calculation:
- For each concept 𝑐 in the lattice:

- Use Dijkstra's algorithm to calculate the minimal derivation cost 𝑑	(𝐾), 𝑐)	 to every
other concept.

- Store the costs in a structured way for quick retrieval and use memorization to avoid
redundant calculations.

4. Core set identification with Sub-Lattice Optimization:
- Define 𝑆+ as the maximum size for the Kernel set.
- Initialize

𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 ← ∞, best_candidate ← None.
- Iteratively expand 𝐾):

- For each candidate concept not in 𝐾) , construct or retrieve a relevant sub-lattice
Algorithm 5.2.

- Calculate the potential reduction in aggregated derivation cost if the candidate were
added to 𝐾) .

- Update 𝑏𝑒𝑠𝑡_𝑐𝑜𝑠𝑡 and best_candidate accordingly.
- Add the best_candidate to 𝐾) and update the cost.
- Continue until ∣𝐾)∣=𝑆+ or no further reduction in cost is possible.

5. Result Analysis:
Return the final 𝐾)	as the kernel concept set that minimizes the aggregated derivation cost while adhering to

the size constraint ∣𝐾)∣=𝑆+.

The computational complexity of the proposed approach is influenced by several factors,
most notably the number of concepts within the lattice (denoted by 𝐶) and the structure of
their interconnections. During the preprocessing stage, identifying ancestors and
descendants for each concept in a densely connected lattice can lead to an 𝑂(𝐶²)) overhead.

Kernel Concepts Selection for Efficient Lattice Reduction

 74

A naive derivation cost calculation for all concept pairs, which employs Dijkstra’s algorithm,
might appear to scale as 𝑂(𝐶#). However, by confining each cost determination to a focused
sub-lattice of average size 𝑠, the effective complexity adjusts to roughly 𝑂(𝐶 × 𝑠). Within
the iterative kernel construction step, adding each new kernel concept involves recalculating
aggregated derivation costs, but again only on localized sub-lattices and with memoization
to avoid repeated computations. This further step is typically bounded by 𝑂(𝑆9 × 𝑠) is the
maximum permitted size of the kernel set. Consequently, the overall time requirement
primarily combines the derivation cost computations 𝑂(𝐶 × 𝑠) with the iterative kernel set
expansions (𝑆9 × 𝑠), yielding a marked reduction in comparison to a more naive global
approach.

Algorithmic routines such as sub-lattice construction (presented in Algorithm 5.2) are
crucial for reducing the size of the problem space:

1. Defining the Sub-Lattice
- Identify a compact subset of concepts (and their interconnections) directly

relevant to the current calculation.
- This subset often centers on the target concept(s) and the kernel set members.

2. Selective Inclusion
- Only nodes (concepts) and edges (relationships) pertinent to the cost

evaluation or kernel set update are included, minimizing overhead.
3. Dynamic Construction

- As the algorithm updates the kernel set or refines potential candidates, sub-
lattices are rebuilt or adjusted to ensure accuracy and relevance.

4. Scalability
- By confining computations to smaller sub-lattices, the method accommodates

lattices of larger overall size without incurring prohibitive computational
costs.

Algorithm 5.2: Steps for Building a Sub-Lattice
1. Initialize Relevant Concepts:

- Start with an empty set to hold all relevant concepts.
- Add the two concepts, 𝐴 and 𝐵, to the relevant concepts set.

2. Add Ancestors and Descendants:
- Include all ancestors of 𝐴 into the relevant concepts set.
- Include all descendants of 𝐴 into the relevant concepts set.
- Repeat the process for node 𝐵, adding both its ancestors and descendants to the relevant concepts set.

3. Create Sub-Lattice:
- Initialize an empty dictionary to represent the sub-lattice.
- For each concept in the relevant concepts set, do the following:

- Initialize an empty list to store the neighbors of the concept.
- Retrieve the list of neighbors from the full lattice dictionary.
- Include a neighbor in the concept's neighbor list only if the neighbor is also in the relevant

concepts set.
- Assign the neighbor list to the concept in the sub-lattice dictionary.

4. Return Sub-Lattice:
- The sub-lattice containing only the relevant concepts and edges is now constructed.
- Return the sub-lattice dictionary.

By applying these optimization methods, the algorithm strategically narrows the scope
of its computations while still preserving a comprehensive view of the lattice. This balanced
approach results in a kernel set that is both cost-effective and representative, exemplifying

Kernel Concepts Selection for Efficient Lattice Reduction

 75

how depth and breadth can be maintained in the analysis of large and intricate concept
lattices.

6.3. Experimental Setup and Methodology
We conducted our algorithm’s implementation and evaluation within a Python-based

environment, leveraging its widespread community support and broad selection of
development utilities. All experiments ran on a Mac equipped with an Apple M1 processor
and 8GB of RAM, operating under Mac OS 14.3.1, ensuring a stable and efficient testing
platform for diverse computational

6.3.1. Clustering Performance

A comparative evaluation of the proposed Kernel Concept Set Approach (KCS) against
the K-means Dijkstra on Lattice (KDL) method was carried out using four real-world
datasets (see Table 6.1). To measure clustering quality without the requirement of labeled
data, we relied on the Silhouette Coefficient and the Davies-Bouldin Index (DBI). Across
all datasets tested, KCS consistently surpassed KDL, reflecting more coherent within-cluster
organization and clearer separation among clusters. Specifically, KCS achieved higher
Silhouette Coefficient values, for example, 0.406 and 0.680 on the Balance-Scale and Car
Evaluation datasets, respectively, and lower DBI scores (e.g., 1.72 and 1.41), indicative of
tighter, well-separated clusters.

These strong outcomes stem from KCS’s strategy of choosing kernel concepts as cluster
centers based on both concept frequency and derivation cost. By situating clusters around
pivotal kernel concepts, KCS effectively captures the essential structure of large lattices,
lowering complexity while maintaining meaningful relationships among concepts.
Moreover, KCS operates within a general metric space, circumventing the overhead of
vector-space transformations, and thus reduces computational costs relative to some
traditional approaches. Its capability to identify both cluster memberships and centroids
facilitates deeper insights into the data’s inherent patterns, ultimately supporting a more
efficient, interpretable, and lattice-focused analysis.

Table 6.1. Lattice Characteristics

The findings summarized in Tables 6.2 and 6.3, along with the corresponding visual

representations in Figure. 6.1 and Figure. 6.2, underscore the Kernel Concept Set (KCS)
approach’s notably stronger clustering performance compared to the K-means Dijkstra on
Lattice (KDL) method across multiple datasets. This advantage arises from KCS’s
distinctive use of the concept lattice’s inherent complexity for clustering, thereby offering a
more fine-grained and effective analysis of categorical data. In contrast to the KDL

Formal Contexts #Object #Attributes Density # Formal concepts #Edges

Balance-Scale 625 20 0.18 1070 3822
Breast Cancer 286 43 0.20 2132 7818

Tae 151 101 0.05 276 619
Car Evaluation 1728 21 0.20 3596 14917

Kernel Concepts Selection for Efficient Lattice Reduction

 76

method—which capitalizes on the lattice structure and Dijkstra’s algorithm—KCS centers
on identifying a “kernel” of concepts, prioritizing their frequency and derivation cost. By
focusing on a lattice’s most meaningful elements, this strategy not only reduces the volume
of information needing analysis but also yields higher-quality clusters by designating these
kernel concepts as cluster hubs. Significantly, this quality advantage is reflected in KCS’s
improved Silhouette Coefficients and lower Davies-Bouldin Index values, indicative of
more cohesive within-cluster relationships and clearer delineations between clusters than
those achieved by KDL. Overall, these results affirm that a selective, concept-focused
methodology—like that employed by KCS—can substantially elevate clustering outcomes
by directly engaging with the most pivotal facets of categorical data and their hierarchical
interconnections.

Table 6.2. Silhouette Scores Comparing KDL and KCS Methods Across Datasets
Datasets KDL KCS #Clusters

Balance-Scale 0.275 0.406 3
Breast Cancer 0.125 0.351 2

Tae 0.163 0.393 3
Car Evaluation 0.382 0.680 4

Table 6.3. DBI Index Scores Comparing KDL and KCS Methods Across datasets
Datasets KDL KCS # Clusters

Balance-Scale 2.67 1.72 3
Breast Cancer 2.88 1.35 2

Tae 2.12 1.70 3
Car Evaluation 3.34 1.41 4

Figure 6.1. Silhouette scores by dataset and method.

Figure 6.2. DBI scores by dataset and method

Kernel Concepts Selection for Efficient Lattice Reduction

 77

6.3.2. Influence of Lattice Size on Runtime

In a targeted experimental comparison, we examined how the Kernel Concept Set
Approach (KCS) measures up against the K-means Dijkstra on Lattice (KDL) method [34]
within the framework of Formal Concept Analysis (FCA). By using the datasets outlined in
Table 6.1, we investigated how these methods handle increasingly complex lattice structures,
focusing on their runtime as the principal performance metric.

As depicted in Figure. 6.3, the tested approaches diverge markedly in efficiency once
lattice size grows. Although KDL demonstrated acceptable performance for relatively
modest lattices, it exhibited substantial scalability and runtime issues with larger structures.
In stark contrast, KCS maintained strong efficiency across the entire range of lattice sizes.
For instance, when processing the “Tae” dataset (276 concepts), KDL required 1,210.14
seconds, whereas KCS completed the same task in just 9.35 seconds. A similar pattern
appeared in the “Car Evaluation” dataset, where runtime dropped from 781,799.93 seconds
(KDL) to 8,361.93 seconds (KCS) for 3,596 concepts.

These outcomes highlight the KCS method’s superior adaptability and computational
economy, making it a more effective choice for FCA applications spanning varied and
especially larger lattice complexities. The capacity to reduce runtime substantially across
different scales underscores the feasibility of using KCS in data-intensive environments. By
dramatically lessening the time required to process substantial concept lattices, KCS
significantly broadens FCA’s practical utility in analyzing complex datasets—ultimately
setting a new performance benchmark, as illustrated by the results in Figure. 6.3.

Figure 6.3. Comparative Performance Analysis of KCS and KDL methods Across Diverse Lattice Sizes

6.3.3. Experiment with the Teaching Assistant Evaluation
Dataset

A specific demonstration involves the Teaching Assistant Evaluation dataset sourced
from the UCI KDD Archive. This dataset captures the performance of 151 teaching
assistants (TAs) in the University of Wisconsin-Madison's Statistics Department across
various semesters, including both standard academic terms and summer sessions. Publicly
available at UCI KDD, the dataset provides a valuable basis for investigations into teaching
effectiveness. Six categorical attributes, encompassing elements such as TA language
background (English speaker or not), course instructor (25 categories), course type (26

https://archive.ics.uci.edu/dataset/100/teaching+assistant+evaluation

Kernel Concepts Selection for Efficient Lattice Reduction

 78

variants), semester format (summer or regular), and class size, collectively enable a
multifaceted view of TA performance assessments.

For use within Formal Concept Analysis (FCA), each categorical attribute is transformed
into Boolean form, producing a formal context containing 151 rows (one per TA assignment)
and 101 columns (attributes) at a density of 0.05. Table 6.4 illustrates a smaller portion of
the data comprising 10 TA assignments and 8 attributes, while Figure 6.4 depicts the
resulting concept lattice through a line diagram. This initial demonstration provides a
concise view of the relationships and structure revealed by FCA.

When the entire dataset is processed, the Kernel Concept Set (KCS) method proves to
be highly effective at consolidating and clarifying the concept lattice’s 276 concepts.
Applying an initial maximum kernel size 𝑆G of 5% yields a kernel containing 14 key concepts
(see Table A.2 of Appendix A), registering a total derivation cost of 30,808. Although the
frequency values in these concepts were assigned to illustrate the process, the result already
highlights salient patterns in the TA assignments, including a marked emphasis on certain
attributes (e.g., semester format or language proficiency). For instance, two of the concepts
alone cover 138 TAs out of 151, indicating a notable preference for non-English-speaking
TAs in regular semesters.

Table 6.4. Formal context about subset of TAs dataset

C
la

ss
_S

iz
e_

17

En
g_

N
at

_s
pk

_1

En
g_

N
at

_S
pk

_2

Su
m

m
er

_o
r_

Re
gu

la
r_

1

Su
m

m
er

_o
r_

Re
gu

la
r_

2

C
ou

rs
e_

3

C
ou

rs
e_

In
st

ru
ct

or
_1

3

Co
ur

se
_I

ns
tru

ct
or

_2
3

TA 1 X X X X X
TA 2 X X X X X
TA 3 X X X X X
TA 4 X X X X X
TA 5 X X X X X
TA 6 X X X X X
TA 7 X X X X X
TA 8 X X X X X
TA 9 X X X X X
TA 10 X X X X X

Kernel Concepts Selection for Efficient Lattice Reduction

 79

Figure 6.4. Concept Lattice Derived from the Formal Context of Tae dataset Table 5.4.

Raising 𝑆G to 8% preserves the original 14 concepts while adding eight more, leading to
a 22-concept kernel with a reduced total derivation cost of 26,768 (Table A.3 of Appendix
A). These newly integrated concepts bring more refined insights, including further details
about class sizes, course types, and TA language patterns. Such additions reveal more
complex assignment practices, for example, employing non-English-speaking TAs for
specific regular-semester courses and assigning English-speaking TAs in summer sessions.
This reconfiguration of the kernel concept set not only uncovers deeper relationships but
also underscores the KCS approach’s flexibility in uncovering multiple hierarchical layers
within the data.

Reducing the aggregate derivation cost from 30,808 to 26,768 underscores how
effectively KCS refines the lattice, pinpointing vital concepts that encapsulate the dataset’s
most pertinent patterns. Moreover, by compressing these key relationships into a concise
subset of the full concept set, KCS makes the analysis both more streamlined and more
illuminating. This capability is especially valuable for exploring data-intensive educational
contexts, where capturing essential interactions, such as instructor preferences or course
attributes, is crucial for decision-making.

This efficiency becomes clearer when examining how the kernel set size expands from
5% to 20%, as shown in Figure. 6.5. With a kernel set size 𝑆G initially at 5%, the derivation
cost starts at 30,808 and steadily declines as the kernel increases, dropping to 24,274 at 10%,
19,782 at 15%, and reaching 16,132 at 20%. This continuous decrease highlights one of the
KCS approach’s central strengths: the capacity to include more concepts in the kernel set
while keeping the overall complexity in check. The additional concepts fit smoothly into the
existing lattice, maintaining a streamlined analytical process even as the dataset coverage
grows broader. This well-balanced integration confirms the KCS method’s scalability and
adaptability for complex data exploration, enabling richer insights and more informed
conclusions without placing undue computational strain on the analysis.

Kernel Concepts Selection for Efficient Lattice Reduction

 80

Figure 6.5. Trend of Decreasing Derivation Cost with Incremental Expansion of Kernel Set Size (𝑆+)

6.4. Summary

This work introduces the Kernel Concept Set Approach (KCS) as an innovative
extension of Formal Concept Analysis (FCA), targeting the inherent complexity of large
concept lattices. By integrating concept frequency with a flexible derivation cost function,
KCS goes beyond conventional frequency- or attribute-based filtering methods. Specifically,
KCS strategically pinpoints kernel concepts to serve as pivotal cluster centroids,
emphasizing both their prevalence (frequency) and the effort to derive one concept from
another (cost).

Compared to the K-means Dijkstra on Lattice (KDL) method, KCS demonstrates
superior efficiency and clearer structural insight, even within a general metric space where
many standard approaches incur higher overhead. By highlighting key concepts and
reducing derivation costs, KCS preserves the essential lattice structure, yielding high-quality
clustering results. Crucially, this approach also enables scalable approximation of formal
concept lattices, accommodating larger datasets without sacrificing interpretability or
performance. Consequently, KCS stands as a valuable, cost-effective tool for researchers
and practitioners seeking deeper insights and more streamlined analysis in FCA-driven data
exploration.

Github: https://github.com/Mdaash/KCS_Approach/blob/master/KCS_Method_v1.ipynb

Publications : 𝑃", 𝑃!, , 𝑃$

https://github.com/Mdaash/KCS_Approach/blob/master/KCS_Method_v1.ipynb

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 81

Chapter 7: Mining Kernel Concepts: A Cost-
Optimized Concept Set Generation Method

7.1. Introduction
This chapter introduces a new framework for concept lattice reduction, focusing on an

optimal balance between expressive power and computational feasibility. Unlike
conventional methods that emphasize frequency filters or attribute-based pruning, our model
employs a heuristic and machine learning–assisted strategy to pinpoint a small “kernel” of
high-frequency concepts. These selected kernel concepts form a finite memory structure,
with a specialized mapping function ensuring each concept is uniquely and transparently
represented. The method is further bolstered by a Genetic Algorithm (GA) tasked with
optimizing the kernel selection, aiming to minimize a global generation cost while
preserving lattice integrity. Extensive tests confirm that our GA-based approach outperforms
a benchmark Simulated Annealing method in both speed and scalability. The chapter also
demonstrates a linguistic-based cost model for defining kernel vocabularies, showcasing the
versatility of our solution for diverse contexts and data domains. Our Main Contributions:

- Development of a Novel Reduction Model: We introduce a mechanism that
integrates a derivation cost function with a robust optimization procedure, enabling
the construction of a simplified yet expressive concept lattice.

- Genetic Algorithm with Machine Learning Support: A neural network module
predicts chromosome segment fitness, generating an efficient starting population for
the GA, thus enhancing convergence speed.

- Flexible Probability Distribution for Concept Prioritization: Our system
accommodates various probability distributions 𝑃(𝑠) across concepts, enabling
tailored solutions in domains with different analytical requirements.

- Injective Mapping Function: By ensuring each concept is encoded as a unique word
sequence, the mapping function prevents ambiguity and preserves clarity during
lattice reduction.

Our approach provides multiple benefits that significantly improve both the scalability
and usability of FCA:

- Scalability: Adjustable kernel concept selection through input parameters allows

users to generate compact or more expansive concept sets, matching specific data
complexity.

- Approximation of Full Lattice: The resulting kernel concepts effectively
approximate the entire concept lattice, retaining crucial relational patterns while
minimizing overall complexity.

- Enhanced Clarity: The injective mapping function, coupled with the kernel’s high-
frequency elements, yields a more interpretable representation of concepts.

- Cognitive Alignment: Aligning the reduced structure with linguistic and cognitive
principles lowers the mental overhead for understanding and navigating the lattice.

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 82

- Adaptability: Configurable memory sets 𝑊, and selection thresholds facilitate broad
adaptability across various domain-specific vocabularies and semantic demands.

Against this backdrop, the following sections detail the design of our reduction method,
elaborate on the Genetic Algorithm for kernel concept selection, and evaluate the resulting
model through comprehensive experiments.

7.2. Proposed Method

To systematically reduce a concept lattice while maintaining both expressiveness and
derivational efficiency, we propose selecting a targeted kernel subset of concepts. Guided
by the compactness and clarity inherent in human language, our method relies on a finite
“memory” of frequently used concepts, applies an injective mapping function to guarantee
a unique representation for each concept, and utilizes optimization algorithms focused on
minimizing overall generation cost. By aligning with cognitive and linguistic principles, this
strategy not only streamlines computational tasks but also enhances the interpretability and
practical utility of the resulting lattice. Let 𝐿 = (𝐶,≤) be the input lattice, where 𝐶 represents
the set of concepts under consideration.

7.2.1. Kernel Set 𝐶O

We begin by assigning a probability value to every concept in the concept lattice 𝐿 =
(𝐶,≤), These probabilities form a distribution 𝑝:	𝐶	 → [0,1]	such that

w 𝑝9 = 1
9	∈@

Each probability reflects how frequently a given concept is used. For instance, the
concept “bread” is typically used more often than “petrichor.” In addition to the concept
lattice, this probability distribution serves as an integral part of the input data.

The first step in reducing the concept set relies on probability-based filtering.
Specifically, we introduce a probability threshold 𝑝^. Any concept whose probability value
is below this threshold is removed from consideration, leaving us with the set of frequent
concepts,

𝐶^ = {𝑐 ∈ 	𝐶|	𝑝(𝑐) ≥ 𝑝^}.

Note that, in general, 𝐶^ does not form a lattice. From 𝐶^, we select a finite subset of
concepts, known as the kernel 𝐶,,

𝐶, = {𝐶,,!, 𝐶,,", … , 𝐶,,_} ⊂ 𝐶^ ,

where 𝐷 is the size of the kernel set. This finite size is a key attribute: it is chosen based
on the specific requirements of an application and the limitations of available resources,
thereby ensuring representations that are both scalable and manageable. Moreover, the
kernel set’s properties help guarantee its effectiveness and dependability in the model.

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 83

The kernel concepts act as special cluster centroids within the target concept set.
Clustering, commonly employed in data analysis, reduces data volume such that subsequent
analyses can target whole clusters rather than individual items, thereby optimizing resource
usage. In particular, conceptual clustering refines standard clustering methods (like k-means
or hierarchical agglomerative clustering) to work with semantic concept domains. In this
study, we use an evolutionary strategy to optimize the positions of the cluster centers.

One application of this kernel concept model lies in refining linguistic concept
representations. In the language model considered here, each kernel concept corresponds to
a single word in the available vocabulary, each of these words is a single-word linguistic
unit that forms the foundation for representing the broader set of concepts.

7.2.2. Kernel Selection Method

Given a kernel set 𝐶,, we define a cost function ℎ@0:

ℎ@0:	C → 	ℝ
E		

where,

ℎ@0(𝑐) = 𝑔({𝑑(𝑐P ∈ 𝐶, , 𝑐)})

where 𝑑(𝑐P , 𝑐)	represents the cost of deriving a representation of 𝑐 from 𝑐P, and 𝑔 is a
function applied to the set of these distances. A common choice for 𝑔 is the 𝑚𝑖𝑛 function.
The main objective is to identify the kernel that minimizes the overall mapping costs, which
is calculated as

ℎ(𝐶,) =w 𝑝9 	ℎ@0(𝑐)
9	∈@

Additionally, there is a constraint on the size of the kernel set:

|𝐶,| 	≤ 𝐾

where 𝐾 is a predefined integer. Minimizing ℎ(𝐶,) by optimally determining the kernels
𝐶, is the core goal. Through this approach, we significantly enhance Formal Concept
Analysis (FCA) by reducing the complexity of the concept lattice via a careful selection of
key concepts. This, in turn, supports more efficient knowledge representation and further
broadens the potential applications of FCA across various complex domains.

If, in a particular case, ℎ(𝐶,) is defined as the sum of element-wise costs

ℎ(𝐶,) =w 𝑑(𝑐, 𝑐P)
91∈@0

and taking the following weight value:

𝑤9 	= 	1,

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 84

the problem becomes analogous to the well-known knapsack problem. Specifically, if
we use an indicator variable 𝑥; to denote whether a concept 𝑐; is part of the kernel, then the
cost function can be expressed as:

ℎ(𝐶,) =w 𝑝9
9	∈@

	w 𝑑(𝑐, 𝑖)	𝑥;
;	∈@

=	w (𝑑(𝑐, 𝑖)w 𝑝9)
9∈@

	𝑥; =w 𝑣;𝑥;
;;	∈@

	

with a capacity constraint of

w 𝑤;𝑥; 	≤ 𝐾
;∈@	

Since the knapsack problem is NP-complete, the general form of our optimization task
is at least as challenging. As a result, we employ heuristic methods, namely, a genetic
algorithm (GA) and a simulated annealing approach to tackle the problem.

When using the GA, we search efficiently for an approximately optimal subset (kernel)
and its associated mapping function, aiming to minimize the total expected cost. Because
the concept lattice can be exponentially large, an exact solution is often infeasible; the GA
instead balances exploring a broad solution space with systematically refining promising
candidates to converge on an effective solution.

Simulated annealing serves as the second baseline in our evaluations. This well-
established method is particularly suited to large and complex optimization spaces.
Beginning with an initial solution, it iteratively generates new “neighbor” solutions, and
whether a new solution is accepted depends on a probabilistic factor governed by a
temperature parameter. This mechanism allows the algorithm to escape local optima,
potentially leading to further improvements in the solution.

7.2.3. Optimization of the Genetic Algorithm

The Genetic Algorithm (GA) in our framework conducts a chromosome-level evaluation
that primarily governs the selection operation, also influencing crossover and mutation. In
both the mutation phase and the generation of the initial population, a uniform random
selection is typically used, which tends to be less efficient than a fitness-based approach.

Algorithm 7.1: Genetic Algorithm for Optimizing the Memory Subset

1. Input

• Concept Lattice: 𝐿

• Frequency Distribution: 𝑃

• Kernel Size Constraint: 𝐾

2. Output

• The optimal kernel subset 𝐶:

3. Algorithm

3.1. Initialize the Kernel
Begin by setting the kernel subset to 𝐶;, the atomic concepts.

3.2. Determine Chromosome Length
Let 𝐿 =∣ 𝐶 ∖ 𝐶; ∣(each chromosome is indicating a potential memory subset).

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 85

3.3. Configure Genetic Algorithm Parameters
𝑁<=<>?@A0=B, 𝑁CDBDE@A0=B, 𝑃FD?D-A0=B,𝑃+GH))HI*G, 𝑃JK4L43HM

3.4. Genetic Algorithm Loop
3.4.1. Population Initialization

Generate 𝑁<=<>?@A0=Bchromosomes. Each chromosome with exactly 𝐾 −𝐾; ones,
ensuring the memory constraint is satisfied.

3.4.2.     Evaluate Fitness
For each chromosome (memory subset candidate 𝐶:), compute 	ℎ(𝐶:). The fitness is
inversely proportional to this cost ℎ(𝐶:)

3.4.3.    Selection Operation
Randomly choose chromosomes from the current population according to their fitness
(fitter chromosomes have a higher chance of being selected).

3.4.4.     Crossover
Apply single-point crossover among the selected chromosomes to produce new
offspring.

3.4.5.    Mutation
Use bit-flip mutation to invert randomly chosen bits (0	 → 	1	𝑜𝑟	1	 → 	0) in the
offspring.

3.4.6.    Repair Phase
Ensure each offspring still meets the 𝐾 −𝐾; ones constraint.
If there are too many ones, flip random ones to zero until the count is correct; if too few,
flip random zeros to ones until the required number of ones is reached.

3.4.7.    Replacement
Form the new population from the resulting offspring after repair.

3.5. Termination Condition: After 𝑁CDBDE@A0=B iterations, select the chromosome with the highest fitness as the
best solution.

3.6. Return: Output the optimal chromosome, which corresponds to the best-performing kernel subset 𝐶:.

To address this limitation, we introduce a machine learning module for predicting the
relevance of any subset of concepts in 𝐿. This module can directly propose kernel set
candidates without requiring exhaustive enumeration. Our method proceeds as follows:

For any subset of concepts 𝑠 ⊂ 𝐶, we introduce a fitness function

𝑓(𝑠) = 	
∑ 𝑝9 	ℎ(𝑐1, 𝐶,)9!	∈		@#

|𝐶9|

where 𝐶9 is defined as the kernel sets of size 𝐾 that include 𝑠:

𝐶9 = {𝐶,|	𝑠	 ⊂ 	𝐶, , 𝐶, = 𝐾}

Algorithm 7.2: Simulated Annealing for Optimizing Memory Subset

1. Input:
• Concept Lattice: 𝐿
• Frequency Distribution: 𝑃
• Kernel Size Constraint: 𝐾

2. Output:
• The optimal 𝐶: concept set

3. Algorithm:

3.1. Initialize the Kernel Set with 𝐶;.
3.2. Set Simulated Annealing Parameters:

3.2.1. Initial Temperature 𝑇: Starting temperature (e.g., 1500.0).
3.2.2. Final Temperature 𝑇N0B@?: Temperature at which the algorithm terminates (e.g., 1.0)

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 86

3.2.3. Cooling Rate 𝛼: Factor by which the temperature decreases each iteration (e.g., 0.95).
3.2.4. Number of Iterations per Temperature: Number of neighbor evaluations per temperature step

(e.g., 200).
3.3. Generate Initial Solution:

3.3.1. Eligible Concepts 𝐶′ = 𝐶 ∖ 𝐶:: Concepts available for selection into 𝐶:.
3.3.2. Random Concepts Selection: Number of additional concepts to be selected.
3.3.3. Select Initial 𝐶:: Randomly sample 𝑆) concepts from 𝐶′ and set

𝐶: = 𝐶; ∪ 𝑆)	.

3.4. Simulated Annealing Loop until 𝑇3M343LO ≤ 𝑇P3MLO:
3.4.1. Current Solution:

• Memory Subset: 𝐶:Q , the current set of selected concepts.
• Fitness: Total expected generation cost for 𝐶:Q , computed using the fitness function:

𝑓+KGG*M4 =v 𝑝+	ℎ(𝑐)
+	∈,

3.4.2. Generate Neighbor Solution with Swap Operation:

• Remove a random concept 𝑐H from 𝐶:	\𝐶;.
• Add a random concept 𝑐3 from 𝐶′ ∖ 𝐶:	.
• Ensure ∣ 𝐶: ∣= 𝐾.

3.4.3. Fitness Evaluation for Neighbor: Compute 𝑓M*3RSTHG.
3.4.4. Calculating Acceptance Probability:

If 𝑓M*3RSTHG < 𝑓+KGG*M4, accept the neighbor. Otherwise, accept the neighbor with probability:

𝑒𝑥𝑝�−	
𝑓BD0CUV=E −	𝑓+KGG*M4	

𝑇3M343LO
�

3.4.5. Cooling Phase: Update the temperature 𝑇 = 𝛼𝑇.
3.4.6. Termination: Stop if 𝑇 < 	𝑇P3MLO.

This measure provides an estimate of the subset’s relevance for building an optimal

kernel set. Because directly computing 𝑓() for every subset can be prohibitively expensive,
we instead employ a machine-learning-based approximation strategy to predict these fitness
values efficiently.

The model’s output corresponds to an estimated fitness measure, serving as an
approximation of ℎ(𝑠). This estimation process employs a training set derived by uniformly
sampling candidate kernel sets of size 𝐾. From these uniformly chosen samples, the
algorithm compiles a training dataset that underpins the regression neural network’s learning
process.

Within this model, the primary objective lies in identifying suitable candidate concept
subsets for both initialization and mutation stages. To achieve this, the fitness estimation is
performed by a regression-oriented neural network, whose input vector 𝑣 constitutes a
membership representation over the concept set 𝐶. Concretely:

 𝑣; = 1 if 𝑐; ∈ 𝑠, and 0 otherwise

The model then derives a predicted fitness score, serving as an approximation to ℎ(𝑠).
To generate the training data, we begin with randomly sampled kernel sets of size 𝐾, drawing
from 𝐶 in a uniform manner. This process yields an initial dataset

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 87

𝑇R = {(𝑠, ℎ(𝑠)) ∣ 𝑠 ⊂ 𝐶, ∣ 𝑠 ∣= 𝐾}.

From 𝑇R, we construct a secondary training subset

𝑇! = {(𝑠′, ℎ′(𝑠′)) ∣ 𝑠′ ⊂ 𝑠 ∈ 𝑇R},

where ℎ′() denotes an aggregated fitness value computed relative to 𝑇R. By uniting these
two parts, the final training set becomes

𝑇 = 𝑇R ∪ 𝑇!

The neural network utilized in our approach follows a four-layer MLP configuration,
providing a sequential stack of interconnected layers as illustrated in Figure 7.1.

Figure 7.1. MLP Framework for Fitness Approximation

During the training phase, the system recorded the changing loss value for a training
dataset of 40,000 items, as depicted in Figure 7.2. The graph shows a continuous decrease
in loss, indicating that the neural network effectively acquires the mapping from concept
subsets to their predicted fitness values. Once the network is sufficiently trained, the
algorithm proceeds to produce the most promising concept subsets by employing an apriori-
based greedy procedure, grounded in the principle that strong itemsets generally contain
equally strong sub-itemsets. This process begins by examining single items and estimating
their predicted fitness with the trained neural network. It then advances to constructing and
evaluating candidate pairs, again leveraging the neural network for selection. Following the
identification of optimal pairs, the algorithm extends to forming triplets and pruning any that
fail to meet performance thresholds, ultimately arriving at a refined collection of top kernel
candidates as a result of this module.

Figure 7.2. Loss function in the training process

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 88

Subsequently, this assembled candidate set serves as the initial population for the
Genetic Algorithm (GA). The impact of incorporating the relevance factor into the selection
process is illustrated in Figure 7.3. In that figure, the dotted line denotes the baseline GA’s
performance, whereas the solid line represents the enhanced GA incorporating the relevance-
based selection. Evidently, the revised algorithm persistently outperforms the baseline,
underscoring the efficiency gains attributed to the relevance-based approach. Through this
synergy of neural network-driven relevance prediction and a GA framework, the method
accelerates the discovery of optimal kernel subsets.

Figure 7.3. Efficiency improvement of the relevance-based selection

7.3. Practical Application in Word-Level Concept Representation
7.3.1. Problem Description

In natural language, we use words to describe the concepts that exist in our world.
However, it is evident that not every concept has a dedicated single word; many concepts
require more elaborate descriptions to differentiate them. In this context, words that function
as “identifiers” can be thought of as memory, or kernel concepts. For other concepts, we
often rely on a combination of these memory words when referring to them in conversation.
Together with the kernel set, these additional concepts form the set 𝐶^. As for any remaining
concepts, we do not assign them separate expressions for unique identification. In this work,
we utilize the kernel concept set mining algorithm to tackle the problem of selecting an
optimal vocabulary.

To formalize this, let 𝑓 be the mapping function that represents concepts at the word
level:

𝑓:	𝐶^ 	→ 𝑊∗

where 𝑊∗ is the set of all possible word sequences constructed from a finite collection
of words 𝑊. The pool 𝑊 includes the words corresponding to the kernel concepts; we denote
𝑊9 as the word linked to a specific kernel concept 𝑐.

Concerning the cost function ℎ@0, we take a straightforward approach:

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 89

ℎ@0(𝑐) = |𝑓(𝑐)|,

where |𝑓(𝑐)| indicates the length (in words) of the representation of concept 𝑐.
Therefore, for every 𝑐 ∈ 	𝐶,, we have

ℎ@0(𝑐) = 1

If we assume 𝐶, includes all attribute concepts 𝑐` = ({𝑎}′′, {𝑎}′) and

∀𝑎 ∈ 𝑀: {𝑎} = {𝑎}′′,

then we can specify a unique word-level representation:

𝑓(𝑐) = 	 {𝑓(𝑐P)} ∪	 {𝑓(𝑐`)|𝑎	 ∈ 	𝑎𝑡𝑡𝑟(𝑐)	\	𝑎𝑡𝑡𝑟(𝑐P)} 	= 	𝑊91 	∪ 	 {𝑊92 	|𝑎	

∈ 	𝑎𝑡𝑡𝑟(𝑐)	\	𝑎𝑡𝑡𝑟(𝑐P)}

where 𝑐P denotes the nearest kernel concept to 𝑐, and 𝑎𝑡𝑡𝑟(𝑐) is the set of attributes (the
intent) of 𝑐.

Proposition 1
The above mapping function guarantees an unambiguous representation at the word level.

Proof. For any concept 𝑐, since 𝐶, is finite and its size does not exceed 𝐾, we can identify
the closest kernel concept 𝑐P. The representation 𝑊91 is a unique word. Because 𝑎𝑡𝑡𝑟(𝑐) and
𝑎𝑡𝑡𝑟(𝑐P) are individually unique, the pair (𝑐P,  𝑎𝑡𝑡𝑟(𝑐)	\	𝑎𝑡𝑡𝑟(𝑐P)) yields a one-of-a-kind
attribute set. Hence, the word sequence 𝑊91 	∪ 	 {𝑊92 	|𝑎	 ∈ 	𝑎𝑡𝑡𝑟(𝑐)	\	𝑎𝑡𝑡𝑟(𝑐P)
unambiguously denotes a specific concept in the lattice.

Example 1
For illustration, consider the Live in Water ontology provided at:

https://upriss.github.io/fca/examples.html. This ontology includes 18 concepts in total. Their
frequencies are compiled in Table A.4 of Appendix A, and the frequency threshold is set at
0.4. Figure 7.4 shows the resulting concept lattice; concepts not in 𝐶^ appear with a gray
background.

In this scenario, only the “specialization” operation is allowed, so

- 𝑑(𝑐!, 𝑐") = 1 if is a direct parent of 𝑐",
- 𝑑(𝑐!, 𝑐") = ∞ otherwise.

Using these cost settings, the kernel concept mining algorithm yields:

- Kernel concepts: { 8,  9,  15}
- Total cost: 14.66

https://upriss.github.io/fca/examples.html

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 90

Within the lattice shown in Figure 7.4, these kernel concept nodes are colored orange.

Figure 7.4. Structure of the Live in Water ontology

7.3.2. Attribute Reduction

Although the mapping function introduced above ensures a valid word-level
representation, there might be instances where some elements are redundant. In other words,
certain attributes and words might be superfluous for distinguishing a particular concept, so
only a subset of 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐P) would be needed to create an unambiguous
representation. By removing these unnecessary attributes, we can streamline our overall
vocabulary.

The proposed attribute reduction technique uses the attribute relevance test outlined in
Algorithm 7.3. This procedure follows a greedy strategy that identifies redundant attributes
in a loop. Candidate attributes are temporarily deactivated, and we check whether the
remaining attributes in 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐P) still provide unique sets for all concepts attached
to a kernel concept.

Algorithm 7.3: Attribute Reduction Algorithm
Input:
 - Concept Lattice: L
 - Kernel Set: P
Output:
 - Reduced 𝑐, concept set
Procedure:
1. For each kernel concept, gather all items in its cluster along with their respective sets 𝐴(𝑐) = 𝑎𝑡𝑡𝑟(𝑐) ∖ 𝑎𝑡𝑡𝑟(𝑐2).
2. loop on all attributes a ∈ M for relevance test

- For all concepts 𝑐 and for attributes sets in 𝐴(𝑐), we remove 𝑎 from the attribute sets. The result set is denoted
by 𝐴′(𝑐).

- We check, whether all sets in 𝐴Q(𝑐) are unique or not.
4. . If the reduced set 𝐴′(𝑐) is unique for each concept 𝑐, then we can remove 𝑐 from the kernel set

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 91

Example 2
Continuing the Live in Water example, we perform attribute reduction after computing

the “winner” kernel concept for each concept. This computation groups concepts by kernel
concept, forming separate hierarchies whose roots are the kernel concepts. Figure 7.5
visualizes these hierarchies.

Next, the algorithm pinpoints redundant attributes, and in this scenario, the attributes
{ 1,  4,  9} are identified as extraneous. With these removed, we obtain a reduced attribute set
and reconstruct the word-level representations of all concepts. Figure 7.6 illustrates the
resulting representation tree. Here, 𝑊; denotes the word assigned to each kernel concept,
while 𝑤; stands for the words of the attribute concepts.

Figure 7.5. Structure of the resulted tree structures after selection of the kernel concepts

Figure 7.6. Word-level representation of the concepts after attribute reduction

7.4. Experimental Evaluation

To validate the effectiveness of our algorithm, we implemented it in Python, selected for
its extensive toolset and robust library support that streamlines the management of
computationally intensive tasks. All experiments were performed on a Mac system running
macOS 14.3.1, equipped with an Apple M1 chip and 8 GB of RAM, thus providing a stable
and resource-efficient environment for empirical assessment.

For the study’s comparative analysis, we relied on four established real-world datasets
obtained from the UCI Machine Learning Repository. To align these datasets with Formal

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 92

Concept Analysis (FCA), each dataset’s categorical variables were translated into Boolean
features, yielding formal contexts. In this process, every distinct category was mapped to a
corresponding binary attribute, indicating the presence or absence of that category for a
given object. Following this transformation, we constructed the respective concept lattices
for each dataset, with key information summarized in Table 7.1.

The selected datasets, Balance Scale , Breast Cancer Wisconsin, Teaching Assistant
Evaluation (TAE), and Car Evaluation, each exhibit unique attributes as shown in Table 7.1,
such as size, attribute count, density, and structural intricacy when transformed into concept
lattices. This diversity offers a thorough testbed for evaluating algorithmic performance and
scalability across varied data scenarios.

Table 7.1. Lattice Characteristics

This selection of datasets provides a broad and demanding environment for algorithm
evaluation, enabling us to thoroughly gauge its scalability, efficiency, and overall
effectiveness under varying data conditions. By incorporating sets distinguished by different
sizes, numbers of attributes, and densities, we specifically challenge the algorithm’s capacity
to manage both large-scale and intricate lattices. High object and attribute counts probe the
method’s ability to handle substantial data volumes, while varying densities allow us to
examine its performance in both sparse and dense configurations. Consequently, testing our
model on these diverse datasets provides a robust appraisal of its effectiveness and
adaptability in real-world situations that exhibit a range of complexity levels.

7.4.1. Scalability Evaluation Across Varying Lattice Dimensions

A comprehensive set of experiments was undertaken to evaluate the computational time
of both the Genetic Algorithm (GA) and Simulated Annealing (SA) when applied to lattices
of varying sizes. Each dataset tested features different scales in terms of object count,
attribute count, and density levels. This design enables a thorough assessment of how
computational time grows with increasing lattice complexity. In conducting the experiments,
an exponential decay function was utilized for the probability distribution 𝑃(𝑠) over
concepts, prioritizing higher-level concepts to simulate more frequent usage in natural
language.

Under controlled and identical testing conditions, both GA and SA were tasked with
selecting a set of core concepts for lattice reduction, consistent with the methods described
in previous sections. The Genetic Algorithm and Simulated Annealing were configured as
follows:

Genetic Algorithm Parameters

- Population Size (): 100

Formal Contexts #Object #Attributes Density # Formal concepts #Edges

Balance-Scale 625 20 0.18 1070 3822
Breast Cancer 286 43 0.20 2132 7818

Tae 151 101 0.05 276 619
Car Evaluation 1728 21 0.20 3596 14917

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 93

- Number of Generations (): 50
- Crossover Rate (): 0.8
- Mutation Rate (): 0.05
- Tournament Size (): 5

Simulated Annealing Parameters

- Initial Temperature (): 1500.0
- Final Temperature (): 1.0
- Cooling Rate (): 0.95
- Iterations per Temperature (): 200

These parameter values were chosen based on pilot studies and established practices in
evolutionary algorithm research [100]. The resulting computational time for each method,
as shown in Figure 7.7, indicates that the Genetic Algorithm offers substantial efficiency
gains over Simulated Annealing, particularly as the concept lattice expands. While both
methods see rising computational demands with larger lattices, the GA exhibits a near-linear
increase in execution time. This scalability emphasizes its suitability for extensive datasets
and underscores its overall advantage in handling more complex lattice structures.

Figure 7.7. A Runtime Comparison of Genetic Algorithm (GA) and Simulated Annealing (SA) on Multiple Datasets

7.4.2. Influence of Kernel Concept Size on Overall Generation
Cost

In this section, we investigate how altering the proportion of core concepts impacts both
the Total Expected Generation Cost () and the overall reduction of stored concepts in a
concept lattice. Two optimization algorithms, Genetic Algorithm (GA) and Simulated
Annealing (SA), are evaluated at different core concept size percentages. The outcomes,
presented in Table 7.2 and depicted in Figures 7.8, offer valuable insights into each
algorithm’s scalability and effectiveness in concept lattice reduction.

Our experiments specifically targeted core concept sizes of 20%, 25%, and 30% of the
3,542 formal concepts in the Car Evaluation dataset. For each chosen size, both GA and SA
were tasked with identifying an optimal subset of core concepts. Their primary objective

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 94

was to minimize the total generation cost () while substantially decreasing the quantity of
stored concepts within the lattice.

Table 7.2 Impact of Kernel Concept Size on Optimization Performance of GA and SA

Kernel Concept Size (%) Algorithm Core Concepts Selected Cost of the Kernel

20.0 GA 725 2.08461
20.0 SA 725 2.09324
25.0 GA 901 1.94862
25.0 SA 901 1.96122
30.0 GA 1,077 1.83434
30.0 SA 1,077 1.84108

To ensure rigor and consistency, the algorithmic parameters for both methods were

carefully selected based on preliminary trials and recognized practices in evolutionary
computation [100]. Table 7.2 demonstrates how varying the kernel concept size influences
performance for both GA and SA. At a 20% kernel size, GA achieved a cost value of 2.0832,
while SA recorded a marginally higher cost. Increasing the kernel size to 25% yielded
respective costs of 1.9486 (GA) and 1.9612 (SA). Finally, at 30% kernel size, GA reached
1.8343, narrowly outperforming SA’s 1.8418.

Figure 7.8. Variation of Total Generation Cost () with Kernel Concept Size (%) for GA and SA

The analysis highlights the Genetic Algorithm's (GA) strong performance in optimizing
kernel concept selection, substantially improving the efficiency of concept lattice reduction.
While Simulated Annealing (SA) also yields comparable cost reductions, GA’s consistent
advantage renders it especially suitable for scenarios where minimizing generation cost is
paramount. Moreover, the marked decrease in stored concepts underscores the model’s
effectiveness in simplifying the lattice, making it more manageable for real-world
applications. Our findings further demonstrate that enlarging the kernel concept size leads
to notable decreases in the total expected generation cost, with GA consistently
outperforming SA in cost-sensitive and lattice-streamlining contexts. These outcomes
underscore both the scalability and robustness of the proposed model, confirming its
capability to manage varying data complexities effectively in concept lattice reduction.

7.4.3. Impact of Frequency Distribution on Algorithm
Performance

We conducted additional experiments by selecting kernel concept sizes of 20%, 25%,
and 30% from the TAE dataset’s 276 formal concepts under three distinct frequency

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 95

distributions: Default, Uniform, and Random. Figures 7.9 and 7.10 illustrate that in the
Default distribution, GA consistently achieved the lowest average total expected generation
cost of 1.3209, with SA closely following at 1.3272. This improved outcome stems from
strategically assigning high-frequency linguistic units and employing an injective mapping
function, thereby streamlining the lattice while aligning with human cognitive processes by
emphasizing the most frequently used concepts.

In contrast, the Uniform distribution resulted in notably higher costs, 1.7117 for GA and
1.7190 for SA, reflecting reduced optimization due to the absence of frequency-based
prioritization. Meanwhile, the Random distribution yielded intermediate values of 1.6637
for GA and 1.6796 for SA, showcasing GA’s resilience in adapting to stochastic frequency
patterns while maintaining performance similar to the Default distribution.

Notably, GA also demonstrated superior runtime efficiency across all distributions,
averaging about 20.65 seconds, whereas SA typically exceeded 55 seconds. Despite our
model’s capacity to accommodate various frequency distributions, the Default scenario
proves most effective by minimizing cost while maintaining runtime efficiency. Thus, GA
stands out as the preferred method in contexts demanding both cost-effectiveness and speed,
particularly when exploiting structured frequency distributions that align well with natural
cognitive patterns.

Figure 7.9. Average Cost Comparison of GA and SA Across Frequency Distributions

Figure 7.10. Runtime Performance of GA and SA Across Frequency Distributions

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 96

7.4.4. GA and SA Convergence in Concept Lattice Reduction

We conducted a detailed comparison of Genetic Algorithm (GA) and Simulated
Annealing (SA) in reducing concept lattice complexity for a dataset containing 276 formal
concepts. As depicted in Figure 7.8, each method seeks to minimize a “generation cost,”
which estimates the cognitive and linguistic effort needed to represent concepts. The shared
objective is to streamline the lattice while preserving interpretability.

Observing Figure 7.11, SA (green line) begins at a relatively high cost and rapidly
decreases, aided by its elevated initial temperature. This swift descent indicates SA’s
capacity to quickly identify an efficient solution, although the algorithm often stabilizes
sooner, suggesting it may converge on a reasonably good, but not always optimal outcome.

Figure 7.11. GA and SA Convergence in Concept Lattice Reduction

By contrast, GA (blue line) shows a more measured reduction in cost, attributed to its
population-based framework of crossover and mutation, which continues refining solutions
beyond the first stages. This extended improvement typically enables GA to arrive at a lower
final cost than SA, reflecting a more thoroughly optimized solution. While both approaches
effectively diminish the lattice’s complexity, GA consistently achieves a slightly lower
ultimate cost, aligning better with the goal of balancing expressiveness and usability in
concept lattices.

Overall, the findings indicate that SA excels in rapidly yielding a near-optimal reduction,
useful for scenarios demanding quick approximations, while GA’s iterative refinement
yields marginally superior final outcomes. Each algorithm thus caters to different priorities:
SA for accelerated initial reductions and GA for achieving a more precise, cognitively
aligned result.

7.5. Summary
This study presents an innovative approach to address the scalability and complexity

hurdles in Formal Concept Analysis (FCA). By blending cognitive insights and linguistic
optimization, the proposed model strategically selects a core subset of high-frequency
concepts and employs an injective mapping function. The resulting kernel subset reduces
computational overhead while preserving key structural relationships in the lattice.

Comparative evaluations using Genetic Algorithms (GA) and Simulated Annealing (SA)
consistently highlight GA's superior performance in both computational efficiency and
minimizing generation costs, as demonstrated across multiple real-world datasets. The
integration of human-centric principles not only clarifies the reduced lattice structures but

Mining Kernel Concepts: A Cost-Optimized Concept Set Generation Method

 97

also enhances usability, making FCA-based analyses more intuitive and tractable for
practical applications.

Overall, the proposed methodology bridges a critical gap between efficient
computational methods and cognitively aligned lattice simplifications, thereby extending the
utility of FCA in complex, large-scale data environments. This intersection of cognitive
efficiency and computational scalability opens new possibilities for more powerful, user-
friendly lattice reduction techniques in future research and real-world implementations.

Github: https://github.com/Mdaash/KCS_Approach/blob/master/GA_and_SA_analysis.ipynb

Publications : 𝑃#

Conclusion

 98

Chapter 8: Conclusion

8.1. Summary
This dissertation addresses the escalating challenges of scalability and interpretability in

Formal Concept Analysis (FCA), where concept lattices can become exceedingly large as
datasets grow in size and complexity. Despite FCA’s robust theoretical underpinnings,
traditional methods often yield unwieldy lattices that are time-consuming to compute and
difficult for users to navigate. To tackle these issues, the research combines three
complementary strategies for lattice reduction. First, two clustering-based algorithms, K-
Means Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL), identify a small
set of representative “centroid” concepts. KDL leverages an adapted shortest-path metric on
the lattice, whereas KVL employs a vectorization step before applying k-means. Both
approaches effectively compress lattice size while retaining critical structural relationships.

Building on this, the Kernel Concept Set (KCS) approach uses frequency and derivation-
cost metrics to select a minimal yet structurally faithful subset of concepts. This selection-
based method preserves essential patterns in the data while significantly reducing lattice
complexity. Finally, a Genetic Algorithm (GA), enhanced with a neural network–based
fitness evaluation, optimizes the discovery of these kernel concepts. This GA-centric
strategy has been shown to outperform other benchmarks, further underscoring the
robustness and efficiency of the proposed reductions.

Together, these methods provide a scalable and interpretable framework for FCA,
enabling analysts to handle larger, more diverse datasets and promoting practical adoption
across domains that rely on concept lattices for knowledge representation.

8.2. Contributions
The main scientific results achieved during the completion of this research are

summarized below in three theses:

- Thesis 1
Related Publications: [𝑃!, 𝑃$]

I have introduced two new clustering algorithms for lattice reduction in FCA: K-
Means Dijkstra on Lattice (KDL) and K-Means Vector on Lattice (KVL). I have
adapted the standard k-means clustering approach for objects structured into a lattice.
Specifically, KDL employs a Dijkstra-based shortest-path distance within the lattice
to capture concept proximity, while KVL transforms concept data into numeric
vectors and applies standard k-means. The performed test experiments show that
these algorithms enhance conceptual fidelity and scalability in the concept lattice
reduction.

- Thesis 2
Related Publications: [𝑃", 𝑃!, 𝑃$]

Conclusion

 99

I introduced the Kernel Concept Set (KCS) approach for concept lattice reduction,
which is a selection-based strategy for reducing concept lattices by highlighting a
small set of high-frequency and low-derivation-cost concepts. KCS enhances
interpretability and computational efficiency by focusing on “kernel” concepts that
preserve crucial structural properties of the lattice. Comparisons with earlier
clustering methods demonstrated that KCS yields more compact yet meaningful
lattices, effectively balancing coverage and simplicity

- Thesis 3
Related Publications: [𝑃#]

I proposed an optimized Genetic Algorithm solution for mining of the kernel concept
set in concept lattice. The proposed method applies a neural network module for
efficient fitness value calculation. The developed method dominated all the tested
benchmark approaches in the performed efficiency tests. I have demonstrated that
the proposed kernel selection method can be also used in computational linguistic
tasks.

8.3. Future Works

Looking ahead, several potential research directions emerge from this work. First, the
proposed clustering algorithms and KCS approach can be further adapted to manage even
larger and more diverse datasets by refining distance metrics or parallelizing key operations.
Second, there is room to explore specialized domain-driven customizations for instance,
domain-specific scaling in bioinformatics or e-learning contexts to highlight critical
concepts within highly specialized data. Finally, expanding upon the cognitive-linguistic
modeling may yield enhanced approaches for concept representation, allowing for a deeper
alignment with natural human interpretive strategies. These endeavors will continue to
advance the practical utility of FCA, fostering robust, intuitive, and scalable methods for
knowledge representation and data analysis.

Author’s Publications

 100

Author’s Publications

Publications Related to the Dissertation

[𝑃!] M. Alwersh and L. Kovács, “K-Means Extensions for Clustering Categorical Data on

Concept Lattice,” International Journal of Advanced Computer Science and
Applications, vol. 14, no. 9, 2023. Scopus Indexed [Q3].

[𝑃"] ALWERSH, Mohammed; KOVÁCS, László. Enhancing Formal Concept Analysis with
the Kernel Concept Set Approach: A Novel Methodology for Efficient Lattice
Reduction. International Journal of Intelligent Engineering & Systems, 2024, 17.4.
Scopus Indexed [Q2].

[𝑃#] L. Kovács and M. Alwersh, “Mining of Kernel Concepts based on Optimization
of Concept Set Generation Costs,” Knowledge and Information Systems,
manuscript submitted for publication and currently under peer review.
Scopus Indexed [Q1].

[𝑃$] M. Alwersh and L. Kovács, “Survey on attribute and concept reduction methods in
formal concept analysis,” Indonesian Journal of Electrical Engineering and Computer
Science, vol. 30, no. 1, pp. 366–387, Apr. 2023, doi: 10.11591/ijeecs.v30.i1.pp366-387.
. Scopus Indexed [Q3].

Other Publications Journal Articles in non-Q Ranking

[𝑃-] ALWERSH, Mohammed; KOVÁCS, László. Fuzzy formal concept analysis: approaches,

applications and issues. Computer Science and Information Technologies, 2022, 3.2:
126-136.

[𝑃.] ALWERSH, Mohammed. Integration of FCA with Fuzzy logic: a
survey. Multidiszciplináris Tudományok, 2021, 11.5: 373-385.

Refrences

 101

Refrences

[1] R. Wille, “Restructuring lattices theory: an approach on hierarchies of concepts,” 1982, Dordrecht,
Holland: Springer.

[2] S. Roscoe, M. Khatri, A. Voshall, S. Batra, S. Kaur, and J. Deogun, “Formal concept analysis
applications in bioinformatics,” ACM Comput Surv, vol. 55, no. 8, pp. 1–40, 2022.

[3] G. G. Aadil and D. Samad, “Exploring the Impact of Informal Language on Sentiment Analysis
Models for Social Media Text Using Convolutional Neural Networks,” Multidiszciplináris
Tudományok, vol. 13, no. 1, pp. 244–254, 2023.

[4] G. H. A. Ahmed, J. Alshboul, and L. Kovacs, “Development of Ontology-based Domain Knowledge
Model for IT Domain in e-Tutor Systems,” International Journal of Advanced Computer Science and
Applications, vol. 13, no. 5, 2022.

[5] H. A. A. Ghanim and L. Kovács, “Ontology Supported Domain Knowledge Module for E-Tutoring
System,” Acta Cybernetica, vol. 26, no. 3, pp. 455–474, 2024.

[6] K. Sumangali and C. A. Kumar, “Critical analysis on open source LMSs using FCA,” International
Journal of Distance Education Technologies (IJDET), vol. 11, no. 4, pp. 97–111, 2013, doi:
10.4018/ijdet.2013100107.

[7] Y. Liu and X. Li, “Application of formal concept analysis in association rule mining,” in 2017 4th
International Conference on Information Science and Control Engineering (ICISCE), IEEE, 2017,
pp. 203–207.

[8] K. Sumangali and C. Aswani Kumar, “Knowledge reduction in formal contexts through CUR matrix
decomposition,” Cybern Syst, vol. 50, no. 5, pp. 465–496, 2019, doi:
10.1080/01969722.2019.1602300.

[9] S. Hao, C. Shi, Z. Niu, and L. Cao, “Concept coupling learning for improving concept lattice-based
document retrieval,” Eng Appl Artif Intell, vol. 69, pp. 65–75, 2018, doi:
10.1016/j.engappai.2017.12.007.

[10] R. Ganter and R. Wille, “Formal concept analysis: Mathematical foundations Springer-Verlag Berlin
Germany,” 1999.

[11] B. A. Davey, Introduction to Lattices and Order. Cambridge University Press, 2002.
[12] F. Hao, Y. Yang, G. Min, and V. Loia, “Incremental construction of three-way concept lattice for

knowledge discovery in social networks,” Inf Sci (N Y), vol. 578, pp. 257–280, 2021, doi:
10.1016/j.ins.2021.07.031.

[13] F. Hao, Y. Yang, B. Pang, N. Y. Yen, and D.-S. Park, “A fast algorithm on generating concept lattice
for symmetry formal context constructed from social networks,” J Ambient Intell Humaniz Comput,
pp. 1–8, 2019, doi: 10.1007/s12652-019-01274-6.

[14] Y. Yang, F. Hao, B. Pang, G. Min, and Y. Wu, “Dynamic maximal cliques detection and evolution
management in social internet of things: A formal concept analysis approach,” IEEE Trans Netw Sci
Eng, vol. 9, no. 3, pp. 1020–1032, 2021, doi: doi:10.1109/TNSE.2021.3067939.

[15] J. Poelmans, D. I. Ignatov, S. O. Kuznetsov, and G. Dedene, “Formal concept analysis in knowledge
processing: A survey on applications,” Expert Syst Appl, vol. 40, no. 16, pp. 6538–6560, 2013.

[16] K. Sumangali and C. A. Kumar, “A comprehensive overview on the foundations of formal concept
analysis,” Knowledge Management & E-Learning: An International Journal, vol. 9, no. 4, pp. 512–
538, 2017, doi: 10.34105/j.kmel.2017.09.032.

[17] M. Alwersh and L. Kovács, “Survey on attribute and concept reduction methods in formal concept
analysis,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 1, pp.
366–387, Apr. 2023, doi: 10.11591/ijeecs.v30.i1.pp366-387.

[18] C. Carpineto, Concept Data Analysis: Theory and Applications. Wiley, 2004.
[19] S. O. Kuznetsov and S. A. Obiedkov, “Comparing performance of algorithms for generating concept

lattices,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 14, no. 2–3, pp. 189–216,
2002.

[20] B. Ganter, “Two basic algorithms in concept analysis,” in Formal Concept Analysis: 8th International
Conference, ICFCA 2010, Agadir, Morocco, March 15-18, 2010. Proceedings 8, Springer, 2010, pp.
312–340.

[21] P. Krajca, J. Outrata, and V. Vychodil, “Advances in algorithms based on cbo.,” in CLA, 2010, pp.
325–337.

Refrences

 102

[22] J. Outrata and V. Vychodil, “Fast algorithm for computing fixpoints of Galois connections induced
by object-attribute relational data,” Inf Sci (N Y), vol. 185, no. 1, pp. 114–127, 2012.

[23] S. Andrews, “In-close, a fast algorithm for computing formal concepts,” 2009.
[24] S. Andrews, “In-close2, a high performance formal concept miner,” in International Conference on

Conceptual Structures, Springer, 2011, pp. 50–62.
[25] E. M. Norris, “An algorithm for computing the maximal rectangles in a binary relation,” Revue

Roumaine de Mathématiques Pures et Appliquées, vol. 23, no. 2, pp. 243–250, 1978.
[26] D. Van Der Merwe, S. Obiedkov, and D. Kourie, “Addintent: A new incremental algorithm for

constructing concept lattices,” in Concept Lattices: Second International Conference on Formal
Concept Analysis, ICFCA 2004, Sydney, Australia, February 23-26, 2004. Proceedings 2, Springer,
2004, pp. 372–385.

[27] L. Kovács, “Efficiency analsyis of concept lattice construction algorithms,” Procedia Manuf, vol. 22,
pp. 11–18, 2018, doi: https://doi.org/10.1016/j.promfg.2018.03.003.

[28] P. Valtchev and R. Missaoui, “Building concept (Galois) lattices from parts: generalizing the
incremental methods,” in International Conference on Conceptual Structures, Springer, 2001, pp.
290–303.

[29] A. Körei and S. Radeleczki, “Box elements in a concept lattice,” Contributions to ICFCA, vol. 2006,
pp. 41–56, 2006.

[30] S. RADELECZKI and L. VERES, “AN INCREMENTAL METHOD FOR THE CONSTRUCTION
OF THE BOX EXTENTS OF A CONTEXT,” Math. Appl, vol. 10, pp. 71–78, 2021.

[31] D. Gégény, L. Kovács, and S. Radeleczki, “Notes on the lattice of fuzzy rough sets with crisp reference
sets,” International Journal of Approximate Reasoning, vol. 126, pp. 124–132, 2020.

[32] A. Körei, “Using Formal Concept Analysis in the Evaluation Process,” in Teaching and Learning in
a Digital World: Proceedings of the 20th International Conference on Interactive Collaborative
Learning–Volume 2, Springer, 2018, pp. 143–149.

[33] A. Körei, “Applying formal concept analysis in machine-part grouping problems,” in 2013 IEEE 11th
International Symposium on Applied Machine Intelligence and Informatics (SAMI), IEEE, 2013, pp.
197–200.

[34] L. Kovács and S. Gábor, “Generalization of String Transformation Rules using Optimized Concept
Lattice Construction Method,” Procedia Eng, vol. 181, pp. 604–611, 2017.

[35] U. Priss, “Lattice-based information retrieval,” KO Knowledge Organization, vol. 27, no. 3, pp. 132–
142, 2000.

[36] C. Carpineto and G. Romano, “Using concept lattices for text retrieval and mining,” in Formal
Concept Analysis: foundations and applications, Springer, 2005, pp. 161–179.

[37] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and L. Lakhal, “Computing iceberg concept lattices
with titanic,” Data Knowl Eng, vol. 42, no. 2, pp. 189–222, 2002.

[38] S. Andrews and C. Orphanides, “Analysis of large data sets using formal concept lattices,” 2010.
[39] C. A. Kumar and S. Srinivas, “Concept lattice reduction using fuzzy K-means clustering,” Expert Syst

Appl, vol. 37, no. 3, pp. 2696–2704, 2010.
[40] M. Alwersh and L. Kovács, “K-Means Extensions for Clustering Categorical Data on Concept

Lattice,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 9, 2023.
[41] L. Kovács, “Conceptual clustering with application on FCA context,” Expert Syst Appl, vol. 245, p.

123013, 2024.
[42] V. Snásel, M. Polovincak, H. M. D. Abdulla, and Z. Horak, “On Concept Lattices and Implication

Bases from Reduced Contexts.,” ICCS supplement, vol. 8, pp. 83–90, 2008.
[43] N. Messai, M.-D. Devignes, A. Napoli, and M. Smail-Tabbone, “Many-valued concept lattices for

conceptual clustering and information retrieval,” in ECAI 2008, IOS Press, 2008, pp. 127–131.
[44] R. G. Pensa and J.-F. Boulicaut, “Towards fault-tolerant formal concept analysis,” in Congress of the

Italian Association for Artificial Intelligence, Springer, 2005, pp. 212–223.
[45] P. Krajca and V. Vychodil, “Distributed algorithm for computing formal concepts using map-reduce

framework,” in International Symposium on Intelligent Data Analysis, Springer, 2009, pp. 333–344.
[46] A. Gupta, V. Bhatnagar, and N. Kumar, “Mining closed itemsets in data stream using formal concept

analysis,” in Data Warehousing and Knowledge Discovery: 12th International Conference, DAWAK
2010, Bilbao, Spain, August/September 2010. Proceedings 12, Springer, 2010, pp. 285–296.

[47] C. Melo, B. Le-Grand, M.-A. Aufaure, and A. Bezerianos, “Extracting and visualising tree-like
structures from concept lattices,” in 2011 15th International Conference on Information Visualisation,
IEEE, 2011, pp. 261–266.

[48] Cassio de Alburquerque Melo, “Real-time Distributed Computation of Formal Concepts and
Analytics,” Paris, 2013.

Refrences

 103

[49] M. Priya and A. K. Ch, “A novel method for merging academic social network ontologies using formal
concept analysis and hybrid semantic similarity measure,” Library Hi Tech, 2019, doi: 10.1108/LHT-
02-2019-0035.

[50] S. M. Dias and N. J. Vieira, “Concept lattices reduction: Definition, analysis and classification,”
Expert Syst Appl, vol. 42, no. 20, pp. 7084–7097, 2015.

[51] J. Medina, “Relating attribute reduction in formal, object-oriented and property-oriented concept
lattices,” Computers & Mathematics with Applications, vol. 64, no. 6, pp. 1992–2002, 2012, doi:
10.1016/j.camwa.2012.03.087.

[52] J. Li, C. Mei, and Y. Lv, “A heuristic knowledge-reduction method for decision formal contexts,”
Computers & Mathematics with Applications, vol. 61, no. 4, pp. 1096–1106, 2011, doi:
10.1016/j.camwa.2010.12.060.

[53] S. Peng and A. Yamamoto, “Concept Lattice Reduction Using Integer Programming,” 知識ベース
システム研究会/人工知能学会 [編], vol. 123, pp. 38–43, 2021.

[54] W. X. Zhang, L. Wei, and J. J. Qi, “Reduction Theory and Approach to Concept Lattice. China Ser,”
E Inform. Sci, vol. 35, pp. 628–639, 2005, doi: 10.1360/122004-104.

[55] J.-J. Qi, “Attribute reduction in formal contexts based on a new discernibility matrix,” J Appl Math
Comput, vol. 30, no. 1, pp. 305–314, 2009, doi: 10.1007/s12190-008-0174-9.

[56] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,” ACM computing surveys
(CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[57] K. S. K. Cheung and D. Vogel, “Complexity reduction in lattice-based information retrieval,” Inf Retr
Boston, vol. 8, pp. 285–299, 2005.

[58] H. Yang, K. Qin, Q. Hu, and L. Yang, “Neighborhood based concept lattice,” Applied Intelligence,
vol. 53, no. 5, pp. 6025–6040, 2023.

[59] C. Wang, Y. Bo, and C. Xu, “Attribute reduction algorithm on concept lattice and application in smart
city energy consumption analysis,” Wirel Commun Mob Comput, vol. 2022, 2022.

[60] S. Zhao, J. Qi, J. Li, and L. Wei, “Concept reduction in formal concept analysis based on
representative concept matrix,” International Journal of Machine Learning and Cybernetics, vol. 14,
no. 4, pp. 1147–1160, 2023.

[61] K. Pang, P. Liu, S. Li, L. Zou, M. Lu, and L. Martínez, “Concept lattice simplification with fuzzy
linguistic information based on three-way clustering,” International Journal of Approximate
Reasoning, vol. 154, pp. 149–175, 2023.

[62] M. Akram, H. S. Nawaz, and M. Deveci, “Attribute reduction and information granulation in
Pythagorean fuzzy formal contexts,” Expert Syst Appl, vol. 222, p. 119794, 2023.

[63] R. Belohlavek and V. Vychodil, “Formal concept analysis with background knowledge: attribute
priorities,” IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 39, no. 4, pp. 399–409, 2009.

[64] R. Bělohlávek, V. Sklenář, and J. Zacpal, “Formal concept analysis with hierarchically ordered
attributes,” Int J Gen Syst, vol. 33, no. 4, pp. 383–394, 2004, doi: 10.1080/03081070410001679715.

[65] Z. Wang, C. Shi, L. Wei, and Y. Yao, “Tri-granularity attribute reduction of three-way concept
lattices,” Knowl Based Syst, vol. 276, p. 110762, 2023.

[66] R. Belohlávek, V. Sklenar, and J. Zacpal, “Concept Lattices Constrained by Attribute Dependencies.,”
in DATESO, Citeseer, 2004, pp. 63–73.

[67] J.-F. Boulicaut and J. Besson, “Actionability and formal concepts: A data mining perspective,” in
International Conference on Formal Concept Analysis, Springer, 2008, pp. 14–31.

[68] L. PISKOVÁ, T. HORVÁTH, and S. KRAJČI, “RANKING FORMAL CONCEPTS BY UTILIZING
MATRIX FACTORIZATION.,” Studia Universitatis Babes-Bolyai, Informatica, vol. 59, 2014.

[69] V. Ganti, J. Gehrke, and R. Ramakrishnan, “CACTUS—clustering categorical data using summaries,”
in Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data
mining, 1999, pp. 73–83.

[70] S. Guha, R. Rastogi, and K. Shim, “Rock: A robust clustering algorithm for categorical attributes,”
Inf Syst, vol. 25, no. 5, pp. 345–366, Jul. 2000, doi: 10.1016/S0306-4379(00)00022-3.

[71] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values,”
Data Min Knowl Discov, vol. 2, no. 3, pp. 283–304, 1998.

[72] Z. Huang, “Clustering large data sets with mixed numeric and categorical values,” in Proceedings of
the 1st pacific-asia conference on knowledge discovery and data mining,(PAKDD), Citeseer, 1997,
pp. 21–34.

[73] D. Ienco, R. G. Pensa, and R. Meo, “Context-based distance learning for categorical data clustering,”
in Advances in Intelligent Data Analysis VIII: 8th International Symposium on Intelligent Data

Refrences

 104

Analysis, IDA 2009, Lyon, France, August 31-September 2, 2009. Proceedings 8, Springer, 2009, pp.
83–94. doi: https://doi.org/10.1007/978-3-642-03915-7_8.

[74] J. MacQueen, “Classification and analysis of multivariate observations,” in 5th Berkeley Symp. Math.
Statist. Probability, University of California Los Angeles LA USA, 1967, pp. 281–297.

[75] O. M. San, V.-N. Huynh, and Y. Nakamori, “An alternative extension of the k-means algorithm for
clustering categorical data,” International journal of applied mathematics and computer science, vol.
14, no. 2, pp. 241–247, 2004.

[76] L. Chen and S. Wang, “Central clustering of categorical data with automated feature weighting,” in
Twenty-Third International Joint Conference on Artificial Intelligence, Citeseer, 2013.

[77] Z. Huang and M. K. Ng, “A fuzzy k-modes algorithm for clustering categorical data,” IEEE
transactions on Fuzzy Systems, vol. 7, no. 4, pp. 446–452, 1999, doi: 10.1109/91.784206.

[78] F. Cao, J. Liang, D. Li, L. Bai, and C. Dang, “A dissimilarity measure for the k-Modes clustering
algorithm,” Knowl Based Syst, vol. 26, pp. 120–127, 2012, doi:
https://doi.org/10.1016/j.knosys.2011.07.011.

[79] M. Li, S. Deng, L. Wang, S. Feng, and J. Fan, “Hierarchical clustering algorithm for categorical data
using a probabilistic rough set model,” Knowl Based Syst, vol. 65, pp. 60–71, 2014, doi:
https://doi.org/10.1016/j.knosys.2014.04.008.

[80] G. K. Zipf, The Principle of Least Effort. CH3, 1949.
[81] S. T. Piantadosi, H. Tily, and E. Gibson, “Word lengths are optimized for efficient communication,”

Proceedings of the National Academy of Sciences, vol. 108, no. 9, pp. 3526–3529, 2011.
[82] R. F. I. Cancho and R. V Solé, “Least effort and the origins of scaling in human language,”

Proceedings of the National Academy of Sciences, vol. 100, no. 3, pp. 788–791, 2003.
[83] T. Abiy, H. Pang, C. Williams, J. Khim, and E. Ross, “Dijkstra’s shortest path algorithm,” Retrieved

from, 2016.
[84] F. Mukhlif and A. Saif, “Comparative study on Bellman-Ford and Dijkstra algorithms,” in Int. Conf.

Comm. Electric Comp. Net, 2020.
[85] R. Bellman, “On a routing problem,” Q Appl Math, vol. 16, no. 1, pp. 87–90, 1958.
[86] R. W. Floyd, “Algorithm 97: shortest path,” Commun ACM, vol. 5, no. 6, p. 345, 1962.
[87] M. Tropmann-Frick, “Analysis of the Shortest Path Method Application in Social Networks,” 2023.
[88] R. Poli, M. Healy, and A. Kameas, Theory and applications of ontology: Computer applications.

Springer, 2010.
[89] I. Horrocks, “Owl: A description logic based ontology language,” in International conference on

principles and practice of constraint programming, Springer, 2005, pp. 5–8.
[90] A. Pérez-Suárez, J. F. Martínez-Trinidad, and J. A. Carrasco-Ochoa, “A review of conceptual

clustering algorithms,” Artif Intell Rev, vol. 52, pp. 1267–1296, 2019.
[91] D. Fisher, “A hierarchical conceptual clustering algorithm,” 1985.
[92] F. Beil, M. Ester, and X. Xu, “Frequent term-based text clustering,” in Proceedings of the eighth ACM

SIGKDD international conference on Knowledge discovery and data mining, 2002, pp. 436–442.
[93] R. C. Romero-Zaliz, C. Rubio-Escudero, J. P. Cobb, F. Herrera, O. Cordón, and I. Zwir, “A

multiobjective evolutionary conceptual clustering methodology for gene annotation within structural
databases: a case of study on the gene ontology database,” IEEE Transactions on Evolutionary
Computation, vol. 12, no. 6, pp. 679–701, 2008.

[94] D. H. Fisher, “Knowledge acquisition via incremental conceptual clustering,” Mach Learn, vol. 2, pp.
139–172, 1987.

[95] T.-H. T. Nguyen and V.-N. Huynh, “A k-means-like algorithm for clustering categorical data using
an information theoretic-based dissimilarity measure,” in Foundations of Information and Knowledge
Systems: 9th International Symposium, FoIKS 2016, Linz, Austria, March 7-11, 2016. Proceedings 9,
Springer, 2016, pp. 115–130. doi: https://doi.org/10.1007/978-3-319-30024-5_7.

[96] D. Schütt, “Abschätzungen für die Anzahl der Begriffe von Kontexten,” Master’s Thesis, TH
Darmstadt, 1987.

[97] Bernhard Ganter, “Two basic algorithms in concept analysis. FB4- Preprint No 831, 1984.”.
[98] J. Baixeries, L. Szathmary, P. Valtchev, and R. Godin, “Yet a faster algorithm for building the Hasse

diagram of a concept lattice,” in Formal Concept Analysis: 7th International Conference, ICFCA
2009 Darmstadt, Germany, May 21-24, 2009 Proceedings 7, Springer, 2009, pp. 162–177. doi:
https://doi.org/10.1007/978-3-642-01815-2_13.

[99] R. L. Haupt, “Practical genetic algorithms,” 2004, John Wiley & Sons, Inc.

Appendix A

 105

Appendix A

A. 1. The formal concepts derived from the cross-table described in Table 2.3

Concept # Extent (X) Intent (Y) Formal Concept (X,Y)

1 ∅ {T, B, S, D, L, M,
G} (∅ , {T, B, S, D, L, M, G})

2 {𝐿!} {T, B, S, L} ({𝐿!}, {T, B, S, L})

3 {𝐿"} {B, S, M} ({𝐿"}, {B, S, M})

4 {𝐿#} {T, S, D, G} ({𝐿#}, {T, S, D, G})

5 {𝐿%} {T, B, L, M} ({𝐿%}, {T, B, L, M})

6 {𝐿'} {S, L, M, G} ({𝐿'}, {S, L, M, G})

7 {𝐿(} {T, B, D, L, G} ({𝐿(}, {T, B, D, L, G})

8 {𝐿!, 𝐿"} {B, S} ({𝐿!, 𝐿"}, {B, S})

9 {𝐿!, 𝐿#} {T, S} ({𝐿!, 𝐿#}, {T, S})

10 {𝐿!, 𝐿'} {S, L} ({𝐿!, 𝐿'}, {S, L})

11 {𝐿", 𝐿%} {B, M} ({𝐿", 𝐿%}, {B, M})

12 {𝐿", 𝐿'} {S, M} ({𝐿", 𝐿'}, {S, M})

13 {𝐿#, 𝐿'} {S, G} ({𝐿#, 𝐿'}, {S, G})

14 {𝐿#, 𝐿(} {T, D, G} ({𝐿#, 𝐿(}, {T, D, G})

15 {𝐿%, 𝐿'} {L, M} ({𝐿%, 𝐿'}, {L, M})

16 {𝐿&, 𝐿(} {T, D, L} ({𝐿&, 𝐿(}, {T, D, L})

17 {𝐿', 𝐿(} {L, G} ({𝐿', 𝐿(}, {L, G})

18 {𝐿!, 𝐿%,	𝐿(} {T, B, L} ({𝐿!, 𝐿%,	𝐿(}, {T, B, L})

19 {𝐿", 𝐿%, 𝐿'} {M} ({𝐿", 𝐿%, 𝐿'}, {M})

20 {𝐿#, 𝐿&, 𝐿(} {T, D} ({𝐿#, 𝐿&, 𝐿(}, {T, D})

21 {𝐿#, 𝐿', 𝐿(} {G} ({𝐿#, 𝐿', 𝐿(}, {G})

22 {𝐿!, 𝐿", 𝐿%, 𝐿(} {B} ({𝐿!, 𝐿", 𝐿%, 𝐿(}, {B})

23 {𝐿!, 𝐿%, 𝐿&, 𝐿(} {T, L} ({𝐿!, 𝐿%, 𝐿&, 𝐿(}, {T, L})

24 {𝐿!, 𝐿", 𝐿#, 𝐿$, 𝐿'} {S} ({𝐿!, 𝐿", 𝐿#, 𝐿$, 𝐿'}, {S})

25 {𝐿!, 𝐿#, 𝐿%, 𝐿&, 𝐿(} {T} ({𝐿!, 𝐿#, 𝐿%, 𝐿&, 𝐿(}, {T})

26 {𝐿!, 𝐿%, 𝐿&, 𝐿',	𝐿(} {L} ({𝐿!, 𝐿%, 𝐿&, 𝐿',	𝐿(}, {L})

Appendix A

 106

27 {𝐿!, 𝐿", 𝐿#, 𝐿$, 𝐿%, 𝐿&, 𝐿',	𝐿(} ∅ ({𝐿!, 𝐿", 𝐿#, 𝐿$, 𝐿%, 𝐿&, 𝐿',	𝐿(}, ∅
)

A. 2. Kernel Concept Set Analysis of TA Assignments (𝑆+ set to 5%)

Concept
ID

Number of TAs
Sharing

Attributes

Highlighted Attributes

1 2 Course_3, Summer, Course_Instructor_15, Class_Size_17, Eng_Nat_spk_2
2 2 Class_Size_19, Course_3, Summer, Course_Instructor_23, Eng_Nat_spk_1
3 3 regular, Eng_Nat_spk_2, Course_1, Class_Size_51
4 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_8
5 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_5, Course_Instructor_9
6 3 Summer_or_regular_2, Course_3, Course_Instructor_22, Eng_Nat_spk_1
7 4 Course_7, Eng_Nat_spk_2, Summer_or_regular_2, Course_Instructor_25
8 4 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_23
9 6 Eng_Nat_spk_2, Class_Size_20, Summer_or_regular_1, Course_3
10 7 Summer_or_regular_2, Eng_Nat_spk_2, Course_15
11 8 Summer_or_regular_2, Eng_Nat_spk_2, Course_Instructor_7, Course_11
12 14 Summer_or_regular_2, Eng_Nat_spk_2, Course_2
13 108 Summer_or_regular_2, Eng_Nat_spk_2
14 128 Summer_or_regular_2

A. 3. Kernel Concept Set Analysis of TA Assignments (𝑆+ set to 8%)

Concept ID
Number of TAs

Sharing
Attributes

Highlighted Attributes

1 1 Class_Size_11, Course_19, Summer_or_regular_2, Eng_Nat_spk_2,
Course_Instructor_16

2 1 Course_Instructor_1, Summer_or_regular_2, Eng_Nat_spk_2, Course_8,
Class_Size_18

3 1 Class_Size_39, Summer_or_regular_2, Course_2, Eng_Nat_spk_2,
Course_Instructor_9

4 2 Course_3, Class_Size_13, Summer_or_regular_1, Eng_Nat_spk_1,
Course_Instructor_13

5 2 Course_3, Summer, Course_Instructor_15, Class_Size_17, Eng_Nat_spk_2
6 2 Class_Size_19, Course_3, Summer, Course_Instructor_23, Eng_Nat_spk_1
7 3 regular, Eng_Nat_spk_2, Course_1, Class_Size_51
8 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_8
9 3 Summer_or_regular_2, Eng_Nat_spk_2, Course_5, Course_Instructor_9
10 3 Summer_or_regular_2, Course_3, Course_Instructor_22, Eng_Nat_spk_1
11 4 Course_7, Eng_Nat_spk_2, Summer_or_regular_2, Course_Instructor_25
12 4 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_23
13 5 Summer_or_regular_2, Eng_Nat_spk_2, Course_3, Course_Instructor_10
14 6 Eng_Nat_spk_2, Class_Size_20, Summer_or_regular_1, Course_3
15 7 Course_Instructor_18, Eng_Nat_spk_2, Summer_or_regular_2
16 7 Course_Instructor_13, Eng_Nat_spk_2, Summer_or_regular_2

Appendix A

 107

17 7 Summer_or_regular_2, Eng_Nat_spk_2, Course_15
18 8 Summer_or_regular_2, Eng_Nat_spk_2, Course_Instructor_7, Course_11
19 14 Summer_or_regular_2, Eng_Nat_spk_2, Course_2
20 20 Summer_or_regular_2, Eng_Nat_spk_1
21 108 Summer_or_regular_2, Eng_Nat_spk_2
22 128 Summer_or_regular_2

A. 4. List of Generated Concept Lattices
Id Intent Frequency
0 1, 2, 7 0.96
1 8, 1, 2, 7 0.89
2 1, 2, 3, 7, 8 0.85
3 1, 3, 7, 8, 9 0.32
4 1, 7 0.68
5 8, 1, 7 0.71
6 8, 1, 3, 7 0.35
7 1, 2, 4, 6 0.78
8 1, 2 0.77
9 1 0.34
10 1, 2, 3, 4, 6 0.63
11 1, 2, 3 0.92
12 1, 3 0.67
13 1, 3, 4, 5 0.75
14 1, 4 0.39
15 1, 3, 4 0.54
16 1, 3, 4, 6 0.47
17 1, 4, 6 0.61

