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CHAPTER 1

Introduction

1.1. Stability problems of straight beams

The stability of beams is a critical aspect of structural engineering, influencing the safety
and durability of buildings, bridges, and various mechanical systems. Beams, as funda-
mental structural elements, must withstand diverse loading conditions without experiencing
failure due to instability. Since Euler’s pioneering work, significant advancements have been
made in understanding buckling. Numerous sources discuss the stability of shells, columns,
arches, and other structures [1,/2,3]. Comprehensive solutions to various engineering is-
sues, along with practical applications, are detailed in books such as those by Wang and
Jerath [3,4]. Focusing specifically on the buckling of columns, book [5] provides an in-depth
exploration of the theory of elastic stability for continuously axially loaded columns. Addi-
tional significant findings are discussed in subsequent works [6,/7], which include the effects
of compressive forces exerted by ball-socket joints. Paper |8| also investigates the static
and dynamic stability of columns under self-weight through experimental, analytical, and
numerical approaches. Study [9] addresses the impact of geometric and load imperfections
on column buckling. Research [10] evaluates the influence of end-restraints, modelled as
linear rotational and translational springs, and proposes the introduction of a new standard
due to the significant discrepancies found with existing ones. In |11], variational iterative
method is applied for columns with variable cross-sections. Singh [12] focuses on function-
ally graded (FG) non-uniform columns. These are replaced equivalently with columns of
constant material and geometric properties. Study [13| examines the buckling behaviour
of geometrically imperfect columns, utilizing 3D printing so ideal geometries are perturbed
with their eigenshape for the experimental investigations. Article [14] also relies on additive
manufacturing to produce high-precision columns for buckling behavioral testing. Study [15|
explores optimization strategies against buckling in the presence of initial imperfections.

Regarding the concept of the Green function, its first appearance dates back to Green’s
1828 publication [16], which included the Green theorem, presented the Green function with
application to electrostatic problems determined by partial differential equations. Bocher
extended the Green function definition for two-point boundary value problems (BVPs) gov-
erned by ordinary differential equations in [17]. Book [18| systematically covers the Green
function concept. Early works [19,20| provide definitions and properties of the Green func-
tion for two-point boundary value problems governed by ordinary linear differential equa-
tions, including a collection of the Green functions in closed form for multiple conditions.
As for degenerated ordinary differential equation systems, some new findings are reported
in [21]. For some three-point boundary value problems governed by linear ordinary differ-
ential equations of order two, the Green functions are detailed in the paper of Zhao |22].
Multi-point BVPs are also prevalent in the literature — see, e.g., |23,24}25| which establish
and solve specific four-point BVPs, including singular fourth-order p-Laplacian equation,
nonlinear BVPs using fixed points of strict set-contractions, and applications of the Leray-
Schauder theorem. Article |26] introduces a numerical iterative algorithm for non-linear
four-point BVPs. Wolfe [27] explores buckling using multiple theories, including global bi-
furcation theory, direct variational calculus, phase plane analysis, and singular perturbation
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theory. These methods are compared to show how they complement each other. The bifur-
cation theory, in particular, employs the Green function for a classical compressed column
with two supports. Khan and Al-Hayani [28] utilize the Adomian decomposition method in
conjunction with the Green function technique to solve the non-linear buckling equations of
a column in compression. This method is proven efficient and advantageous as it eliminates
the need for perturbation. Huang and Li [29] propose an efficient technique using Fredholm
integral equations instead of differential equations to address the stability of axially graded
material columns with variable cross-section.

1.2. Vibration problems of straight beams

The issue of beam vibrations is a key area of focus with a bunch of past scientific works.
For example, study [30] highlights transverse vibrations of buckled beams using partial dif-
ferential equations that account for nonlinear mid-plane strain. The given equations are then
converted into ordinary differential equations using the Galerkin method. In [31], the trans-
verse vibrations of Timoshenko beams with cracks are examined, with the model comprising
two segments connected by internal springs whose stiffnesses are proportional to the shear
force and bending moment at the crack. The beams are place on Winkler foundation. Free
vibrations of beams on an elastic Pasternak foundation with variable material properties
along their length are explored in [32]. The equation of motion are gained by Hamilton’s
principle. The effect of various parameters such as geometry, material, and foundation stiff-
ness are assessed. The study [33] investigates the free vibration of composite beams with
higher-order shear deformation using the isogeometric collocation method. The advantage
of the technique is that it requires only a single integration point per element. Double beam
systems are considered in [34], assuming a Winkler-type layer between them. The men-
tioned study incorporates both rotational inertia and shearing effects. In 35|, the focus
is on large amplitude vibrations of beams on elastic foundation. Assuming Euler-Bernoulli
hypothesis, the equations of motion are derived using the Hamilton principle, and solutions
are obtained by means of the homotopy perturbation method. Research work [36] examines
the free vibrations of stepped beams with intermediate elastic connections. The vibrations
of multi-stepped beams with multiple concentrated elements are addressed in |37] using the
continuous mass transfer matrix method, yielding closed-form free vibrational frequencies
for Timoshenko beams. The Lumped Mass Transfer Matrix Method is introduced in 38|
to study the free vibrations of stepped axially functionally graded beams with point masses.
This method happens to be powerful and relatively simple, proving to yield efficient solu-
tions for this particular problem. The Adomian Decomposition Method is applied to stepped
beam vibrations in [39|, yielding the same order of complexity as for a uniform beam. The
technique handles an arbitrary number of steps, making it suitable for approximating ta-
pered members. The same method’s effectiveness is demonstrated in [40], but for beams on
a viscoelastic foundation.

Systems made of multiple beams are analyzed in [41] from the perspective of transverse
free and forced vibrations. It is assumed that there is visco-elastic connection between the
elements. Xie et al. [42] implemented an improved third-order shear deformable theory for
beams made of functionally graded materials. The loading is a moving, concentrated one.
A direct numerical integration technique was applied to analyze the dynamic response and
address convergence issues. Talik et al. [43] present a novel method to reduce multi-point
correlated random excitation terms to a single modal excitation term for beam vibrations.
The equations of motion for a Timoshenko beam with concentrated mass under large, forced
vibrations are demonstrated in [44]|. The conservation of energy principle is used in the in-
vestigations, and the dynamic response is determined via the Newmark method. Article [45]
addresses self-weight loaded columns and cables through analytical and numerical solutions
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with a finite element software. In [46|, the non-linear extended Timoshenko theory is applied
to bi-material beams which undergo both mechanical and thermal loads.

Forced vibrations of beams with damping effects are investigated in [47], where steady-
state Green functions are given using the variable separation technique. It is concluded
that for beams with a height-to-length ratio above 0.1, the Euler-Bernoulli model is not
accurate enough. The forced vibration of Euler-Bernoulli beams at resonance condition is
studied in |48| using Fourier transformation to the frequency domain. Closed-form solution
is obtained via the Fredholm Alternative Theorem. In [49|, the thermo-elastic dynamic
analysis of micro- and nanobeams is presented. The related coupled equations are decoupled
using the Green function method, making the model suitable for determining free vibrations,
forced vibration displacements, and temperature fields. The Green functions are found using
the eigenfunction expansion and Laplace transform methods, solving the resulting decoupled
Fredholm integral equation with the kernel function method. Dynamic response of damped
Timoshenko beams to bending and torsion are investigated in |[50]. The Green functions are
given for arbitrary boundary conditions via the Laplace transform method.

1.3. Stability investigations on arches

The study of buckling in beams, initiated by Euler |51|, has spurred extensive research
and numerous models in the literature. Due to their initial curvature, curved beams behave
differently under mechanical loads compared to straight beams, which has attracted signifi-
cant interest from researchers. The use of curved beams is increasing in popularity for their
beneficial mechanical behavior under compression and their aesthetic appeal in contempo-
rary architecture. Curved beams are widely employed in the aerospace, civil, and marine
engineering sectors [52,53|. Numerous studies have examined the behavior of curved beams
to provide engineers with practical knowledge about their stability. Classical theories, such
as those developed by Simitses and Timoshenko, predict elastic buckling loads and provide
approximations for the classical buckling load for sinusoidal shallow arches under evenly dis-
tributed loads [54}/55|. Since then, researchers have expanded these approaches, resulting
in closed-form solutions and finite element method analyses under various assumptions, like
in |56,/57|. Accurate prediction of buckling loads is essential for resistance design |58].

The stability of a uniform half-sine shallow arch was examined under static loading in a
thermal environment in [59]. The kinematical theory is a modified Euler-Bernoulli hypoth-
esis, assuming large transverse displacements. The axial force is assumed to be constant
along the arch axis. The effect of concentrated, uniform and asymmetrically distributed
mechanical loads were examined by tracking the equilibrium paths. In paper [60] an an-
alytical model is presented from the virtual work principle capable to handle the in-plane
elastic stability of a shallow parabolic arches. These are supported by horizontal springs
that and are subjected to uniformly distributed load. Several investigations have examined
the effect of concentrated forces at the crown point of arches [611/62,63|,64|. These studies
aim to improve the design against collapse. Numerical studies have also shown that the
position of the radial load notably affects the non-linear equilibrium and limit-point buck-
ling load [65],66]|. The in-plane elastic static stability of circular beams with cross-sectional
inhomogeneity when exposed to a vertical load at the crown point, was investigated in [67].
The critical loads both for symmetric snap-through and antisymmetric bifurcation buckling
are assessed. The effect of an arbitrary load on fixed supports is addressed in |68]. The in-
plane stability of rotationally restrained shallow arches subjected to temperature variations
and a vertical uniform load was investigated by Cai et al |[69]. The nonlinear equilibrium
and buckling equations were established using the virtual work principle. Analytical so-
lution for the nonlinear in-plane symmetric and asymmetric bifurcation critical loads were
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found. Temperature variations had a considerable impact on the critical loads for both the
symmetric snap-through and asymmetric bifurcation modes.

Understanding the factors influencing arch buckling, including load type, material prop-
erties, and arch geometry, is vital. Incorporating these factors into the design process enables
engineers to develop arches better equipped to resist buckling, ensuring structural safety and
stability. Early investigations into the influence of geometric imperfections on the stability
of shallow arches are documented in references |70| and [71]. A more recent study, outlined
in reference |72|, highlights that slightly imperfect homogeneous shallow arches with inter-
layer slip may exhibit multiple unconnected remote equilibrium paths. Additionally, Yan et
al. [73| investigated the instability observed in imperfect non-uniform circular shallow arches
subjected to radial pressure. They examined how the snap-through behavior is influenced
by parameters such as imperfection magnitude and mode number. Chroscielewski et al |74)]
addressed the challenge of solving nonlinear BVPs for elastic structures, specifically focusing
on the post-buckling behavior of shear-deformable circular arches. Their paper discusses the
numerical difficulties involved in finding solutions for these structures, particularly under
highly nonlinear regimes.

1.4. Objectives

Based on the above literature review, the following objectives and issues are identified to
be solved in my thesis.

Objective 1. Using the core of Green function technique, my objective can be summa-
rized by the following points:

e To tackle the stability problem of heterogeneous beams with three supports, particu-
larly those with intermediate spring supports. The stability problems of these beams
are to be given by three-point boundary value problems.

e To develop an advanced stability analysis framework for heterogeneous beams with
three supports using the Green function technique.

e To clarify the properties of the Green function for the considered three-point eigen-
value problems and provide their calculations.

e To transform the eigenvalue problems established for the critical load into eigenvalue
problems governed by homogeneous Fredholm integral equations.

e Solving these integral equations numerically enables the determination of critical
loads, offering fresh insights into the stability of such beams.

e To investigate the impact of the middle support position on the ultimate load bearing
abilities.

Objective 2. Within the scope of the aforementioned discussion, my Objective 2 is
articulated as follows:

e To elucidate the structure of the Green function specifically tailored for a class of four-
point boundary value problems, generalizing earlier results from three-point boundary
value problems.

e To utilize the constructed Green function to transform four-point eigenvalue problems
into homogeneous Fredholm integral equations, with the Green function serving as
the kernel.

e To calculate the eigenvalues for the free vibrations of the considered beams. To
develop a solution algorithm for the eigenvalue problems governed by homogeneous
Fredholm integral equations by reducing these integral equations to algebraic eigen-
value problems, which are then solved numerically.
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To provide example about the applicability of the technique, involving heterogeneous
beams with four supports.
To validate the numerical results using commercial Finite Element (FE) software.

Objective 3. Within the frames of what has been mentioned above, my Objective 3 is
related to the application of Green function technique to study the vibration and stability
of stepped heterogeneous beams. In details, my goals are

To develop and formalize the definition of Green functions tailored specifically for
coupled boundary value problems. To clarify the intrinsic properties of these Green
functions and devise methodologies for calculating their specific elements.

To demonstrate the application of these Green functions to stepped heterogeneous
beams with two supports. To focus on beams fixed and pinned at both endpoints,
covering scenarios both with and without axial loads.

e To calculate the eigenfrequencies for both unloaded and axially loaded stepped beams.
e To transform the eigenvalue problems into homogeneous Fredholm integral equations,

solve these numerically, and provide accurate eigenfrequency data.

To assess the impact of axial tensile or compressive loads by replacing classical eigen-
value problems with Fredholm integral equations.

To provide detailed analysis and numerical solutions to stability problems, ensuring
the robustness of the Green function approach in various loading conditions.

To validate the proposed methods and solutions by comparing them with results
obtained from other established methods, such as finite element analysis.

Objective 4. It is my Objective 4 to incorporate geometrical imperfections into a one-
dimensional arch model to tackle the in-plane static stability of fixed arches subjected to
radial concentrated load. My investigations have the following aims:

To assemble a geometrically non-linear mechanical model that accounts for initial
shape error in order to assess the arch sensitivity to this kind of imperfection.

e To derive the equilibrium equations from a variational principle.
e To solve these equations analytically.
e To identify the limit points on the non-linear equilibrium path and analyze the effects

of geometric parameters on the critical load. To extend the analysis to include various
arch geometries to provide a comprehensive understanding of their stability behavior.



CHAPTER 2

Stability of straight beams with three supports with a Green
function technique

2.1. Differential equations

2.1.1. Governing equations. We will consider three heterogeneous beams, each with
three supports. The middle one is a linear spring. These are referred to in short as FssF
(fixed-spring supported-fixed), FssP (fixed-spring supported-pinned), and PssP (pinned-
spring supported-pinned) beams. They are shown in Figure The beams have uniform
cross section throughout their longitudinal axis. The centerline coincides with the axis & of
the coordinate system z, g, 2. Its origin is at the left end of the centerline. It is assumed that
the coordinate plane z2Z is a symmetry plane of the beams, while ¢ is a major principal axis
of the cross-section. The modulus of elasticity E satisfies the relation E(g, 2) = E(—y, 2).
Such case is called cross-sectional heterogeneity (or inhomogeneity). The length of the beam
is L, the position of the middle support is identified by the coordinate b.

Equilibrium problems of such beams — the axial force N is zero — are governed by the
ordinary differential equation [75]:

o f,
dit I,

where (%) is the vertical displacement of the (E-weighted) centerline, f.(z) is the intensity
of the distributed load reduced to the centerline and I, is the bending stiffness, given by

(2.1.1)

I, = / E(7,2)2*dA. (2.1.2)
A
If F is constant, i.e., the beam is homogeneous then
I, =1IE, I= / 22 dA (2.1.3)
A
2
N %

A

FIGURE 2.1. The considered heterogeneous beams.
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in which I is the moment of inertia to g.
In what follows we shall use dimensionless variables defined by the following relations
v=i/L, £=¢/L, w=w/L,
dw d A (2.1.4)
=SS0 bh=bh, e=Z2 =1,
dz dz Liz=1

where f is also a coordinate measured on the axis & with the same origin as for . Applying
dimensionless quantities to equation ([2.1.1]) we have

Y

d*w L3 fz
Tioh L= (2.1.5)
This equation is paired with the boundary and continuity conditions of Table [21]
TABLE 21. Boundary and continuity conditions.
Boundary conditions
Fixed-fixed beam ‘ Fixed-pinned beam ‘ Pinned-pinned beam
with an intermediate spring support
(FssF beam) ‘ (FssP beam) ‘ (PssP beam)
w(0) =0, wP(0)=0|w(0)=0, w®(0)=0|w0)=0, w?0)=0
w(l) =0, wVW)=0]wl)=0, w?)=0| wl)=0, w?) =0
’ Continuity conditions ‘
w(b—0)=w(b+0),
w (b —0) =w(b+0),
w®(b—0) =w?(b+0),
w® (b —0) — xyw(b) = w® (b+0).
Here it has been taken into account that
d3 g d3w . k
di? (b-0) ~ R0 = dz (b+0) | e Ky’
where k is the rigidity of the spring, and
X = %L?’ = XL’
We remark that the general solution of the homogeneous differential equation
w® =0, w™= I(lfnw ?f net (2.1.6a)
e ifn=1,2,...
is very simple with the a; integration constants:
4
w = Z agwe(T) = ay + aox + azr® + agr® . (2.1.6b)

(=1

If we know the Green function G(z,€) of the boundary value problem ([2.1.5)), [21] the
solution for the dimensionless deflection w is given by the integral

Y4
mmzla@oma&. (2.1.7)

The Green functions we shall need are presented in Section [2.2]
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2.1.2. Stability issue. Equilibrium problems of axially loaded, uniform heterogeneous
beams are governed by

N

W LN WD = [, N =1
ey

when the axial force N is constant (N > 0 for compression).

If the stability problem is considered the axial force is compressive and f, = 0. We have,
therefore, three eigenvalue problems (one for each beam shown in Table ) — the eigenvalue
sought is N — determined by the differential equation

w = - Nw® (2.1.9)

and the boundary and continuity conditions in Table If we write —N w® for f, in (2.1.7)
we get

w(x) = _N/O G(:L‘,f)dzw(g) df = —N (G(x’g)dw(g)

(2.1.8)

ez dé

‘ 0G(x,€) dw(€)
o /0 oe e ¢

where

dw(€)|
G(x, &) ——=
( 5) df 520

since the Green function should satisfy the boundary conditions. Thus,

N/ 8Gm§dw§)d€

=0

After derivation, is is found that

G(z,§) dw(§)
N/ ox o  d¢ de.

Now with the new variables:

dw 0*G(x, §)
= i S VA 2.1.1
we get a homogeneous Fredholm integral equation:
¢
N [ Kot ute) de (21.11)
0

In this way the eigenvalue problems are reduced to eigenvalue problems governed by ho-
mogeneous Fredholm integral equations. The above steps are based on |19]. Differential
equation (|2 can be rewritten in the form

K(w) = \M (w); Kw)=w®, Mw)=-w?, X=N. (2.1.12)

The exact solution w(zx) is a comparative function, while the differential operator K (w)
and the eigenvalue problems mentioned are self-adjoint.

2.2. Green function definition and construction for three-point BVPs

2.2.1. Definition. We shall consider the inhomogeneous ordinary differential equation

Lly(x)] = r(x), (2.2.1)
where the differential operator of order 2k is defined by

= palz)y™ (). (2.2.2)
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Here, k is a natural number, the functions p,(z) and r(z) are continuous and pox(z) # 0 if
z € [0,4] (¢ > 0). Moreover let b an inner point in the interval [0,¢]: b= {1, { — b = {5 and
O+l =1

We assume the inhomogeneous differential equation ([2.2.1)) is paired with the homoge-
neous boundary and continuity conditions:

2k
oznﬂyyl_l)(()) =0, r=12,....k
n=0
2k 2
S Bty V0) = Buryli V0) =0, r=1,2,...,2 (2.2.3)
n=0 n=0

Z’ynrlly§?_1)(€> =0. T:1,2,...,]€

The Latin subscripts I and I refer successively to the intervals [0, 0] and [b,¢]: y; and y;;
are the solutions to the differential equation in the interval I and /1. While a,,1, Bnrry Burrr
and v,,;; are arbitrary Constants

Solution of - and ([2.2.3) is sought as
¢
y(x) = / Gl (e (22.4)
0

where the function G(z,€) is the Green function defined by the following formulas and
properties |76,/77]:

Formulae:
G11($7§) if l’,é S [O,Q,
) Go(z,6) if x € [b /] and € € [0, 4],
C@O=9 Gry(a,6) it 2 [0.6] and & € [b.1], (2:25)
GQII(:L‘7€) lf l’,g € [b,f]
Properties:

1. The function Gys(z,€) is a continuous function of z and £ if 0 < x < ¢ < b and
0 < ¢ < x <b. In addition it is 2k times differentiable with respect to x and the derivatives
8"GH (l’, f)
oxn
are also continuous functions of x and £ in the triangles 0 <z < ¢ <band 0 <<z <b.
2. Let € be fixed in [0,b]. The function Gi7(z,&) and its derivatives

= Gy(z, &)™ (z,¢), n=12,...,2k (2.2.6)

n 0"Gy(,§)
GgI)(ajag) = #7

should be continuous for = = ¢&:

n=1,2..,2k-2 (2.2.7)

lim |G (¢ +2,6) - G (€ —2,6)] =
- [GY})(g 1 0,6) - G - 0,5)} —0, n=0,1,2,...2k—2 (2.2.82)
The derivative nglkfl)(a:, ¢) should, however, have a jump if z = :
. (2k—1) Qk N _
lim [G3V (¢ +2,6) — G V(e - 2,9)]

= [62 Ve +0,6) - 6E - 0,6] = —

ka(f) '

(2.2.8b)
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In contrast to this, Gas(x, &) and its derivatives

n O"Gor(x, &
Ggl)(xvg) = ;;E,L ) )

are all continuous functions for any z in [b, £].
3. Let & be fixed in [b, ¢]. The function G4;;(x, &) and its derivatives

n O"Gqyr(x, €
G, € = TEUNRE).

are all continuous functions for any z in [0, b].

4. Though the function Gos(x, ) and its derivatives

_ 0"Garr(x,€)
ox" ’

n=12,...,2 (2.2.9)

n=12,...,2 (2.2.10)

G (3, €) n=1,2...,2k—2 (2.2.11)

are also continuous for z = &:

lim [GS)(€ +2.6) — G5 —2,6)] =
= |G +0,6) - GHlE-0.0] =0, n=0,1,2,...2k -2 (2212)

the derivative Ggf,_l)(x, ¢) should, however, have a jump if x = &:

ti [G (6 +2,6) — G2 Ve —<.0)] =

= G+ 0,0 - GH Ve -0.9)] =

1
PNGE (2.2.12b)

5. Let a be an arbitrary but finite non-zero constant. For a fixed £ € [0, ¢] the product
G(z,&)a as a function of x (z # &) should satisfy the homogeneous differential equation

L[G(x,&)a] =0.

6. The product G(z, )« as a function of x should satisfy both the boundary conditions and
the continuity conditions

S A GD(0) = 0, r=1,...k
Zi’ll (/Bnrl G(nil)(b - O) - ﬁnrll G(nil)(b + 0)) = 07 r= 17 EIRI) 2k (2213)
Zik:l’)/an[G(nil)(g) =0. r= 17"'ak

The above continuity conditions should be satisfied by the function pairs G1;(z, ), Gar(z, €)
and Gy7(z,€), Gorr(z,§) as well.

Integral (2.2.4)) satisfies differential equation and boundary conditions . Because
the BVP (2.2.1)) and (£2.2.3)) is self-adjoint, the Green function is symmetric |76|:

G(z,8) =G ). (2.2.14)

In Subsections [2.2.2] 2.2.3] and [2.2.4] we present the Green functions for the boundary
conditions of Table 21} The calculations are detailed for FssF case only.

2.2.2. Green function for FssF beams.
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2.2.2.1. Calculation of the Green function if £ € [0,b]. As regards the form Gq;(z,§), it
is distinguished as

4
G11(2,8) = > (m1(€) + bpr(©))wim(z), 7 <E
m=1
- (2.2.15)
Gi(2,6) = > (ami(§) = bt () wm(z),  w>¢
m=1
if z € [0,b]. Otherwise, it has the structure
4
Gor(z,8) =Y cnr(§w (2.2.16)
m=1
if x € [b,£]. The coefficients a,,;(€),bmr(§) and c¢pr(§) are unknown functions, wy, () is

defined in Eq. (2.1.6b)).

This representation for Gi;(x,§) and Gor(z, ) ensures the fulfillment of the above listed
properties.
The related continuity and discontinuity conditions ([2.2.8]) return

> b (i (€) =0, n=0,1,2 (2.2.17a)
@y~ L
S (€)= —. (2.2.17D)
For FssF beams equations (2.2.17a)) and (2.2.17b)) are
1 ¢ ¢ & bir 0
0 1 2¢ 3¢ bor | _ | O
00 2 6 bar | = 0 , (2.2.18)
00 0 6 byr —%
yielding
3 2
1
bir = %, bor = —%, bsr = i, bar = 12" (2.2.19)

Note that the results for b,,; are independent of the boundary conditions.
As per Property 6, Gi7(z,§) and Gor(z, ) should satisfy the boundary and continuity
conditions. This condition returns the following equations:

(i) Boundary conditions at z = 0:

auwl(O) + CLQ[UJQ(O) + a31w3(0) + CL4[U}4(O) =
= —buwl (O) — bg]’wg(O) — b31w3(0) — b4]U)4(0) s (2220&)

aiwV(0) + aznglf)(O) + a3[W§1)(O) + agw(0) =
= by wM(0) = by (0) — bgyw§” (0) — baywP(0). (2.2.20D)
(ii) Continuity conditions at x = b:
ayrwy (b) + azrwa(b) + azpws(b) + asrwy(b) =
= byywy(b) + baywa(b) + bsrws(b) + baywy (D), (2.2.20c¢)
c1rwy (b) + corwa(b) + c3rws(b) 4+ caywa(b) =0, (2.2.20d)
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ayw” (b) + azgrwlh (0) + azrw (0) + agw? (b)—
— cuwgl)(b) —c Iw( )(b) — ngwél)(b) — c4[wf1 )(b)
= by (b) + baywS? (B) + bsw? (b) + byyw(V (), (2.2.20e)

arywi” (b) + azwsy (b) + asrw§? (b) + aspwi® (b)—
= ey (b) = carwy” (b) = carwy” (b) — earw? (b)—
— x(c1rwi(b) + cowa(b) + c3rws(b) + carwy (b)) =
= by (b) + borw () + bsw® (b) + byw (b)  (2.2.20f)
(iii) Boundary conditions at x = ¢:
crrwy (€) + corwa(€) + csrws(€) + carwy(€) =0, (2.2.20g)
crwi (0) + eowlD(0) + C3Iw§1)(f) +eguwl’(0) =0. (2.2.20h)

After the solutions are found for the linear system of equations, they are plugged back
to the formula for Gy;(x, &) so that

Gulr) = 3 (@ £ ba@) i) = (5 2 L) 4 (Bere ().

(=1

3 304 — 1203¢ 4+ 60262 + xb (€ — b)° (b20 — 3b0E + 062 + €20 — €b%) 3¢\
12 0 (xb3 (€ — b)* + 363) 12

3 1Qp2¢2 1 aph _ 3 3_3p2¢2_ 2 3
_ L 126818062364 x (Eb) (PUHE-3E -3 H3E) | —1) 5 o 01
12 ¢ (xb® (€ — b)> + 3063) 12

As regards Gor(z, ) the result is

4
G2I 33 f E Cef
=1

182 (z—0)?
40 b3 (0 —b)® + 303
2.2.2.2. Calculation of the Green function if & € [b,f]. The following notations are ap-
plied:
If z € [b,¢] then

(2607 — 620% + 4zl + xb* (€ —b)* (b—2) (€ — D)) (2.2.21b)

hE

Gorr(2,8) = ) _(m1r(§) + bnrr(§))wm(x),  x<¢
" (2.2.22)
Gorr(2,6) =Y (amir(§) = burr () wm(), o >¢
however, if x € [0, b] then
Gir(2,€) = ) ot (§wm(2), (2.2.23)

where the coefficients a,,17(€), b (€) and c¢pr7(€) are unknown. Continuity and disconti-
nuity conditions (2.2.12)) determine an equation system for the unknowns b,,;7(§), cnrr(€)
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m =1,2,3,4. Tt holds that by7(£) = by (£).

(i) Boundary conditions at z = 0:

C1rrw1 (0) + CQ[[U)Q(O) + Cg]]lUg(O) + C4[[’LU4(O) =0. (2.2.24&)
Cljngl) (0) + ngngl)(()) + C3[[w§1)(0> -+ 0411wi1)(0) = 0, (2224b)

(ii) Continuity conditions at x = b:
C1171W1 (b) + CQ[[U)Q(b) + C3[[’w3(b) + C4[]w4(b) = 0, (2224C)

arrrwi(b) 4 agrrwa(b) + asrrws(b) + asrrwa(b) =
= —bljjwl(b) — bg[[ll)g(b) — bg[]lUg(b) — b411w4(b), (2224d)
alnwgl)(b) + CLQHUJS)(b) + agnwél)(b) + (14][111[(11)(13)—
— crrwy? (b) — earrws? (b) — esrws (b) — carrw” (b)
= —blnwgl)(b) — bQ[]wél)(b) — b3[[’w§1)(b) — b4[[w4(11)(b) s (22246)
— arywy? () — asrrwdy (b) — asprws” (0) — aagrw® (b)—
+ 0111w§3)(b) + ngng?))(b) + 0311w§3) (b) + C4[[wi3)(b))+
+ X (crrrwr (b) + carrwa(b) + carrws(b) + carrwa(b)) =
= bljj’LUS’) (b) + bg[[’wég) (b) + bgjjw§3) (b) + b4][w513) (b) . (2224f)

(iii) Boundary conditions at x = ¢:

arrrwr (€) + azrrwa(€) + agrrws(€) + agrpwa(€)—
— bl[[wl(g) — bg[['wg(g) — bg[[U)g(f) — b4[[w4(£) = 0, (2224g)

alnwgl)(é) + 0/2[[w§1)(€) + agnwz(,)l) (f) + a4[1wfll) (f)—

— bH[wgl)(£> — bg[[wél)(g) — bg[]’w:())l) (g) — b411w511) (6) =0. (2224}1)
Since c¢171 = corr = 0 the last equation system has the following form:
16 b b —b? - 7 Taur] [ —&3 