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CHAPTER 1

Introduction

1.1. Stability problems of straight beams

The stability of beams is a critical aspect of structural engineering, influencing the safety
and durability of buildings, bridges, and various mechanical systems. Beams, as funda-
mental structural elements, must withstand diverse loading conditions without experiencing
failure due to instability. Since Euler’s pioneering work, significant advancements have been
made in understanding buckling. Numerous sources discuss the stability of shells, columns,
arches, and other structures [1, 2, 3]. Comprehensive solutions to various engineering is-
sues, along with practical applications, are detailed in books such as those by Wang and
Jerath [3,4]. Focusing specifically on the buckling of columns, book [5] provides an in-depth
exploration of the theory of elastic stability for continuously axially loaded columns. Addi-
tional significant findings are discussed in subsequent works [6,7], which include the effects
of compressive forces exerted by ball-socket joints. Paper [8] also investigates the static
and dynamic stability of columns under self-weight through experimental, analytical, and
numerical approaches. Study [9] addresses the impact of geometric and load imperfections
on column buckling. Research [10] evaluates the influence of end-restraints, modelled as
linear rotational and translational springs, and proposes the introduction of a new standard
due to the significant discrepancies found with existing ones. In [11], variational iterative
method is applied for columns with variable cross-sections. Singh [12] focuses on function-
ally graded (FG) non-uniform columns. These are replaced equivalently with columns of
constant material and geometric properties. Study [13] examines the buckling behaviour
of geometrically imperfect columns, utilizing 3D printing so ideal geometries are perturbed
with their eigenshape for the experimental investigations. Article [14] also relies on additive
manufacturing to produce high-precision columns for buckling behavioral testing. Study [15]
explores optimization strategies against buckling in the presence of initial imperfections.

Regarding the concept of the Green function, its first appearance dates back to Green’s
1828 publication [16], which included the Green theorem, presented the Green function with
application to electrostatic problems determined by partial differential equations. Bocher
extended the Green function definition for two-point boundary value problems (BVPs) gov-
erned by ordinary differential equations in [17]. Book [18] systematically covers the Green
function concept. Early works [19,20] provide definitions and properties of the Green func-
tion for two-point boundary value problems governed by ordinary linear differential equa-
tions, including a collection of the Green functions in closed form for multiple conditions.
As for degenerated ordinary differential equation systems, some new findings are reported
in [21]. For some three-point boundary value problems governed by linear ordinary differ-
ential equations of order two, the Green functions are detailed in the paper of Zhao [22].
Multi-point BVPs are also prevalent in the literature – see, e.g., [23,24,25] which establish
and solve specific four-point BVPs, including singular fourth-order p-Laplacian equation,
nonlinear BVPs using fixed points of strict set-contractions, and applications of the Leray-
Schauder theorem. Article [26] introduces a numerical iterative algorithm for non-linear
four-point BVPs. Wolfe [27] explores buckling using multiple theories, including global bi-
furcation theory, direct variational calculus, phase plane analysis, and singular perturbation
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Introduction 2

theory. These methods are compared to show how they complement each other. The bifur-
cation theory, in particular, employs the Green function for a classical compressed column
with two supports. Khan and Al-Hayani [28] utilize the Adomian decomposition method in
conjunction with the Green function technique to solve the non-linear buckling equations of
a column in compression. This method is proven efficient and advantageous as it eliminates
the need for perturbation. Huang and Li [29] propose an efficient technique using Fredholm
integral equations instead of differential equations to address the stability of axially graded
material columns with variable cross-section.

1.2. Vibration problems of straight beams

The issue of beam vibrations is a key area of focus with a bunch of past scientific works.
For example, study [30] highlights transverse vibrations of buckled beams using partial dif-
ferential equations that account for nonlinear mid-plane strain. The given equations are then
converted into ordinary differential equations using the Galerkin method. In [31], the trans-
verse vibrations of Timoshenko beams with cracks are examined, with the model comprising
two segments connected by internal springs whose stiffnesses are proportional to the shear
force and bending moment at the crack. The beams are place on Winkler foundation. Free
vibrations of beams on an elastic Pasternak foundation with variable material properties
along their length are explored in [32]. The equation of motion are gained by Hamilton’s
principle. The effect of various parameters such as geometry, material, and foundation stiff-
ness are assessed. The study [33] investigates the free vibration of composite beams with
higher-order shear deformation using the isogeometric collocation method. The advantage
of the technique is that it requires only a single integration point per element. Double beam
systems are considered in [34], assuming a Winkler-type layer between them. The men-
tioned study incorporates both rotational inertia and shearing effects. In [35], the focus
is on large amplitude vibrations of beams on elastic foundation. Assuming Euler-Bernoulli
hypothesis, the equations of motion are derived using the Hamilton principle, and solutions
are obtained by means of the homotopy perturbation method. Research work [36] examines
the free vibrations of stepped beams with intermediate elastic connections. The vibrations
of multi-stepped beams with multiple concentrated elements are addressed in [37] using the
continuous mass transfer matrix method, yielding closed-form free vibrational frequencies
for Timoshenko beams. The Lumped Mass Transfer Matrix Method is introduced in [38]
to study the free vibrations of stepped axially functionally graded beams with point masses.
This method happens to be powerful and relatively simple, proving to yield efficient solu-
tions for this particular problem. The Adomian Decomposition Method is applied to stepped
beam vibrations in [39], yielding the same order of complexity as for a uniform beam. The
technique handles an arbitrary number of steps, making it suitable for approximating ta-
pered members. The same method’s effectiveness is demonstrated in [40], but for beams on
a viscoelastic foundation.

Systems made of multiple beams are analyzed in [41] from the perspective of transverse
free and forced vibrations. It is assumed that there is visco-elastic connection between the
elements. Xie et al. [42] implemented an improved third-order shear deformable theory for
beams made of functionally graded materials. The loading is a moving, concentrated one.
A direct numerical integration technique was applied to analyze the dynamic response and
address convergence issues. Talik et al. [43] present a novel method to reduce multi-point
correlated random excitation terms to a single modal excitation term for beam vibrations.
The equations of motion for a Timoshenko beam with concentrated mass under large, forced
vibrations are demonstrated in [44]. The conservation of energy principle is used in the in-
vestigations, and the dynamic response is determined via the Newmark method. Article [45]
addresses self-weight loaded columns and cables through analytical and numerical solutions
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with a finite element software. In [46], the non-linear extended Timoshenko theory is applied
to bi-material beams which undergo both mechanical and thermal loads.

Forced vibrations of beams with damping effects are investigated in [47], where steady-
state Green functions are given using the variable separation technique. It is concluded
that for beams with a height-to-length ratio above 0.1, the Euler-Bernoulli model is not
accurate enough. The forced vibration of Euler-Bernoulli beams at resonance condition is
studied in [48] using Fourier transformation to the frequency domain. Closed-form solution
is obtained via the Fredholm Alternative Theorem. In [49], the thermo-elastic dynamic
analysis of micro- and nanobeams is presented. The related coupled equations are decoupled
using the Green function method, making the model suitable for determining free vibrations,
forced vibration displacements, and temperature fields. The Green functions are found using
the eigenfunction expansion and Laplace transform methods, solving the resulting decoupled
Fredholm integral equation with the kernel function method. Dynamic response of damped
Timoshenko beams to bending and torsion are investigated in [50]. The Green functions are
given for arbitrary boundary conditions via the Laplace transform method.

1.3. Stability investigations on arches

The study of buckling in beams, initiated by Euler [51], has spurred extensive research
and numerous models in the literature. Due to their initial curvature, curved beams behave
differently under mechanical loads compared to straight beams, which has attracted signifi-
cant interest from researchers. The use of curved beams is increasing in popularity for their
beneficial mechanical behavior under compression and their aesthetic appeal in contempo-
rary architecture. Curved beams are widely employed in the aerospace, civil, and marine
engineering sectors [52,53]. Numerous studies have examined the behavior of curved beams
to provide engineers with practical knowledge about their stability. Classical theories, such
as those developed by Simitses and Timoshenko, predict elastic buckling loads and provide
approximations for the classical buckling load for sinusoidal shallow arches under evenly dis-
tributed loads [54,55]. Since then, researchers have expanded these approaches, resulting
in closed-form solutions and finite element method analyses under various assumptions, like
in [56,57]. Accurate prediction of buckling loads is essential for resistance design [58].

The stability of a uniform half-sine shallow arch was examined under static loading in a
thermal environment in [59]. The kinematical theory is a modified Euler-Bernoulli hypoth-
esis, assuming large transverse displacements. The axial force is assumed to be constant
along the arch axis. The effect of concentrated, uniform and asymmetrically distributed
mechanical loads were examined by tracking the equilibrium paths. In paper [60] an an-
alytical model is presented from the virtual work principle capable to handle the in-plane
elastic stability of a shallow parabolic arches. These are supported by horizontal springs
that and are subjected to uniformly distributed load. Several investigations have examined
the effect of concentrated forces at the crown point of arches [61,62,63,64]. These studies
aim to improve the design against collapse. Numerical studies have also shown that the
position of the radial load notably affects the non-linear equilibrium and limit-point buck-
ling load [65,66]. The in-plane elastic static stability of circular beams with cross-sectional
inhomogeneity when exposed to a vertical load at the crown point, was investigated in [67].
The critical loads both for symmetric snap-through and antisymmetric bifurcation buckling
are assessed. The effect of an arbitrary load on fixed supports is addressed in [68]. The in-
plane stability of rotationally restrained shallow arches subjected to temperature variations
and a vertical uniform load was investigated by Cai et al [69]. The nonlinear equilibrium
and buckling equations were established using the virtual work principle. Analytical so-
lution for the nonlinear in-plane symmetric and asymmetric bifurcation critical loads were
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found. Temperature variations had a considerable impact on the critical loads for both the
symmetric snap-through and asymmetric bifurcation modes.

Understanding the factors influencing arch buckling, including load type, material prop-
erties, and arch geometry, is vital. Incorporating these factors into the design process enables
engineers to develop arches better equipped to resist buckling, ensuring structural safety and
stability. Early investigations into the influence of geometric imperfections on the stability
of shallow arches are documented in references [70] and [71]. A more recent study, outlined
in reference [72], highlights that slightly imperfect homogeneous shallow arches with inter-
layer slip may exhibit multiple unconnected remote equilibrium paths. Additionally, Yan et
al. [73] investigated the instability observed in imperfect non-uniform circular shallow arches
subjected to radial pressure. They examined how the snap-through behavior is influenced
by parameters such as imperfection magnitude and mode number. Chroscielewski et al [74]
addressed the challenge of solving nonlinear BVPs for elastic structures, specifically focusing
on the post-buckling behavior of shear-deformable circular arches. Their paper discusses the
numerical difficulties involved in finding solutions for these structures, particularly under
highly nonlinear regimes.

1.4. Objectives

Based on the above literature review, the following objectives and issues are identified to
be solved in my thesis.

Objective 1. Using the core of Green function technique, my objective can be summa-
rized by the following points:

• To tackle the stability problem of heterogeneous beams with three supports, particu-
larly those with intermediate spring supports. The stability problems of these beams
are to be given by three-point boundary value problems.
• To develop an advanced stability analysis framework for heterogeneous beams with
three supports using the Green function technique.
• To clarify the properties of the Green function for the considered three-point eigen-
value problems and provide their calculations.
• To transform the eigenvalue problems established for the critical load into eigenvalue
problems governed by homogeneous Fredholm integral equations.
• Solving these integral equations numerically enables the determination of critical
loads, offering fresh insights into the stability of such beams.
• To investigate the impact of the middle support position on the ultimate load bearing
abilities.

Objective 2. Within the scope of the aforementioned discussion, my Objective 2 is
articulated as follows:

• To elucidate the structure of the Green function specifically tailored for a class of four-
point boundary value problems, generalizing earlier results from three-point boundary
value problems.
• To utilize the constructed Green function to transform four-point eigenvalue problems
into homogeneous Fredholm integral equations, with the Green function serving as
the kernel.
• To calculate the eigenvalues for the free vibrations of the considered beams. To
develop a solution algorithm for the eigenvalue problems governed by homogeneous
Fredholm integral equations by reducing these integral equations to algebraic eigen-
value problems, which are then solved numerically.
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• To provide example about the applicability of the technique, involving heterogeneous
beams with four supports.
• To validate the numerical results using commercial Finite Element (FE) software.

Objective 3. Within the frames of what has been mentioned above, my Objective 3 is
related to the application of Green function technique to study the vibration and stability
of stepped heterogeneous beams. In details, my goals are

• To develop and formalize the definition of Green functions tailored specifically for
coupled boundary value problems. To clarify the intrinsic properties of these Green
functions and devise methodologies for calculating their specific elements.
• To demonstrate the application of these Green functions to stepped heterogeneous
beams with two supports. To focus on beams fixed and pinned at both endpoints,
covering scenarios both with and without axial loads.
• To calculate the eigenfrequencies for both unloaded and axially loaded stepped beams.
• To transform the eigenvalue problems into homogeneous Fredholm integral equations,
solve these numerically, and provide accurate eigenfrequency data.
• To assess the impact of axial tensile or compressive loads by replacing classical eigen-
value problems with Fredholm integral equations.
• To provide detailed analysis and numerical solutions to stability problems, ensuring
the robustness of the Green function approach in various loading conditions.
• To validate the proposed methods and solutions by comparing them with results
obtained from other established methods, such as finite element analysis.

Objective 4. It is my Objective 4 to incorporate geometrical imperfections into a one-
dimensional arch model to tackle the in-plane static stability of fixed arches subjected to
radial concentrated load. My investigations have the following aims:

• To assemble a geometrically non-linear mechanical model that accounts for initial
shape error in order to assess the arch sensitivity to this kind of imperfection.
• To derive the equilibrium equations from a variational principle.
• To solve these equations analytically.
• To identify the limit points on the non-linear equilibrium path and analyze the effects
of geometric parameters on the critical load. To extend the analysis to include various
arch geometries to provide a comprehensive understanding of their stability behavior.



CHAPTER 2

Stability of straight beams with three supports with a Green
function technique

2.1. Differential equations

2.1.1. Governing equations. We will consider three heterogeneous beams, each with
three supports. The middle one is a linear spring. These are referred to in short as FssF
(fixed-spring supported-fixed), FssP (fixed-spring supported-pinned), and PssP (pinned-
spring supported-pinned) beams. They are shown in Figure 2.1. The beams have uniform
cross section throughout their longitudinal axis. The centerline coincides with the axis x̂ of
the coordinate system x̂, ŷ, ẑ. Its origin is at the left end of the centerline. It is assumed that
the coordinate plane x̂ẑ is a symmetry plane of the beams, while ŷ is a major principal axis
of the cross-section. The modulus of elasticity E satisfies the relation E(ŷ, ẑ) = E(−ŷ, ẑ).
Such case is called cross-sectional heterogeneity (or inhomogeneity). The length of the beam
is L, the position of the middle support is identified by the coordinate b̂.

Equilibrium problems of such beams – the axial force N is zero – are governed by the
ordinary differential equation [75]:

d4ŵ

dx̂4
=

f̂z
Iey

(2.1.1)

where ŵ(x̂) is the vertical displacement of the (E-weighted) centerline, f̂z(x̂) is the intensity
of the distributed load reduced to the centerline and Iey is the bending stiffness, given by

Iey =

∫
A

E(ŷ, ẑ)ẑ2 dA . (2.1.2)

If E is constant, i.e., the beam is homogeneous then

Iey = IE, I =

∫
A

ẑ2 dA (2.1.3)

L

b

ŵ

x

ŵ

x

N

N

xN
ŵ

z

Figure 2.1. The considered heterogeneous beams.
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in which I is the moment of inertia to ŷ.
In what follows we shall use dimensionless variables defined by the following relations

x = x̂/L, ξ = ξ̂/L, w = ŵ/L,

y =
dŵ

dx̂
=

dw

dx
, b = b̂/ˆ̀, ` =

x

L

∣∣∣
x=L

= 1 ,
(2.1.4)

where ξ̂ is also a coordinate measured on the axis x̂ with the same origin as for x̂. Applying
dimensionless quantities to equation (2.1.1) we have

d4w

dx4
= fz , fz =

L3f̂z
Iey

(2.1.5)

This equation is paired with the boundary and continuity conditions of Table 21.
Table 21. Boundary and continuity conditions.

Boundary conditions
Fixed-fixed beam Fixed-pinned beam Pinned-pinned beam

with an intermediate spring support
(FssF beam) (FssP beam) (PssP beam)

w(0) = 0 , w(1)(0) = 0 w(0) = 0 , w(1)(0) = 0 w(0) = 0 , w(2)(0) = 0

w(`) = 0 , w(1)(`) = 0 w(`) = 0 , w(2)(`) = 0 w(`) = 0 , w(2)(`) = 0

Continuity conditions

w(b− 0) = w(b+ 0) ,

w(1)(b− 0) = w(1)(b+ 0) ,

w(2)(b− 0) = w(2)(b+ 0) ,

w(3)(b− 0)− χw(b) = w(3)(b+ 0) .
Here it has been taken into account that

d3ŵ

dx̂3

∣∣∣∣
(b̂−0)

− χ̂ŵ(b̂) =
d3ŵ

dx̂3

∣∣∣∣
(b̂+0)

; χ̂ =
k

Iey
,

where k is the rigidity of the spring, and

χ =
k

Iey
L3 = χ̂L3.

We remark that the general solution of the homogeneous differential equation

w(4) = 0 , w(n) =

w if n = 0
dnw

dxn
if n = 1, 2, . . .

(2.1.6a)

is very simple with the ai integration constants:

w =
4∑
`=1

a`w`(x) = a1 + a2x+ a3x
2 + a4x

3 . (2.1.6b)

If we know the Green function G(x, ξ) of the boundary value problem (2.1.5), 21 the
solution for the dimensionless deflection w is given by the integral

w(x) =

∫ `

0

G(x, ξ)fz(ξ) dξ . (2.1.7)

The Green functions we shall need are presented in Section 2.2.
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2.1.2. Stability issue. Equilibrium problems of axially loaded, uniform heterogeneous
beams are governed by

w(4) ±N w(2) = fz, N = L2 N

Iey
, (2.1.8)

when the axial force N is constant (N > 0 for compression).
If the stability problem is considered the axial force is compressive and fz = 0. We have,

therefore, three eigenvalue problems (one for each beam shown in Table 21 ) – the eigenvalue
sought is N – determined by the differential equation

w(4) = −N w(2) (2.1.9)

and the boundary and continuity conditions in Table 21. If we write −N w(2) for fz in (2.1.7)
we get

w(x) = −N
∫ `

0

G(x, ξ)
d2w(ξ)

dξ2
dξ = −N

(
G(x, ξ)

dw(ξ)

dξ

∣∣∣∣`
ξ=0

−
∫ `

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ

)
where

G(x, ξ)
dw(ξ)

dξ

∣∣∣∣`
ξ=0

= 0

since the Green function should satisfy the boundary conditions. Thus,

w(x) = N
∫ `

0

∂G(x, ξ)

∂ξ

dw(ξ)

dξ
dξ .

After derivation, is is found that

dw

dx
= N

∫ `

0

∂2G(x, ξ)

∂x ∂ξ

dw(ξ)

dξ
dξ .

Now with the new variables:
dw

dx
= y,

∂2G(x, ξ)

∂x ∂ξ
= K(x, ξ) (2.1.10)

we get a homogeneous Fredholm integral equation:

y(x) = N
∫ `

0

K(x, ξ) y(ξ) dξ (2.1.11)

In this way the eigenvalue problems are reduced to eigenvalue problems governed by ho-
mogeneous Fredholm integral equations. The above steps are based on [19]. Differential
equation (2.1.9) can be rewritten in the form

K(w) = λM(w); K(w) = w(4), M(w) = −w(2), λ = N . (2.1.12)

The exact solution w(x) is a comparative function, while the differential operator K(w)
and the eigenvalue problems mentioned are self-adjoint.

2.2. Green function definition and construction for three-point BVPs

2.2.1. Definition. We shall consider the inhomogeneous ordinary differential equation

L[y(x)] = r(x) , (2.2.1)

where the differential operator of order 2k is defined by

L[y(x)] =
2k∑
n=0

pn(x)y(n)(x). (2.2.2)
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Here, k is a natural number, the functions pn(x) and r(x) are continuous and p2k(x) 6= 0 if
x ∈ [0, `] (` > 0). Moreover let b an inner point in the interval [0, `]: b = `1, `− b = `2 and
`1 + `2 = `.

We assume the inhomogeneous differential equation (2.2.1) is paired with the homoge-
neous boundary and continuity conditions:

2k∑
n=0

αnrIy
(n−1)
I (0) = 0 , r = 1, 2, . . . , k

2k∑
n=0

βnrIy
(n−1)
I (b)−

2k∑
n=0

βnrIIy
(n−1)
II (b) = 0 , r = 1, 2, ...., 2k

2k∑
n=0

γnrIIy
(n−1)
II (`) = 0 . r = 1, 2, . . . , k

(2.2.3)

The Latin subscripts I and II refer successively to the intervals [0, b] and [b, `]: yI and yII
are the solutions to the differential equation in the interval I and II. While αnrI , βnrI , βnrII
and γnrII are arbitrary constants.

Solution of (2.2.1), (2.2.2) and (2.2.3) is sought as

y(x) =

∫ `

0

G(x, ξ)r(ξ)dξ , (2.2.4)

where the function G(x, ξ) is the Green function defined by the following formulas and
properties [76,77]:
Formulae:

G(x, ξ) =


G1I(x, ξ) if x, ξ ∈ [0, `],
G2I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, `],
G1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
G2II(x, ξ) if x, ξ ∈ [b, `].

(2.2.5)

Properties:
1. The function G1I(x, ξ) is a continuous function of x and ξ if 0 ≤ x ≤ ξ ≤ b and
0 ≤ ξ ≤ x ≤ b. In addition it is 2k times differentiable with respect to x and the derivatives

∂nG1I(x, ξ)

∂xn
= G1I(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2k (2.2.6)

are also continuous functions of x and ξ in the triangles 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤ x ≤ b.
2. Let ξ be fixed in [0, b]. The function G1I(x, ξ) and its derivatives

G
(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (2.2.7)

should be continuous for x = ξ:

lim
ε→0

[
G

(n)
1I (ξ + ε, ξ)−G(n)

1I (ξ − ε, ξ)
]

=

=
[
G

(n)
1I (ξ + 0, ξ)−G(n)

1I (ξ − 0, ξ)
]

= 0 , n = 0, 1, 2, . . . 2k − 2 (2.2.8a)

The derivative G(2k−1)
1I (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2k−1)
1I (ξ + ε, ξ)−G(2k−1)

1I (ξ − ε, ξ)
]

=

=
[
G

(2k−1)
1I (ξ + 0, ξ)−G(2k−1)

1I (ξ − 0, ξ)
]

=
1

p2k(ξ)
. (2.2.8b)
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In contrast to this, G2I(x, ξ) and its derivatives

G
(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (2.2.9)

are all continuous functions for any x in [b, `].
3. Let ξ be fixed in [b, `]. The function G1II(x, ξ) and its derivatives

G
(n)
1II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k (2.2.10)

are all continuous functions for any x in [0, b].
4. Though the function G2II(x, ξ) and its derivatives

G
(n)
2II(x, ξ) =

∂nG2II(x, ξ)

∂xn
, n = 1, 2, . . . , 2k − 2 (2.2.11)

are also continuous for x = ξ:

lim
ε→0

[
G

(n)
2II(ξ + ε, ξ)−G(n)

2II(ξ − ε, ξ)
]

=

=
[
G

(n)
2II(ξ + 0, ξ)−G(n)

2II(ξ − 0, ξ)
]

= 0 , n = 0, 1, 2, . . . 2k − 2 (2.2.12a)

the derivative G(2k−1)
2II (x, ξ) should, however, have a jump if x = ξ:

lim
ε→0

[
G

(2k−1)
2II (ξ + ε, ξ)−G(2k−1)

21I (ξ − ε, ξ)
]

=

=
[
G

(2k−1)
2II (ξ + 0, ξ)−G(2k−1)

2II (ξ − 0, ξ)
]

=
1

p2k(ξ)
. (2.2.12b)

5. Let α be an arbitrary but finite non-zero constant. For a fixed ξ ∈ [0, `] the product
G(x, ξ)α as a function of x (x 6= ξ) should satisfy the homogeneous differential equation

L [G(x, ξ)α] = 0 .

6. The product G(x, ξ)α as a function of x should satisfy both the boundary conditions and
the continuity conditions

∑2k
n=1 αnrI G

(n−1)(0) = 0 , r = 1, . . . , k∑2κ
n=1

(
βnrI G

(n−1)(b− 0)− βnrII G(n−1)(b+ 0)
)

= 0 , r = 1, . . . , 2k∑2k
n=1 γnrII G

(n−1)(`) = 0 . r = 1, . . . , k

(2.2.13)

The above continuity conditions should be satisfied by the function pairs G1I(x, ξ), G2I(x, ξ)
and G1II(x, ξ), G2II(x, ξ) as well.

Integral (2.2.4) satisfies differential equation and boundary conditions (2.2.3). Because
the BVP (2.2.1) and (2.2.3) is self-adjoint, the Green function is symmetric [76]:

G(x, ξ) = G(ξ, x) . (2.2.14)

In Subsections 2.2.2, 2.2.3 and 2.2.4 we present the Green functions for the boundary
conditions of Table 21. The calculations are detailed for FssF case only.

2.2.2. Green function for FssF beams.
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2.2.2.1. Calculation of the Green function if ξ ∈ [0, b]. As regards the form G1I(x, ξ), it
is distinguished as

G1I(x, ξ) =
4∑

m=1

(amI(ξ) + bmI(ξ))wm(x), x ≤ ξ

G1I(x, ξ) =
4∑

m=1

(amI(ξ)− bmI(ξ))wm(x), x ≥ ξ

(2.2.15)

if x ∈ [0, b]. Otherwise, it has the structure

G2I(x, ξ) =
4∑

m=1

cmI(ξ)wm(x), (2.2.16)

if x ∈ [b, `]. The coefficients amI(ξ), bmI(ξ) and cmI(ξ) are unknown functions, wm(x) is
defined in Eq. (2.1.6b).

This representation for G1I(x, ξ) and G2I(x, ξ) ensures the fulfillment of the above listed
properties.

The related continuity and discontinuity conditions (2.2.8) return
4∑

m=1

bmI(ξ)w
(n)
m (ξ) = 0, n = 0, 1, 2 (2.2.17a)

4∑
m=1

bmI(ξ)w
(3)
m (ξ) = −1

2
. (2.2.17b)

For FssF beams equations (2.2.17a) and (2.2.17b) are
1 ξ ξ2 ξ3

0 1 2ξ 3ξ2

0 0 2 6ξ
0 0 0 6



b1I

b2I

b3I

b4I

 =


0
0
0
−1

2

 , (2.2.18)

yielding

b1I =
ξ3

12
, b2I = −ξ

2

4
, b3I =

ξ

4
, b4I =

1

12
. (2.2.19)

Note that the results for bmI are independent of the boundary conditions.
As per Property 6, G1I(x, ξ) and G2I(x, ξ) should satisfy the boundary and continuity

conditions. This condition returns the following equations:
(i) Boundary conditions at x = 0:

a1Iw1(0) + a2Iw2(0) + a3Iw3(0) + a4Iw4(0) =

= −b1Iw1(0)− b2Iw2(0)− b3Iw3(0)− b4Iw4(0) , (2.2.20a)

a1Iw
(1)
1 (0) + a2Iw

(1)
2I (0) + a3Iw

(1)
3 (0) + a4Iw

(1)
4 (0) =

= −b1Iw
(1)
1 (0)− b2Iw

(1)
2 (0)− b3Iw

(1)
3 (0)− b4Iw

(1)
4 (0) . (2.2.20b)

(ii) Continuity conditions at x = b:

a1Iw1(b) + a2Iw2(b) + a3Iw3(b) + a4Iw4(b) =

= b1Iw1(b) + b2Iw2(b) + b3Iw3(b) + b4Iw4(b) , (2.2.20c)

c1Iw1(b) + c2Iw2(b) + c3Iw3(b) + c4Iw4(b) = 0 , (2.2.20d)
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a1Iw
(1)
1 (b) + a2Iw

(1)
2I (b) + a3Iw

(1)
3 (b) + a4Iw

(1)
4 (b)−

− c1Iw
(1)
1 (b)− c2Iw

(1)
2 (b)− c3Iw

(1)
3 (b)− c4Iw

(1)
4 (b) =

= b1Iw
(1)
1 (b) + b2Iw

(1)
2 (b) + b3Iw

(1)
3 (b) + b4Iw

(1)
4 (b) , (2.2.20e)

a1Iw
(3)
1 (b) + a2Iw

(3)
2I (b) + a3Iw

(3)
3 (b) + a4Iw

(3)
4 (b)−

− c1Iw
(3)
1 (b)− c2Iw

(3)
2 (b)− c3Iw

(3)
3 (b)− c4Iw

(3)
4 (b)−

− χ(c1Iw1(b) + c2Iw2(b) + c3Iw3(b) + c4Iw4(b)) =

= b1Iw
(3)
1 (b) + b2Iw

(3)
2 (b) + b3Iw

(3)
3 (b) + b4Iw

(3)
4 (b) (2.2.20f)

(iii) Boundary conditions at x = `:

c1Iw1(`) + c2Iw2(`) + c3Iw3(`) + c4Iw4(`) = 0 , (2.2.20g)

c1Iw
(1)
1 (`) + c2Iw

(1)
2 (`) + c3Iw

(1)
3 (`) + c4Iw

(1)
4 (`) = 0 . (2.2.20h)

After the solutions are found for the linear system of equations, they are plugged back
to the formula for G1I(x, ξ) so that

G1I(x, ξ) =
4∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =

(
− ξ

3

12
± 1

12
ξ3

)
+

(
3

12
ξ2 ±

(
−3ξ2

12

))
x+

+

(
3

12
ξ

3`4 − 12`3ξ + 6`2ξ2 + χb (`− b)3 (b2`− 3b`ξ + `ξ2 + ξ2b− ξb2)

`
(
χb3 (`− b)3 + 3`3

) ± 3ξ

12

)
x2+

+

(
− 1

12

12`ξ3−18`2ξ2+3`4+χ (`−b)3 (b3`+`ξ3−3b2ξ2−3b`ξ2+3ξ3b)

`
(
χb3 (`− b)3 + 3`3

) ± −1

12

)
x3 (2.2.21a)

As regards G2I(x, ξ) the result is

G2I(x, ξ) =
4∑
`=1

c`I(ξ)w`(x) =

= −1

4

ξ2

`

(x− `)2

χb3 (`− b)3 + 3`3

(
2ξ`2 − 6x`2 + 4xξ`+ χb2 (`− b)2 (b− x) (ξ − b)

)
(2.2.21b)

2.2.2.2. Calculation of the Green function if ξ ∈ [b, `]. The following notations are ap-
plied:
If x ∈ [b, `] then

G2II(x, ξ) =
4∑

m=1

(amII(ξ) + bmII(ξ))wm(x), x ≤ ξ

G2II(x, ξ) =
4∑

m=1

(amII(ξ)− bmII(ξ))wm(x), x ≥ ξ

(2.2.22)

however, if x ∈ [0, b] then

G1II(x, ξ) =
4∑

m=1

cmII(ξ)wm(x), (2.2.23)

where the coefficients amII(ξ), bmII(ξ) and cmII(ξ) are unknown. Continuity and disconti-
nuity conditions (2.2.12) determine an equation system for the unknowns bmII(ξ), cmII(ξ)
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m = 1, 2, 3, 4. It holds that bmII(ξ) = bmI(ξ).
(i) Boundary conditions at x = 0:

c1IIw1(0) + c2IIw2(0) + c3IIw3(0) + c4IIw4(0) = 0 . (2.2.24a)

c1IIw
(1)
1 (0) + c2IIw

(1)
2 (0) + c3IIw

(1)
3 (0) + c4IIw

(1)
4 (0) = 0 , (2.2.24b)

(ii) Continuity conditions at x = b:

c1IIw1(b) + c2IIw2(b) + c3IIw3(b) + c4IIw4(b) = 0 , (2.2.24c)

a1IIw1(b) + a2IIw2(b) + a3IIw3(b) + a4IIw4(b) =

= −b1IIw1(b)− b2IIw2(b)− b3IIw3(b)− b4IIw4(b), (2.2.24d)

a1IIw
(1)
1 (b) + a2IIw

(1)
2I (b) + a3IIw

(1)
3 (b) + a4IIw

(1)
4 (b)−

− c1IIw
(1)
1 (b)− c2IIw

(1)
2 (b)− c3IIw

(1)
3 (b)− c4IIw

(1)
4 (b)

= −b1IIw
(1)
1 (b)− b2IIw

(1)
2 (b)− b3IIw

(1)
3 (b)− b4IIw

(1)
4 (b) , (2.2.24e)

− a1IIw
(3)
1 (b)− a2IIw

(3)
2I (b)− a3IIw

(3)
3 (b)− a4IIw

(3)
4 (b)−

+ c1IIw
(3)
1 (b) + c2IIw

(3)
2 (b) + c3IIw

(3)
3 (b) + c4IIw

(3)
4 (b))+

+ χ (c1IIw1(b) + c2IIw2(b) + c3IIw3(b) + c4IIw4(b)) =

= b1IIw
(3)
1 (b) + b2IIw

(3)
2 (b) + b3IIw

(3)
3 (b) + b4IIw

(3)
4 (b) . (2.2.24f)

(iii) Boundary conditions at x = `:

a1IIw1(`) + a2IIw2(`) + a3IIw3(`) + a4IIw4(`)−
− b1IIw1(`)− b2IIw2(`)− b3IIw3(`)− b4IIw4(`) = 0 , (2.2.24g)

a1IIw
(1)
1 (`) + a2IIw

(1)
2 (`) + a3IIw

(1)
3 (`) + a4IIw

(1)
4 (`)−

− b1IIw
(1)
1 (`)− b2IIw

(1)
2 (`)− b3IIw

(1)
3 (`)− b4IIw

(1)
4 (`) = 0 . (2.2.24h)

Since c1II = c2II = 0 the last equation system has the following form:
1 b b2 b3 −b2 −b3

0 1 2b 3b2 −2b −3b2

0 0 2 6b −2 −6b
0 0 0 −6 −χb2 −χb3 + 6
1 ` `2 `3 0 0
0 1 2` 3`2 0 0




a1II

a2II

a3II

a4II

c3II

c4II

 =
1

12


−ξ3 + 3bξ2 − 3b2ξ + b3

3ξ2 − 6bξ + 3b2

−6ξ + 6b
−6

ξ3 − 3ξ2`+ 3ξ`2 − `3

−3ξ2 + 6ξ`− 3`2

 (2.2.25)

Solution of the above yields the coefficients, that makes it possible to construct the terms
G1II(x, ξ) and G2II(x, ξ) as

G1II(x, ξ) =
4∑
`=1

c`I(ξ)w`(x) =

= −1

4

x2

`

(ξ − `)2

χb3 (`− b)3 + 3`3

(
2x`2 − 6ξ`2 + 4xξ`+ b2χ (b− `)2 (ξ − b) (b− x)

)
(2.2.26a)
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and

G2II(x, ξ) =
4∑
`=1

(a`II(ξ)± b`II(ξ))w`(x) =

= − 1

12

3`3ξ3 + χb3 (`3ξ3 + `3b3 + b3ξ3 − 3b3ξ2`− 3b2`3ξ − 3b`2ξ3 + 6b2ξ2`2)

χb3 (`− b)3 + 3`3
± ξ3

12
+

+

(
3

12

3`3ξ2+ χb3 (b2`3+ 2b2ξ3+ 3bξ2`2− 3b`ξ3+ `3ξ2− 3b`3ξ− b3ξ2)

χb3 (`− b)3 + 3`3
±−3ξ2

12

)
x+

+

(
3

12

3`4ξ − 12`3ξ2 + 6`2ξ3

`
(
χb3 (`− b)3 + 3`3

)+

+
3

12

χb3 (`4ξ − 4`3ξ2+ 2`2ξ3− 2b2`3− b3`ξ − b2ξ3+ b3ξ2+ `2b3+ 3b`3ξ)

`
(
χb3 (`− b)3 + 3`3

) ± 3ξ

12

)
x2+

+

(
1

12

18ξ2`2 − 3`4 − 12`ξ3

`
(
χb3 (`− b)3 + 3`3

)x3+

+
1

12

χb3 (3bξ3 − 3b2ξ2 + 3b`3 − 9b`2ξ + 6ξ2`2 − 4`ξ3 + 6b2ξ`− b3`− `4)

`
(
χb3 (`− b)3 + 3`3

) ± −1

12

)
x3

(2.2.26b)

Figure 2.2 displays the Green function of an FssF beam if L = 100 mm, ξ̂ = 75 mm as
function of the dimensionless spring constant χ. If (χ = 0) [χ → ∞] the beam behaves as
if it were a (fixed-fixed beam,see Table 8.1 in [78]) [fixed-fixed beam with an intermediate
roller support, see Fig. 2 in paper [77]for a comparison]. The graphs that show the Green
function are the continuous lines, and the markers are the computed values.
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Figure 2.2. The Green function of an FssF beam.

2.2.3. Green function for FssP beams. Repeating the calculation steps detailed in
Subsection 2.2.2 but now for FssP beams, it is now simple to find the following four elements
of the Green function:
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G1I(x, ξ) =
4∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =

(
− ξ

3

12
± ξ3

12

)
+

(
3ξ

12
±
(
−3ξ2

12

))
x+

+

(
3

12
ξ

12` (`2 + ξ2− 3ξ`)−χb (b− `)2 (b3 − 4b2`− 2ξ2b+ 12b`ξ − 4`ξ2)

χb3 (4`− b) (b− `)2 + 12`3
± 3ξ

12

)
x2+

+

(
1

12

12ξ2 (3`− ξ)− 12`3

χb3 (4`− b) (b− `)2 + 12`3
+

+
1

12

χ (b− `)2 (b4 − 4b3`+ 6b2ξ2 − 8ξ3b+ 12ξ2b`− 4ξ3`)

χb3 (4`− b) (b− `)2 + 12`3
± −1

12

)
x3, (2.2.27a)

G2I(x, ξ)=
4∑

m=1

cmI(ξ)wm(x)=
1

2
(`−x) ξ2

(
2 (6x`2 − 2`2ξ − 3x2`− 2`ξx+ ξx2)

χb3 (4`− b) (`− b)2 + 12`3
+

+
χb2 (b− x) (`− b) (2`− b− x) (b− ξ)

χb3 (4`− b) (`− b)2 + 12`3

)
, (2.2.27b)

G1II(x, ξ)=
4∑

m=1

cmII(ξ)wm(x)=
1

2
(`−ξ)x2

(
2 (6ξ`2−2`2x−3ξ2`−2`xξ + xξ2)

χb3 (4`− b) (`− b)2 + 12`3
+

+
χb2 (b− ξ) (`− b) (2`− b− ξ) (b− x)

χb3 (4`− b) (`− b)2 + 12`3

)
, (2.2.27c)

G2II(x, ξ) =
4∑
`=1

(a`II(ξ)± b`II(ξ))w`(x) =

= − 1

12

12`3ξ3+χb3 (b3ξ3−9b`2ξ3−6b3ξ2`−12b2ξ`3+4`3ξ3+18b2`2ξ2+4b3`3)

χb3 (4`− b) (`− b)2 + 12`3
± ξ

3

12
+

+

(
3

12

12`3ξ2+χb3 (4b2`3−12bξ`3+4`3ξ2+9b`2ξ2+2b2ξ3−b3ξ2−6b`ξ3)

χb3 (4`− b) (`− b)2 + 12`3
±−3ξ2

12

)
x+

+

(
3

12

12`ξ (ξ2 − 3`ξ + `2)

χb3 (4`− b) (`− b)2 + 12`3
+

+
3

12

χb3 (9bξ`2 − 12`2ξ2 + 4`ξ3 + 2b3`− b3ξ + 4ξ`3 − 6b2`2)

χb3 (4`− b) (`− b)2 + 12`3
± 3ξ

12

)
x2+

+

(
− 1

12

12 (ξ3 − 3`ξ2 + `3)

χb3 (4`− b) (`− b)2 + 12`3
−

− 1

12

χb3 (4`3 − 9b`2 + 18bξ`− 12ξ2`− 6b2ξ + 4ξ3 + b3)

χb3 (4`− b) (`− b)2 + 12`3
± −1

12

)
x3. (2.2.27d)

2.2.4. Green function for PssP beams. As regards PssP beams the following equa-
tions constitute the Green functions:

G1I(x, ξ) =
4∑
`=1

(a`I(ξ)± b`I(ξ))w`(x) =

(
− ξ

3

12
± ξ3

12

)
+
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+

(
1

12
ξ

12`3+ 6ξ2`−9`2ξ + χb (`−b)2 (4b2`−3b`ξ + 2ξ2`+ ξ2b−b3)

`
(
χb2 (`−b)2 + 3`

) ±
(
−3ξ2

12

))
x+

+

(
−3ξ

12
± 3ξ

12

)
x2 +

(
− 1

12

3`2 − 6`ξ + χ (`−b)2 (b2`− 2b`ξ − ξb2 + ξ3)

`
(
χb2 (`− b)2 + 3`

) ± −1

12

)
x3,

(2.2.28a)

G2I(x, ξ)=
4∑
`=1

c`I(ξ)w`(x)=
ξ

12

1

`
(
χb2 (`−b)2 + 3`

)(6` (`−x)
(
2x`− x2 − ξ2

)
+

+ χb (b− x) (`− x) (`− b) (2`− b− x)
(
b2 − ξ2

))
, (2.2.28b)

G1II(x, ξ)=
4∑
`=1

c`II(ξ)w`(x)=
x

12

1

`
(
χb2 (`−b)2 + 3`

)(6` (`−ξ)
(
2ξ`− ξ2 − x2

)
+

+ χb (b− ξ) (`− ξ) (`− b) (2`− b− ξ)
(
b2 − x2

))
(2.2.28c)

G2II(x, ξ) =
4∑
`=1

(a`II(ξ)± b`II(ξ))w`(x) =

= − 1

12

3`ξ3 − χb2 (2b2`2ξ − `2ξ3 − 3`b2ξ2 + 2b`ξ3 − `b4 + b4ξ)

χb2 (`− b)2 + 3`
± ξ3

12
+

+

(
1

12

3`ξ (2ξ2 − 3`ξ + 4`2)

`
(
χb2 (`− b)2 + 3`

) +

+
1

12

χb2 (3`3ξ2− 8b`3ξ + 2`3b2 + 6bξ2`2− 4b`ξ3 + `b4− b4ξ + b2ξ3)

`
(
χb2 (`− b)2 + 3`

) ± −3ξ2

12

)
x+

+

(
3

12

−3`ξ + χb2 (ξ3 + 2bξ`− 3ξ2`+ ξ`2 − b2`)

χb2 (`− b)2 + 3`
± 3ξ

12

)
x2+

+

(
− 1

12

3`2 − 6`ξ + χb2 (−b2ξ + ξ3 + `3 − 2b`2 + 4bξ`− 3ξ2`)

`
(
χb2 (`− b)2 + 3`

) ± −1

12

)
x3. (2.2.28d)

Note that the Green functions given by equations (2.2.21) and (2.2.26) (FssF beams),
(2.2.27) (FssP beams), (2.2.28) (PssP beams) are dimensionless quantities. However, if we
write b̂, L, x̂, ξ̂ and χ̂ for b, `, x, ξ and χ in these formulae we obtain the Green function
for the case when we use a selected length unit. Then the unit of the Green function is the
cube of the length unit selected and the displacement field ŵ(x̂) due to the distributed load
fz(x̂) is given by the relation

ŵ(x̂) =
1

Iey

∫ L

0

G(x̂, ξ̂)fz(ξ̂)dξ . (2.2.29)

2.3. Stability problem of beams

2.3.1. Solution procedure. There are several methods to find the critical loads. Like-
wise, one can solve the eigenvalue problem numerically with, e.g., the boundary element
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technique, or alternatively, one can find the related characteristic equations to be solved nu-
merically. The use of the boundary element technique is preferred hereinafter while the char-
acteristic equation will serve as benchmark. The solution procedure is detailed in book [78].
It is noted that the interval [0, 1] was divided into 40 quadratic elements. A Fortran 90 code
was developed. The resulting algebraic eigenvalue problem was solved with the subroutine
DGVLRG.

The kernel in equation (2.1.11) takes the structure

K(x, ξ) =


K1I(x, ξ) if x, ξ ∈ [0, `],
K2I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, `],
K1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
K2II(x, ξ) if x, ξ ∈ [b, `],

(2.3.1a)

where

K1I(x, ξ) =
∂2G1I(x, ξ)

∂x ∂ξ
, K2I(x, ξ) =

∂2G2I(x, ξ)

∂x ∂ξ
,

K1II(x, ξ) =
∂2G1II(x, ξ)

∂x ∂ξ
, K2II(x, ξ) =

∂2G2II(x, ξ)

∂x ∂ξ
.

(2.3.1b)

2.3.2. Numerical results.
2.3.2.1. FssF beams. Figure 2.3 illustrates the dimensionless critical force

√
Ncrit/π of a

FssF beam for multiple values of b, and χ. The graph shows that when χ = 0, so there is
no middle support, the beam behaves as a standard fixed-fixed beam, yielding a constant
critical force of 2.0. As χ increases, indicating a stiffer intermediate support, the critical force
rises continuously and significantly. Peak values are found at b = 0.5. For very high values
of χ, the beam behaves as if it had a nearly rigid support at the midpoint, substantially
increasing the critical force the beam can withstand.
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Figure 2.3. The dimensionless critical force for an FssF beam.
2.3.2.2. FssP beams. Figure 2.4 shows the dimensionless critical force for FssP beams

against b. Unlike FssF beams, which exhibit symmetric behavior around b = 0.5, fixed-
pinned beams show that the critical buckling force is influenced by the position of the
intermediate support b, with the maximum resistance to buckling occurring when b is placed
around 0.63. For χ = 0, the results for fixed-pinned beam are retrieved, with a constant
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critical force of 1.4303. As χ approaches infinity, the beam behaves as if it has a rigid
intermediate support, with the critical force peaking at approximately 2.458 (see Figure
7 in [77] for comparison). This trend reflects that intermediate supports, particularly at
mid-span, can drastically enhance the buckling resistance.
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Figure 2.4. The dimensionless critical force for an FssP beam.
2.3.2.3. PssP beams. Figure 2.5 illustrates the dimensionless critical force for PssP beams

as a function of the support position b. When χ = 0, the beam behaves as a simple pinned-
pinned beam, yielding a dimensionless critical force of

√
Ncrit, /π = 1.0. In this configuration,

the dimensionless critical force reaches its maximum at b = 0.5. As χ approaches infinity,
the beam behaves as if it had a rigid intermediate support, yielding a critical force peak at
approximately 2.0.
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Figure 2.5. The dimensionless critical force for a PssP beam.

2.3.3. Example. Consider now a PssP beam with a rectangular cross-section as shown
in Figure 2.6. It is assumed that a = c = 100 mm, a1 = a2 = a/3, L = 2 m, E1 =
Ealuminium ≈ 7.0 ·104 N/mm2 while E2 = Esteal ≈ 2.1 ·105 N/mm2. The length L of the beam
is 2000 mm.
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a1 a1a2
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z
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C

Figure 2.6. The cross-section of an FssF beam
Under these conditions

Iey =
c3

12
(2a1E1 + a2E2) = 9.722 222 × 1011 N/mm2 (2.3.2)

It will also be assumed that k = 12.0× 103 N/mm. Then

χ =
k

Iey
L3 =

12.0× 103

9.722 222 × 1011
× 20003 = 98.7.

The dimensionless critical force for b = 0.5 is given by
√
Ncrit /π = 1.722880 from where, it

is Ncrit
∼= 29.3.

With Ncrit, equation (2.1.8) yields Ncrit = 7. 1211× 107 N.

Table 22. finite element results for PssP beams
3D Homogeneous beam(Alum) 3D Heterogenous beam(Steel −Alum)

New model(105N) FEM(105N) New model(105N) FEM(105N)

b χ = 165 χ = 100

0 1.437 1.456 2.396 2.331

0.25 or 0.75 3.072 3.050 4.355 4.357

0.5 5.751 5.677 7.121 7.066

Table 22 compares the results of the boundary element method to commercial finite
element program solutions by Ansys. In the finite element code, the beam was mapped
with 480 uniform hexahedral elements (SOLID185). As per the table, there is an excellent
agreement between the two sets of results.
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Figure 2.7. The effect of heterogeneity on the critical force.
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Finally, Figure 2.7 illustrates the influence of cross-sectional heterogeneity shown in Fig-
ure 2.6, on the critical force. The critical load Ncrit for the three-layered beam increases as
the ratio E1/E2 decreases. By strategically selecting the material distribution, it is possible
to improve the stiffness of the structure. It is noted this Chapter was based on the Author’s
publication {6}.



CHAPTER 3

Examination of four-point boundary value problems with the
Green function

3.1. Four-point boundary value problems

Let us consider the ordinary differential equation

L[y(x)] = r(x) . (3.1.1a)

The order of the differential operator is 2κ. The operator is defined by the following equation:

L[y(x)] =
2κ∑
n=0

pn(x) y(n)(x) . (3.1.1b)

Here κ ≥ 1 is a natural number, the functions pn(x) and r(x) are continuous if x ∈ [0, ` = 1]
(` > 0) and p2κ(x) 6= 0. Further, let b and c be an inner points in the interval [0, ` = 1]
where 0 < b < c < `, b = `1, c− b = `2, `− c = `3 and `1 + `2 + `3 = ` = 1.

The linearly independent particular solutions of (3.1.1b) are y`(x) (` = 1, 2, . . . , 2κ). Here
the y`(x) the general solution has the form

yI(x) =
2κ∑
`=1

A`Iy`I(x), if x ∈ [0, b];

yII(x) =
2κ∑
`=1

A`IIy`II(x), if x ∈ [b, c]; (3.1.2)

yIII(x) =
2κ∑
`=1

A`IIIy`III(x), if x ∈ [c, `].

y`(x) = y`I(x) = y`II (x) = y`III (x). Further, A`I , A`II andA`III are undetermined constants.
The differential equation (4.1.1) is paired with the boundary and continuity conditions

U0r[y] =
2κ∑
n=1

αnrI y
(n−1)
I (0) = 0 , r = 1, 2, . . . , κ (3.1.3a)

Ubr[y] = UbrI [yI ]− UbrII [yII ] =

=
2κ∑
n=1

(
βnrI y

(n−1)
I (b)− βnrII y(n−1)

II (b)
)

= 0 , r = 1, 2, . . . , 2κ (3.1.3b)

Ucr[y] = UcrI [yII ]− UcrII [yIII ] =

=
2κ∑
n=1

(
γnrI y

(n−1)
I (c)− γnrII y(n−1)

II (c)
)

= 0 , r = 1, 2, . . . , 2κ (3.1.3c)

U1r[y] =
2κ∑
n=1

δnrII y
(n−1)
II (`) = 0 , r = 1, 2, . . . , κ (3.1.3d)

where αnrI , βnrI , βnrII , γnrI , γnrII and δnrII are real constants.

21
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The above mentioned integration constants A`I , A`II and A`III can be found from the
boundary and continuity conditions:

2κ∑
`=1

A`IU0r[y`I ] = 0, r = 1, 2, . . . , κ (3.1.4a)

2κ∑
`=1

(A`IUbrI [y`I ]−A`IIUbrII [y`II ]) = 0, r = 1, 2, . . . , 2κ (3.1.4b)

2κ∑
`=1

(A`IIUcrI [y`II ]−A`IIIUcrII [y`III ]) = 0, r = 1, 2, . . . , 2κ (3.1.4c)

2κ∑
`=1

A`IIIU1r[z`II ] = 0, r = 1, 2, . . . , κ (3.1.4d)

If the Green function G(x, ξ) of the selected BVP is known, the solution can be given as

y(x) =

∫ `=1

ξ=0

G(x, ξ) r(ξ) dξ . (3.1.5)

3.2. Definition of the Green function for four point BVP

The G(x, ξ) Green function is defined in the forthcoming. Although the definition is similar
to what was given in the former Chapter, but now there are more intervals and for this
reason, it is detailed.
Formulas:

G(x, ξ) =



G1I(x, ξ) if x, ξ ∈ [0, b],
G2I(x, ξ) if x ∈ [b, c] and ξ ∈ [0, b],
G3I(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
G1II(x, ξ) if x ∈ [0, b] and ξ ∈ [b, c],
G2II(x, ξ) if x, ξ ∈ [b, c],
G3II(x, ξ) if x ∈ [c, `] and ξ ∈ [b, c],
G1III(x, ξ) if x ∈ [0, b] and ξ ∈ [c, `],
G2III(x, ξ) if x ∈ [b, c] and ξ ∈ [c, `],
G3III(x, ξ) if x, ξ ∈ [c, `].

(3.2.1)

Properties:
1. Let ξ be fixed in [0, b].
(i) The function G1I(x, ξ) is continuous of x and ξ if 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤ x ≤ b – see
Figure 3.1. Additionally, it is 2κ times differentiable with respect to x. The derivatives

∂nG1I(x, ξ)

∂xn
= G1I(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2κ (3.2.2a)

are also continuous in x and ξ in the triangular domains 0 ≤ x ≤ ξ ≤ b and 0 ≤ ξ ≤ x ≤ b.



Examination of four-point boundary value problems with the Green function 23

y

b

b



x

x  

x  

y

x  

x  

y

x  

x  

c

c

  1

  1

Figure 3.1. Triangular domains

The function G1I(x, ξ) and its derivatives

G
(n)
1I (x, ξ) =

∂nG1I(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ− 2 (3.2.2b)

are continuous for x = ξ:

lim
ε→0

[
G

(n)
1I (ξ + ε, ξ)−G(n)

1I (ξ − ε, ξ)
]

=

=
[
G

(n)
1I (ξ + 0, ξ)−G(n)

1I (ξ − 0, ξ)
]

= 0 n = 0, 1, 2, . . . 2κ− 2. (3.2.2c)

The derivative G(2κ−1)
1I (x, ξ) has a jump at x = ξ:

lim
ε→0

[
G

(2κ−1)
1I (ξ + ε, ξ)−G(2κ−1)

1I (ξ − ε, ξ)
]

=

=
[
G

(2κ−1)
1I (ξ + 0, ξ)−G(2κ−1)

1I (ξ − 0, ξ)
]

=
1

p2κ(ξ)
. (3.2.2d)

(ii) In contrast, the function G2I(x, ξ) and its derivatives

G
(n)
2I (x, ξ) =

∂nG2I(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.2e)

are all continuous functions for any x in [b, c]

(iii) The function G3I(x, ξ) and its derivatives

G
(n)
3I (x, ξ) =

∂nG3I(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.2f)

are also continuous for any x in [c, `].
2. Let ξ be fixed in [b, c].
(i) The function G1II(x, ξ) and its derivatives

G
(n)
1II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.3a)

are continuous for any x in [0, b].
(ii) The function G2II(x, ξ) is a continuous function of x and ξ if b ≤ x ≤ ξ ≤ c and
b ≤ ξ ≤ x ≤ c – see Figure 3.1. In addition it is 2κ times differentiable with respect to x.
The derivatives

∂nG2II(x, ξ)

∂xn
= G2II(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2κ (3.2.3b)

are also continuous in x and ξ in the triangular domains b ≤ x ≤ ξ ≤ c and b ≤ ξ ≤ x ≤ c.
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The function G2II(x, ξ) and its derivatives

G
(n)
2II(x, ξ) =

∂nG2II(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ− 2 (3.2.3c)

are continuous for x = ξ:

lim
ε→0

[
G

(n)
2II(ξ + ε, ξ)−G(n)

2II(ξ − ε, ξ)
]

=

=
[
G

(n)
2II(ξ + 0, ξ)−G(n)

2II(ξ − 0, ξ)
]

= 0 , n = 0, 1, 2, . . . 2κ− 2. (3.2.3d)

The derivative G(2κ−1)
2II (x, ξ) has a jump at x = ξ:

lim
ε→0

[
G

(2κ−1)
2II (ξ + ε, ξ)−G(2κ−1)

2II (ξ − ε, ξ)
]

=

=
[
G

(2κ−1)
2II (ξ + 0, ξ)−G(2κ−1)

2II (ξ − 0, ξ)
]

=
1

p2κ(ξ)
. (3.2.3e)

(iii) The function G3II(x, ξ) and its derivatives

G
(n)
3II(x, ξ) =

∂nG1II(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.3f)

are continuous functions for any x in [c, `].
3. Let ξ be fixed in the interval [c, `].
(i) The function G1III(x, ξ) and its derivatives

G
(n)
1III(x, ξ) =

∂nG1III(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.4a)

are continuous functions for any x in [0, b].
(ii) The function G2III(x, ξ) and its derivatives

G
(n)
2III(x, ξ) =

∂nG2III(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ (3.2.4b)

are also continuous for any x in [b, c].
(iii) The function G3III(x, ξ) is a continuous function of x and ξ if c ≤ x ≤ ξ ≤ ` and
c ≤ ξ ≤ x ≤ ` – see Figure 3.1. In addition it is 2κ times differentiable with respect to x
and the derivatives

∂nG3III(x, ξ)

∂xn
= G3III(x, ξ)

(n)(x, ξ) , n = 1, 2, . . . , 2κ (3.2.4c)

are also continuous functions of x and ξ in the triangles c ≤ x ≤ ξ ≤ ` and c ≤ ξ ≤ x ≤ `.
The function G3III(x, ξ) and its derivatives

G
(n)
3III(x, ξ) =

∂nG3III(x, ξ)

∂xn
, n = 1, 2, . . . , 2κ− 2 (3.2.4d)

are continuous for x = ξ:

lim
ε→0

[
G

(n)
3III(ξ + ε, ξ)−G(n)

3III(ξ − ε, ξ)
]

=

=
[
G

(n)
3III(ξ + 0, ξ)−G(n)

3III(ξ − 0, ξ)
]

= 0 n = 0, 1, 2, . . . 2κ− 2. (3.2.4e)

The derivative G(2k−1)
3III (x, ξ) has a jump if x = ξ:

lim
ε→0

[
G

(2κ−1)
3III (ξ + ε, ξ)−G(2κ−1)

3III (ξ − ε, ξ)
]

=
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=
[
G

(2κ−1)
3III (ξ + 0, ξ)−G(2κ−1)

3III (ξ − 0, ξ)
]

=
1

p2κ(ξ)
.

4. Let α be an arbitrary non-zero constant. For a fixed ξ ∈ [0, `] value, the term G(x, ξ)α
as a function of x 6= ξ should satisfy the homogeneous differential equation

L [G(x, ξ)α] = 0 .

5. The product G(x, ξ)α as a function of x should satisfy the boundary conditions and the
continuity conditions

2κ∑
n=1

αnrI G
(n−1)(0) = 0 , r = 1, . . . , κ

2κ∑
n=1

(
βnrI G

(n−1)(b− 0)− βnrII G(n−1)(b+ 0)
)

= 0 , r = 1, . . . , 2κ

2κ∑
n=1

(
γnrII G

(n−1)(c− 0)− γnrIII G(n−1)(c+ 0)
)

= 0 , r = 1, . . . , 2κ

2κ∑
n=1

δnrIII G
(n−1)(`) = 0 . r = 1, . . . , κ

(3.2.5)

The above boundary and continuity conditions should be satisfied by the functions triplets
{G1I(x, ξ), G2I(x, ξ), G3I(x, ξ)} ,
{G1II(x, ξ), G2II(x, ξ), G3II(x, ξ)} ,
{G1III(x, ξ), G2III(x, ξ), G3III(x, ξ)}

3.3. The Green function – calculation

3.3.1. Elements if ξ ∈ (0, b). As per G1I(x, ξ), it is assumed that

G1I(x, ξ) =
2κ∑
m=1

(amI(ξ) + bmI(ξ))ym(x), x ≤ ξ;

G1I(x, ξ) =
2κ∑
m=1

(amI(ξ)− bmI(ξ))ym(x), x ≥ ξ;

x ∈ [0, b]. (3.3.1a)

For G2I(x, ξ) and G3I(x, ξ) the forms are

G2I(x, ξ) =
2κ∑
m=1

cmI(ξ)ym(x), x ∈ [b, c] (3.3.1b)

and

G3I(x, ξ) =
2κ∑
m=1

dmI(ξ)ym(x) x ∈ [c, `]. (3.3.1c)

Here the coefficients amI(ξ), bmI(ξ), cmI(ξ), dmI(ξ) are the unknown.
The corresponding continuity and discontinuity equations (3.2.2c) and (3.2.2d) yield

2κ∑
m=1

bmI(ξ)y
(n)
m (ξ) = 0, n = 0, 1, 2, . . . , 2κ− 2 (3.3.2a)

and
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[
G

(2κ−1)
1I (ξ + 0, ξ)−G(2κ−1)

1I (ξ − 0, ξ)
]

=
1

p2κ(ξ)
= −

2κ∑
m=1

bmI(ξ)y
(2κ−1)
m (ξ)

or
2κ∑
m=1

bmI(ξ)y
(2κ−1)
m (ξ) = − 1

p2κ(ξ)
(3.3.2b)

The determinant of the inhomogeneous linear equation system (4.2.2) has the form:
y1(ξ) y2(ξ) . . . y2κ(ξ)

y
(1)
1 (ξ) y

(1)
2 (ξ) . . . y

(1)
2κ (ξ)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y

(2κ−1)
1 (ξ) y

(2κ−1)
2 (ξ) . . . y

(2κ−1)
2κ (ξ)

. (3.3.3)

It represents the Wronskian of (4.1.1), which is non-zero because the particular solutions are
linearly independent [79]. It means there exists a unique solution for the unknowns. These
unknowns can be found from (3.2.5) as

2κ∑
n=1

αnrI

2κ∑
m=1

(amI(ξ) + bmI(ξ))ym(0) = 0 , r = 1, 2, 3, . . . , κ; (3.3.4a)

2κ∑
n=1

(
βnrI

2κ∑
m=1

(amI(ξ)− bmI(ξ))y(n−1)
m (b)− βnrII

2κ∑
m=1

cmI(ξ)y
(n−1)
m (b)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.4b)

2κ∑
n=1

(
γnrII

2κ∑
m=1

cmI(ξ)y
(n−1)
m (c)− γnrIII

2κ∑
m=1

dmI(ξ)y
(n−1)
m (c)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.4c)
2κ∑
n=1

(
δnrIII

2κ∑
m=1

dmI(ξ)y
(n−1)
m (`)

)
= 0 , r = 1, 2, 3, . . . , κ. (3.3.4d)

3.3.2. The elements of the Green function if ξ ∈ (b, c). The Green function this
time is given as

G1II(x, ξ) =
2κ∑
m=1

cmII(ξ)ym(x), x ∈ [0, b]; (3.3.5a)

G2II(x, ξ) =
2κ∑
m=1

(amII(ξ) + bmII(ξ))ym(x), x ≤ ξ

G2II(x, ξ) =
2κ∑
m=1

(amII(ξ)− bmII(ξ))ym(x), x ≥ ξ

x ∈ [b, c]; (3.3.5b)

G3II(x, ξ) =
2κ∑
m=1

dmII(ξ)ym(x), x ∈ [c, ` ]. (3.3.5c)

with unknowns amII(ξ), bmII(ξ), cmII(ξ), dmII(ξ).
Substituting to Eqs. (3.2.3d) and (3.2.3e) yields

2κ∑
m=1

bmII(ξ)y
(n)
m (ξ) = 0, n = 0, 1, 2, . . . , 2κ− 2 (3.3.6a)
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and

2κ∑
m=1

bmII(ξ)y
(2κ−1)
m (ξ) = − 1

p2κ(ξ)
. (3.3.6b)

This system coincides formally with (4.2.2), so it is solvable with bmII(ξ) = bmI(ξ). Recalling
the conditions (3.2.5), it becomes possible to find amII(ξ), cmII(ξ), and dmII(ξ):

2κ∑
n=1

(
αnrI

2κ∑
m=1

cmII(ξ)y
(n−1)
m (0)

)
= 0 , r = 1, 2, 3, . . . , κ; (3.3.7a)

2κ∑
n=1

(
βnrI

2κ∑
m=1

cmII(ξ)y
(n−1)
m (b)− βnrII

2κ∑
m=1

(amII(ξ) + bmII(ξ))y
(n−1)
m (b)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.7b)

2κ∑
n=1

(
γnrII

2κ∑
m=1

(amII(ξ)− bmII(ξ))y(n−1)
m (c)− γnrIII

2κ∑
m=1

dmII(ξ)y
(n−1)
m (c)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.7c)

2κ∑
n=1

(
δnrIII

2κ∑
m=1

dmII(ξ)y
(n−1)
m (`)

)
= 0 , r = 1, 2, 3, . . . , κ. (3.3.7d)

3.3.3. Elements if ξ ∈ (c, `). The elements of the Green function is collected below:

G1III(x, ξ) =
2κ∑
m=1

cmIII(ξ)ym(x), x ∈ [0, b]; (3.3.8a)

G2III(x, ξ) =
4∑

m=1

dmIII(ξ)ym(x), x ∈ [b, c]; (3.3.8b)

and

G3III(x, ξ) =
4∑

m=1

(amIII(ξ) + bmIII(ξ))ym(x), x ≤ ξ

G3III(x, ξ) =
4∑

m=1

(amIII(ξ)− bmIII(ξ))ym(x), x ≥ ξ

, x ∈ [b, `]. (3.3.8c)

amIII(ξ), amIII(ξ), cmIII(ξ) and dmIII(ξ) are unknowns, while bmIII(ξ) = bmII(ξ) = bmI(ξ).
Conditions (3.2.5) yield

2κ∑
n=1

(
αnrI

2κ∑
m=1

cmIII(ξ)y
(n−1)
m (0)

)
= 0 , r = 1, 2, 3, . . . , κ; (3.3.9a)

2κ∑
n=1

(
βnrI

2κ∑
m=1

cmIII(ξ)y
(n−1)
m (b)− βnrII

2κ∑
m=1

dmIII(ξ)y
(n−1)
m (b)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.9b)
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2κ∑
n=1

(
γnrII

2κ∑
m=1

dmI(ξ)y
(n−1)
m (c)− γnrIII

2κ∑
m=1

(amIII(ξ) + bmIII(ξ))y
(n−1)
m (c)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (3.3.9c)

2κ∑
n=1

(
δnrIII

2κ∑
m=1

(amIII(ξ)− bmIII(ξ))y(n−1)
m (`)

)
= 0 , r = 1, 2, 3, . . . , κ. (3.3.9d)

3.4. Further properties of the Green function

3.4.1. Self-Adjointness. The comparison functions u(x) 6= 0 and v(x) 6= 0 satisfy
the boundary and continuity conditions (3.1.3). Similarly, the solution of the four-point
boundary value problem is as well comparison function. Let us define the product on operator
L:

(u, v)L =

∫ c

a

u(x)L[v(x)] dx (3.4.1)

The four point BVP (4.1.1), (3.1.3) is self-adjoint if the product (4.3.2) is commutative,
i.e.,

(u, v)L = (v, u)L . (3.4.2)

3.4.2. Symmetry of the Green function. Consider now two inhomogeneous four-
point boundary value problems

L[u(x)] = r(x) , L[v(x)] = s(x) (3.4.3)

and
U0r[u] = 0, U0r[v] = 0, r = 1, 2, . . . , κ;
Ubr[u] = 0, Ubr[v] = 0, r = 1, 2, . . . , 2κ;
Ucr[u] = 0, Ucr[v] = 0, r = 1, 2, . . . , 2κ;
U1r[u] = 0, U1r[v] = 0, r = 1, 2, . . . , κ;

(3.4.4)

In this case, u(x) and v(x) are the unknown functions. It is assumed the BVPs (4.3.3),
(4.3.4) are self-adjoint. Then it holds that

(u, v)L − (v, u)L = 0,

where

u(x) =

∫ `

0

G(x, ξ)r(ξ) dξ and v(x) =

∫ `

0

G(x, ξ)s(ξ) dξ .

It, therefore, follows

(u, v)L − (v, u)L =

∫ `

0

(uL[v]− v L[u]) dx =

=

∫ `

0

∫ `

0

[G(x, ξ)−G(ξ, x)] r(ξ)s(x) dξdx = 0 . (3.4.5)

Since both r(x) and s(x) are arbitrary continuous and non-zero functions in the interval [0, `],
the last integral in this equation can be zero if and only if the Green function is symmetric:

G(x, ξ) = G(ξ, x) . (3.4.6)
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3.5. Four-point eigenvalue problems

The generalization of several concepts introduced in the likes of [19] and [76] are given
hereinafter, which are valid for two- and three-point boundary value problems. Consider
ODE

K [y] = λM [y] (3.5.1a)
where y = y(x) is again the unknown function while the unknown λ is actually the eigenvalue
sought. Differential operators K [y] and M [y] are defined by the equations

K [y] =
κ∑

n=0

(−1)n
[
fn(x)y(n)(x)

](n)
,

dn(. . .)

dxn
= (. . .)(n) ;

M [y] =

µ∑
n=0

(−1)n
[
gn(x)y(n)(x)

](n)
, κ > µ ≥ 1

(3.5.1b)

in which the real function (fν(x)) [gν(x)] is assumed to be differentiable continuously (κ) [µ]
times and

fκ(x) 6= 0 , gµ(x) 6= 0 if x ∈ [0, `] . (3.5.1c)
It is noticed that the order of the differential operator on the left of (4.4.1a) is greater

than the order on the right. Let x ∈ (0, `] be the interval where solution is sought, while
b < c and c denote inner points in [0, `]. The typical quantities in the subintervals [0, b], [b, c],
and [c, `] are denoted similarly as beforehand, with indices I, II, and III. Some quantities
within the intervals [0, b], [b, c], and [c, `] are denoted in the same manner as before—see
equation (4.1.2)—using the Roman subscripts I, II, and III.

If we perform partial integrations using the comparison functions u(x) and v(x) x ∈ [0, `],
we get

(u, v)K =

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
fn(x) v(n)(x)

](n−1−r)
]b−0

0

+

+

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
fn(x) v(n)(x)

](n−1−r)
]c−0

b+0

+

+

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
fn(x) v(n)(x)

](n−1−r)
]`
c+0

+

+
κ∑

n=0

∫ `

0

u(n)(x)fn(x)v(n)(x) dx =

= K0(u, v) +
κ∑

n=0

∫ `

0

u(n)(x)fn(x)v(n)(x) dx , (3.5.2a)

and

(u, v)M =

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
gn(x) v(n)(x)

](n−1−r)
]b−0

0

+

+

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
gn(x) v(n)(x)

](n−1−r)
]c−0

b+0

+

+

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u(x)(r)
[
gn(x) v(n)(x)

](n−1−r)
]`
c+0

+
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+

µ∑
n=0

∫ `

0

u(n)(x)gn(x)v(n)(x) dx =

= M0(u, v) +

µ∑
n=0

∫ `

0

u(n)(x)gn(x)v(n)(x) dx. (3.5.2b)

K0(u, v) and M0(u, v) are boundary and continuity expressions. If

K0(u, v) = K0(v, u) and M0(u, v) = M0(v, u) (3.5.3)

then the four-point eigenvalue problem is self-adjoint. Let the k-th eigenvalue be λk (k =
1, 2, 3, . . .). The related eigenfunction is, therefore,

yk(x) =


yIk(x) if x ∈ [0, b],

yIIk(x) if x ∈ [b, c],

yIIIk(x) if x ∈ [c, `].

(3.5.4)

For self-adjoint BVPs, the eigenfunctions are orthogonal:

(yk, yn)K =

{
λn (yk, yn)M if k =n,

0 if k 6=n. k, n = 1, 2, 3 . . . . (3.5.5)

The proof to this is similar as published in [19]. After setting k and n equal, we get

λn =
(yn, yn)K
(yn, yn)M

(3.5.6)

therefore sign of the eigenvalues depends on the products (yn, yn)K and (yn, yn)M . If

(u, u)K > 0 , and (u, u)M > 0 (3.5.7)

are satisfied for any u, it means that the four-point eigenvalue problem (4.4.1), (3.1.3) is
positive definite.

Assuming the eigenvalue problem to be simple – that is, M [y] = g0(x)y(x) – and the
Green function that belongs to the differential operator K [y] is known, then

y(x) = λ

∫ `

0

G(x, ξ)g0(ξ)y(ξ) dξ . (3.5.8)

So the eigenvalue problem is replaced in this way by a homogeneous Fredholm integral
equation. Given that the original eigenvalue problem is self-adjoint and positive definite, the
related Fredholm integral equation becomes:

Y(x) = λ

∫ `

0

K(x, ξ)Y(ξ) dξ , (3.5.9)

where
Y(x) =

√
g0(x)y(x), K(x, ξ) =

√
g0(x)G(x, ξ)

√
g0(ξ). (3.5.10)

Here, Y(x) is a new unknown with the kernel K(x, ξ) being symmetric.

3.6. Application to heterogeneous beams

3.6.1. Governing equations. Let us consider two uniform beams of length L as shown
in Figure 3.2. The notations and not specifically mentioned assumptions are the same as in
the previous Chapter. This time. the beams have four supports: the first beam (FrrF) is
fixed at x̂ = 0 and has a slider at x̂ = L. The next beam (PrrP) is pinned at the left end and
has a roller support at the right end. The two intermediate supports are rollers, identically.
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Figure 3.2. Heterogeneous FrrF and PrrP beams.

Traditional equilibrium problems of Euler-Bernoulli beams under a constant axial force
are determined by

d4ŵ

dx̂4
± N̂ d2ŵ

dx̂2
=

f̂z
Iey

, N̂ =
N

Iey
, (3.6.1)

Each quantity in the above equation is well defined in Chapter 2—see 2.1.1, 2.1.2, and 2.1.3.
We use the dimensionless quantities defined in (2.1.4). The selected problems to be solved
are the following:

(a) In case of equilibrium problems, the axial load is zero. Then Eq. (3.6.1) becomes:

K(w) =
d4w

dx4
= fz . (3.6.2)

(b) In case of free vibrations, the related equation is

K(w) =
d4w

dx4
= λw = λM(w) , λ =

ρaAω
2L4

Iey
, (3.6.3)

with w as the the dimensionless amplitude and λ as the unknown eigenvalue.

ρa =
1

A

∫
A

ρ dA (3.6.4)

defines the average surface density and ω is the natural circular frequency.
(c) The static stability issue is formulated by

d4w

dx4
+N d2w

dx2
= 0 . (3.6.5)

The dimensionless buckling load (the critical load) N is the unknown.

The related boundary and continuity conditions are gathered in Table 31.
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Table 31. Boundary and Continuity conditions.

Boundary conditions
Fixed-fixed beam Pinned-pinned beam
with two intermediate roller supports
(FrrF beam) (PrrP beam)

w(0) = 0 , w(1)(0) = 0 w(0) = 0 , w(2)(0) = 0

w(`) = 0 , w(1)(`) = 0 w(`) = 0 , w(2)(`) = 0

Continuity conditions
w(b− 0) = 0 , w(b+ 0) = 0 ,

w(1)(b− 0) = w(1)(b+ 0) ,

w(2)(b− 0) = w(2)(b+ 0) ,

w(c− 0) = 0 , w(c+ 0) = 0 ,

w(1)(c− 0) = w(1)(c+ 0) ,

w(2)(c− 0) = w(2)(c+ 0) .

Utilizing (3.6.3) and (4.4.2a), while accounting for the boundary and continuity condi-
tions in Table 31, we can conclude that (u, v)K = (v, u)K . This confirms that the four-point
boundary problems of equations (3.6.2) and the conditions in Table 31 are self-adjoint.

Furthermore, for equation (3.6.3), (u, u)K > 0 and (u, u)M > 0, meaning the four-point
eigenvalue problems governed by equations (3.6.3) and the conditions in Table 31 are not
only self-adjoint but also positive definite.

By employing the Green’s functions G(x, ξ) of the BVP defined by the (3.6.2), the closed-
form solutions for w(x) can be expressed by

w(x) =

∫ `=1

ξ=0

G(x, ξ) f(ξ) dξ . (3.6.6)

Replacing f(ξ) with λw(ξ) in (3.6.6) yields the homogeneous Fredholm integral equation
as an alternative to (3.6.3)

w(x) = λ

∫ `=1

ξ=0

G(x, ξ)w(ξ) dξ . (3.6.7)

With Eq. (2.1.10), eigenvalue problems (3.6.5) and Table 31 can be reduced to an
eigenvalue problems governed by the homogeneous Fredholm integral equations of (2.1.11).
As regards the details the reader is referred to 2.1.2 in Chapter 2.

3.6.2. Green function for FrrF beams.
3.6.2.1. Elements of the Green function when ξ ∈ (0, b). The sought elements can be

given in the forms (3.3.1) where ym(x) =wm(x) stands for the particular solutions, that are

w1 = 1, w2 = x, w3 = x2, w4 = x3 . (3.6.8)

Equations (4.2.2) return
4∑

m=1

bmI(ξ)w
(n)
m (ξ) = 0, n = 0, 1, 2 (3.6.9a)

4∑
m=1

bmI(ξ)w
(3)
m (ξ) = −1

2
(3.6.9b)
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from where 
1 ξ ξ2 ξ3

0 1 2ξ 3ξ2

0 0 2 6ξ
0 0 0 6



b1I

b2I

b3I

b4I

 =


0
0
0
−1

2

 .
It results in the solutions 

b1I

b2I

b3I

b4I

 =
1

12


ξ3

−3ξ2

3ξ
−1

 . (3.6.10)

As per equations (4.2.5) bmIII(ξ) = bmII(ξ) = bmI(ξ)
With Eq. (4.2.3) and the boundary and continuity conditions, unknowns amI(ξ), cmI(ξ)

and dmI(ξ) can be found in the following steps:
(a) Boundary conditions at x = 0:

4∑
m=1

amIwm(0) = −
4∑

m=1

bmI (ξ)wm(0) , (3.6.11a)

4∑
m=1

amIw
(1)
m (0) = −

4∑
m=1

bmI (ξ)w(1)
m (0) . (3.6.11b)

(b) Continuity conditions at x = b:
4∑

m=1

amIwm(b) =
4∑

m=1

bmI (ξ)wm(b) , (3.6.12a)

4∑
m=1

cmIwm(b) = 0 , (3.6.12b)

4∑
m=1

amIw
(1)
m (b)−

4∑
m=1

cmIw
(1)
m (b) =

4∑
m=1

bmI (ξ)w(1)
m (b) , (3.6.12c)

4∑
m=1

amIw
(2)
m (b)−

4∑
m=1

cmIw
(2)
m (b) =

4∑
m=1

bmI (ξ)w(2)
m (b). (3.6.12d)

(c) Continuity conditions at x = c:
4∑

m=1

cmIwm(c) = 0 , (3.6.13a)

4∑
m=1

dmIwm(c) = 0 , (3.6.13b)

4∑
m=1

cmIw
(1)
m (c) =

4∑
m=1

dmIw
(1)
m (c) , (3.6.13c)

4∑
m=1

cmIw
(2)
m (b) =

4∑
m=1

dmIw
(2)
m (b) . (3.6.13d)
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(d) Boundary conditions at x = `:
4∑

m=1

dmIwm(`) = 0 , (3.6.14a)

4∑
m=1

dmIw
(1)
m (`) = 0 . (3.6.14b)

Since closed-form solutions are available for a1I , . . . , d4I , the G1I(x, ξ), G2I(x, ξ) and
G3I(x, ξ) elements are (3.3.1):

G1I(x, ξ) =

(
− 1

12
ξ3 ± 1

12
ξ3

)
+

(
3ξ2

12
±
(
−3ξ2

12

))
x+

+

{
3ξ

12b2D

[
2ξ2
(
2b2−b`+bc−2c`

)
−4bξ

(
2bc+b2−3c`

)
+3b3c+b3`−4b2c`

]
± 3ξ

12

}
x2+

+

{
− 1

12b3D

[
4ξ3
(
3b2 − c`− 2b`

)
− 6bξ2

(
2b2 − b`+ bc− 2c`

)
−

−4b3c`+ b4`+ 3b4c
]
± −1

12

}
x3 (3.6.15a)

G2I(x, ξ) = − 1

2b

ξ2

D (b− c)
(b− x) (c− x) (b− ξ) (cx− 2bx+ b`− 2c`+ x`+ bc) , (3.6.15b)

G3I(x, ξ) =
1

2b

ξ2

(c− `)D
(b− c) (b− ξ) (c− x) (x− `)2 , (3.6.15c)

where
D = b`− 4c`+ 3bc . (3.6.16)

3.6.2.2. Elements of the Green function if ξ ∈ (b, c). As per Eqs. (4.2.4), the following
equation system can be set up to find amII(ξ), cmII(ξ) and dmII(ξ):
(a) Boundary conditions at x = 0:

4∑
m=1

cmIIwm(0) = 0 , (3.6.17a)

4∑
m=1

cmIIw
(1)
1 (0) = 0 . (3.6.17b)

(b) Continuity conditions at x = b:

4∑
m=1

cmIIwm(b) = 0 , (3.6.18a)

4∑
m=1

amIIwm(b) = −
4∑

m=1

bmII(ξ)wm(b) , (3.6.18b)

4∑
m=1

amIIw
(1)
m (b)−

4∑
m=1

c1IIw
(1)
m (b) = −

4∑
m=1

b1II(ξ)w
(1)
m (b) , (3.6.18c)

4∑
m=1

amIIw
(1)
m (b)−

4∑
m=1

c1IIw
(1)
m (b) = −

4∑
m=1

b1II(ξ)w
(1)
m (b) . (3.6.18d)
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(c) Continuity conditions at x = c:
4∑

m=1

amIIwm(c) =
4∑

m=1

b1II(ξ)wm(b) , (3.6.19a)

4∑
m=1

dmIIwm(c) = 0 , (3.6.19b)

4∑
m=1

amIIw
(1)
m (c)−

4∑
m=1

d1IIw
(1)
m (c) =

4∑
m=1

b1II(ξ)w
(1)
m (c) , (3.6.19c)

4∑
m=1

amIIw
(2)
m (c)−

4∑
m=1

d1IIw
(2)
m (c) =

4∑
m=1

b1II(ξ)w
(2)
m (c) . (3.6.19d)

(d) Boundary conditions at x = `:
4∑

m=1

dmIIwm(`) = 0 , (3.6.20a)

4∑
m=1

dmIIw
(1)
m (`) = 0 . (3.6.20b)

Since c1II = c2II = 0, the remaining equations make it possible to find the unknowns.
Thus, one can find that

G1II(x, ξ) = − 1

2b

x2

D (b− c)
(b− ξ) (c− ξ) (b− x) (cξ − 2bξ + b`− 2c`+ ξ`+ bc) , (3.6.21a)

G2II(x, ξ) =
1

12D1

[
ξ3
(
3b3c− 3bc3 + b3`+ 4c3`− 9bc2`

)
−

−6b2cξ2
(
b`− 3c`+ bc− c2

)
− 12`b2c3ξ + 4`b3c3

]
± 1

12
ξ3+

+

{
1

4D1

[
2bξ3

(
3c2−b`+3c`−3bc

)
+ξ2

(
b3`−3bc3+3b3c−4c3`−9bc2`

)
+

+12`bc3ξ − 4`b2c3
]
± −3

12
ξ2

}
x+

+

{
1

4D1

[
4ξ3
(
b2−c`−c2

)
−4ξ2

(
b3−3c2`−c3

)
−ξ
(
3bc3−3b3c−b3`+4c3`+ 9bc2`

)
+

+2b2c3 + 6`b2c2 − 2b3c2 − 2`b3c
]
± 3

12
ξ

}
x2+

+

{
1

12D1

[
4ξ3 (3c+ `− 3b) + 12ξ2

(
b2 − c`− c2

)
− 6bξ

(
b`− 3c`+ 3bc− 3c2

)
+

+4`c3 − 9`bc2 + 3b3c− 3bc3 + `b3
]
± −1

12

}
x3, (3.6.21b)

G3II(x, ξ) = − 1

2D1 (c− `)
(b− ξ) (c− x) (c− ξ) (x− `)2 (bξ − 2cξ + bc) , (3.6.21c)

− 1

2D1

(c− x) (b− ξ) c− ξ
c− `

(x− `)2 (bξ − 2cξ + bc)

where
D1 = (b− c)2 (b`− 4c`+ 3bc) . (3.6.22)
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3.6.2.3. Elements of the Green function if ξ ∈ (c, `). Similarly as beforehand, the func-
tions amIII(ξ), cmIII(ξ) and dmIII(ξ) can be expressed by considering:
(a) Boundary conditions at x = 0:

4∑
m=1

cmIIIwm(0) = 0 , (3.6.23a)

4∑
m=1

cmIIIw
(1)
1 (0) = 0 . (3.6.23b)

(b) Continuity conditions at x = b:
4∑

m=1

cmIIIwm(b) = 0 , (3.6.24a)

4∑
m=1

dmIIIwm(b) = 0 , (3.6.24b)

4∑
m=1

cmIIIw
(1)
m (b)−

4∑
m=1

d1IIIw
(1)
m (b) = 0, (3.6.24c)

4∑
m=1

cmIIIw
(2)
m (b)−

4∑
m=1

d1IIIw
(2)
m (b) = 0 . (3.6.24d)

(c) Continuity conditions at x = c:
4∑

m=1

dmIIIwm(c) = 0 , (3.6.25a)

4∑
m=1

amIIIwm(c) = −
4∑

m=1

b1III(ξ)wm(c) , (3.6.25b)

4∑
m=1

amIIIw
(1)
m (c)−

4∑
m=1

d1IIIw
(1)
m (c) = −

4∑
m=1

b1III(ξ)w
(1)
m (c) , (3.6.25c)

4∑
m=1

amIIIw
(2)
m (c)−

4∑
m=1

d1IIIw
(2)
m (c) = −

4∑
m=1

b1III(ξ)w
(2)
m (c) . (3.6.25d)

(d) Boundary conditions at x = c:
4∑

m=1

amIIIwm(c) =
4∑

m=1

b1III(ξ)wm(c) , (3.6.26a)

4∑
m=1

amIIIw
(1)
m (c) = −

4∑
m=1

b1III(ξ)w
(1)
m (c) . (3.6.26b)

Since c1III = c2III = 0, the remaining unknowns can be expressed. Thus, the Green functions
are

G1III(x, ξ) =
1

2b

x2

(c− `)D
(b− c) (b− x) (c− ξ) (ξ − `)2 , (3.6.27a)

G2III(x, ξ) = − 1

2D1 (c− `)
(b− x) (c− ξ) (c− x) (ξ − `)2 (bx− 2cx+ bc) , (3.6.27b)

G3III(x, ξ) =
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=
1

12D2

[
ξ3
(
12c2`3+3bc4+b`4−4c`4−4c4`−8bc3`

)
+12c2ξ2`2

(
2bc−b`−2c`+c2

)
+

+ξ
(
6bc2`4 + 12c3`4 − 18bc4`2

)
+ 4c3`3 (3bc− 2b`− c`)

]
± 1

12
ξ3+

+

{
1

4D2

[
4c2ξ3` (b+ 2c− 3`) + ξ2

(
12c2`3 − 3bc4 − b`4 + 4c`4 − 4c4`− 8bc3`

)
+

+12c2ξ`
(
−`3 + bc2

)
− 2c2`2

(
3bc2 − b`2 − 2c`2

)]
± −3ξ2

12

}
x+

+

{
1

4D2

[
2ξ3
(
4c`2 − bc2 − b`2 − 2c3

)
+ 4ξ2

(
2bc3 + b`3 − 4c`3 + c4

)
−

−ξ
(
b`−12c2`3+3bc4−4c`4+4c4`+8bc3`

)
+4c2`2

(
2bc−b`−2c`+c2

)]
± 3ξ

12

}
x2+

+ (

{
1

12D2

[
4ξ3
(
b`− 4c`+ 3c2

)
− 6ξ2

(
bc2 + b`2 − 4c`2 + 2c3

)
+

+12c2ξ` (b+ 2c− 3`) + 3bc4 − 4c4`+ b`4 − 8bc3`− 4c`4 + 12c2`3
]
± −1

12

}
x3, (3.6.27c)

where

D2 = (c− `)3 (b`− 4c`+ 3bc) . (3.6.28)

The four-point boundary value problem defined by (3.6.2) and the boundary and conti-
nuity conditions is self-adjoint. Consequently, the Green function is symmetric.

In the integral

G(x, ξP ) =

∫ `

0

G(x, ξ) δ(ξ − ξP ) dξ (3.6.29)

ξP ∈ (0, `) is an arbitrary but fixed point and δ(ξ − ξP ) is the Dirac delta, representing a
dimensionless vertical load of unit magnitude applied at ξP . Accordingly, G(x, ξP ) is the
dimensionless vertical displacement at x due to this load. Maxwell’s reciprocity theorem
states that the vertical displacement at x on account to a unit load at ξP is equal to the
vertical displacement at ξP due to the unit load at x. Hence the Green function is a symmetric
function of x and ξ:

G(x, ξP ) = G(ξP , x). (3.6.30)

If we consider that b = 0.3, c = 0.6 and ξ = 0.8, then Figure 3.3 shows the Green function
for FrrF case.
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Figure 3.3. The Green function of FrrF beams

3.6.3. Green function of PrrP beams. The elements of the Green function for PrrP
beams are given here without details. The formal calculation steps are identical to that given
in Section 3.6.2.

(a) If ξ ∈ (0, b):

G1I(x, ξ) =

(
− 1

12
ξ3 ± 1

12
ξ3

)
+{

1

12bD3

[
2ξ3
(
3b2 − 2b`− 4c`+ 2bc+ c2

)
− 3bcξ2 (2b+ c− 4`) +

+b2ξ
(
4b`− 3bξ − 16c`+ 8bc+ 4c2

)]
±
(
−3ξ2

12

)}
x+

(
− 3

12
ξ ± 3ξ

12

)
x2+

+

{
1

12b2D

[
4ξ3 (`−b)+2bξ

(
2bc−2b`−4c`+3b2+c2

)
−

−b2
(
2bc−4c`+b2+c2

)]
±−1

12

}
x3, (3.6.31a)

G2I(x, ξ)=
1

6b

ξ

D3 (b−c)
(b−x) (c−x)

(
ξ2−b2

) (
2x`−3bx+cx+ 2b`−4c`+bc+c2

)
(3.6.31b)

and

G3I(x, ξ) =
1

6b

ξ

D3 (c− `)
(c− b) (c− x) (x− `) (c+ x− 2`)

(
ξ2 − b2

)
, (3.6.31c)

where
D3 = b2 + 2bc+ c2 − 4`c . (3.6.32)

(b) If ξ ∈ (b, c):

G1II(x, ξ)=
1

6b

x

D4 (b−c)
(b−ξ) (c−ξ)

(
x2−b2

) (
2ξ`−3bξ+cξ+2b`−4c`+bc+c2

)
, (3.6.33a)

G2II(x, ξ) =
1

12D4 (b− c)
[
ξ3
(
b4 − 8`bc2 − c4 + 4`c3

)
−
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−2b2cξ
(
b2c+ 2b2`+ 4c2`− c3

)
+ 12b2c2ξ2`+ 4b4c2`

]
± 1

12
ξ3+

+

{
1

12D4 (b− c)
[
4bξ3

(
4c`− b`− 2bc+ 2c2

)
− 3ξ2

(
4c3`+ b4 − c4 + 8bc2`

)
+

+4bξ
(
2b3c+ b3`+ 8c3`− 2c4

)
− 2b2c

(
b2c+ 2b2`+ 4c2`− c3

)]
± −3

12
ξ2

}
x+

+

{
1

4D4 (b− c)
[
2ξ3
(
−2c`+ b2 − c2

)
+ 12c2ξ2`−

−ξ
(
4c3`+ b4 − c4 + 8bc2`

)
+ 4`b2c2

]
± 3

12
ξ

}
x2+

+

{
1

12 (b− c)D4

[
4ξ3 (2c+ `− 2b) + 6ξ2

(
b2 − 2c`− c2

)
−

−4bξ
(
b`− 4c`+ 2bc− 2c2

)
+ (4c3`+ b4 − c4 − 8bc2`)

]
± −1

12

}
x3 (3.6.33b)

and

G3II(x, ξ) =

= − 1

6D4 (c− `)
(c− x) (b− ξ) (c− ξ) (x− `) (c+ x− 2`)

(
bξ − 3cξ + bc+ b2

)
, (3.6.33c)

where

D4 = (b− c)
(
b2 + 2bc+ c2 − 4`c

)
. (3.6.34)

(b) If ξ ∈ (c, `):

G1III(x, ξ) =
1

6b

x

D3 (c− `)
(c− b) (c− ξ) (ξ − `) (c+ ξ − 2`)

(
x2 − b2

)
, (3.6.35a)

G2III(x, ξ) =

= − 1

6D4 (c− `)
(c− ξ) (b− x) (c− x) (ξ − `) (c+ ξ − 2`)

(
bx− 3cx+ bc+ b2

)
(3.6.35b)

and

G3III(x,ξ) =
1

12D5

[
ξ3
(
c4−b2`2−9c2`2+2bc3+4c`3+b2c2−2bc`2

)
−

−6cξ2`
(
2bc2+b2c−b2`−3c2`+c3−2bc`

)
+

+ 4cξ`
(
2bc3 − b2`2 − 3c2`2 + b2c2 − 2bc`2

)
−

−4c2`2
(
2bc2 + b2c− b2`− c2`− 2bc`

)]
± 1

12
ξ3+

+

{
− 1

12D5

[
2ξ3
(
2bc2 + b2c− b2`− 9c2`+ 3c3 − 2bc`

)
−

− 3ξ2
(
−b2`2 − 9c2`2 + 2bc3 − 4c`3 + b2c2 + c4 − 2bc`2

)
+

+ 4ξ
(
−b2`3 − 9c2`3 + 2bc4 + b2c3 − 2bc`3

)
−

−4c`
(
−b2`2 − 3c2`2 + 2bc3 + b2c2 − 2bc`2

)
± −3ξ2

12

}
x+
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+

{
− 1

4D5

[
4cξ3`− 12cξ2`2−

− ξ
(
−b2`2 − 9c2`2 + 2bc3 − 4c`3 + b2c2 + c4 − 2bc`2

)
+

+2c`
(
2bc2 + b2c− b2`− 3c2`+ c3 − 2bc`

)]
± 3ξ

12

}
x2+

+

{
1

12D5

[
4cξ3 − 12cξ2`− 2ξ

(
2bc2 + b2c− b2`− 9c2`+ 3c3 − 2bc`

)
+

+(−b2`2 − 9c2`2 + 2bc3 + 4c`3 + b2c2 + c4 − 2bc`2)
]
± −1

12

}
x3 , (3.6.35c)

where

D5 = (c− `)2 (b2 + 2bc+ c2 − 4`c
)
. (3.6.36)

3.7. Eigenvalues for free vibrations

3.7.1. Integral equation formulation. An algorithm to solve the eigenvalue problems
in Fredholm integral equation form (3.6.7) is published in [76]. This is based on the boundary
element method. The integral equation (3.6.7) is replaced by an algebraic eigenvalue problem
that can be solved numerically. A Fortran 90 program was developed for this aim and was
used to compute numerical solutions. The interval [0, ` = 1] was mapped by 60 elements, with
a quadratic isoparametric approximation employed to approximate the unknown vibration
amplitude w. The resulting algebraic eigenvalue problem was solved with the DGVLRG
subroutine.

3.7.2. Results for FrrF beams. Figure 3.4 shows the function
√
λ1/4.730042 against

c, with b as parameter. If b is identical to c, the coefficient matrix in the algebraic eigenvalue
problem becomes singular, as this follows from relation (3.6.15b), where the term b− c is in
the denominator.

The step size for c was 0.0125 in our calculations. In Figure 3.4, we plotted all data pairs
c,
√
λ1/4.730042(c) for multiple values of b.
Likewise, if c−b = 0.0001, the two intermediate roller supports are very close, preventing

rigid body rotation. When b is zero, the beam behaves as if it were fixed-fixed, with one
intermediate roller support at c, and the results agree with at least four decimal accuracy
with [80]. Similarly, if c = b+ 0.00001, the section of the beam in the interval [b, `] behaves
like a fixed-fixed one with length ` − c. Hence, the numerical results should satisfy the
relation

√
λ1(b, c = b+ 0.0001) =

√
λ1(b = 0, c = b+ 0.0001)

(`− b)2
(3.7.1)
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Figure 3.4. The first eigenvalue against c for FrrF beams

Table 32 shows some computational results for FrrF beams. The point pairs c,
√
λ1/4.730042(c)

in this table are drawn by diamond markers in Figure 3.4.

Table 32. Eigenvalues for FrrF beams
b = 0.0 b = 0.1 b = 0.2 b = 0.3 b = 0.4

c
√
λ1/4.73004

2

0.000 1.00018
0.0500 1.08109
0.1000 1.17608 1.23475
0.1500 1.28825 1.34004
0.2000 1.42173 1.47116 1.56276
0.2500 1.58179 1.63091 1.71215
0.3000 1.77484 1.82594 1.90263 2.04121
0.3500 2.00789 2.06529 2.14189 2.26609
0.4000 2.28463 2.35937 2.44281 2.56109 2.77840
0.4500 2.58411 2.71417 2.82181 2.94455 3.14045
0.5000 2.75695 3.09419 3.29103 3.44316 3.63104
0.5500 2.58465 3.24126 3.79877 4.08139 4.28243
0.6000 2.28519 2.94116 3.91744 4.78102 4.95962
0.6500 2.00837 2.55784 3.44989 4.81778 4.98735
0.7000 1.77525 2.22636 2.94691 4.12708 4.78102
0.7500 1.58212 1.95508 2.53420 3.46813 4.42276
0.8000 1.42201 1.73435 2.20617 2.94691 3.91744
0.8500 1.28848 1.55374 1.94478 2.54247 3.39276
0.9000 1.17628 1.40468 1.73444 2.22636 2.94116
0.9500 1.08125 1.28049 1.56296 1.97598 2.57613
0.9999 1.00018 1.17626 1.42198 1.77520 2.28513

3.7.3. Results for PrrP case. Figure 3.5 shows the function
√
λ1/π

2 in terms of c.
The coordinate b is, again, a parameter. The step in c was again selected to be 0.0125. The
curves

√
λ1/π

2(c) against c are drawn in Figure 3.5.
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Figure 3.5. The first eigenvalue against c for PrrP beams

In case c−b = 0.0001, the two intermediate roller supports are very close so they prevent
rotation at b. If b = 0, there is a fixed-pinned beam with one intermediate roller support
at c. If c = b + 0.00001 the beam part in the interval [b, `] behaves again as if it were a
fixed-pinned of length `− c.

Table 33 contains come computational results for PrrP case.

Table 33. Eigenvalues for PrrP beams
b = 0.0 b = 0.1 b = 0.2 b = 0.3 b = 0.4

c
√
λ1/π

2

0.0001 1.56219
0.0500 1.68846
0.1000 1.83560 1.92892
0.1500 2.00849 2.09141
0.2000 2.21344 2.29250 2.44133
0.2500 2.45863 2.53688 2.67205
0.3000 2.75465 2.83472 2.96334 3.18875
0.3500 3.11478 3.20047 3.32785 3.53609
0.4000 3.55416 3.65311 3.78606 3.98641 4.34038
0.4500 4.08271 4.21452 4.36642 4.56914 4.89916
0.5000 4.66648 4.89618 5.10347 5.32852 5.64511
0.5500 5.05444 5.61582 6.01520 6.32092 6.62657
0.6000 4.85258 5.88174 6.93406 7.56998 7.64802
0.6500 4.37349 5.41365 6.99743 8.65966 7.75661
0.7000 3.90174 4.79210 6.22702 8.27915 7.56998
0.7500 3.49401 4.24033 5.42411 7.21298 7.30172
0.8000 3.15205 3.78027 4.75338 6.22702 6.93406
0.8500 2.86727 3.40276 4.21318 5.42610 6.44601
0.9000 2.63014 3.09342 3.78027 4.79300 5.88174
0.9500 2.43232 2.83936 3.43248 4.29466 5.33130
0.9999 2.26722 2.63049 3.15250 3.90236 4.85336

3.7.4. FEM verification. Let us consider an FrrF beam with the rectangular cross-
section illustrated in Figure 2.6. The length of the beam is now set to 4000mm. The
surface densities are given as follows: ρ1 = ρAluminium = 2710/109 kg/mm2 and ρ2 = ρsteel =
7850/109 kg/mm2.
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Under these conditions:
Iey = 9.5× 1014 kg mm3/s2,

ρa = 4.423333× 10−6 kg/mm3.
(3.7.2)

Let us select that b = 0.2 and c = 0.8. Thus, the intermediate roller supports are symmet-
rically arranged. As per Table 32, for FrrF beams√

λ1|b=0.2,c=0.8 = 2.20617× 4.730042 = 49. 359 255. (3.7.3)

Using equation (3.6.3) we find

ω1|b=0.2,c=0.8 =

√
λ1|b=0.2,c=0.8

L2

√
Iey
ρaA

= 452. 101
r
s
. (3.7.4)

For PrrP beams, we get from Table 33:√
λ1|b=0.2,c=0.8 = 4.75338× π2 = 46.913 98017 (3.7.5)

Thus

ω̌1|b=0.2,c=0.8 =
46.913 980 17

40002
×
√

9.5× 1014

4.423333× 10−6 × 1002
= 429.704

rad
s
. (3.7.6)

These numerical findings were validated using the commercial finite element software
Ansys. A total of 480 uniform SOLID185 hexahedral elements were used to map the geom-
etry. Table 34 presents the validation of the results. When calculating the relative error,
the solutions of the novel model were used as the denominator. It is clear that that there
is a strong agreement between the solutions, indicating the accuracy of our approach. It is
noted that this Chapter is based on Author publication {3}.

Table 34. Comparison with FEM results

FrrF beam PrrP beam
ω̌1|b=0.2,c=0.8/2π 1/s

New model 71.95 68.38
Ansys solution 71.24 67.94
Relative error % 0.9867 0.6565



CHAPTER 4

The Green function for some coupled boundary value problems

4.1. Coupled BVPs

4.1.1. Definition. The definition, in certain ways, is similar to that in the previous
section for four-point BVPs. In the forthcoming, the differences will be emphasised. Assume
there are two inhomogeneous ordinary differential equations, whose operators Li[yi(x)] have
the same order, that is 2κ ≥ 2:

Li[yi(x)] =
2κ∑
n=0

pni(x) y
(n)
i (x) = ri(x), i = 1, 2. (4.1.1)

A coordinate at in inner point in x ∈ [0, ` = 1] is b, that makes two sub-intervals. Their
ranges are 0 < `1 = b < 1 and `2 = 1− `1. Functions (pn1(x) and r1(x)) {pn2(x) and r2(x)}
are continuous in the intervals (x ∈ [0, b)) {x ∈ (b, ` = 1]} and p2κi(x) 6= 0.

The particular solutions of Eqs. (4.1.1) are noted by ymi(x) (m = 1, 2, . . . , 2κ) and the
general solutions

y1 =
2κ∑
m=1

Am1ym1(x), y2 =
2κ∑
`=1

Am2ym2(x), (4.1.2)

with unknowns Am1 and Am2.
Equations (4.1.1) are paired with boundary and continuity conditions, similarly to Eq.

(3.1.3), but now there is only one intermediate point.
The integration constants, like in Chapter 3, can be found from the boundary conditions.

4.1.2. Green functions for CBVPs. If the Green function G(x, ξ) of the given cou-
pled boundary value problem (CBVP) is known, the solution can be found in a similar way
as in Chapter 3 in the two subdomains with

y(x) =

{
y1(x) if x ∈ [0, b)

y2(x) if x ∈ (b, ` = 1]
and r(ξ) =

{
r1(ξ) if ξ ∈ [0, b)

r2(ξ) if ξ ∈ (b, ` = 1]
(4.1.3)

while G(x, ξ) has the structure

G(x, ξ) =


G11(x, ξ) if x, ξ ∈ [0, b],
G21(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
G12(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
G22(x, ξ) if x, ξ ∈ [b, `],

(4.1.4)

Property 1 and 2 are identical to what is in Chapter 2. Property 3 and 4 are identical
with the subscripts I and II be replaced by 1 and 2.

Property 5 needs modifications. Let α be an arbitrary finite non-zero constant. For a
given ξ ∈ [0, `], the term G(x, ξ)α as a function of x 6= ξ should satisfy the homogeneous
differential equations

L1 [G(x, ξ)α] = 0, if x ∈ [0, b];

L2 [G(x, ξ)α] = 0, if x ∈ [b, `].
(4.1.5)

44
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Property 6 is also the same as in Chapter 2.

4.2. Calculation of the Green function

4.2.1. Elements G11 and G21 (ξ ∈ [0, b)). The element G11(x, ξ) (x ∈ [0, b]) is sought
as

G11(x, ξ) =
2κ∑
m=1

(am1(ξ) + bm1(ξ))ym1(x), x < ξ

G11(x, ξ) =
2κ∑
m=1

(am1(ξ)− bm1(ξ))ym1(x), x ≥ ξ

(4.2.1a)

while element G21(x, ξ) (x ∈ [b, `]) has the structure

G21(x, ξ) =
4∑

m=1

cm1(ξ)ym2(x). (4.2.1b)

The unknown coefficients are am1(ξ), bm1(ξ) and cm1(ξ). Continuity and discontinuity con-
ditions of Property 1 yield equations

2κ∑
m=1

bm1(ξ)y
(n)
m1(ξ) = 0, n = 0, 1, 2, . . . , 2κ− 2 (4.2.2a)

and
2κ∑
m=1

bm1(ξ)y
(2κ−1)
m1 (ξ) = − 1

p2κ1(ξ)
(4.2.2b)

Applying now the boundary and continuity conditions results the equation system
2κ∑
n=1

αnr1

2κ∑
m=1

(am1(ξ) + bm1(ξ))ym1(0) = 0 , r = 1, 2, 3, . . . , κ; (4.2.3a)

2κ∑
n=1

(
βnr1

2κ∑
m=1

(am1(ξ)− bm1(ξ))y
(n−1)
m1 (b)− βnr2

2κ∑
m=1

cm1(ξ)y
(n−1)
m2 (b)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (4.2.3b)

2κ∑
n=1

(
γnr2

2κ∑
m=1

cm1(ξ)y
(n−1)
m2 (`)

)
= 0 , r = 1, 2, 3, . . . , κ. (4.2.3c)

4.2.2. Elements G12; G22 (ξ ∈ (b, `]). The following representations are used this time:

G12(x, ξ) =
2κ∑
m=1

cm2(ξ)ym1(x), x ∈ [0, b]; (4.2.4a)

G22(x, ξ) =
2κ∑
m=1

(am2(ξ) + bm2(ξ))ym2(x), x < ξ

G22(x, ξ) =
2κ∑
m=1

(am2(ξ)− bm2(ξ))ym2(x), x > ξ

x ∈ [b, `]. (4.2.4b)
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Here the unknowns are bm2(ξ), am2(ξ) and cm2(ξ). Similarly as in Subsection 4.2.2 the
equations for bm2(ξ) are:

2κ∑
m=1

bm2(ξ)y
(n)
m2(ξ) = 0, n = 0, 1, 2, . . . , 2κ− 2 (4.2.5a)

and
2κ∑
m=1

bm2(ξ)y
(2κ−1)
m2 (ξ) = − 1

p2κ2(ξ)
. (4.2.5b)

As for am2(ξ) and cm2(ξ), the related boundary and continuity conditions yield
2κ∑
n=1

(
αnr1

2κ∑
m=1

cm2(ξ)y
(n−1)
m1 (0)

)
= 0 , r = 1, 2, 3, . . . , κ; (4.2.6a)

2κ∑
n=1

(
βnr1

2κ∑
m=1

cm2(ξ)y
(n−1)
m1 (b)− βnr2

2κ∑
m=1

(am2(ξ) + bm2(ξ))y
(n−1)
m2 (b)

)
= 0 ,

r = 1, 2, 3, . . . , 2κ; (4.2.6b)
2κ∑
n=1

(
γnr2

2κ∑
m=1

(am2(ξ)− bm2(ξ))y
(n−1)
m2 (b)

)
= 0 , r = 1, 2, 3, . . . , κ. (4.2.6c)

4.3. Self-adjointness and symmetry of the Green function

4.3.1. Self-adjointness. Assume that there are the comparison functions

u(x) =

{
u1(x) if x ∈ [0, b]
u2(x) if x ∈ [b, `]

and

v(x) =

{
v1(x) if x ∈ [0, b]
v2(x) if x ∈ [b, `]

.

Let us define the operations

(u, v)L =

∫ b

0

u1(x)L1[v1(x)] dx+

∫ `

b

u2(x)L2[v2(x)] dx (4.3.2)

on L1 and L2. The coupled boundary value problem is self-adjoint if the product (4.3.2) is
commutative.

4.3.2. Symmetry of the Green function. Let us consider now the following two
inhomogeneous coupled boundary value problems

L1[u1(x)] = r1(x) , L2[u2(x)] = r2(x)

L1[v1(x)] = s1(x) , L2[v2(x)] = s2(x)
(4.3.3)

and the associated conditions:
U0r[u1] = 0, U0r[v1] = 0, r = 1, 2, . . . , κ;

Ubr[u1, u2] = 0, Ubr[v1, v2] = 0, r = 1, 2, . . . , 2κ;
U1r[u2] = 0, U2r[v2] = 0, r = 1, 2, . . . , κ.

(4.3.4)

Here u1(x), u2(x), v1(x), v2(x) are now the unknowns, r1(x), r2(x) and s1(x), s2(x) are
continuous inhomogeneities in x ∈ [0, b], x ∈ [b, `]. For such self-adjoint BVPs, it holds that

(u, v)L − (v, u)L = 0,
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where u(x) and v(x) can be given as

u(x) =

∫ `

0

G(x, ξ)r(ξ) dξ and v(x) =

∫ `

0

G(x, ξ)s(ξ) dξ ,

in which

r(ξ) =

{
r1(ξ) if x ∈ [0, b)

r2(ξ) if x ∈ (b, ` = 1]
and s(ξ) =

{
s1(ξ) if ξ ∈ [0, b)

s2(ξ) if ξ ∈ (b, ` = 1]
(4.3.5)

Hence

(u, v)L − (v, u)L =

∫ `

0

(uL[v]− v L[u]) dx =

=

∫ `

0

∫ `

0

[G(x, ξ)−G(ξ, x)] r(ξ)s(x) dξdx = 0 . (4.3.6)

As both r(x) and s(x) are arbitrary continuous functions, the last integral in the former
equation is zero if and only if the Green function is symmetric in ξ and x.

4.4. Coupled eigenvalue problems

There are the differential equations

Ki [yi] = λMi [yi] , i = 1, 2 (4.4.1a)

where y1(x), x ∈ [0, b] and y2(x), x ∈ [b, `];(0 < b < ` = 1) are unknowns while λ is the
unknown eigenvalue. Differential operators Ki [yi] and Mi [yi] are detailed by

Ki [yi] =
κ∑

n=0

(−1)n
[
fni(x)y

(n)
i (x)

](n)

,

Mi [yi] =

µ∑
n=0

(−1)n
[
gni(x)y

(n)
i (x)

](n)

, κ > µ ≥ 1

(4.4.1b)

in which the real function (fni(x)) [gni(x)] is continuously differentiable (κ) [µ] times and

fκi(x) 6= 0 if x ∈ [0, b] (4.4.1c)
gµi(x) 6= 0 if x ∈ [b, `] . (4.4.1d)

This time, the order of the operator on the left side of (4.4.1a) is greater than the order on
the right side.

Equation (4.4.1) and the homogeneous boundary conditions define a coupled eigenvalue
problem (CEP). After performing partial integrations, the following formulae are found for
the products (u, v)K and (u, v)M :

(u, v)K =

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
1 (x)

[
fn1(x) v

(n)
1 (x)

](n−1−r)
]b−0

0

+

+

[ κ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
2 (x)

[
fn2(x) v

(n)
2 (x)

](n−1−r)
]`
b+0

+

+
κ∑

n=0

∫ b

0

u
(n)
1 (x)fn(x)v

(n)
1 (x) dx+

κ∑
n=0

∫ `

b

u
(n)
2 (x)fn(x)v

(n)
2 (x) dx =
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= K0(u, v) +
κ∑

n=0

∫ b

0

u
(n)
1 (x)fn(x)v

(n)
1 (x) dx+

κ∑
n=0

∫ `

b

u
(n)
2 (x)fn(x)v

(n)
2 (x) dx ,

(4.4.2a)

and

(u, v)M =

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
1 (x)

[
gn1(x) v

(n)
1 (x)

](n−1−r)
]b−0

0

+

+

[ µ∑
n=0

n−1∑
r=0

(−1)(n+r)u
(r)
2 (x)

[
gn2(x) v

(n)
2 (x)

](n−1−r)
]`
b+0

+

+

µ∑
n=0

∫ b

0

u
(n)
1 (x)gn1(x)v

(n)
1 (x) dx+

µ∑
n=0

∫ `

b

u
(n)
2 (x)gn2(x)v

(n)
2 (x) dx =

= M0(u, v) +

µ∑
n=0

∫ b

0

u
(n)
1 (x)gn1(x)v

(n)
1 (x) dx+

µ∑
n=0

∫ `

b

u
(n)
2 (x)gn2(x)v

(n)
2 (x) dx.

(4.4.2b)

If
K0(u, v) = K0(v, u) and M0(u, v) = M0(v, u) (4.4.3)

then the problem is self-adjoint.
The n-th eigenvalue is λn (n = 1, 2, 3, . . .) and the related eigenfunction is

yn(x) =

{
y1n(x) if x ∈ [0, b],

y2n(x) if x ∈ [b, `],
(4.4.4)

Because of the self-adjointness, the eigenfunctions are orthogonal:

(yn, ym)K =

{
λn (yk, yn)M if n =m,

0 if n 6=m. n,m = 1, 2, 3 . . . . (4.4.5)

If we set n and m equal, there is

λn =
(yn, yn)K
(yn, yn)M

(4.4.6)

If
(u, u)K > 0 , and (u, u)M > 0 (4.4.7)

is fulfilled for any u then the CEP is positive definite.
The eigenvalue problem is simple in case

M1[y] = g01(x)y1(x) and M2[y] = g02(x)y2(x). (4.4.8)

Assume that the eigenvalue problem is simple and the Green function of the problem is
known. Then

y(x) = λ

∫ `

0

G(x, ξ)g0(ξ)y(ξ) dξ , (4.4.9)

where

y(x) =

{
y1(x) if ξ ∈ [0, b) ,
y2(x) if ξ ∈ (b, `]

and g0(x) =

{
g01(x) if ξ ∈ [0, b) ,
g02(x) if ξ ∈ (b, `]

The structure of G(x, ξ) is given by Eq. (4.1.4). In this way the CEP is replaced by a
homogeneous Fredholm integral equation. When that the original eigenvalue problem is self-
adjoint, and positive definite, i.e. it holds g0(ξ) > 0 (ξ ∈ [0, `]). In such case, the previous
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Fredholm integral equation can be rewritten by

Y(x) = λ

∫ `

0

K(x, ξ)Y(ξ) dξ , (4.4.10)

where

Y(x) =
√
g0(x)y(x), K(x, ξ) =

√
g0(x)G(x, ξ)

√
g0(ξ). (4.4.11)

Here, Y(x) is the unknown while the kernel K(x, ξ) is symmetric.

4.5. Stepped beams

4.5.1. Governing equations for heterogeneous stepped beam problems. Figure
4.1 shows a fixed-fixed (fixed - slider supported) heterogeneous stepped (FFStp) beam and a
pinned-pinned stepped (PPStp) beam under the action of an axial force. The arrangement,
assumptions and notations are the same as in the previous chapters. The cross-sectional areas
Ai, (i = 1, 2) are constant and there is cross-sectional heterogeneity. The discontinuity in
the cross-sections occurs at coordinate b̂.

z

A
1

, Iey1

A
2

, Iey2

x

ŵ1 ŵ2

N

L2

x

L1  b

L1  L2  L

N

Figure 4.1. Heterogeneous stepped beams.

Equilibrium problems of such beams are governed by [75]:

K̂1(ŵ1(x)) = Iey1
d4ŵ1

dx̂4
= f̂y1(x̂), x̂ ∈ [0, b̂];

K̂2(ŵ2(x)) = Iey2
d4ŵ2

dx̂4
= f̂y2(x̂), x̂ ∈ [b̂, L]

(4.5.1)

The former equation with dimensionless quantities are

Ki(wi(x)) = Ieyiw
(4)
i = fzi(x) , fzi = L3f̂zi, x ∈

{
[0, b] if i = 1
[b, `] if i = 2

dkwi
dxk

= w
(k)
i , (k = 1, . . . , 4)

(4.5.2)

The related boundary and continuity conditions are detailed in Table 41.
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Table 41. Boundary and continuity conditions
Boundary conditions

(FFStp beams) (PPStp beams)
w1(0) = 0 , w

(1)
1 (0) = 0 w1(0) = 0 , w

(2)
1 (0) = 0

w2(`) = 0 , w
(1)
2 (`) = 0 w2(`) = 0 , w

(2)
2 (`) = 0

Continuity conditions
w1(b− 0) = w2(b+ 0)

w
(1)
1 (b− 0) = w

(1)
2 (b+ 0)

Iey1w
(2)
1 (b− 0) = Iey2w

(2)
2 (b+ 0)

Iey1w
(3)
1 (b− 0) = Iey2w

(3)
2 (b+ 0)

If the Green function of the coupled boundary value problem is known, the solution to
the dimensionless deflection w(x) (w(x) = w1(x) if x ∈ [0, b]; w(x) = w2(x) if x ∈ [b, `]), is
given by

w(x) =

∫ `

0

G(x, ξ)f(ξ)dξ, f(ξ) =

{
fz1(ξ) if ξ ∈ [0, b],
fz2(ξ) if ξ ∈ [b, `].

(4.5.3)

Moving on now to the free vibrations, the loading in this case is

f(ξ) =

{
ρa1A1L

4ω2w1(x) if ξ ∈ [0, b],
ρa2A2L

4ω2w2(x) if ξ ∈ [b, `].
= ρa1A1L

4ω2︸ ︷︷ ︸
λd

w(ξ)

 1 if ξ ∈ [0, b],
ρa2A2

ρa1A1

if ξ ∈ [b, `].

(4.5.4)
in which wi(x) is the dimensionless vibration amplitude, ρai is the average density of Ai
while ω is the natural circular frequency. Hence

K1(w1(x)) = Iey1w
(4)
1 = ρa1A1L

4ω2︸ ︷︷ ︸
λd

w1(x) ,

K2(w1(x)) = Iey2w
(4)
2 = λd

ρa2A2

ρa1A1

w2(x)

(4.5.5)

are the equations to be satisfied by wi(x) to get the λd eigenvalues. Recalling Eq. (4.5.3) in
case the corresponding Green function is known, this eigenvalue problem can be replaced by
the Fredholm integral equation:

w(x) = λd

∫ `

0

G(x, ξ)w(ξ)

 1 if ξ ∈ [0, b],
ρa2A2

ρa1A1

if ξ ∈ [b, `].

 dξ. (4.5.6)

4.5.2. Calculation of the Green function – FFStep.
4.5.2.1. Particular solutions. The linearly independent particular solutions of the corre-

sponding differential equation Ki(wi(x), i = 1, 2) = 0 are

w11 = w12 = 1 , w21 = w22 = x , w31 = w32 = x2 , w41 = w42 = x3 . (4.5.7)

4.5.2.2. Calculations if ξ ∈ (0, b). Here we seek the unknown coefficients am1(ξ), bm1(ξ)
and cm1(ξ) for the Green function. To do so, equations (4.2.2) yield

b11

b21

b31

b41

 =
1

12Iey1


ξ3

−3ξ2

3ξ
−1

 . (4.5.8)

Boundary and continuity conditions of Table 41 determine the following equation system:
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Boundary conditions at x = 0:
4∑

m=1

amiwm1(0) = −
4∑

m=1

bmiwm1(0) , (4.5.9a)

4∑
m=1

amiw
(1)
m1(0) = −

4∑
m=1

bmiw
(1)
m1(0) . (4.5.9b)

Continuity conditions at x = b:
4∑

m=1

amiwm1(b)−
4∑

m=1

cmiwm2(b) =
4∑

m=1

bmiwm1(b) , (4.5.9c)

4∑
m=1

amiw
(1)
m1(b)−

4∑
m=1

cmiw
(1)
m2(b) =

4∑
m=1

bmiw
(1)
m1(b) , (4.5.9d)

4∑
m=1

amiw
(2)
m1(b)− Iey2

Iey1︸︷︷︸
α

4∑
m=1

cmiw
(2)
m2(b) =

4∑
m=1

bmiw
(2)
m1(b) , (4.5.9e)

4∑
m=1

amiw
(3)
m1(b)− Iey2

Iey1︸︷︷︸
α

4∑
m=1

cmiw
(3)
m2(b) =

4∑
m=1

bmiw
(3)
m1(b) . (4.5.9f)

Boundary conditions at x = `:
4∑

m=1

cmiwm2(0) = 0 , (4.5.9g)

4∑
m=1

cmiw
(1)
m2(0) = 0 . (4.5.9h)

After substituting wm1, wm2 and bm1 equation system (4.5.9) takes the form:

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 b2 b3 −1 −b −b2 −b3

0 0 2b 3b2 0 −1 −2b −3b2

0 0 2 6b 0 0 −2α −6αb
0 0 0 6 0 0 0 −6α
0 0 0 0 1 ` `2 `3

0 0 0 0 0 1 2` 3`2





a11

a21

a31

a41

c11

c21

c31

c41


=

1

12Iey1



−ξ3

3ξ2

2ξ3 − 6ξ2b+ 3ξb2 − b3

−6ξ2 + 6ξb− 3b2

6ξ − 6b
−6
0
0


. (4.5.10)

Therefore, G11(x, ξ) and G21(x, ξ) are available as

G11(x, ξ) = (− ξ3

12Iey1
± ξ3

12Iey1
) + (

3

12Iey1
ξ2 ±− 3

12Iey1
ξ2)x+

+

{
3ξ

12DIey1

[
(`− b)4 + α

(
−4b3αξ + 2αb2ξ2 + 4b3ξ − 2b2ξ2 + 2`2ξ2−

−4`3ξ + 4b`3 − 6b2`2 + 4`b3 + αb4 − 2b4
)]
± 3ξ

12

}
x2+

+

{
− 1

12DIey1

[
(`− b)4 + α

(
4b`3 − 6b2`2 + 4`b3 + αb4 − 2b4 − 6`2ξ2+
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+4αbξ3 − 6αb2ξ2 + 4`ξ3 − 4bξ3 + 6b2ξ2
)]
±− 1

12

}
x3, (4.5.11)

G21(x, ξ) =
1

6DIey1

ξ2 (`− x)2 [3`2x− 6`b2 + 6b3 − 3b2x− 3b2ξ + 6b2α`− 6b3α+

+3b2αx− ξ`2 + 4ξ`b− 2ξ`x+ 2bxξ − 4ξαb`+ 3ξαb2 − 2ξbαx
]
, (4.5.12)

where
D = (`− b)4 + αb

(
αb3 − 2b3 + 4`b2 − 6`2b+ 4`3

)
. (4.5.13)

4.5.2.3. Calculations when ξ ∈ (b, `): According to equations (2.2.22) and (2.2.23), while
using Property 4, the equality wm1(x) = wm2 and equation (4.5.8), it follows that

b12

b22

b32

b42

 =
1

12Iey2


ξ3

−3ξ2

3ξ
−1

 . (4.5.14)

The boundary and continuity conditions lead to



1 b b2 b3 0 0 −b2 −b3

0 1 2b 3b2 0 0 −2b −3b2

0 0 2α 6αb 0 0 −2 −6b
0 0 0 α 0 0 0 −1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 ` `2 `3 0 0 0 0
0 1 2` 3`2 0 0 0 0





a12

a22

a32

a42

c12

c22

c32

c42


=
−1

12Iey2



ξ3 − 3bξ2 + 3b2ξ − b3

−3ξ2 + 6bξ − 3b2

α (6ξ − 6b)
−α
0
0

−ξ3 + 3ξ2`− 3ξ`2 + `3

3ξ2 − 6`ξ + 3`2


. (4.5.15)

As a consequence, the Green functions are

G12(x, ξ) =
1

6DIey1
x2 (`− ξ)2 [3`2ξ − 6b2`+ 6b3 − 3b2ξ + 6b2α`− 6b3α + 3b2αξ

−x`2 + 4x`b− 2x`ξ − 3xb2 + 2xbξ − 4xαb`+ 3xαb2 − 2xbαξ
]
, (4.5.16)

G22(x, ξ) =

=
1

12DIey2

[
− (`− b) (−2b`+ ξ`+ bξ)

(
−2`2b2 + 2b`2ξ + `2ξ2 + 2b2`ξ − 4b`ξ2 + b2ξ2

)
−

− bα
(
6bξ`4 − 12`2ξb3 + 6b3ξ`2α+ 12`2b2ξ2 + 4`3ξ3 − 12b`3ξ2 − 4`4b2 + 8`3b3−

−4b3`3α+ 2ξ3b3 − b3ξ3α− 4b2ξ3`
)
]± ξ3

12Iey2

+

+

{
− 3

12DIey2

[
(`−b)

(
4`3bξ−2`3b2−`3ξ2−5`2ξ2b+4`2b2ξ−2`2b3+4`bξ3−5`ξ2b2+4`b3ξ−ξ2b3)−

− bα
(
−b3αξ2 − 2`4b− 8`b3ξ + 4b3α`ξ − 4`bξ3 + 4`4ξ + 4`2ξ3 − 4`3ξ2+

+4`ξ2b2 + 2ξ2b3 + 4`2b3 − 2b3`2α
)
]± −3ξ

2

12Iey2

}
x+

+

{
3

12DIey2

[
(`− b)

(
−4b2ξ2 − 4b2`2 − 4ξ2`2 + 2bξ3 + b3ξ + ξ`3 + 2ξ3`+ 5bξ`2 − 4bξ2`+ 5b2ξ`

)
−

−bα
(
4b2ξ2 + 4b2`2 − 2bξ3 − 2b3ξ − 4b`3 + 4ξ`3 + b3αξ − 4b2ξ`

)]
± 3ξ

12Iey2

}
x2+

+

{
− 1

12DIey2

[
(`− b) (b− 2ξ + `)

(
2bξ − 4b`− 2ξ2 + `2 + 2ξ`+ b2

)
+
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+bα
(
4ξ3 + 4`3 − b3α− 6bξ2 − 4b2`− 12ξ`2 + 2b3 + 12bξ`

)]
± −1

12Iey2

}
x3 (4.5.17)

The unit of the Green function is 1/N mm2.

If we introduce the dimensionless distributed load

fzi =
fzi
Ieyi

=
L3f̂zi
Ieyi

(4.5.18)

and multiply equations (4.5.2)1 by 1/Ieyi , then

w
(4)
i = fzi(x) . (4.5.19)

What is found now is a three-point boundary value problem. The dimensionless Green
function for this three-point boundary value problem is

G(x, ξ) =


G11(x, ξ) = Iey1G11(x, ξ) if x, ξ ∈ [0, b],
G21(x, ξ) = Iey1G21(x, ξ) if x ∈ [b, `] and ξ ∈ [0, b],
G12(x, ξ) = Iey2G12(x, ξ) if x ∈ [0, b] and ξ ∈ [b, `],
G22(x, ξ) = Iey2G22(x, ξ) if x, ξ ∈ [b, `],

(4.5.20)

G(x, ξ) depends on Iey1 and Iey2 via α, as the beam is stepped. The solution for equilibrium
problem is therefore

w(x) =

∫ `

0

G(x, ξ)f(ξ)dξ, f(ξ) =

{
fz1(ξ) if ξ ∈ [0, b],
fz2(ξ) if ξ ∈ [b, `].

Although the three-point boundary value problem is not self-adjoint, the symmetry condi-
tions 

G11(x, ξ) = G11(ξ, x) if x, ξ ∈ [0, b],
G21(x,ξ)
Iey1

= G12(ξ,x)
Iey2

if x ∈ [b, `] and ξ ∈ [0, b],

G22(x, ξ) = G22(ξ, x) if x, ξ ∈ [b, `]

(4.5.21)

are fulfilled.
If we write b̂, L ,x̂ and ξ̂ for b, `, x and ξ in Eqs. (4.5.20), the Green function is available

for the cube of the length unit. Figure 4.2 shows this Green function for a FFStep beam
with L = 100 mm, b̂ = 50 mm, ξ̂ = 75 mm and α= 0.512.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

10x

L/10  0. 75

z
A1, Iey1

A2, Iey2

b  L/2

L

ŵ1

x

ŵ2

1000  Gx,

Figure 4.2. The Green function of an FFStp beam
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4.5.3. Green function – PPStep. Repeating the calculation steps detailed in Sub-
section 4.5.2 for PPStep beams yields [81]:

G11(x, ξ) =
1

12Iey1

{
(−ξ3 ± ξ3)+

+

[
ξ

α`2

(
4 (`− b)3 + α

(
12`b (`− b) + 2ξ2`+ 4b3 − 3ξ`2

))
±
(
−3ξ2

)]
x+

+ (−3ξ ± 3ξ)x2 +

(
−1

`
(`− 2ξ)± (−1)

)
x3

}
, (4.5.22a)

G21(x, ξ) =
2ξ (`− x)

12Iey1α`
2

(
2x`2 − 3`b2 − x2`+ 2b3 + α

(
3`b2 − ξ2`− 2b3

))
. (4.5.22b)

and

G12(x, ξ) =
2x (`− ξ)
12Iey2`

2

(
2ξ`2 − 3`b2 − ξ2`+ 2b3 + α

(
3`b2 − 2b3 − x2`

))
, (4.5.23a)

G2I(x, ξ) =
2ξ (`− x)

12Iey1α`
2

(
2x`2 − 3`b2 − x2`+ 2b3 + α

(
3`b2 − ξ2`− 2b3

))
=

=
2ξ (`− x)

12Iey2`
2

(
2x`2 − 3`b2 − x2`+ 2b3 + α

(
3`b2 − ξ2`− 2b3

))
. (4.5.23b)

With (4.5.20), the eigenvalue problem can be rewritten into

w(x) = λd

∫ `

0

G(x, ξ)w(ξ)

{
1 if ξ ∈ [0, b],
κ if ξ ∈ [b, `].

}
dξ , (4.5.24)

where

λ =
λ

Iey1
=
ρa1A1L

4

Iey1
ω2, and κ =

ρa2A2Iey1
ρa1A1Iey2

(4.5.25)

is the new eigenvalue.

4.5.4. Example 1. Consider the FFStep beam as shown in Figure 4.3. It is assumed
that [ν = 1 if x̂ ∈ [0, b̂)] (ν = 0.95, 0.90, 0.85, 0.80, 0.75 if x̂ ∈ (b̂, L]). The cross-sectional
parameters and material distribution are the same as those mentioned in the example of the
previous chapter, except that the height c = νa is now a parameter.

b

L

x

ŷ

z

a

a

a

a

a1 a1a2

a

E1
E1E2

z

ŷ
a

Figure 4.3. A stepped beam with rectangular cross section
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Table 42. Data for the cross sections

ν
ρa1 = ρa2 = ρa Iey1 Iey2

α = Iey2
Iey1

κ

kg/mm3 kg mm3/s2

0.95 8.145 1× 1014 0.857375 1.1080332
0.90 6.925 5× 1014 0.729000 1.2345679
0.85 4.423333× 10−6 9.5× 1014 5.834 2× 1014 0.614125 1.3840835
0.80 4.8640× 1014 0.512000 1.5625000
0.75 4. 007 8× 1014 0.421875 1.7777778

The related eigenvalue problem is solved numerically using a solution algorithm that is
based on the boundary element method [78]. Figure 4.4 shows the numerical results for√
λ1/4.730042 as function of parameter b. Each curve in Figure 4.4 represents a different

value of the parameter α. With λ1 it follows form Eq. (4.5.25) that

ω1 =
1

L2

√
Iey1
ρa1A1

λ1 . (4.5.26)

Assume that ν = 0.8 and b = 0.5, thus√
λ1 = 4.730042 × 0.88372654 = 19.771 859

and
ω1 = 181.098 36 r/s.
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Figure 4.4. The first eigenvalue as a function of b; α and κ are parmeters [82].

If there is no step in the beam cross-section, the eigenvalues coincide with that presented in
Figure 3.4 for b = 0 and c = 1.

4.6. Axially loaded stepped beams

4.6.1. Governing equations. Equilibrium problems of axially loaded beams are gov-
erned by

K1a(w1(x)) = Iey1w
(4)
1 ±N1L

2w
(2)
1 = fz1(x), x ∈ [0, b];

K2a(w2(x)) = Iey2w
(4)
2 ±N2L

2w
(2)
2 = fz2(x̂), x ∈ [b, l]

(4.6.1)
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where N1 > 0 and N2 > 0 are axial compressive forces. These equations are associated with
boundary and continuity conditions in Table 41. If fz1(x) = fz2(x) = 0, N1 = N2 = N and
N > 0, we get an problem for the critical load Ncrit.

Given that we know the Green functions Gc(x, ξ) (N is compressive) and Gt(x, ξ) (N is
tensile) solution for the dimensionless deflection w(x) (w(x) = w1(x) if x ∈ [0, b]; w(x) =
w2(x) if x ∈ [b, `]) is given by integral (4.5.3).

When the axially loaded beam does transverse vibrations, there is a homogeneous integral
equation (4.5.6) with (G = Gc(x, ξ)) [G = Gt(x, ξ)] as the kernel function.

4.6.2. Green function for compressive force case. With

N1 =
NL2

Iey1
and N2 =

NL2

Iey2
(4.6.2)

the particular solutions to the dimensionless displacements in equations (4.6.1) are given by

w11 = 1, w12 = x, w13 = cos p1x, w14 = sin p1x , x ∈ [0, b) , p1 =
√
N1; (4.6.3a)

w21 = 1, w22 = x, w23 = cos p2x, w24 = sin p2x , x ∈ (b, ` = 1] , p2 =
√
N2. (4.6.3b)

If ξ ∈ (0, b), we repeat the calculation steps detailed in Subsection 4.5.2.2. Therefore, we get
the following systems for FFStep beams:


1 ξ cos p1ξ sin p1ξ
0 1 −p1 sin p1ξ p1 cos p1ξ
0 0 −p2

1 cos p1ξ −p2
1 sin p1ξ

0 0 p3
1 sin p1ξ −p3

1 cos p1ξ



b11

b21

b31

b41

=


0
0
0

− 1
2Iey1

,

b11

b21

b31

b41

=
1

2Iey1


ξ
p21
− 1
p21

− sin p1ξ
p31

cos p1ξ
p31

 (4.6.4)

and

1 0 1 0 0 0 0 0
0 1 0 p1 0 0 0 0
1 b cos p1b sin p1b −1 −b − cos p2b − sin p2b
0 1 −p1 sin p1b p1 cos p1b 0 −1 p2 sin p2b −p2 cos p2b
0 0 −p2

1 cos p1b −p2
1 sin p1b 0 0 αp2

2 cos p2b αp2
2 sin p2b

0 0 p3
1 sin p1b −p3

1 cos p1b 0 0 −αp3
2 sin p2b αp

3
2 cos p2b

0 0 0 0 1 ` cos p2` sin p2`
0 0 0 0 0 1 −p2 sin p2` p2 cos p2`





a11

a21

a31

a41

c11

c21

c31

c41


=

=
1

2Iey1p
3
1



−p1ξ + sin p1ξ
p1 − p1 cos p1ξ.

p1ξ − p1b+ sin p1 (b− ξ)
−p1 + p1 cos p1 (b− ξ)
−p2

1 sin p1 (b− ξ)
−p3

1 cos p1 (b− ξ)
0
0


(4.6.5)

When considering PPStep beams, note that the functions bi are the same as those for FFStep
beams. The second equation system is of the form:
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1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cos p1b sin p1b −1 −b − cos p2b − sin p2b
0 1 −p1 sin p1b p1 cos p1b 0 −1 p2 sin p2b −p2 cos p2b
0 0 −p2

1 cos p1b −p2
1 sin p1b 0 0 αp2

2 cos p2b αp2
2 sin p2b

0 0 p3
1 sin p1b −p3

1 cos p1b 0 0 −αp3
2 sin p2b αp3

2 cos p2b
0 0 0 0 1 ` cos p2` sin p2`
0 0 0 0 0 0 cos p2` sin p2`





a11

a21

a31

a41

c11

c21

c31

c41


=

=
1

2Iey1p
3
1



−p1ξ + sin p1ξ
sin p1ξ

p1ξ − p1b+ sin p1 (b− ξ)
−p1 + p1 cos p1 (b− ξ)
−p2

1 sin p1 (b− ξ)
−p3

1 cos p1 (ξ − b)
0
0


(4.6.6)

Note that the notations for the unknowns are the same as before.
If ξ ∈ (b, `) – repeating the steps of Subsection 4.5.2.3 – yields for FFStep beams:


1 ξ cos p2ξ sin p2ξ
0 1 −p2 sin p2ξ p2 cos p2ξ
0 0 −p2

2 cos p2ξ −p2
2 sin p2ξ

0 0 p3
2 sin p2ξ −p3

2 cos p2ξ



b1

b2

b3

b4

=


0
0
0

− 1
2Iey1

,

b12

b22

b32

b42

=
1

2Iey1


ξ
p22
− 1
p22

− sin p2ξ
p32

cos p2ξ
p32

 (4.6.7)

and



1 b cos p2b sin p2b −1 −b − cos p1b − sin p1b
0 1 −p2 sin p2b p2 cos p2b 0 −1 p1 sin p1b −p1 cos p1b
0 0 −αp2

2 cos p2b −αp2
2 sin p2b 0 0 p2

1 cos p1b p2
1 sin p1b

0 0 αp3
2 sin p2b −αp3

2 cos p2b 0 0 −p3
1 sin p1b p3

1 cos p1b
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 p1

1 ` cos p2` sin p2` 0 0 0 0
0 1 −p2 sin p2` p2 cos p2` 0 0 0 0





a12

a22

a32

a42

c12

c22

c32

c42


=

= − 1

2Iey2p
3
2



p2ξ − p2b+ sin p2 (b− ξ)
p2 cos p2 (b− ξ)− p2

−αp2
2 sin p2 (b− ξ)

−αp3
2 cos p2 (b− ξ)

0
0

−p2ξ + p2`− sin p2 (`− ξ)
p2 − p2 cos p2 (`− ξ)


(4.6.8)

Moving on now to PPStep beams, the functions bi2 are unchanged. The second equation
system is
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1 b cos p2b sin p2b 0 −b 0 − sin p1b
0 1 −p2 sin p2b p2 cos p2b 0 −1 0 −p1 cos p1b
0 0 −αp2

2 cos p2b −αp2
2 sin p2b 0 0 0 p2

1 sin p1b
0 0 αp3

2 sin p2b −αp3
2 cos p2b 0 0 0 p3

1 cos p1b
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 ` cos p2` sin p2` 0 0 0 0
0 0 − cos p2` − sin p2` 0 0 0 0





a12

a22

a32

a42

c12

c22

c32

c42


=

= − 1

2Iey2p
3
2



p2ξ − p2b+ sin p2 (b− ξ)
p2 cos p2 (b− ξ)− p2

−αp2
2 sin p2 (b− ξ)

−αp3
2 cos p2 (b− ξ)

0
0

−p2ξ + p2`− sin p2 (`− ξ)
sin p2 (`− ξ)


(4.6.9)

The closed form solution for a11(ξ), . . . , c42(ξ) are very long formulae and thus, are omitted.
The dimensionless Green functions Gc(x, ξ) can be found using Eq. (4.5.20).
Figure 4.5 shows the dimensionless Green function Gc(x, ξ) for FFStep case if ξ = 0.75.
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1000  Gcx,,   0.512000

Figure 4.5. The Green function of an FFStp beam subjected to a compres-
sive force.

4.6.3. Green function for tensile force. Recalling equations (4.6.2) the particular
solutions to the dimensionless displacements are given by

w11 = 1, w12 = x, w13 = cosh p1x, w14 = sinh p1x , x ∈ [0, b); (4.6.10a)
w21 = 1, w22 = x, w23 = cosh p2x, w24 = sinh p2x , x ∈ (b, ` = 1]. (4.6.10b)

The structure of the Green function is the same as before. Assume that ξ ∈ (0, b). For
FFStep beams, the computation steps are given in Subsection 4.5.2.2. This line of thought
yields:

1 ξ cosh p1ξ sinh p1ξ
0 1 p1 sinh p1ξ p1 cosh p1ξ
0 0 p2

1 cosh p1ξ p
2
1 sinh p1ξ

0 0 p3
1 sinh p1ξ p

3
1 cosh p1ξ



b1

b2

b3

b4

=


0
0
0
−1

2

,

b1I

b2I

b3I

b4I

=
1

2Iey1


− ξ
p21

1
p21

sinh p1ξ
p31

− cosh p1ξ
p31

 (4.6.11)
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Utilizing the boundary conditions, the equation system for aiI and ciI becomes

1 0 1 0 0 0 0 0
0 1 0 p1 0 0 0 0
1 b cosh p1b sinh p1b −1 −b − cosh p2b − sinh p2b
0 1 p1 sinh p1b p1 cosh p1b 0 −1 −p2 sinh p2b −p2 cosh p2b
0 0 p2

1 cosh p1b p
2
1 cosh p1b 0 0 −αp2

2 cosh p2b −αp2
2 sinh p2b

0 0 p3
1 sinh p1b p

3
1 cosh p1b 0 0 −αp3

2 sinh p2b −αp3
2 cosh p2b

0 0 0 0 1 ` cosh p2` sinh p2`
0 0 0 0 0 1 p2 sinh p2` p2 cosh p2`





a1I

a2I

a3I

a4I

c1I

c2I

c3I

c4I


=

=
1

2Iey1p
3
1



p1ξ − sinh p1ξ
−p1 + p1 cosh p1ξ.

−p1ξ + p1b− sinh p1 (b− ξ)
p1 − p1 cosh p1 (b− ξ)
−p2

1 sinh p1 (b− ξ)
−p3

1 cosh p1 (b− ξ)
0
0


(4.6.12)

The functions biI will not change for the current boundary conditions. As for the second
equation system, we have from the boundary conditions that:



1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cosh p1b sinh p1b −1 −b − cosh p2b − sinh p2b
0 1 p1 sinh p1b p1 cosh p1b 0 −1 −p2 sinh p2b −p2 cosh p2b
0 0 p2

1 cosh p1b p
2
1 cosh p1b 0 0 −αp2

2 cosh p2b −αp2
2 sinh p2b

0 0 p3
1 sinh p1b p

3
1 cosh p1b 0 0 −αp3

2 sinh p2b −αp3
2 cosh p2b

0 0 0 0 1 ` cosh p2` sinh p2`
0 0 0 0 0 0 cosh p2` sinh p2`





a1I

a2I

a3I

a4I

c1I

c2I

c3I

c4I


=

=
1

2Iey1p
3
1



p1ξ − sinh p1ξ
− sinh p1ξ

−p1ξ + p1b− sinh p1 (b− ξ)
p1 − p1 cosh p1 (b− ξ)
−p2

1 sinh p1 (b− ξ)
−p3

1 cosh p1 (b− ξ)
0
0


(4.6.13)

Next, ξ ∈ (b, `). Recalling the calculation steps from Subsection 4.5.2.3, we obtain the
following equation systems for biII , aiII and ciII :

1 ξ cosh p2ξ sinh p2ξ
0 1 p2 sinh p2ξ p2 cosh p2ξ
0 0 p2

2 cosh p2ξ p
2
2 sinh p2ξ

0 0 p3
2 sinh p2ξ p

3
2 cosh p2ξ



b1

b2

b3

b4

=


0
0
0

− 1
2Iey2

,

b1II

b2II

b3II

b4II

=
1

2Iey2


− ξ
p22

1
p22

sinh p2ξ
p32

− cosh p2ξ
p32

 , (4.6.14)
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1 b cosh p2b sinh p2b −1 −b − cosh p1b − sinh p1b
0 1 p2 sinh p2b p2 cosh p2b 0 −1 −p1 sinh p1b −p1 cosh p1b
0 0 αp2

2 cosh p2b αp2
2 sinh p2b 0 0 −p2

1 cosh p1b −p2
1 sinh p1b

0 0 αp3
2 sinh p2b −αp3

2 cosh p2b 0 0 −p3
1 sinh p1b −p3

1 cosh p1b
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 p1

1 ` cosh p2` sinh p2` 0 0 0 0
0 1 p2 cosh p2` p2 sinh p2` 0 0 0 0





a1II

a2II

a3II

a4II

c1II

c2II

c3II

c4II


=

=
1

2Iey2p
3
2



p2ξ − p2b+ sinh p2 (b− ξ)
p2 cosh p2 (b− ξ)− p2

αp2
2 sinh p2 (b− ξ)

αp3
2 cosh p2 (b− ξ)

0
0

−p2ξ + p2`− sinh p2 (`− ξ)
p2 − p2 cosh p2 (`− ξ)


. (4.6.15)

Again, for PPStep beams biII will not change; while the notations for the functions aiII and
biII are the same as before. The boundary conditions yield

1 b cosh p2b sinh p2b 0 −b 0 − sinh p1b
0 1 p2 sinh p2b p2 cosh p2b 0 −1 0 −p1 cosh p1b
0 0 αp2

2 cosh p2b αp2
2 sinh p2b 0 0 0 −p2

1 sinh p1b
0 0 αp3

2 sinh p2b −αp3
2 cosh p2b 0 0 0 −p3

1 cosh p1b
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
1 ` cosh p2` sinh p2` 0 0 0 0
0 0 cosh p2` sinh p2` 0 0 0 0





a1II

a2II

a3II

a4II

c1II

c2II

c3II

c4II


=

=
1

2p3
2



p2ξ − p2b+ sinh p2 (b− ξ)
p2 cosh p2 (b− ξ)− p2

αp2
2 sinh p2 (b− ξ)

αp3
2 cosh p2 (b− ξ)

0
0

−p2ξ + p2`− sinh p2 (`− ξ)
− sinh p2 (`− ξ)


(4.6.16)

The closed-form solution for the unknowns a1II(ξ), . . . , c4II(ξ) are again very long formulae
and so are neglected.

4.7. Effect of the axial load on the frequencies

4.7.1. Governing equations. Here we seek the effect of the axial load on the transverse
vibrational frequencies. With the Green functions in hand, the eigenvalue problems can be
transformed into eigenvalue problems governed by homogeneous Fredholm integral equations:

w(x) = λ

∫ `

0

Gc(x, ξ)w(ξ)

{
1 if ξ ∈ [0, b],
κ if ξ ∈ [b, `].

}
dξ , (4.7.1)

for the case of a compressive force and

w(x) = λ

∫ `

0

Gt(x, ξ)w(ξ)

{
1 if ξ ∈ [0, b],
κ if ξ ∈ [b, `].

}
dξ , (4.7.2)
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for the case of a tensile force. Here λ and κ are given by equation (4.5.25). We focus on the
lowest value of the critical force. The solution to the corresponding eigenvalue problem is
given in Appendix A.2.1.

4.7.2. Example 2. Two problems are solved numerically here. For the first problem, it
is assumed that ν = 0.90; then α = 0.7290 and κ = 1.2345679 for a FFStep beam. As for the
second problem, α = 0.65610000 and κ = 1.234586718 for a PPStep beam. These data are
taken from Table 42. The first eigenfrequency and the critical forces of the FFStep/PPStep
beams are calculated and the computational results are given in Tables 43 and 44.

Table 43. Values of λ1√
λ1(b)/4.730042

beam b = 0.2 b = 0.4 b = 0.5 b = 0.6 b = 0.8

FFStep 0.94306087 0.93958134 0.94601385 0.95527766 0.95835369
PPStep 0.90273411 0.92130879 0.93858272 0.95892739 0.99240078

Table 44. Critical force√
N2 crit(b)

beam b = 0.2 b = 0.4 b = 0.5 b = 0.6 b = 0.8

FFStep 6.53688650 6.58893781 6.73840194 6.94801747 7.08637924
PPStep 3.16728280 3.30994880 3.43419178 3.58174237 3.82743853

Let us note the first eigenfrequency for [compression] {tension} by [ω1c] {ω1t}. The first
eigenfrequency of the unloaded beam is ω1.

4.7.2.1. Solutions to Problem 1.
(i) Results if b = 0.2:
Table 45 contains the computational results.

Table 45. Eigenfrequency as a function of the axial load

b = 0.2
N/Ncrit = ω2

1c/ω
2
1 no load ω2

1t/ω
2
1 no loadN2/N2crit

0.000 0.99996606 1.00003393
0.100 0.90306768 1.09641322
0.200 0.80558100 1.19233938
0.300 0.70750101 1.28780763
0.400 0.60878458 1.38284459
0.500 0.50938378 1.47747462
0.600 0.40924518 1.57172007
0.700 0.30830903 1.66560145
0.800 0.20650822 1.75913769
0.900 0.10376710 1.85234623
1.000 0.00000000 1.94524322

Graphical representation of these results is presented in Figure 4.6.
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Figure 4.6. Graphical representation of the results presented in Table 45

It is noted that the quotients ω2
1c/ω

2
1 no load and ω2

1t/ω
2
1 no load are almost linear functions

in N2/N2crit. The quadratic polynomials

ω2
1c

ω2
1 no load

= −3.752 898 481× 10−2 N 2
2

N 2
2crit

− 0.961 635 336
N2

N2crit

+ 0.999 602 766 ,

ω2
1t

ω2
1 no load

= −1.936 132 658× 10−2 N 2
2

N 2
2crit

+ 0.964 285 910
N2

N2crit

+ 1.000 174 954

(4.7.3a)

fit onto the computed results with at least a four digit accuracy.
(ii) Results if b = 0.5:

ω2
1c

ω2
1 no load

= −3.843 202 128× 10−2 N 2
2

N 2
2crit

− 0.960 668 935
N2

N2crit

+ 0.999 576 294 ,

ω2
1t

ω2
1 no load

= −1.938 551 945× 10−2 N 2
2

N 2
2crit

+ 0.963 587 738
N2

N2crit

+ 1.000 178 405 .

(4.7.3b)

(iii) Results if b = 0.8:

ω2
1c

ω2
1 no load

= −3.098 719 962× 10−2 N 2
2

N 2
2crit

− 0.968 372 084
N2

N2crit

+ 0.999 693 086 ,

ω2
1t

ω2
1 no load

= −1.664 490 344× 10−2 N 2
2

N 2
2crit

+ 0.970 329 880
N2

N2crit

+ 1.000 142 979 .

(4.7.3c)

4.7.2.2. Solutions to Problem 2.
(i) Results if b = 0.2. The numerical results are collected in Table 46.

Figure 4.7 is the graphical representation of the findings.
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Table 46. Eigenfrequency as a function of the axial load

b = 0.2
N/Ncrit = ω2

1c/ω
2
1 no load ω2

1t/ω
2
1 no loadN2/N2crit

0.000 0.99985049 1.00014949
0.100 0.90001388 1.09998352
0.200 0.80002506 1.19996457
0.300 0.70003341 1.29994325
0.400 0.60003881 1.39991964
0.500 0.50004109 1.49989385
0.600 0.40004012 1.59986595
0.700 0.30003571 1.69983602
0.800 0.20002769 1.79980415
0.900 0.10001586 1.89977039
1.000 0.00000000 1.99973481
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Figure 4.7. Graphical representation of the results presented in Table 46
The quadratic approximations
ω2

1c

ω2
1 no load

=− 3.331 337 633× 10−4 N 2
2

N 2
2crit

− 0.999 625 6857
N2

N2crit

+ 0.999 945 6098,

ω2
1t

ω2
1 no load

=6.307 884 335× 10−5 N 2
2

N 2
2crit

+ 0.999 631 7373
N2

N2crit

+ 1.000 053 866.

(4.7.4a)

fit onto the numerical results with a four to five digit accuracy.
(ii) Results if b = 0.5:

ω2
1c

ω2
1 no load

=− 4.104 840 441× 10−3 N 2
2

N 2
2crit

− 0.995 790 1871
N2

N2crit

+ 0.999 920 6831,

ω2
1t

ω2
1 no load

=− 2.080 081 369× 10−3 N 2
2

N 2
2crit

+ 0.9959923923
N2

N2crit

+ 1.000 062431.

(4.7.4b)

(iii) Results if b = 0.8:
ω2

1c

ω2
1 no load

=− 5.252 032 453× 10−4 N 2
2

N 2
2crit

− 0.999 440 542 7
N2

N2crit

+ 0.999 959 9196,

ω2
1t

ω2
1 no load

=− 1.137 211 210× 10−4 N 2
2

N 2
2crit

+ 0.999 462 7271
N2

N2crit

+ 1.000 038 224.

(4.7.4c)
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If b = 0 or b = 1, the beams behave as if they were fixed-fixed beam/pinned-pinned,
without a step. Then the quadratic approximation for ω2

1c/ω
2
1 no load coincides with that

published in [78].



CHAPTER 5

Stability of imperfect curved beams

5.1. Governing equations

Let us consider a fixed-fixed arch as it is shown in Figure 5.1. The cross-sectional coor-
dinates are denoted as η and ζ, while the axis ξ aligns with the circumferential direction.
Notably, axis η serves as a major principal axis of the arch. The arch has a length of S,
with an included angle of 2θ, and an initial constant radius of curvature R. Additionally, ϕ
and s = Rϕ represent the angle and arc coordinates, respectively. The mechanical load is
applied at the crown point, where ϕ = 0. This configuration represents a scenario where the
load is positioned at the symmetry axis of the perfect arch.

Figure 5.1. Arch geometry configuration.

It is assumed also that the arch has a small scale arbitrary geometrical imperfection
through initial radial displacements h(ϕ). It causes strain but the initial state is considered
to be stress free. The total longitudinal normal strain at any material point, according to
the Euler-Bernoulli hypothesis, is

εξ =
R

R + ζ

[
du

ds
+
w + h

R
+ ζ

(
du

Rds
− d2w

ds2
+

d2h

ds2

)]
+

1

2

(
u

R
− dw

ds
+

dh

ds

)2

, (5.1.1)

where (in this Chapter) u and w are the axial and radial displacements on the centroidal
axis, respectively. Here, it can be assumed that w >> u due to the shallowness of the arch,
which is generally accepted in the literature – see [64]. Thus, the effective strain that induces
stress is

εeff =
R

R + ζ

[
du

ds
+
w

R
+ ζ

d2w

ds2

]
+

1

2

d2w

ds2
+

dw

ds

dh

ds
. (5.1.2)

The membrane strain at an arbitrary point on the centroidal axis (ζ = 0) is

εm,eff =
du

ds
+
w

R
+

1

2
ψ2 + ψ

dh

ds
= εm +

dw

ds

dh

ds
, ψ =

dw

ds
(5.1.3)

where ψ is the rotation. There is an extra term in equation (5.1.3) in comparison to the
perfect arch [83] on account of the initial displacements. In the above theoretical formulation,
the nonlinear term is 1

2
ψ2 in the rotation field of the arch, which is not negligible compared

65
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to the other terms, and it contributes as the cause of non-linearity. The axial force N and
the bending moment M can be represented as follows using the Hooke law [84]:

N =

∫
A

σξdA =

∫
A

EεeffdA ' Aeεm,eff +
Ie
R

d2w

ds2
, (5.1.4)

M =

∫
A

σξdA =

∫
A

EεeffζdA ' −Ie
(

d2w

ds2
+

w

R2

)
, (5.1.5)

Here, Ie is the E-weighted moment of inertia about the major principal axis η and Ae
the E- weighted area of the cross section:

Ie = E

∫
A

ζ2 dA; Ae =

∫
A

EdA. (5.1.6)

The cross-sectional radius of gyration is, thereby, defined by r =
√
Ie/Ae. The bending

moment and axial force have a mutual effect on the membrane strain:

N +
M

R
= Aeεm,eff . (5.1.7)

Using the principle of virtual work, the nonlinear pre-buckling equilibrium configuration
is established from ∫

V

σξδεeff dV − q δw|ϕ=0 = 0. (5.1.8)

As detailed in Appendix A.3.1, the principle yields the following coupled differential equa-
tions of equilibrium

dN

ds
+

1

R

[
dM

ds
−
(
N +

M

R

)(
u

R
− dw

ds

)]
= 0, (5.1.9)

d

ds

[
dM

ds
−
(
N +

M

R

)(
u

R
− dw

ds

)]
− N

R
= 0. (5.1.10)

The fundamental equations with kinematical quantities can be found by recalling Eqs.
(5.1.3)- (5.1.10). Details are provided in Appendix A.3.1 and A.3.2 that lead to

ε
′

m,eff = 0 (5.1.11)
and

W
′′′′

+ (µ2 + 1)W
′′

+ µ2W = (µ2 − 1)(1 +H
′′
) (5.1.12)

given that

{W ;H} = {w
R

;
h

R
} , µ2 = 1− κεm,eff ; κ =

AeR
2

Ie
=
R2

r2
; λ =

√
κθ2 =

Sθ

2r
(5.1.13)

are dimensionless parameters.
In which λ is the slenderness of the arch [61]. The initial imperfection can be arbitrary
continuous function, e.g., having the form

H(ϕ) = A0 + Ai
∑
i

sin(i
πϕ

θ
) +

∑
j

Aj sin(j
πϕ

2θ
) (5.1.14)

with A0, Ai and Aj being the amplitude coefficients and i , j ∈ R. These parameters control
the error shape and magnitude.

Once H is given, the general solution to (5.1.12) can be found. After that, the above
equations are extended with boundary conditions. The displacement and rotation are zero
at the supports whereas all the fields are continuous, with the exception of the shear force,
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which displays a discontinuity of value Q at the crown point. These conditions is terms of
dimensionless displacements are

W |ϕ=−θ = W
′′
∣∣∣
ϕ=−θ

= W |ϕ=θ = W
′′
∣∣∣
ϕ=θ

= 0, (5.1.15)

W |ϕ=−α = W |ϕ=+α W
′
∣∣∣
ϕ=−α

= W ′|ϕ=+α , (5.1.16)

W
′′
∣∣∣
ϕ=−α

= W
′′
∣∣∣
ϕ=+α

− W
′′′ ∣∣∣

ϕ=−α
+ W

′′′
∣∣∣
ϕ=+α

= −2Q

θ
, (5.1.17)

where Q is the dimensionless load defined by Q = qR2θ
2Ie

.
Since the membrane strain is constant, it thus means

εm,eff =
1

2θ
[U

′
+W +

1

2

(
W

′
)2

+W
′
H

′
] = const. (5.1.18)

This finding links the external load and the strain for the imperfect shallow arch as

εm,eff =
1

2θ

∫ ϑ

−ϑ

[
−U ′

+W + 0.5 (W ′)
2

+W
′
H

′
]

dϕ = const. (5.1.19)

that is
2∑

k=0

BkQ
k = 0 (5.1.20)

in short. With Bk = Bk(A0, Ai, Aj, κ, i, j, Ie, Ae, R, S, θ) being coefficients. The coefficients
B0, B1, B2 can be found once the initial displacements are selected. Eq. (5.1.21) serves the
base for stability investigations since it expresses the nonlinear relationship between the load
and strain, it can be used to find the equilibrium path for arches. The local maxima of this
path is found by the mathematical condition

d

dµ
(

2∑
k=0

BkP
k) = 0 (5.1.21)

for a given geometry and imperfection. These limit points hold the typical buckling loads.

5.2. Symmetric imperfection

In this section, we present computational results that consider the a small, symmetric,
cosine-shaped initial imperfection of the form:

H = a cos(n
πϕ

2θ
), (5.2.1)

where a a represents the dimensionless amplitude of the imperfection, and n is an odd integer,
representing the mode number. Examples of some imperfection profiles are shown in Figure
5.2. When a = 0, the structure corresponds to a perfect, unperturbed, circular arch. I
investigated this case in detail separately in [83]. In the forthcoming, if there is no further
indication, results are given for arches with S/r = 200, S = 10875 mm and E = 210 GPa.
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n=3

n=5

a

 

Figure 5.2. Some examples of symmetric initial imperfection shapes.

Figure 5.3.a illustrates the significant influence of the first mode imperfection (n = 1) on
the buckling loads of arches with small included angles. In contrast, for arches with larger
included angles, the critical loads vary only by a few percent. The choice of a = −0.01 results
in the highest allowable buckling loads, as well as the greatest geometric lower limit at which
buckling occurs. In this case, the buckling loads are highly uniform, making them almost
independent of the arch angle. In contrast, the curve representing a = +0.01 approaches
to the buckling load of a perfect arch from below, with progressively diminishing relative
differences.

Figure 5.3. (a) buckling load, (b) relative buckling load as function of θ,n = 1 .

The relative load values in Figure 5.3.b provide insight into the impact of geometric
imperfections on load-bearing capacity. As visible, the critical load increases continuously
with the a value. The reason behind this finding is that when the magnitude is positive,
it effectively ‘flattens’ the arch, whereas negative a makes it a slightly bit ‘more curved’
overall. As a result, the load-bearing capabilities of arches can become even better when a
small imperfection is included.
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Figure 5.4. (a) buckling load,(b) relative buckling load dependence on a, n = 1.

To assess how a continuously varying imperfection affects the critical loads for n = 1,
Figure 5.4.a is referenced. In all cases presented, the loads decrease monotonically, with the
steepest decline occurring at θ = 0.3. The angles θ = 0.3 and θ = 0.6 exhibit nonlinear
behavior, while θ = 0.9 follows a linear trend. The smallest angle consistently shows the
lowest buckling loads. As depicted in Figure 5.4.b, the relative load values indicate that the
allowable load, compared to a perfect arch, can increase by up to 10%, but may also decrease
significantly by almost 19%.

In terms of the dimensionless load-relative strain relationships, Figure 5.5 compares five
samples of a magnitude with θ = 0.4. Notably, all curves begin from the origin (Q = 0,
εm,eff (a) = 0), indicating µ = 0. The curves exhibit a local maximum point as εm,eff
increases from 0. Subsequently, the load decreases. There is one higher and one lower limit
point, regardless of the imperfection magnitude. It is noteworthy that the parameter a exerts
a significant influence on determining the curve endpoints, which manifest different values
on the vertical axis. In contrast to a = 0, as long as a < 0 , the strain decreases and the
critical load increases. Greater strain and smaller limit points values (upper & lower) are
indicated by greater a > 0. The position of the branch intersection point is not constant in
εm,eff or Q, but rather a quasi-linear function of a.
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Figure 5.5. Load - dimensionless strain variations when θ = 0.4 and n = 1.

The dimensionless load-crown point displacement W0 = W (ϕ = 0)) when n = 1 and
θ = 0.4, is shown in Figure 5.6. The position of the upper limit point is in indirect proportion
to a: bigger magnitude indicates less displacement and a lower buckling load the upper limit
point is moved backward. On the other hand, the lower limit point possesses the exact
opposite properties.
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Figure 5.6. Load - dimensionless crown displacements when θ = 0.4 and n = 1.

Concentrating on the third imperfection mode (n = 3), Figure 5.7. illustrates the findings
related to the variation of critical load with respect to θ. The results indicate that for negative
amplitudes, there is an inverse relationship between the critical load and the included angle.
Furthermore, a greater difference in the critical load is observed for any given parameter a
as θ approaches to 1, compared to the previous analysis with n = 1 for the same geometry.

Figure 5.7. Buckling - load against arch semi-vertex angle θ, n = 1.

Figure 5.8a. illustrates the continuous decrease in buckling load as a increases if n = 3.
Similar to previous observations in Figure 5.4, the steepest decline is noted for ϑ = 0.3.
Two of the curves exhibit nonlinear behavior, and this time, the effect of the imperfection
is significantly more pronounced compared to the first mode. The relative load falls within
approximately ±50% of the perfect arch.
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Figure 5.8. (a)Buckling load, (b) relative buckling load changes–dependence
on a, n = 1

The impact of S/r on the buckling load, as shown in Figure 5.9 for four different values,
is now examined. It is observed that the critical load increases as the S/r quotient increases,
indicating that arches with higher S/r ratios can sustain greater loads. As a increases, the
buckling load decreases in a non-linear and monotonous way. Within the chosen range, the
variation between the lowest and highest loads is substantial, influenced solely by a small
imperfection.

Qa
Qa  0

4

5

6

7

8

9

10

11

-0.01 -0.005 0 0.005 0.01

Sr=75

Sr=150

Sr=200

Sr=500

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

-0.01 -0.005 0 0.005 0.01

Q

a a

Figure 5.9. Variation of the (a) buckling load, (b) relative buckling load
when ϑ = 0.4, n = 3 dependence on S/r.

As illustrated in Figure 5.10 for Q-εm,eff , the intersections of the branches are now in
close proximity, significantly nearer to each other compared to the lower mode, as seen
in Figure 5.5. When the parameter a is positive, the lower limit point is only marginally
affected. However, the upper limit is considerably influenced by a.



Stability of imperfect curved beams 72

Q

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

a= - 0.01

a= - 0.005

a=0

a=0.005

a=0.01

m,effa
m,effa  0

Figure 5.10. Load-relative strain relationships when n = 9, ϑ = 0.4 .

5.3. Asymmetric imperfection

In this section, we present computational results that consider a small asymmetric sine-
shaped initial imperfection of the form

H = a sin(n
πϕ

θ
) (5.3.1)

which is shown in Figure 5.11 for some shape examples.

  n=1

n=2

n=4

a

Figure 5.11. Some asymmetric initial imperfection shapes.

The critical load-angle curve for the perfect arch (a = 0), as depicted in Figure. 5.12,
exhibits a monotonic behavior, starting with a steep gradient and gradually flatten near
θ = 0.5. When small imperfections are introduced, they generally lead to a reduction in
the buckling load. However, an exception is observed for small angles below θ = 0.2, where
the imperfection enhances the stiffness of the structure, effectively improving its resistance
to buckling. Notably, at θ = 0.11, the critical load shows the largest discrepancy, with a
deviation of approximately 33% compared to the perfect arch. In contrast, at θ = 1, the
difference is significantly smaller, around 2.5%. This trend highlights the sensitivity of the
critical load to imperfections, which becomes more pronounced at certain angles. Across
most of the range, a larger magnitude of the imperfection consistently results in a greater
deviation from the perfect case, regardless of the sign of a.
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Figure 5.12. (a) Critical load, (b) relative critical load dependence on θ when
n = 1.

Comparing this behavior to the first-mode cosine shape imperfection discussed earlier
reveals several key differences. The sine-shaped imperfection converges more slowly to the
critical load of the perfect arch. Furthermore, the sine imperfection more consistently reduces
the buckling load, whereas the cosine imperfection results in more significant reductions,
particularly at lower angles. These differences underscore how the type of imperfection
function influences the buckling response.

The dimensionless load-strain relationships for θ = 0.4 are presented in Figure. 5.13. Up
to the intersection of the upper and lower branches, the results remain effectively independent
of the parameter a. Beyond this intersection, the independence persists over a short range;
however, differences eventually arise in both the buckling strain and the buckling load.
As the imperfection magnitude increases, both of these values exhibit a gradual decrease,
reflecting the influence of imperfections on the structure’s stability. This behavior contrasts
significantly with the case of symmetric imperfections discussed in the previous subsection.
For symmetric imperfections, the intersection point was dependent on a, with changes in a
causing the intersection to shift both horizontally and vertically. Moreover, in the symmetric
case, the starting point of the upper branch was also affected by the imperfection amplitude.
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Figure 5.13. Load-relative strain relations when θ = 0.4 and n = 1.

Figure 5.14 illustrates the relationship between the dimensionless crown displacement
and the dimensionless load. As the load increases, the primary stable branch is initially
steep, leading up to the upper limit point. This upper limit point, representing the lowest
load and displacement at which instability occurs, is first reached when a = 0.01. Beyond
this point, the curve transitions into an unstable branch, which is steepest for the perfect
geometry (a = 0), and continues until it reaches the lower limit point. Following this, a
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remote stable branch emerges, where further increases in load once again corresponds to
increases in displacement.
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Figure 5.14. Load-displacement relations when θ = 0.4 and n = 1 .

These results can be directly compared to Figure. 5.6, which examines the case of asym-
metric initial imperfection; in the earlier analysis, the primary branch was observed to remain
nearly independent of imperfections up to a load of approximately Q ≈ 5. In contrast, for the
current sine-shaped imperfection with a = 0.01, a noticeable divergence occurs much earlier,
around Q ≈ 2. Another key difference lies in the behavior of the remote stable branches; for
the sine imperfection, these branches are significantly closer to each other, indicating less
sensitivity to the imperfection amplitude in this region. Furthermore, the unstable branches
intersect with the perfect case for the sine imperfection, a phenomenon not observed for
the cosine error. These distinctions highlight the influence of the initial imperfection on
the load-displacement response, particularly in the transitions between stable, unstable, and
remote branches.

Figure 5.15 explores the impact of increasing imperfection magnitude on the critical
dimensionless load for three selected angles. All curves start from the load corresponding to
the perfect arch (a = 0). As the imperfection magnitude grows, the critical load decreases
across all cases. The most significant drop occurs at ϑ = 0.3, where the load demonstrates
a steep decline. In contrast, the change for θ = 0.9 is relatively minor, following an almost
linear trend. Within the range considered, the maximum load reduction does not exceed
7.7%, indicating a relatively low sensitivity to imperfections. These findings bear some
resemblance to those observed for the cosine-shaped imperfection. In both cases, the smallest
angle experiences the greatest reduction in critical load. However, the relative buckling
load in the cosine error scenario spans a range nearly three times larger, highlighting more
pronounced sensitivity to imperfection in that case.
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Figure 5.15. (a) Critical load, (b) relative load dependence on imperfection
magnitude if n = 1.
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This paragraph examines the behavior associated with second-mode imperfections. The
typical load-angle curves are shown in Figure 5.16. It shows a similar shape with those for
n = 1, although the specific values differ. It is consistent with the first mode – at lower
angles, the presence of imperfections can enhance structural stiffness.
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Figure 5.16. (a) Critical load, (b) critical relative load distribution for arches
when n = 2.

Comparing this behavior to the n = 1 case, a similar relative change in load is observed,
but it occurs at slightly higher angles. Overall, the relative differences between the n = 1
and n = 2 modes are minimal, particularly when compared to the more significant variations
seen in the lowest cosine patterns. This indicates that the impact of the mode shape on load
response diminishes as the mode number increases.

Figure 5.17 examines the continuous variation of the imperfection parameter a and its
effect on the lowest buckling load. The analysis reveals that imperfections consistently reduce
the buckling load across all cases. However, only at θ = 0.3 does the initial decline eventually
transitions into a rise, though it never fully reaches the value of the perfect case. In contrast,
for other angles, such as θ = 0.9, the buckling load decreases steadily without any recovery.
The magnitude of the impact varies with the angle. At θ = 0.3, the maximum reduction
in the buckling load is approximately −4%, while at θ = 0.9, it is around −3%. These
reductions are notably smaller than those observed for cosine-shaped imperfections but are
comparable in scale to the effects seen in the first sine mode.
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Figure 5.17. (a) Critical load, (b) relative load dependence on imperfection
magnitude if n = 2 .

Next, the analysis focuses on the impact of S/r on the lowest buckling load of arches
at θ = 0.4, as shown in Figure 5.18. The results show that the highest selected S/r values
correspond to the greatest buckling loads, while S/r = 75 is associated with the lowest loads.
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Figure 5.18. (a) Critical load, (b) relative critical load changes in terms of
a for n = 2,as function of S/r.

Notably, the behavior of the S/r = 75 curve is distinct, as it exhibits an increase in
the buckling load with respect to a, whereas all other S/r relationships show a decreasing
trend. The maximum relative increase for S/r = 75 is approximately 5.1%, while the largest
observed decrease across the other cases is nearly 9%. These changes are significantly smaller
in magnitude compared to those observed in the cosine imperfection case, highlighting a
reduced sensitivity of the buckling load to imperfections under these conditions.

As shown in Figure. 5.19 for θ = 0.4, the buckling load increases, along with the critical
strain, as a small imperfection is introduced. In this respect, the behavior of the curves and
their characteristics are the exact opposite of those presented in Figure 5.13.
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Figure 5.19. Load - relative strain relations when ϑ = 0.4 and n = 10 .

Figure 5.20 depicts the effect of varying the imperfection mode at a fixed angle of θ = 0.4.
Both the critical strain and buckling load show an upward trend, with the curves remaining
closely aligned for a significant range. Even after their intersection, the curves continue to
exhibit a high degree of similarity, highlighting the consistent influence of imperfection mode
on the structural response within this range.
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Figure 5.20. Load-strain relations when θ = 0.4, a = 0.01 - the effect of
imperfection mode n.

Furthermore, Figure 5.21 reveals two stable equilibrium branches separated by an unsta-
ble equilibrium branch.
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Figure 5.21. Load-displacement plots for ϑ = 0.4, n = 10.

These findings are consistent with the patterns observed in the previous figures, with the
additional insight that the presence of imperfections reduces the dimensionless displacement.
At the same time, the displacements increase due to the influence of the initial shape error.
It is noted that this Chapter was based on Author publication {1}.



CHAPTER 6

Summary of the theses

Thesis 1.
I have investigated the stability problem of straight compressed beams with three sup-

ports. The intermediate support is a linear spring, restraining transverse motion, its position
is arbitrary. Three end-support arrangements were considered: fixed-fixed, fixed-pinned,
pinned-pinned. The beam has cross-sectional inhomogeneity and the cross-sections are uni-
form.

For these three-point boundary value problems, the definition of the Green function was
discussed. The related Green functions were given in closed-form for the selected problems.
The eigenvalue problems for the critical load were replaced by eigenvalue problems gov-
erned by homogeneous Fredholm integral equations with kernels derived from these Green
functions. Then the latter eigenvalue problems were converted to algebraic form using the
boundary element method. In limiting cases regarding the position of the intermediate sup-
port and the spring stiffness, the classical results for fixed-fixed, fixed-pinned, pinned-pinned
beams were found.

Thesis 2.
I have investigated the free vibrations of straight uniform beams with four supports. The

free vibration problems I attacked were considered as four-point boundary value problems.
To find solutions, I generalized the concept of the Green function for four-point boundary
value problems, extending the definition that was introduced for three-point boundary value
problems. All the properties and construction steps concerning these Green functions have
been clarified.

The Green functions were provided in closed-form for straight beams with cross-sectional
inhomogeneity that have two intermediate roller supports at arbitrary positions, while the
ends are either fixed-fixed or pinned-roller supported. With the related Green functions
as kernels, the assigned four-point eigenvalue problems were transformed to homogeneous
Fredholm integral equations. These were replaced by algebraic eigenvalue problems, which
were then solved numerically. In limiting cases regarding the position of the intermediate
supports, the classical results for fixed-fixed, fixed-pinned, pinned-pinned beams are found.

Thesis 3.
The Green function definition was extended to coupled boundary value problems, when

the differential operators have the same order but are different in the two domains. The
properties and construction steps were clarified in details. With the introduced method, I
investigated the free and loaded vibrations together with the stability of stepped straight
beams with cross-sectional heterogeneity. As regards the end supports, the beams are fixed-
fixed or pinned-pinned. The location of the step is arbitrary. The concentrated axial load is
exerted at one end of the beam.

The Green functions were determined in closed-form for compressive and tensile axial
load as well. The stability problem was investigated for compressive load, while the loaded
vibration frequencies for both loading cases. The ratio of the natural circular frequency
square for the axially loaded beam and of the free vibrations (no axial load on the beam)
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increases for tensile load, and decreases for compressive load. This relationship, as a function
of the load magnitude, is almost linear.

Thesis 4.
I have investigated the in-plane limit-point stability of shallow arches. The perfect arches

are circular but contain initial geometrical imperfections. I incorporated the effect of arbi-
trary initial displacements to the mechanical model which is geometrically non-linear. The
imperfections cause initial strains but the initial stresses were neglected. The static equilib-
rium equations were found with the principle of virtual work. I developed analytical solutions
for some symmetric and anti-symmetric imperfection shapes.

I evaluated the results for the buckling loads and in-plane behaviour. The lowest mode
shape errors have greatest effects on the lowest buckling load for smaller opening angles.
This effect can be positive or negative too, depending on the actual imperfection parameters.
The equilibrium path can show two kinds of behaviour. When snap-through buckling is not
possible, there is one stable equilibrium branch. When there exists a buckling load, the
number of equilibrium branches is three: one primary and remote stable, with an unstable
between.
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APPENDIX A

Some related calculations and transformations

A.1. Characteristic equations used in Chapter 2

In this section, we present the characteristic equations that were solved for benchmark purposes.
If the axial force is compressive (N > 0) then, as per Eqs. (2.1.9), the stability of straight beams

are governed by
d4w

dx4
+ p2d

2w

dx2
= 0 p2 = N = L2 N

Iey
(A.1.1)

The general solutions on the left and right beam parts are

wr = a1 + a2x+ a3 cos px+ a4 sin px, x ∈ [0, b] (A.1.2a)

and
w` = c1 + c2x+ c3 cos px+ c4 sin px, x ∈ [b, ` = 1] (A.1.2b)

where ak and ck (k = 1, . . . , 4) are coefficients.
For FssF beams, the related boundary and continuity conditions are

wr(0) = 0 , w(1)
r (0) = 0 ; w`(1) = 0 , w

(1)
` (1) = 0 , (A.1.3a)

wr(b− 0) = w`(b+ 0) ,

w(1)
r (b− 0) = w

(1)
` (b+ 0) ,

w(2)
r (b− 0) = w

(2)
` (b+ 0) ,

w(3)(b− 0)− χw(b) = w(3)(b+ 0).

(A.1.3b)

The above set self-adjoint eigenvalue problem determines the following equation system:
Boundary conditions if x = 0:

a1 + a3 = 0 ,

a2 + pa4 = 0 .

Continuity conditions at x = b:

c1 + c2b+ c3 cos pb+ c4 sin pb− (c1 + c2b+ c3 cos pb+ c4 sin pb) = 0,

a2 − pa3 + pa4 cos pb− (c2 − pc3 sin pb+ pc4 cos pb) = 0,

−a3 cos pb− a4 sin pb− (−c3 cos pb− c4 sin pb) = 0,

p3a3 sin pb− p3a4 cos pb− χ(a1 + a2b+ a3 cos pb+ a4 sin pb)−
− (p3c3 sin pb− p3c4 cos pb) = 0

Boundary conditions at x = 1:

c1 + c2 + c3 cos p+ c4 sin p = 0 ,

c2 − pc3 sin p+ pc4 cos p = 0 .

As the system is homogeneous, non-trivial solutions exist if the determinant of the coefficient
matrix vanishes, so
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−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb −1 −b − cos pb − sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
χ χb χ cos pb− p3 sin pb χ sin pb+ p3 cos pb 0 0 p3 sin pb −p3 cos pb
0 0 0 0 1 1 cos p sin p
0 0 0 0 0 1 −p sin p p cos p

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

= 2p4 cos p+ p5 sin p− 2p4 + χp
(
2 (sin p(b− 1) + sin p− sin bp)−

− 1

2
p

(
cos (p− 2bp)− 2p cos (p− bp) + 3

2
p cos p

)
− 2p2b (cos p(b− 1)− cos bp)+

+ p2b (b− 1) sin p
)
= 0 . (A.1.4)

In special case, if χ→∞ or χ = 0 we find

2(sin p(b− 1) + sin p− sin bp)− 1

2
p

(
cos (p− 2bp)− 2p cos (p− bp) + 3

2
p cos p

)
−

− 2p2b (cos p(b− 1)− cos bp) + p2b(b− 1) sin p = 0 (A.1.5a)

and
2 cos p+ p sin p− 2 = 0 . (A.1.5b)

The critical value of p is 2π for fixed-fixed beams.
For FssP beams, the characteristic equation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 1 0 0 0 0 0
0 1 0 p 0 0 0 0
1 b cos pb sin pb −1 −b − cos pb − sin pb
0 1 −p sin pb p cos pb 0 −1 p sin pb −p cos pb
0 0 − cos pb − sin pb 0 0 cos pb sin pb
χ χb χ cos pb− p3 sin pb χ sin pb+ p3 cos pb 0 0 p3 sin pb −p3 cos pb
0 0 0 0 1 1 cos p sin p
0 0 0 0 0 0 cosp sinp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= χ(bp2(1− b) cos p− p(1− b) sin p+ 2p(1− b) sin p(1− b)− p cos pb sin p(1− b)

− cos p+ cos pb cos p(1− b)) + p3 sin p− p4 cos p (A.1.6)

If χ→ ∞ or χ = 0 we find

bp2(1− b) cos p− p(1− b) sin p+ 2p(1− b) sin p(1− b)− p cos pb sin p(1− b)
− cos p+ cos pb cos p(1− b) = 0 (A.1.7a)

and
sin p− p cos p = 0 . (A.1.7b)

The critical value of p is 1.43029π for fixed-pinned beams.
For PssP beams, since a1 = a3 = 0, we have∣∣∣∣∣∣∣∣∣∣∣∣

b sin pb −1 −b − cos pb − sin pb
1 p cos pb 0 −1 p sin pb −p cos pb
0 − sin pb 0 0 cos pb sin pb
−χb −p3 cos pb− χ sin pb 0 0 −p3 sin pb p3 cos pb
0 0 1 1 cos p sin p
0 0 0 0 cos p sin p

∣∣∣∣∣∣∣∣∣∣∣∣
=

= p3 sin p− χ (pb (1− b) sin p− (cos pb) cos p(1− b) + cos p) = 0. (A.1.8)

In case χ→∞ or χ = 0 we have

pb (1− b) sin p− (cos pb) cos p(1− b) + cos p = 0 (A.1.9a)
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and
sin p = 0 . (A.1.9b)

The critical value of p is π for pinned-pinned beams.

A.2. Stability issue of beam under a compressive force of Chapter 4

A.2.1. FFStep case . Based on (4.6.1), the stability of stepped beams is governed by equation

K1a(w1(x)) = 0, K2a(w2(x)) = 0 (A.2.1)

which is paired with the boundary and continuity conditions of Table 41. Using the solutions of
(4.6.3) and p2 =

√
N2, the equation system for the unknowns is

1 0 1 0 0 0 0 0
0 1 0 p2γ 0 0 0 0
1 b cos bp2γ sin bp2γ −1 −b − cos p2b − sin p2b
0 1 −p2γ sin bp2γ p2γ cos bp2γ 0 −1 p2 sin p2b −p2 cos p2b
0 0 − cos bp2γ − sin bp2γ 0 0 cos p2b sin p2b
0 0 γ sin bp2γ −γ cos bp2γ 0 0 − sin p2b cos p2b
0 0 0 0 1 ` cos p2` sin p2`
0 0 0 0 0 1 −p2 sin p2` p2 cos p2`





a11

a21

a31

a41

a12

a22

a32

a42


=



0
0
0
0
0
0
0
0


(A.2.2)

γ =
√
α

The characteristic equation therefore, is

D =
1

2
p2 cos (p2 (b− `) + bγp2)−

1

2
p2 cos (p2 (b− `)− bγp2) + 2γp2+

+
1

2
γ2p2 cos (p2 (b− `) + bγp2)−

1

2
γ2p2 cos (p2 (b− `)− bγp2)−

− γp2 cos (p2 (b− `) + bγp2)− γp2 cos (p2 (b− `)− bγp2)+

+
1

2
γ`p2

2 sin (p2 (b− `) + bγp2) +
1

2
γ`p2

2 sin (p2 (b− `)− bγp2)−

− 1

2
γ2`p2

2 sin (p2 (b− `) + bγp2) +
1

2
γ2`p2

2 sin (p2 (b− `)− bγp2) = 0 (A.2.3)

In special case α = b = ` = 1 and p2 = p. Then the characteristic equation for a uniform
fixed-fixed beam is

D = 2− 2 cos p− p sin p = 0 (A.2.4)
yielding p = 2π.

Equation (A.2.3) can be solved numerically. Figure 1.1 illustrates the critical force
√
N2 crit(b)

against b.

A.2.2. PPStep beams . Under such support conditions, the equation system is

1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
1 b cos bp2γ sin bp2γ −1 −b − cos p2b − sin p2b
0 1 −p2γ sin bp2γ p2γ cos bp2γ 0 −1 p2 sin p2b −p2 cos p2b
0 0 − cos bp2γ − sin bp2γ 0 0 cos p2b sin p2b
0 0 γ sin bp2γ −γ cos bp2γ 0 0 − sin p2b cos p2b
0 0 0 0 1 ` cos p2` sin p2`
0 0 0 0 0 0 cos p2` sin p2`





a11

a21

a31

a41

a12

a22

a32

a42


=



0
0
0
0
0
0
0
0


(A.2.5)

γ =
√
α

So the characteristic equation is

D = −γ` cos bγp2 sin p2 (`− b)− ` sin bγp2 cos p2 (`− b) = 0 (A.2.6)

In special case, when α = b = ` = 1 and p2 = p, then it is a uniform pinned-pinned beam with

D = sin p = 0 (A.2.7)
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Figure 1.1. Critical force against b, α is a parameter

from where p = π is the smallest root for p.
Equation (A.2.6) was solved numerically. Figure 1.2 depicts the critical force

√
N2 crit(b) varia-

tion against b.
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Figure 1.2. Critical force against b, α is a parameter

A.3. Some detailed transformations of Chapter 5

A.3.1. The principle of virtual work . The internal virtual work in the arch is transformed
using Eqs. 5.1.1-5.1.9, hence∫

L

∫
A
(1 +

ζ

R
)σξ[

R

R+ ζ
(
dδu

ds
+
δw

R
+ ζ

dδψ

ds
) + ψδψ +

dδw

ds

dh

ds
]dAds =
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L
{
∫
A
σξdA(

dδu

ds
+
δw

R
)+

∫
A
ζσξdA

dδψ

ds
+

∫
A
(1+

ζ

R
)σξdAψ(

δu

ds
−dδw
ds

)+

∫
A
(1+

ζ

R
)σξdA

dδw

ds

dh

ds
}ds =∫

L
[N(

dδu

ds
+
δw

R
) +M

dδψ

ds
+

(
N +

M

R

)
ψ(
δu

R
− dδψ

ds
) +

(
N +

M

R

)
dδw

ds

dh

ds
]ds. (A.3.1)

Further using Here, applying the integration by parts theorem returns

−
∫
L

(
dN

ds
+

1

R

dM

ds
− 1

R
(N +

M

R
)ψ

)
δuds−∫

L

(
d2M

ds2
− N

R
− d

ds

(
N +

M

R

)
ψ −

(
N +

M

R

)
d2h

ds2

)
δwds = 0 (A.3.2)

These integrands express the equilibrium equations.
The first term shows that the membrane strain is constant over the centroidal axis

ε
′
m,eff = 0 (A.3.3)

A.3.2. The equilibrium expressed with the displacements. Here, we transform the sec-
ond integrand in A.3.2, with the aid of Eqs. 5.1.1-5.1.7, thus

N

R
=
Aeεm,eff

R
− M

R2
=

Ie
R3

Ae
Ie
εm,eff −

M

R2
=

Ie
R3

κεm,eff +
Ie
R4

(w
′′
+ w), (A.3.4)

− Ie
R4

(w
′′
+ w)− Ie

R4

AeR
2

Ie
Rεm,effψ

′ − Ie
R3

κεm,eff −
Ie
R4

(w
′′
+ w) = 0 (A.3.5)

Overall, it yields

(w
′′′′

+ w
′′
) +Rκεm,eff (ψ

′
+ 1 +H

′′
) + (w

′′
+ w) = 0, (A.3.6)

where

Rεm,eff (1 + ψ
′
) = Rεm,eff

[
1 +

1

R
(Rεm,eff − w −

1

2
ψ

2
R− w′′

)

]
≈

Rεm,eff (1 + εm,eff )− εm,eff (w
′′
+ w) ≈ Rεm,eff − εm,eff (w

′′
+ w). (A.3.7)

Finally, the radial equilibrium of the imperfect arch is determined by

w
′′′′

+ 2w
′′
+ w − κεm,eff (w

′′
+ w + h

′′
) = −κRεm,eff (A.3.8)

or briefly, with dimensionless displacements, it is

W
′′′′

+ (µ2 + 1)W
′′
+ µ2W = (µ2 − 1)(1 +H

′′
). (A.3.9)
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