

MM/7/2026.

02 February 2026

NOTICE

REQUIREMENTS OF THE SUBJECT
DYNAMICS (GEMET003-B2A)
IN THE SPRING SEMESTER OF THE ACADEMIC YEAR 2025/2026

GETTING THE SIGNATURE AND TERM MARK DURING THE TERM-TIME

Two midterm exams are to be written during the semester. Each lasts for **45 minutes** with a **maximum score of 40 points**. The **total achievable score is 80 points**. Students are expected to score altogether at least **32 points (40%) to get the signature and term mark other than 'fail'**. The midterm exams are to be held on **week 8 and 13**. The term mark is determined based on the total score in the first two midterm exams as detailed in the following table.

Score	0-31	32-41	42-51	52-61	62-
Term mark	Fail (1)	Pass (2)	Fair (3)	Good (4)	Excellent (5)

Students who do not achieve the minimum prescribed score of 32 points have to take a **make-up exam on week 14**. This exam lasts for **45 minutes** and the **total score is 40 points**. In order to get the signature and term mark other than 'fail', students need to score at least equal to their point deficit, or a minimum of 16 points (40%) if the deficit is less than 16 points. Students who obtain the signature in the make-up exam achieve term mark based on their two highest scoring midterm exams.

GETTING THE SIGNATURE AND TERM MARK DURING THE EXAMINATION PERIOD

Students who obtain 'fail' term mark during term time can **make-up for the signature and term mark other than 'fail' in the examination period**. This make-up exam lasts for **45 minutes**, the **maximum score is 40 points** and the **passing score is 20 points (50%)**. Based on the score achieved, the term mark is determined as per the following table.

Score	0-19	20-23	24-27	28-31	32-
Term mark	Fail (1)	Pass (2)	Fair (3)	Good (4)	Excellent (5)

RECOMMENDED NOTES

1. Beer, F.P., Johnston, E.R., Mazurek, D.F., Cornwell, P.J.: *Vector Mechanics for Engineers: Statics & Dynamics*, McGraw-Hill, 2012.
2. Bedford, A.M., Fowler, W.L.: *Engineering Mechanics: Statics & Dynamics*, Pearson, 2022.
3. Hibbeler, R.C.: *Engineering Mechanics: Statics & Dynamics*, Pearson, 2022.

Dr. László Péter Kiss
Associate Professor
Lecturer

Dr. Edgár Bertóti
Full Professor
Head of Institute

