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Preface

The present book is written for those Hungarian and international MSc
and doctoral students who have to take a one-semester course in Continuum
Mechanics. When I began to write it I faced with the following problems:

(1) What level of preliminary knowledge can be expected: Hungarian stu-
dents in mechanical engineering with a BSc degree have some familiarity
with tensor algebra and analysis. However, this is, in general, not the
case for foreign students because of the differences in curricula. We had
to compromise and devoted a chapter of introductory character to the
fundamental concepts of tensor algebra and analysis.

(2) What notational system should be used: The direct notation has the
advantage of providing more clarity and insight concerning the phe-
nomenon investigated. In contrast, indicial notation makes possible to
establish the component equations much easier. We had to compromise
again and in many cases we applied the two notation systems parallel
to each other.

(3) What parts of Continuum Mechanics should be included in the book:
I remark that the present version of this book covers that part of Con-
tinuum Mechanics which can be studied within the framework of a
one-semester course (two hours a week).

The text is organized into eight chapters. The first is devoted to the math-
ematical preliminaries. It contains the elements of tensor algebra and analysis
with an emphasis on the issue how to use indicial notation in Cartesian coordi-
nate systems.

Geometry of the non-linear deformations is presented in Chapter 2 which
contains definitions of the deformation gradients and the various strain tensors.
Furthermore we clarify how the deformation gradient can be decomposed and
the most important strain measures are also considered.

Chapter 3 is concerned with the time derivatives of the most important
kinematic quantities by introducing the concept of material time derivatives.

The results of kinematic linearization are gathered in Chapter 4. Within
the framework of the linear theory we investigate what are the necessary and
sufficient conditions the strains should meet in order to be compatible both in
simply connected regions and in multiply connected ones.

Chapter 5 introduces the concept of the Cauchy stress tensor. Then various
stress tensors are defined by utilizing pure mathematical transformations. It has

v



vi

also been shown what the extreme properties of the normal and shearing stresses
are.

The fundamental laws solid bodies should obey are given in Chapter 6.
They include the principle of mass conservation, the balance laws — the general
and complete solution of the equilibrium equations is presented here — as well
as the first and second theorems of thermodynamics.

Energy principles are treated in Chapter 7. After presenting the principle
of virtual power and the principle of complementary virtual power we proceed
with the principles of virtual work and a solution algorithm for the nonlinear
problems is also is considered.

Chapter 8 is devoted to the constitutive theory with an emphasis on the
nonlinear constitutive equations of elasticity. As regards the linear theory the
heat effects are also taken into account in the generalized Hook’s law.

Appendix A contains some longer mathematical transformations and clari-
fies the concept of isotropy.

Appendix B is a collection of the solutions to those problems presented at
the ends of the various chapters.

Acknowledgments. Since this book is a textbook it is important to acknowledge
my debt to one of my teachers. Prof. Imre Kozak introduced me to the modern
literature on applied mechanics including the mechanics of solid bodies. I could always
turn to him for advice when difficulties arose in my research work. In more than one
case the text of the present book reflects the approach taken by Prof. Imre Kozak
(1930-2016) to certain questions of solid mechanics.

I owe my wife Babi a debt of gratitude for her encouragement. Special thanks are
due to my daughter Agnes and son Adam for their continuous support.

The present book was created with the support of project ME-TKTP-2025-039,
funded within the framework of the Scientific Excellence Support Program of the
University of Miskolc.

Gyorgy Szeidl



CHAPTER 1

Mathematical preliminaries (A review)

1.1. Vectors and vector operations

1.1.1. Coordinate system. The space under consideration is always a
three dimensional Euclidean space. A Cartesian frame (Cartesian coordinate
system) is determined by (a) an orthonormal basis i, = i1, i, = i, and i, = i3,
(b) a point O called origin, (c¢) and the three coordinate axes — see Figure 1.1
for details. Vectors are designated by boldface letters.

Z:X3

FiGURE 1.1. Coordinate systems

The letters r (or x) denote the position vector of a point P with respect to
the origin in the 3D space.

REMARK 1.1: Note that Figure 1.1 shows two coinciding Cartesian coordinate sys-
tems, namely (a) the coordinate system (xyz), and (b) the coordinate system
(z1xox3) for which it holds that

rT=x1, Y==xo, 2Z=21I3 and i, =11, iy=1iy, 1i,=13.

The vectors i, = iy, i, = iz and i, = i3 are referred to as base vectors since any
vector can be given in terms of the vectors i, = i;, iy, =iy and i, = i3.

1.1.2. Additive vector operations. A non zero vector u can be given
in the coordinate system (zyz) [or in the coordinate system (zzax3)] as

3
u = Upiytuyiytu.i, = uii+usistusis = ZUgig = |ule,; |e, =1, (1.1a)

{=1
1



2 1.1. Vectors and vector operations

where

\u|:\/u§+u§+u§=\/u%+u§+ugz (1.1b)

is the magnitude (the length of the vector u) in a given unit (in mm for instance
if u is a displacement vector), e, is the direction vector of u while u,, u,, u,
and u1, ug, uz are the (scalar) components of u — see Figure 1.2. The point P
where the vector u exerts its effect (where it works) is referred to as point of
application. The straight line that contains u is the line of action of u.

Uxix=1, i, J

Uyly=1u,1i,

FI1GURE 1.2. Components of the vector u

The magnitude of a zero vector is zero. It has no direction (hence it may
be regarded as if it were parallel or orthogonal to any non zero vector). The
zero vectors are denoted by a boldface zero: 0.

For the position vector it holds that

3
r =i, + yiy + zi, = 21d1 + 22l + 23l = Zl’gi@ =x. (1.2)
=1

A vector is called a [free|{fixed} vector if it [can be moved freely in space
by preserving its length and orientation|{has a fixed point of application}.

Let u and v be two vectors and A a scalar. Then

utv=(uy£vy)iy + (uy £vy)iy + (u, £v,)i, = (ug £ve)ip | (1.3a)

3
=1

and

3
A= Nty + Auyly + Muziz =D Mgy (1.3b)
=1

1.1.3. Dot product. Let ¢ € [0, 7] be the angle formed by u and v. The
dot product of two vectors is defined as

’ u-v=|ul|v|cosp. ‘ (1.4)




The dot product has the following properties (A and u are scalars, w is a
further vector)
u-v=v-u,

(Au) - (pv) = Apv - u, (1.5)
w-(ut+v)=w-ut+w-v.
Assume that |u| # 0 and |v| # 0. It follows from definition (1.4) that
u-v=0 if ¢ =m/2 (u-v=0Iis a condition of perpendicularity ) (1.6a)

and
lu| = vu-u. (1.6b)
Since the base vectors i, = iy, iy = iy and i, = i3 constitute an orthonormal
triplet it holds that

A 1 m=n
L0 m#n

Consequently, for the dot product u-v we get

m,n=uz,y,2z, (or mn=1273) (1.7

3
wv = (Uply + uyly + uzis) (Vele + vyly + v:is) = Ugvgtuyvy+u,v, = E WPy .
(=1

C(1.8)
Making use of the dot product we can give the (scalar) components of the
vectors r and u as
T=r-i, y=r-iy,, z=r"i,; Tp=7r-1ig,

(1.9)

Up = Uiy, Uy =u-iy, u,=u-i,; U =u-ip.

FIGURE 1.3. Resolution of a vector into a two perpendicular components

It follows from Figure 1.3 that a vector, say the vector v, can be resolved
into two components: one parallel to a given direction (say to the direction of
the vector u) and the other perpendicular to the given direction:

vV=v|+Vvy, (1.10a)



4 1.1. Vectors and vector operations

where u
v =ey(v-e,) =e,|v|cosp, e, = Tl (1.10b)
u
is the component of v parallel to u and
VI=V-v|=Vv-e(v-e,) (1.10¢)

is the component of v perpendicular to u.

1.1.4. Cross product. The cross product w of the two vectors u and v
is written as
wW=uxv (1.11a)

and is defined by the following properties:

F1cURE 1.4. Cross product

(i) Assume that u, v and w have a common point of application. The line
of action of w is perpendicular to the plane that contains u and v — see
Figure 1.4.

(ii) The magnitude of w is given by

|w| = |u| |v|sing (1.11b)
which is the area of the parallelogram in Figure 1.4.

(iii) The direction of w is such that an observer located at the tip of w will
find as counterclockwise the rotation ¢ — see Figure 1.4 — which brings
the first factor u into the second factor v. In other words the direction
of w is given by the right-hand rule. If the vectors u, v and w do not
have a common point of application they should first be redrawn from
a common point.

Properties (t is a vector):
(Au) x (pv) = Apux v,
tx(u+v)=txu+txv,
(1.12)
uxXv=-vxu,
tx(uxv)=(vxu)xt.
It follows from the definition (u # 0) that

uxu=0. (1.13a)



Let u and v be non zero vectors. If
uxv=0 (1.13b)

then they are parallel to each other. Equation (1.13b) is known as the condition
of parallelism.
On the basis of Figure 1.1 the definition of the cross product leads to the
following relations
L TR
11 X122 =13, 1.2 X13 =11, 13 X1} =12.
If these relations are satisfied the vectors i, i, and i, form a right hand triad.
Making use of relations (1.14) we can check with ease that

u X v = (Uply + uyly + u.iz) X (vpip + vydy +0.1;) =

= (uyV, — Uz Vy) iy + (UzVg — Uz Vs ) By + (UgVy — uyv,) 1, (1.15a)

or
i, i, i ip iy s

UXV=| U Uy Uy |=| U U2 U3 | . (1.15b)
Vg Uy (% (%1 (%) VU3

1.1.5. Triple cross product. It can be shown that the triple cross prod-
ucts tx (u x v) and (t x u) x v can be calculated as

tx (uxv)=(t-v)u—(t-u)v, (1.16)

(txu)xv=(t-v)u—(u-v)t.

Making use of the triple cross product we can also give the component of the
vector v perpendicular to the direction e, in the form

vi=e,x(Vvxe,)=(e,xXV)Xe,=v—e,(v-e,). (1.17)

1.1.6. Box product. The box product of the vectors t, u and v is defined
by the equation

‘ [tuv]=t-(uxv). ‘ (1.18)

Properties of the box product:

(i) By applying rule (1.15) for the cross product u x v and then rule (1.8)
for the dot product t - (u x v) we get

te t, t. Ve vy U
t-(uxv)=|uy uy u, |=|t; t, t, |={txu)-v. (1.19a)
Uy Uy U, Up Uy Uy

where we have taken into account that a determinant remains un-
changed if its rows are appropriately interchanged. Equation (1.19a)
shows that the operation symbols dot and cross are interchangeable.
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(if) If we now utilize (a) the previous equation and (b) the commutativity
of the scalar product we get

tuv]=[uvt]=[vtu]. (1.19b)

This rule is the cyclic interchangeability of the factors in the box prod-
uct. If we take equation (1.12)3 also into account we obtain

tuv]=—[utv]=—[vut]=—[tvu] . (1.19¢)

(iii) Figure 1.5 shows that the absolute value of the box product is the
volume of the parallelepiped determined by the vectors t, u and v if
they are drawn from a common point.

(iv) If [tuv] = 0 then the vectors t, u and v drawn from the same point lie
in a plane.

V=Ah =|uxv||t|cos¥

_—

h =lt|cosy

FIGURE 1.5. Geometry of the box product

1.1.7. Linearly independent vectors. Let v!, v? and v® be three scalars.
The vectors g1, g2 and g3 (|ge] # 0 £ = 1,2, 3) are said to be linearly indepen-
dent if the vectorial equation

v'gr +0v°ga +v°gs = 0 (1.20a)

has only the trivial solution v! = v? = v = 0 for the scalars v,. For the linearly

independent vector triplet g1, go and g3 the determinant of the corresponding
scalar equations

9z1  Gz2 Gz3 vl 0
9gy1  Gy2  Gy3 v? = 0 (120b)
921 922 g3 v3 0

is different from zero. Therefore, the vectorial equation
v'gr +0’gr +u’gs = v, (1.20c)

in which v = v,i, + vyiy + v.i. # 0 is a known vector, always has a unique
solution for the scalar triplet v* (¢ = 1,2,3). These scalars are called the
components of the vector v in the directions g,. Hence, the linearly independent



vectors g1, g2 and g3 form a basis of the 3D space: any vector v can be given
in terms of g1, go and gs. For this reason they are also called base vectors.
Let us define the dual base vectors by the following equations

glzg*:gZXgB gzzg*:gBXgl ggzg*:gl><82
' Yo o 2 Yo o ° Y% | (121

Yo = [818283]

where 7, is the determinant of equations (1.20). It is clear that g, L g’ if ¢ # k.
Consequently,

1 ifk=¢

. k(=1,2,3 (1.22)
0 ifk#¢,

g;«ge:g;«gZ:{

where we have taken into account that gy - g* =, (k =1,2,3).
It is not too difficult to check by using the expansion rule (1.16) valid for
the triple cross product that

g° x g = (g3 x g81) X (81 X 82) /72 = {[g18283]81 — [818182]83} /7. - (1.23a)
—_——— —

=Yo =0
Hence
g1=(g"xg%) %, 1=g' g =[g'g’8’],

that is,

2 3 2 3

g’xg® g'’xg
g = = . (1.23b)
e s'sg?]

This result shows the dual vector of g! is the original vector g;. It can be
proved in the same way that this statement is valid for the other two cases as
well.

Since [g'g?g®| # 0 it follows that the dual base vectors form also a basis
in the 3D space.

Consider now the dot product v-gF. With regard to equation (1.22) we get

k

v-gh = (vlg + v +vgs) - g" = v'g - g +v7gy - gF +vigy gt =0F

thus
v.gh =0k, (1.24)

This equation is a pair (or generalization) of equation (1.9) valid in Cartesian
coordinate systems. It says that the component of the vector v in the direction
g can be obtained if we dot multiply the vector v by the dual pair of the vector
g, i.e., by gF = g

In Cartesian coordinate systems the base vectors and the dual base vectors
are the same: i, =i, (m =uxz,y,z or 1,2,3).



8 1.2. Transformation rules

1.2. Transformation rules

Assume that we have two Cartesian coordinate systems namely the coordi-
nate systems (21 xo x3) and (2] 24 %) which have the same origin — see Figure
1.6. The base vectors are denoted by iy and i), (k,¢=1,2,3), respectively.

FIGURE 1.6. Two Cartesian coordinate systems

A vector u can be given in both coordinate systems:
. . . 12! 12! XU
u = upiy + uoly + usis = ujiy + usisy + ugis . (1.25)

Assume that u is known in the unprimed coordinate system. Assume further
that the unit vectors i, are also known in terms of the unit vectors i,. Recalling
(1.9)5 the scalar component u) can be calculated as

3 3
u@zu-i@zZl (iguk) Z(l ik)uk:Zkauk, (=0'=1,2,3.

k=1 =1 k=1
Quri
(1.26a)
The dot product
ik =Qu k=123 | (1.26D)

is the scalar component of the vector i, in the coordinate direction k. Conse-
quently, it holds that

3
i, = Z Quirip. 0'=1,2,3. (1.26¢)
k=1

By introducing the matrices

Qi1 Quz Qus ol 1l i
Qurl= Q = | Q21 Q22 Qw3 | = | i,-iy iy-ip ip-iz |-
(3%x3) o e o e o) s
Qui Qua Qua ] | yos w5y i ] (1)
!
Uy Uy
u = u2 |, u = | up



equation (1.26a) can be rewritten in a matrix form:

v =Q u, (1.28)
(8x1)  (3x3) (3x1)

in which Q is the transformation matrix. If u and Q are known equation (1.28)
makes possible to determine the scalar components uj, (or u’) in the primed
coordinate system.

If the scalar components uj are known and the scalar components uy, are
the unknowns the procedure is similar:

3 3 3
up =g =Y ik (pup) =Y (ki) up =Y Qreup, k=123,
=1 — =1
thz’
(1.29a)
Here
\ i, =Qre,  LEk=1,23. \ (1.29b)
It also holds that .
i, = Z Qe 1 k=1,2,3. (1.29¢)
=1

The reasoning is similar to that given for equation (1.26¢).
Making use of the notations introduced by equation (1.27) transformation
(1.29a) can also be given in a matrix form

u =Q" u . (1.30)
(3x1) (&3)(3><1)

where 7 is the symbol for transpose.
Upon substitution of equation (1.30) into (1.28) we get

v =Q u=Q Q" v
(3x1)  (3x3) Bx1)  (3x3) (3x3) (3x1)
N——

u
(3x1)

Here the right side can be equal to u’ if and only if

10
Q Qf = 1, 1 =|01 (1.31)
00

(3x3) (3x3)  (3x3) (3x3)

= O O

from where it follows that QT is the inverse of Q:
Q'=qQ". (1.32)

If we take the determinant of the product Q QT we obtain from equation (1.31)
that

det(QQ") = det (Q) det(Q") = [det (Q)]” = 1.



10 1.2. Transformation rules

Thus

det (Q) = +£1. (1.33)

A matrix whose transpose is equal to its inverse is referred to as orthogonal
matrix. If, in addition, the determinant of this matrix is equal to 1 then the
name is proper orthogonal.

REMARK 1.2: The matrix Q is proper orthogonal. This statements is a consequence
of the results presented later in Subsection 1.4.5 — proper orthogonal matrices belong
to rotations.

EXERCISE 1.1: Figure 1.7 shows the coordinate systems (21 z2 x3) and (z} 24 2%).
Determine the matrix Q.

/
X3=X3

FIGURE 1.7. Rotation about the coordinate axis x3

It is clear from Figure 1.7 that
if =cospi; +sinpis, i, = —sin @iy + cos iy, i, =1is.

Given the base vectors equation (1.27); yields

VRS VS VAR RS VRS cosp sinp 0
Q =] iy-iy ih-ip iy-i3 | = | —sinp cose O
(3x3) i1 ih-ip i5-is 0 0 1

Since det Q = sin? ¢ + cos? ¢ = 1 the above matrix is proper orthogonal.

EXERCISE 1.2: Show that the matrix

1/vV/3 1/V/3 1/V3
Q =| 1/V2 0 —1/v2
@3 [ -1v6 V2B —1/V6
is proper orthogonal.
Since

1/V3 1/V/3 1/V3 1/vV3 1/V2 —-1/v6
Q Q=] 1/V2 0 —1/V2 1/vV3 0 2/3 | =
(3x3) (3x3) -1/v6 /2/3 —1/v6 1/vV3 —1/v2 —1/v6
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0
0= 1 (134
1 (3%x3)

|
oo
oo

and

1/v/3 1/V/3 1/V3
det (Q)=| 1/vV2 0 -1/vV2|=
“1VE V2B 1/V6

\fff <ff }ﬁ et (*é)+§:1

it follows that Q is proper orthogonal.

1.3. Indicial notation

1.3.1. Subscripts. In the sequel we shall assume that the [Latin]{ Greek}
character indices (subscripts) have the range [1,2,3]{1,2} for each index (sub-
script). If each quantity in an equation has the same indices (subscripts) then
that equation holds over the range of those values the indices (subscripts) have:

Uy + v = wq,

Up + Vp = Wy Ao Uz +v2 = w2, (3 equations)
U3 + vz = ws .
up +v1 = wy,

Uq + Vo =W <= 2 equations
« « o Uz + Vo = W2 . ( a )

aj; = biey,
ai1a = bic .

e = brce = 12 172> (9 equations)
ass — bgCg .

1.3.2. Summation convention. If an index appears twice in a term of
an equation written using indicial notation summation over the range of the
index is implied. Such an index is called dummy index (dummy index pair):

a1 +ai2®2 +a3rs = f1,
ke e = [ — a21 T1 + agx ¥y + a3 T3 = fa, (1.35)
as1T1 +azga 2 +azz Tz = f3.
The index k& here is a free index (a free index appears only once in each quantity

in the equation considered) while ¢ is a dummy index. The general rules for an
equation written in indicial notations are as follows [84]:

(i) The same free index (indices if the number of free indices is more than
one) must appear in every term of the equation.
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(if) The relative position of the free indices is important:
are = brcy is not the same as are = bypcy,

since, for instance, a1 = bicy and ajs = bocy are different. When
writing an equation in indicial notation it is, therefore, worth preserving
the order of free indices in every term in the equation. The characters
used for denoting free indices do not matter since the equations

are = brce and apq = bpcy
are the same.
(iii) The free and dummy indices must be different. Equation
ap e = fo

is meaningless.
(iv) The dummy index pairs must also be different. The quantity dee is
correct, while dygrr is mistaken (meaningless).

It follows from the above rules that an index may not appear more than
twice in every term of an equation.
EXERCISE 1.3: Rewrite equations (1.26a) and (1.29a) using indicial notation.
The solution is obtained by canceling the summation symbols form the equations
cited:

wyp = Quk Uk , up, = Qrer uy - (1.36)

1.3.3. Kronecker delta. The Kronecker delta operator is defined by the

equation

1 ifk=¢
Ope = O, = ’ 1.37
ke = Otk {o ithAL. (1.872)
Its values can be displayed by the matrix equation
021 22 do3 | =10 1 0 =1 (1.37b)
031 032 033 0 0 1
Expanding the expression disa; we get
al ifk=1
Opeapr = Op101 + Opoan +Opzazs = < ax k=2 > =ay.
az ifk=3
Or briefly
Opeay = ay, . (1.38)

For this reason the Kronecker delta is also referred to as index renaming oper-
ator.
It follows from equation (1.7) that

i -ip = 5kg, 5kk' =3. (139)

Leopold Kronecker (1823-1891)
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Making use of the above result and taking into account that g, is an index
renaming operator we can determine the dot product of the vectors u and v in
the coordinate system (7 zo x3):

u-v=ugig-veip :ukw(ik-ig) = U Vp Opp = U Vg, = Ug Uyp . (1.40)
u v Sne

1.3.4. Permutation symbol. The permutation symbol ey, introduced
by Tullio Levi-Civita® is defined by the following equation [39]:

1 if kér = 123,231,312,
erer = & —1 if kér = 213,321,132, (1.41)
0 if two or more subscripts are equal.

Observe that

123,231,312 even
213,321,132 are 4 permutations of the numbers 1,2,3.

Observe further that the permutations are the same for the triplets
klr, brk, vkl and Lkr, rlk, kri .
—_——— —_———

If these are [even]{odd} then these are [odd]{even}.

even or odd
per mut atlom

/ \\ / \\permutatmns
(

Add Add or even
permutations permutations

Fi1GURE 1.8. Circles for representing the permutations

Note that [even]| (odd) permutations are obtained when the numbers 1,2,3 are
considered in [cyclic](reverse cyclic) order on the first circle shown in Figure 1.8.
As regards the triplet k¢r the permutataions obtainend in [cyclic| order on the
second circle are either (even) or [odd]; while the permutations in reverse cyclic
order are (odd) or [even].
On the basis of this observation and the definition given by equation (1.41)
we obtain
€ktr = Clrk = €rkt = —€lkr = —C€rgk = —Ckre - (1.42)
(If the order of two neighbouring subscripts is interchanged the permutation
symbol changes its sign.)
It can be checked with ease by utilizing the properties of the permutation
symbol that
ik X ig = ekgrir. (143)

2Tullio Levi-Civita (1873-1941)
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This equation is equivalent to equations (1.14)s (to three equations). Conse-
quently,
w = wri,« =uXxXv= (uklk) X (Ugie) = ULVy ik X ig = CLorUkUy ir = CrkeUKVy ir
—
Wi
(1.44a)
or simply
Wy = €plpULVyg - (1.44b)
REMARK 1.3: When writing vectorial equations in indicial notation it is customary
to omit the base vectors in the same manner as we did it for equation (1.44D).

Using (1.18) the box product of the vectors t, u and v in indicial notation
can be written in the following form:

[tuv] =t (11 X V) = tsis . (ukik X U@i@) = T = tsis . (e,«kgukvgi,.) =
(1.44a)
=t UpVp €rpp dg - 1y = tsUpVp  OgpCrir = eppetrugve . (1.45)
~—— ——
s index renaming

1.3.5. Determinant. The determinant of ax, is given by the equation

lake| = det(are) = epgrai1pazqas, =
= a11 (€14rQ24a3;) + Q12 (€247 2403, ) + Q13 (€3¢rQ24a3,) =
= a11 (022033 - 1123032) + a1z (a23a13 - 61216133) + ais (a21€132 - a226131) .

This expression is really the expansion of the determinant by the first row. If
we multiply the equation

‘ ‘akl|:€pq7‘a1pa2qa3r ‘ (1.46)

by e123 = 1 from left and by 1 from right we get

€213l |ake| = epgrafilp af21q A3 -
where square brackets are used to emphasize the role of the corresponding in-
dices. Let us now substitute ¢ for 1, j for 2 and k for 3 so that we can establish
the more general relationship

‘ Cijk|ake] = €pgrip@iqarr = €ijkepgraipaagas, . ‘ (1.47)

By expanding the determinant and performing some paper and pencil cal-
culations we can verify that
Ope  Opd  Opr
Epyk€ldr = (Syg 6yd (5yr . (1.48)
Okt Oka  Okr
EXERCISE 1.4: Prove the following relations:

CktmChkqr = §€q6mr - 6Er6mq ;
CrtmCkir = 25mr ) (149)

€kemChem = 6.
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(i) Since the second and third relations follow from the first one it is worthy
of beginning with the first. After expanding its left side we obtain

CktmCkqr = €14mClqr + €20mE€2qr + €3/m€3qr -

This expression is different from zero if
(a) £=gq, m=rand {# m (then that term is not zero on the right side
for which the three subscripts differ from each other, and its value is

1);
(b) ¢=r, m=qand{+# m (then that term is not zero on the right side
for which the three subscripts differ from each other, its value is now
-1)
since (a) the subscript triplets j¢=gm=r and 4 have the same permu-
tations (this can be odd or even) (b) the subscript triplets j /= =, and
kqr have different permutations (if the first is even, the second is odd and
conversely).

It can be checked with ease that for case (a) and (b) the right side
5@(1577”' - 6@7'57nq

is equal to (a) 1, (b) —1; otherwise it is zero. The left and right sides have,
therefore, the same value.

That was to be proved.
(i) Since relation (1.49); has been proved it is sufficient to examine what value
the right side of (1.49); has for ¢ = £. We get

000 Omr — OerOme = 201, .
~~ S——
=3 .
(iii) Fulfillment of (1.49)3 is now obvious.
A comparison of (1.47) and (1.49) yields:
lare] = €ijrepgr@ipQiqQnr - (1.50)
1.3.6. Contraction. If we make two (or more) free indices equal — see
Exercise 1.4 — then we speak about contraction. Consider the product

age = brce . (1.51a)

For k = ¢ we get
Qpp = b@C@ = b101 + bQCQ + b303 . (151b)

If by and ¢, are the (scalar) components of the vectors b and ¢ then this con-
traction is nothing but the scalar product b - c. A further example for the
application of contraction is presented here

Opg = Upgrs€rs < Opp = Upprsérs (1.52)

where 0p,q, €75 and Cpgrs are two and four index quantities.
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1.4. Tensor algebra

1.4.1. Scalars and vectors.

1.4.1.1. Scalars. A scalar quantity does not change its value if we rotate the
coordinate system. For this property scalars are called tensors of zero order.
It is worthy of mentioning that the independence of the coordinate system as
regards the quantity considered is a fundamental requirement here and in the
sequel as well.

1.4.1.2. Vectors. A vector (a vectorial quantity) is called first order tensor
(tensor of order one). We use the expression first order tensor since we assume
that each vector behaves like a radius (position) vector, i.e., it keeps its direction
and magnitude when we rotate the coordinate system about the origin. Let the
vector t be given in the unprimed and primed coordinate system:

t=tyin =t,i, . (1.53)

The scalar triplets ¢,, and ¢; are called (by definition) vectors if they follow
the transformation rules

t[/ = Qf’mtm P tm = Qm@’té . ‘ (154)

REMARK 1.4: This definition is based on equations (1.26a) and (1.29a).

If these transformation rules are satisfied then the vector t is the same in
both coordinate systems, i.e., it does not change its direction and magnitude
when we rotate the coordinate axes about the origin.

1.4.2. Tensors of order two.

1.4.2.1. Vector-vector functions. A vector-vector function ¢ assigns a set
of vectors (the set is denoted by B, the vectors that constitute the set by w)
to each member of another set of vectors (this set is denoted by A, the vec-
tors that constitute the set by v). Assume that A is the set of the position
vectors in the 3D space and the vectors v that constitute the set A are mea-
sured from the origin O,. Assume further that B is the set (or a subset) of
all position vectors in the 3D space and they are measured from the origin O,,.

object vector image vector

FIGURE 1.9. Mapping of v onto w

Then we say that the vector-vector function

w = ¢(Vv) (1.55)
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is a mapping of the vectors v (called object vectors) onto the vectors w (called
image vectors). In other words: the vector-vector function w = ¢(v) maps the
3D space onto itself (or a part of itself). In the second case the mapping is not
one to one: it is called degenerated mapping.

The vector-vector function w = ¢(v) is a homogeneous linear function if
the functional equation

W = @(v) = P(vii1 + v2i + v3iz) = v1 G(i1)+vad(iz) + v3(iz) =
— =~

~——
Wi W2 W3
= W1V] + WaU2 + W33

(1.56)
is satisfied where w1, wo and wg are the images of the base vectors i, iy and
is.

Let us introduce the matrices of the vectors w, wi, wo and wj:

w1 w11 w12 w13

w = w2 |, Wi = | W21 |, W2 = | W2 [, W3 = | W

(3x1) ws (3x1) wsq (3x1) W3 (3x1) wss
(1.57)

Making use of the matrix notations introduced we can rewrite (1.56) into the
following form

w1 w11 w12 w13
Wo = W1 V1 + Woo | V2 + wa3 U3 (158&)
w3 w31 w32 w33
or
w1 w1l Wiz W13 V1
w2 | = [ w21 W22 W23 v2 |,
w3 w31 W32 W33 V3
(1.58b)
w =[wi|w|ws] v =W v
(3x1) (3x1) (3x1) (3x1) (3x1)  (3x3)(3x1)
w
(3x3)
or
‘ WE — WgeUyp . ‘ (1.580)

The nine scalar quantities wge (the three image vectors wy) completely
characterize (determine) the homogeneous linear mapping. The scalars wy, are
referred to as the scalar components of a tensor of order two (or simply the
components of a tensor). The concept of a tensor of order two will be detailed
in the next subsection.

1.4.2.2. Tensor products. The tensor product (or dyadic)

(1.59)
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of the two vectors a and b is a tensor of order two A that assigns the vector y
to each vector x:

y=(aob)-x=a(b-x), (1.60)

Yo = ag(bpxr) = agbpzy, .

REMARK 1.5: Equation (1.59) shows only the notation of the tensor (dyadic) prod-
uct. To clarify the meaning of the product we have to give what rules are to be
applied when various operations are performed on the product. In this respect
equation (1.60) is of fundamental importance.

It follows from equation (1.60) that the tensor product is not commutative:
aob#boa. (1.61)

In accordance with the definition given above (« is a scalar, ¢ and d are vectors)
it holds that

aob+cod=C+ A, (commutativity) (1.62a)
A c

ao(b+c)=aob+aoc, (distributivity) (1.62b)

(e@)ob =ao (ab) =(aaob) , (associativity) . (1.62¢)

The tensor product (or the sum of tensor products) is called tensor of order
two (or simply tensor).

1.4.2.3. Operations on tensors of order two. The most important operations
on tensors of order two (and their properties) are detailed in this subsection. It

holds that
A-c=(aob)-c=a(b-c),

c-A=c-(aob)=(c-a)b, (1.63)

A-c#c-A

or in indicial notation
(aob)-c = (arik obeip) - criy = agig becy ip - 1, = igarbece,
~——
der

1.64
C- (a o b) = CTiT . (akik o bgig) = ir . ik Crakb(ig = Crarbgig . ( )

W—/

Ork

REMARK 1.6: With a reference to Remark 1.3 we can omit the base vectors in
the two scalar products. Then ay, bycy is the first and c,.a, b, is the second scalar
product.

Let e be a vector. It also holds that
aob-(c+d)=a(b-c+b-d), (c+d)-acb=(c-a+d-a)b,
(aob+cod)-e=a(b-e)+c(d-e),
e-(aob+cod)=(e-a)b+(e-c)d,

[(aa)ob]- ¢ = [ao (ab)]-c = (aob) - (ac) ,
(ad) - [boc]=a-[(ab)oc] =a-[bo(ac)].



If we dot multiply A = aob by c from left and by d from right we get
c-A-d=c-(aob)-d=(c-a)(b-d). (1.66)
As regards the cross product of a tensor and a vector the fundamental rules
are as follows:
Axc=(aob)xc=ao(bxc),
cxA=cx(aob)=(cxa)ob, (1.67)
cxAxd=cx(aob)xd=(cxa)o(bxd).
The result is always a tensor.

1.4.2.4. Direct notation. Transformation rules. Recalling equation (1.56)
we can write

w=0¢(v) = wiv1+wWave+wivs=w1 (i1 - v)+wy (ip - v)+ws (i3 - v).  (1.68)
N—— N—— N——

v1 V2 v3

We can now factor out the vector v if we take rule (1.60); into account. We get

w=(wyoi) - v+ (wyoly) - v+ (wgois) - v=(weoip) -v=W. v (1.69a)

NI
w
or simply
w=W. v, (1.69b)
where
W =wyoip= 1 =wgeigoip (1.70)

W@:U)kgik
is the tensor W in terms of the tensor (dyadic) product ix o i, which is called
base tensor. It is obvious that

im . W . in = T = Wke (im . ik) (i@ . in) = Wky 5mk: (55n = Wmn (1.71)
(1.70) —_—— —
Omik den
or briefly
Win = im « W -1, . (1.72)

The tensor W characterizes the mapping, i.e., the homogeneous and lin-
ear vector-vector function w = ¢(v) and should, therefore, be independent of
the coordinate system applied. The tensor components w,,, and wj, in the
unprimed and primed coordinate systems depend, however, on the coordinate
system we have selected. Consequently, it also holds

w;ff = i/; W iél = il; : (w‘mn i Oi’n) ' iél = T = (ilg ' im) (ié ' in) Wmn, (1733)
(1.26b) ==~

K'm Qi

or briefly

w;d = Qk’m Qé’n Wmn, - (173]1))




20 1.4. Tensor algebra

Hence, the tensor W in the primed coordinate system is given by the equation
W' =w,i) 0i). (1.73¢)
It follows from equations (1.73b) and (1.209) that the nine-nine scalars wy,,

and w},, constitute a tensor of order two if the two relations we have just referred
to are satisfied.

REMARK 1.7: In accordance with equation (1.58b) the matrix of the tensor W is

denoted either by W = W or by [w].
(3x3)

REMARK 1.8: Assume that we know the vectors g, ([g18283] = Yo # 0), which
constitute a basis in the 3D space, and the dual base vectors g* = g as well. The
tensor W maps the vector g onto Wy. With these image vectors the tensor W
can be given in the following form:

W =wrog; =wjogl +Wyog)+W3o0gj (1.74)
since this tensor maps the vectors g, really onto the vectors wy:
W gi=(Wrogp) 8 = Wk (8 - 8) = Wilre = We.
Here we have taken the relation
8 8¢ = Ok, (1.75)
which follows from a comparison of (1.22) and (1.37), into account.

1.4.3. Special tensors.
1.4.3.1. Identitiy tensor and zero tensor. We denote the identity tensor by
1 the zero tensor by O. They are defined by the equations

1 -v=v, O-v=0. (1.76)
——

Oreve=vy

In words: the identity tensor (or unit tensor) maps a vector v onto itself; the
zero tensor maps a vector v onto the zero vector. It is clear that

. . o/ ./ 1 O O
1:1k01k:1k,01k . —
1 (s . e s _ . ’ = = 0 10 ’
( .V_(1k01k)-V—1k(1k'V)—Uklk—v) (3x3) 0 0 1
0 00
O =|000
(3%3) 0 00

(1.77)

REMARK 1.9: Assume again that we know the vectors gy ([g18283] = 70 # 0) and
the dual base vectors g* = g} as well. Then the identity tensor (unit tensor) can
also be given in terms of these base vectors as

1=gyog; =g o8 +808;+8508] | (1.78)




since

1-v=(grogy)-v=gr(gr v)= T =v,
(1.24)

which shows that the tensor 1 = gy, o g; maps v really onto itself.

1.4.3.2. Dot product of two tensors. The dot product of two tensors — they
are denoted by S and T, the product by U — is defined by the composition

ST -v=S-(T-v), S§-T=U (1.79)
which should hold for every vector v. Here
T v =tyiroir vminm = teeix(ie - im)vm = ik tre Somvm = ik treve -
——

Oem

Hence,

U-v=S- (T . V) Z(Spq ip o iq) g tre Ve =Spq ip(iq . ik) tre ’UgZip Spatqe Ve,
—— ~——

dqk Upe
which means that
U=8 T=sptqipoir, Upe = Spglqe , (1.80a)
or in matrix notation
U=8S T. (1.80b)
(3%3) (3%x3)(3x3)

1.4.3.3. Transposition. The transpose of a tensor — say the tensor S — is
denoted by ST. For the tensor S = Spqip 014 the transpose is defined by the
equation

ST = (s7)pgip0ig = spgiq0ip. (1.81a)

This means that the transpose is obtained by interchanging the order of the two
factors in the dyadic product. It is obvious that the definition given above is
valid for any tensor of order two in the Cartesian coordinate system we use. If
we rename p to g and ¢ to p on the right side of (1.81a) we get

S* = (sD)pgdp 0dg = sqpip 0y, (1.81Db)

in which the dyadic products are the same. Hence

(" )pq = Sqp - (1.81c)

Since the first subscript counts the rows while the second the columns in the
matrix of a tensor we obtain that the rows in the matrix of S are the same as
the columns in the matrix of S. It follows from (1.81c) that

sT =(s)". (1.82)
(3%x3) (3%3)

In words: the matrix of ST is equal to the transpose of the matrix of S.
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Let « and 8 two scalars. Further let a and b be two vectors. The most
important properties and relations concerning the transposition are:

(s7)" =s.
(aS + W) =aST + pWT,
T_
(acb)” =boa, (1.83)
S-u=u-S8T, u-§=8Tu, u-S-v=v-ST u,
Ope

T . . [ e S T T
(S W) = spweriy 0 = wppiy 01y - g odf spe =W" - 87,

A definition of the transpose which is independent of the coordinate system
is as follows: 87 is the unique tensor which satisfies the relation
u-S-v=v-S.u (1.84)
for any u and v

1.4.3.4. Symmetric and skew tensors. A tensor, say the tensor S, is said to
be symmetric if

S =287 (then iy -S-iy=i,- 8T -ip=ir-S-iy — spe=s). (1.85a)
A tensor, say the tensor S, is said to be skew if
S =-8" (then ij-S-if =i,-ST i) = —ip-S-i, — spe = —se). (1.85b)
If S is skew
S11 = S22 = s33 = 0. (1.85¢)
On the basis of equation (1.84) we can also say that the tensor S is [sym-
metric|{skew} if for any u and v the following relation is satisfied:

[u-S-v=v-S-u {u-S-v=-v-S-u}. (1.86)
1.4.3.5. The trace of a tensor. Equation

‘ tr(S) = Ske ik - 1p = Skedke = See = S11 + S22 + S33 ‘ (1.87)

defines the trace of the tensor S.
1.4.3.6. Additive resolution. Making use of the identity

S = % (S n ST) + % (s . ST) = Seym + Sckew (1.88)

Ssym Sskew

we define the symmetric and skew parts of the tensor S by the following relations

Sy = % (S+57) . Suew = % (s-s7), s
2 .

1
S(kt) = 5 (Ske +sek) s Sy = 5 (Ske — Sek) -

[\

Equation (1.89) is the additve resolution of the tensor S into symmetric and
skew parts.



1. 23

1.4.3.7. Axial vector. For the mapping that belongs to Sgkew We can write
— n is the vector we map (the object vector) — that

Sskew - = B} ($pqip ©ig = spgig 0 1p) - Muly =

= 7§3pq [lq (ip . lv) - ip (iq . lv)} Ty :(11;()): *iqu (ip X lq) X 1,M, = 8'%xXn.
\W_/ n

(1.90)

Here

st = 5 Spa (ip x ig) = 5 Cpar Spq i,
(1.91)
Sg«a) D) Epgr Spq
is called axial vector. Since the mapping
‘ Sikew N =38%Xmn ‘ (1.92)

is independent of the coordinate system applied it follows that the axial vector
s® is also independent of the coordinate system. For this reason s® is often
referred to as vector invariant.

EXERCISE 1.5: Assume that we know Sga)_ Prove that

S[ké] = 76}6@7-85,(1) . (193)
Multiplying throughout equation (1.91)2 by —ege, we get
1 1 1
_ekfrsq(na) = 5 EklrCpgr Spq = 5 ((Skp(sﬁqqu - 6kq6€pqu) 5 (Sk:Z - Sék) = S[kl] .
———

Okpdeq—Orqdep

That was to be proved.

EXERCISE 1.6: Assume that S is a symmetric tensor. Show that then its axial
vector is zero vector.

Making use of (1.91)2 and omitting the terms in which the permutation symbol is
equal to zero we can write

1
sﬁa) = ~5%pa Cpal = _5(523 231 F 832 \632../1) - _5(823 —sw2) =0,
=1 =—1
1
s = ~ 5% €pa2 = *5(531 es1z + 513 €132) = 75(531 —s13) =0, (1.94)
=1 =—1
1 1 !
s;(ga) = T 5504 Cpe3 = _5(812\6123,+ 521 \621_13) - _5(812 o) =0,
=1 =—1

It follows from this result that the axial vector of a tensor is equal to the axial
vector of its skew part. It is also obvious that a tensor with zero axial vector is a
symmetric tensor, i.e., the vanishing axial vector is a symmetry condition.
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1.4.3.8. Inner (or energy) product. Let S = spqi, 01y and T = ¢4, 0 is be
two tensors. The inner or double dot product of the two tensors is defined by
the following equation:

ST =tr (ST-T) = tr(spqiy 0 iy iy 0ists) =
~——
Spr

= tr(Spqiq 0 istrs) = Srqiq - istrs = Spqtrg = trgSrg =T -+ S.
N——

Sqs
(1.95)
The inner product has, among others, the following properties:
1--1 :6’[‘557‘8267‘7‘:3?
T--1 :trsérs =tpr = t11 +l22 + t33,
(1.96)

T --(vou)=tpsvrus =0ptrsus =v-T-u,
(vou): - (tow) =vpustrws = vpty usws = (v-t) (u-w) .

Let T' = t,4i, o iy be symmetric and S = sp4i, 0 iy be skew. Then

T"S:trqsrq: T T =

s11=522=533=0 t12=to21, tag=t32, t31=t13
=t12 (S12 + s21) + to3 (823 + S32) + 31 (s31 +513) = 0. (1.97)
—_———

=0 =0 =0

In words: The inner product of a symmetric and a skew tensor is equal to zero.
1.4.3.9. Determinant and inverse. The determinant of a tensor S regarded
in the Cartesian coordinate system (x1, z2,x3) is the determinant of its matrix:

511 S12 S13
det(S)=det( S )=|ske| =] s21 S22 So23 |. (1.98)
(3x3) S31 S32  S33
The determinant has, among others, the following properties:
det(8) = det(S7),
det(S - T') = det(S) det(T).
According to equation (1.99)s the determinant of the product S - T is equal to
the product of the determinants det(S) and det(T").
The inverse of a tensor S is the tensor S~' for which
’S-S’1:S’1~S:1.‘ (1.100)

Assume that det(S) # 0. Then the image vectors s = S - i, constitute a
basis in the 3D space. It is obvious from Subsection 1.1.7 that the dual base
vectors that belong to the image vectors s are given by

(1.99)

*7SQ><S3 *7S3><Sl *751XSQ
Slf ) 52* ) 53* )

So So S (1.101)
So = [s18283] = det(S) #0, S; - S¢ = Ope .




With the dual base vectors

e

is the inverse of the tensor S since
s l.§= (ixos))-(spoiy) =ipoip (s} -s¢) =ipoip=1.
——
Oke

The tensor has an inverse if its determinant is not zero. Then the tensor is
non-singular. The inverse has the following properties:

(s =85,
(08) ' =157,
(s = (ST)f1 : (1.103)
det(S™1) = detl(s) ,

(s-T)y'=T7"1.8".

In the sequel we shall apply, for the sake of simplicity, the following nota-
tional convention [83]:

ST=(sH =(s")". (1.104)
The tensor components Sy, are defined by the following equation
1
Spg = §epqre€jk$jq5kr- (1105)
With S, it holds that
1 1
Sipspé = Sip 5 €pqr€LjkSjqSkr = T = €Ljk 5 EpqrSipSjqSkr =
2 (1.47) 22— —
€ijk|Smnl

1
= T = €ijkCLjk S |5mn| = 51’[ |5mn| .
(1.49), “=——2
2654
Consequently, the components of the inverse S ~! can determined by using the
following relationship:
S
-1 _ ©pt
Spp =

(1.106)

|5mn| )
The matrix constituted by the tensor components S, is called adjugate matrix.
1.4.3.10. Integer powers. The integer powers of a tensor S are defined by

the equation
§"=8"1.8  n>1 (1.107a)

where n is a positive integer and

SY=1. (1.107b)
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1.4.3.11. A categorization. Let v be an arbitrary non zero vector. A tensor
W is said to be

positive definite >0
positive semidefinite . d W >0 108
negative semidefinite it the product v - W v <0 (1.108)

negative definite <0

for any v and it is indefinite if none of the above inequalities is satisfied.

1.4.4. Eigenvalue problem of a symmetric tensor.

1.4.4.1. Principal directions and characteristic equation. Let W be a sym-
metric tensor. We seek those directions (denoted in general by n and called
principal directions) for which the object vector n and the image vector w,, are

FIGURE 1.10. Eigenvalue problem
parallel to each other, i.e., it holds

w,=W -n=An; |n/=1, (1.109)

where the eigenvector n = nyi¢ (under the side condition |n| = 1) and the
parameter A (called eigenvalue or principal value) are the unknowns. Since the
unit tensor I maps a vector onto itself we can rewrite condition (1.109); into
the following form:

(W —-A1)-n=0,

1.11
(wkz — )\(5M) Ny = 0. ( 0)

This equation is, in fact, a homogeneous linear equation system for the un-
knowns ny:

wip — A w12 w13 ny 0
w1 w22 — A Wag ng | =10 [. (1.111)
w31 w32 w3z — A ns 0
W-A1 n

The trivial solution for n, does not satisfy the side condition |n| = 1. Hence
a solution different from the trivial one exists if and only if



P3(A) = —det (W — AL) = — [(w1 — Aip) (wa — Aig) (W3 — Aig)] =
= —|wké_>\5k€‘ =0. (1.112&)

This equation is a cubic polynomial of A:

wip — A w12 w13
P3(\) =—| wn w2 — A Was =
w31 w32 w33z — A

=N = WIN WA =Wirr =M= M)A —X)(A—A3) =0, (1.112b)
in which

Wi = [wilsis] + [11wais] + [i1iaw3s] = w11 + wag + wss = wer (1.113a)

WII = [W1W2i3] + [W1i2W3] + [i1W2W3] =

_ | w11 w12 w11 w13 W22 W23
W21 W22 w31 W33 W32 W33
1

1
= 5 (wkkwgg — ’wkgwgk) = 5 (VVI2 — wkgwgk) 5 (1113b)

w11 Wiz W13
Wi = [Wiwows] = |wre| = | wa1 w22 w23 | = eppprwipwaews, . (1.113c)
w31 W32 W33
and A1, A2 and A3 are the roots of the polynomial P;(\) = 0 — Viéte’s theorem
states that there are three roots® [1].
It is also clear on the basis of equation (1.112b) that

Wi=M+Xa+A3, Wir=XMA+ XAz +Ash1, Wi = Adeds. (1.114)

The resolvability condition P3(A) = 0 is called characteristic equation which
can be solved for the unknown parameter \.

The coefficients Wi, Wi and Wiy in the characteristic equation are re-
ferred to as scalar invariants. Since the problem raised by equation (1.109) is
independent of the coordinate system it follows that the solutions for A (the
roots of the polynomial P3(A) = 0) should also be independent of the coordi-
nate system. Hence the coefficients in the characteristic equation P3(A) = 0
should also be coordinate system independent quantities, therefore they are
really invariants.

It can be proved that the roots A, are real if W is symmetric — this is
assumption — and are positive numbers if W is positive definite. The roots are
labeled in such manner that A\ > Ay > As.

Problem (1.109) is an eigenvalue problem, the roots )\, are the eigenvalues,
the solutions for n; are called eigenvectors, while the directions that belong to
the eigenvectors are the principal directions.

If the roots A\, are different there exist three different eigenvectors (one to
each root) which are mutually perpendicular to each other. If two roots (or all
the three) coincide then the number of eigenvectors is infinite, however one can

3Francois Viéte (1540-1603)
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always select such three which are mutually perpendicular to each other. In the
sequel it is assumed that the eigenvectors are mutually perpendicular to each
other.

1.4.4.2. Spectral decomposition. It follows from all that has been said above
that the principal directions can constitute a right handed Cartesian coordinate
system for which the eigenvectors n, are the base vectors. Hence

1 =nyony (1.115)

is the unit tensor in this coordinate system. Equation

3
W=W-1=W-n,on=5» A\ngon (1.116)
Aeny /=1

is the spectral decomposition of the tensor W. Its components in the coordinate
system of the principal directions (ningng) are given by

Wi =My - W -my = Agny -1y = A\plgp, (no sum on /). (1.117)
(n) — T
Aeny ke

Consequently, W has a diagonal matrix in the coordinate system of the principal
directions:

A 0 0
W = [wy] = 0 X O . (1.118)
(n) (n) 0 0 As

Let Ay = A2 be a double root. Then A3 and the third principal direction,
i.e., ng is uniquely determined while n; and ns lie in a plane perpendicular to
n3. Though they can be arbitrary it is worth choosing them in such a way that
the orthogonality condition n; - ny = 0 be satisfied. The dyadic form of W can
now be obtained by taking the equality Ay = Ay into account. We get

W =X (njon; +nyony)+ Agngonz =

=M (njonj+nsong+ngong)+(A3—A1)nzonz=XA1+(A3—A;)nzons.

1

(1.119)
If we have a triple root Ay = Ay = A3 = A it follows from (1.119) that
W =21, (1.120)

Consequently every direction is a principal direction. This tensor is called spher-
ical tensor since it maps a sphere onto a sphere.
The inverse of the tensor W in the coordinate system of the principal axes

is given by
3

1
-1 _ L
wl= ; N e (1.121)
This can be checked with ease if we take into account (1.115) when we
calculate the product W' . W. Equations (1.116) and (1.121) show that a
tensor and its inverse are coaxial, i.e., their principal directions are the same.



Let
n=n'g, +n’gy +n’gs,|n| =1 (1.122)
be the eigenvector in the basis constituted by the vectors g1, g2, g3. The dual
base vectors are given by (1.21). Remembering that the tensor W and the unit

tensor 1 in this basis are given by (1.74) and (1.78) we may rewrite polynomial
(1.111) into the following form

Py(A\) = —det (W—A1) = — [(W1 — Ag1) (W2 — Ag2) (W3 — Agz)] . (1.123)
Hence,
P3(\) = [g18283] \* — ([W18283] + [81W28s] + [g182Ws]) A+
+ ([VAV1VAV2g3} + [W1g2W3] + [g1W2W3]) A — [W1W2W3] =0 (1.124)

is the characteristic equation. A comparison of (1.124) and (1.112b) yields the
three scalar invariants in the basis formed by the vectors g1, g2, g3 [69, p. 1986]:

(W -g1) g2 83] + g1 (W - g2) g3] +[g1 82 (W - g3)]

Wi = —
[818283]
=gl - W-gi+g; - W-ga+g;- W-gs, (1.125a)
W — (W -g1) (W -g2)gs]+[(W -g1)g2(W -g3)]+[g1(W - g2)(W - g3)]
" [gnggB] ’
(1.125b)
Wy = W81 (W) (W-gy)] (1.125¢)

[g18283]

where we have taken the properties of the box product and relation (1.21) also
into account.

1.4.4.3. Square root and logarithm. Let the symmetric tensor W be positive
definite. Then the eigenvalues meet the condition Ay > Ao > A3 > 0. The square
root of the tensor W is defined by the following equation:

3
VW =Y " V/Amngon,. (1.126)
=1

The square root of a positive definite symmetric tensor is a unique mathematical
operation. Elegant proofs of this statement are presented in [76, 60].

It can be checked with ease that vVW - VW = W.

The definition of the natural logarithm is given by the equation

3
W => (In)\) ngon,. (1.127)
=1

Note that we need the spectral decomposition for calculating the square
root and the natural logarithm of a positive definite symmetric tensor. It also
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follows from the definition that a positive definite symmetric tensor has one
square root only.

1.4.4.4. Cayley-Hamilton theorem. The Cayley-Hamilton theorem * states
that a tensor satisfies its characteristic equation [17], [15] — see book [75] for a
detailed proof:

WB—W[W2+W]]W—W][[1 =0. ‘ (1.128)

This equation can be used to reduce a tensor polynomial of higher order to a
tensor polynomial of lower order.

If we dot multiply equation (1.128) by W ™! we get the following represen-
tation for its inverse:

1
W= —— (W>-W/W+Wp1). (1.129)
Wirr
If we take the double dot product of (1.128) and the identity tensor and
then utilize (1.96)1,2 we get a new relationship for the third invariant. In the
first step we have

W31 —WW?. 1+ W W1 —Wpyl--1=
= WrpWpqWak — Wrwiewer, + WrtWr —3Wirrr =0
from where it follows that

1
Wi = 3 (WrpWpqwat — Wrwgewer, + WitWr) .

Substitute now (1.113b) first for W;; and then for the product wgewer. After a
rearrangement we get

1
Wi ==
=g (
1.4.4.5. Coazial tensors. Let A and B be two symmetric tensors: A = AT,
B =BT, They are said to be coaxial if their principal directions coincide. Let
us denote the eigenvalues and the corresponding principal directions for tensor
A by x¢ and ny, |ng| = 1. Assume that

B=aA+ 1.

in which a and (8 are non zero scalars. Then

—2W} + 6W Wip 4 2wipwpqwyr) - (1.130)

B -ny=(aA+p51) ng=aA n+p1l-n,= (axe+ f)ng,, (nosum on ¢)
—— ~—.—— —,—
Xene ny parallel to ng

where ax¢ + B is the eigenvalue of B. This equation shows that the tensor B
defined above and the tensor A are coaxial.
If the tensors A and B are coaxial, then

A-B=B-A

which shows that the dot product is a commutative operation for coaxial tensors.

4Arthur Cayley (1821-1895), William Roman Hamilton (1805-1865)



EXERCISE 1.7: Given the matrix of a tensor T':

8 0 25
T=| 0 —-10 0 [N/mm?]
25 0 —35

Determine the eigenvalues and eigenvectors.

It is obvious that iy is a principal direction with the eigenvalue A\(*) = —10 [N/mm?]
— this is the second element in the second column of the matrix. After substitutions
the characteristic equation

t11 — A t12 t13
P3(>\) = —det (I—Ai) = — t21 f,22 - A f,23 =
31 t32 33 — A

=N - TIN T A —Trrr = (A= AN = AO)(A =) =0

yields
85 — A 0 25
Ps(\) = 0 —10—2)\ 0 = A% — 40\% — 4100\ — 36000 = 0
25 0 —35 -\
in which

Tr =29 4+ XO 4L\ =40, Ty =-4100, Trrr = ADAONS = 36000.

Here the scalar invariants T; and Ty;; are given in the coordinate system of the
principal directions — since we do not know the ordered set of the eigenvalues they
are denoted simply by A(®), AX(®) and A(©)_ If X % A(®) we can divide the characteristic
equation P3(A\) =0 by A — A\ We get
Py(\)
A — \@)

where

=(\— )\(b))()\ _ )\(C)) =22 _ ()\(b) + )\(C)))\+ A@) () — 0,

AO 2 @ =7, —\@ =50  and  A®NE = % = —3600 .

Hence, the solutions of equation
T
A2 = (Ty — @)\ + % = A% — 50\ — 3600 =0

for X result in the two missing eigenvalues: A\(®) = 90, A\(9) = —40. We can now
give the ordered set of the eigenvalues:

M=2" =90, A=A =-10, A3=\=_—40.
To find ny = ny1i; + noiia + ngz1iz we have to solve the equation system

ti1 — M1 t12 t13 ni1
ta1 122 — A1 123 nop | =
t31 t32 t33 — A1 n31
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85— \; 0 25 ni1 0
= 0 —10 — )\1 0 na1 = 0
25 0 -35— X\ n31 0
from where we get
—5n11 + 25131, =0, ni; = 5nay,
—1007121 = 0, Nno1 = O, (1131)
25’[111 — 1257131 = 07 nip = 577/31 .

Equations (1.131); and (1.131)3 are not independent. It follows from equations
(1.131)1,2 and the side condition |n;| =1 that

.. .
n; = \/7276(511 —+ 13) .
If we take into account that the eigenvectors ni, ny and nj constitute a right
handed orthonormal basis we get:
. . . 1 . .
Nz =1n; X Ny = \/—276(511 +i3) xip = \/—276(711 + big).

1.4.5. Orthogonal tensors. Let @ be an invertible tensor of order two.

Further let p and s be the image vectors of the object vectors v and w:

Pp=Q v, s=Q -w . (1.132)
The tensor @ is orthogonal if it holds for any v and w that
p-s=Q-v)-(Qw=v-Q - Q- w=v-w. (1.133)
After rearranging the above equation we have
V-QT~Q~W—V-W:V~(QT~Q—I)-WZO, (1.134)
in which v and w are arbitrary. Hence
Q- Q=1 (1.135)

from where it also follows that
QT =qQ"'. (1.136)
In words: the transpose of an orthogonal tensor coincides with its inverse.

Assume that v = w. Then p = s and equation (1.133) yields

ps=s=w-QF - Q w=w?,
which shows that the lengths of the object vector w and image vector s are the
same, mapping (1.132) preserves the distance.
Let the angles formed by the vectors v, w and p, s be denoted by ¥ and ¢
— ¥, € [0,7]. Recalling the definition of the dot product — see equation (1.4)
— we can write on the basis of (1.133) that

p-s=|p|[s|cosp = |v||w|cos? =v-w,

where
lp|=|v| and [s|=|w|,



thus
cos ¢ = cos ¥
or
o="1. (1.137)
Consequently, mapping (1.132) preserves the angles as well.
Consider now the determinant of the product Q7 -Q = Q-Q* = 1. Making
use of equation (1.99)2 we have

det(QT . Q) = det(QT) det (Q) = [det (Q)]2 =det(1)=1,

from where

det (Q) = +1. (1.138)
Examine now the issue if there exists such a vector (denoted by s) for which
Q- -s=d4s. (1.139)
If yes then
QT s=+Q" - Q-s=+s. (1.140)
—_——

1
Subtract (1.140) from (1.139) and divide the result by two. We get

%(QfQT)'S:stew's:O'

Let us denote the axial vector of @ by q®. On the basis of (1.90) we can rewrite
the previous equation:

Quew - S=9q° xs=0. (1.141)
This result means that the solution for s in equation (1.139) is parallel to the

axial vector q* of the tensor Q.
Consider now the eigenvalue problem

Q- -s=)Xs, Is| =1

1.142
[X is the root of the polinomialdet (Q — A1) = 0] ( )

for the orthogonal tensor . Note that this problem coincides with problem
(1.139) we have raised above if A = £1.
If s is eigenvector and A is eigenvalue then

M=X%s.-5=Xs-A=(Q 5) (Q-5)=s-Q"-Q-s=s-s=1, (1.143)
1

which shows that A is really +1.

Let us clarify what role the signs play in the mapping.

Assume first that det (Q) = 1. In the following manipulations (a) we
take into account that the determinants of a tensor and its transpose are the
same, (b) we utilize equation (1.135) and (c) we apply the product theorem
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of the determinants:

det (Q — 1) = det [(Q - 1)T] — det (QT — 1) — det (QT Q. Q) -
— det (QT) det (1 — Q) = —det (Q — 1)
det (Q)=1
If a scalar is equal to its opposite then the scalar is zero. Hence,
det (Q —A1)|,_; =det(Q—1)=0 (1.144a)
which shows that
A=1 if det (Q)=1. (1.144b)

Assume now that det (Q) = —1 and examine the determinant det (Q + 1). By
repeating the steps leading to (1.144b) we get

det (Q+ 1) = det [(Q+1)"| =det (Q" + 1) = det (QT + Q"+ Q) =
= det (QT)det(l +Q)=—det(Q+1).

@
Hence,
det (Q = A1)[\__; =det(Q+1)=0 (1.144c)
which shows that
A=-1 if det (Q)=—1. (1.1444)

It follows from what has been said above that

Q- q*= q*, if det(Q)= 1 [since then A =1] and

Q- -q*=—-q%, if det(Q)= —1 [since then A= —1]. (1.145)
Note that according to (1.140) it also holds that
QT - q% =+q°. (1.146)

Making use of equations (1.145) and (1.146) we can clarify the geomet-
ric character of the mapping. The object vector v can be resolved into two
components: one, parallel to q,, the other perpendicular to it:

v=vi+ve  (vxq"=0, vi-q"=0).



q? v - angle of rotation
1Y
Vi=Py
pL
v, Vi==Py
FIGure 1.11. (a) Rotation (b) Rotation and reflection

Thus
N—— N———
] pL

is the image vector.
Since the mapping is distance preserving and vy| is parallel to q* it follows
from (1.145) that

P =V which means that p| coincides with vy if det (Q) =1,
p| = —Vvj which means that p|| is the reflection of v if det(Q) = —1.

The image of v , i.e., p, is also perpendicular to q®. If we use (1.146) we
may write

Q" pr=9q"-Q-vi=v,-Q" - q"=+q" v, =0,
——
+q°
which shows that v, rotates in the plane perpendicular to q* — the angle of
rotation is denoted by .

Consequently, the mapping @ - v is a finite rotation if det (Q) = 1 and is a
finite rotation plus reflection if det (Q) = —1.

If det (Q) = 1 the tensor @ is called proper orthogonal and is denoted by
R:

det(R)=1, R-R"=R" - R=1. (1.147)
Its name is rotation tensor since the mapping which belongs to R is finite
rotation.

Let n and v be the rotation axis and the angle of rotation. The direction
vector of the axis n is denoted by n||q® (Jn|] = 1) — see Figure A.1 in the
Appendix A for further details. If (Qrrr = 1) [Qr;;7 = —1] the mappingp = Q-v
that belongs to the orthogonal Rodrigues® tensor [2]

Q=1 cosy+ (Qrrr —cosp)non+ 1 xnsiny,

. 1.148
Qre = O cosp + (Qrrr — cos ) ngng + Ognenre Ny SinY ( )

5Qlinde Rodrigues, 1795-1851
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(rotates the vector v about the axis n through the angle ) [rotates the vector
v and reflects it with respect to a plane perpendicular to the axis n]. The proof
of this statement is presented in Section A.1.2.

1.4.6. Tensors of higher order.

1.4.6.1. Tensors of order zero, one and two. A scalar field, say the tem-
perature distribution in a body, is independent of the coordinate system we
use to describe it. Because of this property scalars are called tensors of or-
der zero. Vectors should behave as if they were position vectors which remain
unchanged when we rotate the coordinate system about the origin, i.e., the vec-
tor components in the unprimed and primed coordinate systems should follow
transformation rule (1.54). The concept of tensors of order two was introduced
via a coordinate system independent mapping which resulted in that the tensor
components w;,, and wy,, should satisfy transformation rule (1.73b). The first
three rows in Table 1. show the properties (requirements) the scalars ¢ and ¢/,

TABLE 1.
Number of

Tensor independent Law of Called

of order tensor components transformation
1. 0 1 t=1t Scalar
2. 1 3 tm = Qmet) Vector
3. 2 9 tnn = Qi Qrerthy Tensor
4. 3 27 tonp = Qmi Qne Qlﬂ'lt;cf'r‘ Triad
5. 4 81 tmnpg = ka’Qné/Qpr’Qqs’t%grs Tetrad

the vector components t,, and ¢}, as well as the tensor components t,,,, and ¢},
should meet.

1.4.6.2. Tensors of order higher than two. A generalization of the above
mentioned requirements leads to a definition concerning the tensors of higher
order: [tmnp and t),,.] {tmnpq and i, } are the scalar components of a tensor
of order [three| {four} if the equations (the transformation rules) in rows [4]
and {5} of Table 1 are satisfied.

REMARK 1.10: Table 1 shows the short names of these quantities: a tensor of order
zero is called a scalar, a tensor of order one is a vector, a tensor of order two is
called simply tensor, a tensor of order three is a triad, a tensor of order four is a
tetrad [85].

EXERCISE 1.8: Is the Kronecker delta a tensor of order two?
Yes it is. Equation
5mn = lm . ln = T = ka’ l;c Qn[’ i% - ka/ Qn@’ 12 iz = ka’ Qn[’ 6;95

(1.29¢)
e

(1.149)
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shows that the transformation rule the tensor components dx, and d/,,,, should meet
is really satisfied.

By using symbolic (or direct) notation tensors of order three or four can be
written in the forms:

G)S = spppip 0ifoiy, O = cpppsip 0ip 0y 0y . (1.150)

It is a notational convention that the superscript (a number in parentheses)

which precedes the letter that identifies the tensor shows the order of the tensor
in question.

REMARK 1.11: We, in general, do not apply this convention to scalars, vectors and
tensors of order two. The permutation tensor is also an exception to this rule since
in direct notation it will be denoted by €. Thus

E =eppripoigoi,. (1.151)
The outer product of a tensor ("A of order r and a tensor ()B of order s

is a tensor "T9)D of order r 4+ s. If r = 2 and s = 3 we have
C)D = @ A6®)IB = a4y by 13017001 0in 01, = diemprir0igoimoiyoi, . (1.152a)

——
diemnr
If we omit the base vectors we can simply write

Aremnr = are b - (1152b)

The dot product of a tensor B of order r and a tensor *)C of order s is a
tensor ("+5=2)A of order r + s — 2 defined by the following relationship (r = 3,
s=4):

®A = OB . WC = by ig 0ig 0y - ip 01y 0 iy 014 Cpgrs =
——
Srmp
= Dkom Cmqrs 1k 0 1g 0 ig 01y 01y = apegrs i 0ip0ig0ir 0is. (1.153a)
——

Akeqrs

If we omit the base vectors we have
Aklgrs = bkém Cmgrs - (1153b)

Operations (1.152a) and (1.153a) are not commutative.

The double dot product of a tensor (" A of order r and a tensor (*)B of order
s is a tensor ("T5=YD of order r + s — 4 defined by the following relationship
(r=3,s=4):

Gp=064..9B = (@kemir 0ip 01m,) - - (bpgrsip 0ig 01, 01iy) =

= akfmik: O bpqrsir ois = Qktm bfmrs ik: oir o is = dkrs ik: oir o is .
—_———

Op Oma dirs
(1.154a)
Or simply
dk'r‘s = Qktm mers . (1154]3)
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It is obvious that the dot product is a simple, while the double dot product is
a double contraction.
EXERCISE 1.9: Rewrite equation (1.31) in indicial notation.

If we take into account that the transpose of Qs is Qe — the primed subscript
should be the second — we can write

Qrrm@Qmer = Oe - (1.155)

1.4.6.3. Special tensors of order four. We define the unit tensor of order
four by the following equation:

W1 = yqpom is 0dg 0ig 0y, Ssqm = OskOqm - (1.156)

Let W be a tensor of order two. It is not too difficult to check that

6sqkm Wem = 5sk5qmwkm = Wsq Wsgq 5sqkm = Wsq 5sk5qm = Wkm

Wy . W=w, w.- W1 =w.

(1.157)
This result shows that the unit tensor 1 maps a tensor of order two onto

itself. The tensor

(4)T = 7-sqkmis o iq 0 ik 0 i, ,qukm = 5sm5qk (1158)

is called transporter since it maps a tensor of order two into its transpose: for
the tensor W we get:

7;qkrnu}k'm = 5sm6qkwkm = Wys, wsqﬁqkm = wsqésméqk = Wmk ,
GDr.w=wT, w. @ 7= wT.
(1.159)
The tensor
WT = Togpmis 0ig 0 ik 0im,  Zsghm = OsqOkm (1.160)

maps a tensor of order two into the product of the unit tennsor and its first
scalar invariant:

Isqkmwk'm = 55q6kmwkm = 5sqwk‘k7 wsqﬂqkm = wsq6sq5k7n = 6k'mwss )
OZ.. W =1W;, W WL =1w;.

(1.161)

1.4.6.4. Inverse of a tensor of order four. Let Crnke and Spguy be two ten-

sors of order four. We shall call S,qy, the inverse of Conke (Crunke the inverse
of Spquw) if the following relations hold:

Cmnkf Skluv = 5mnuv = §mu5nv )
(1.162)

Spqmn Cmnkf = Opqkt = pk6q€ .
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1.4.7. Isotropic tensors. A tensor of order n is said to be isotropic if its
components in the basis i, are the same as those in the basis ij,. If, say, the
tensor of order three ®)T is isotropic it should hold that

them = hem - (1.163)

(a) A scalar is obviously isotropic.

(b) The only isotropic vector is the zero vector — the components of a vector
change if we rotate the coordinate system about the origin.

(c) All isotropic tensors of order two are of the form ady, where « is an
arbitrary scalar. The following manipulation shows that a tensor of the
form «ady, is isotropic:

a(s;cf = Oéi;c ' i; = T = an’7ﬂQl’n ip iy =
(1.26¢)
= an/le’n 5mn = an’QO@’ = T = Q(Sk[ . (1164)

(1.155)

(d) All isotropic tensors of order three (isotropic triads) are of the form
aegpr. The following manipulation shows that a tensor of the form
e, 18 isotropic:

aciiy = T =aQupQjrqQrirepyr = T = aeijpdet (Qmn) = aeiji . (1.165)
(B.1.5) (1.47)

(e) All isotropic tensors of order four (isotropic tetrads) are of the form

‘ CmnkZ = Aémnékf + Plémk(;né + Hémlénk 5 ‘ (1166)

where A, p and k are scalars. One can check with ease by utilizing the
transformation (1.164) that the tensor C),, ke is isotropic.

REMARK 1.12: Assume that p = k. Then the tensor
Cmnk@ = Admnéké +p (5mk6né + 6m66nk) . (11673)

is obviously isotropic and symmetric with respect to the index pairs ,,,,, and gp. It
can be checked with ease that its inverse is given by

1 A
_ 1 AN _ 1.1
Spgmn 47 (OpmOqn + Opndgm) 20 (3X + 2) OpqOmn (1.167Db)
Introduce a new constant denoted by v and assume that
A=2uv /(1 —2v). (1.168a)
Then
2uv
Cmnkl =W (5mk6n£ + 5m£5nk) + E(smnékl (1168b)
and
1 v
Spqmn = @ ((5pm(5qn + 5pn6qm) — m(qu(smn . (11680)

Assume that ¢; and o,,, are symmetric tensors in the products C,,nrecre and
SpqmnOmn. For these products we may rewrite both (1.168b) and (1.168c) if we
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utilize the definition (1.156) of the forth order unit tensor and the definition (1.160)
of Z. We get

Crnnke = 2U67nnkl + Mnke = 2u (&rmkl + Imnké) , (1169&)

v
1-2v
2% T2 1+v
REMARK 1.13: We have shown that tensors (1.164), (1.165) and (1.166) are all
isotropic, we have not proved, however, that tensors other than « s, ae;j;, and
the tensor given by equation (1.166) can be isotropic, i.e., the uniqueness has not

been proved. In this respect we refer the reader to book [75] and paper [41] on
isotropic tensor functions by Richter®.

1 A 1 v
Spqmn == <6pqmn - MIpqmn) <6pqmn - Ipqmn) . (1169b)

1.5. Some elements of tensor analysis

1.5.1. Gradient, curl and divergence. The nabla operator is defined
by the following equation

0 0 0 0
— 3 1 o= — {1y = i . 117
A\ 92, 17 + s 1o + 92 13 o7, ip = Vyip ( Oa)
—~— —~— —~—
Vi Va V3

We shall also apply the following notation convention

B
g ()= (e (1.170b)

In words: a subscript (here ¢) preceded by a comma means derivation with
respect to the coordinate which belongs to the subscript (with respect to
here). Hence, a subscript (here £) in the denominator will be regarded as if it
were a subscript in the numerator.

Let ¢(x1, x2, x3) be a scalar field defined in a region of the three dimensional
space. If ¢ depends not only on the location but on time as well we write
d(x1, 2, x3;t). The gradient of the scalar field ¢ is defined by the following
equation:

OVig =iy or  PVi=¢y. (1.171)

Let x(x1,x2,x3;t) be a vector field. The right gradient (or simply the
gradient) of the vector field x is defined by the following tensor product:

x oV = (xxix) o (Veig) = (X&Ve) ik ol = Xk e ik 0de or X&Ve= Xke-

(1.172a)
Here
ox1 91 9xa
8901 amg axg X171 X172 X1,3
Xk = | 9 =| X21 X22 X23 | - (1.172b)

81?1 T3
9xs

D Q|Q
< 8|
o o
D Q|

X3,1 X3,2 X3,3

8%1 amg axg

SHans Richter (1912-1978)



The gradient of the vector field x is a tensor field.
The divergence of the vector field x is the trace of its gradient:

XV = (xkik) - (Vede) = (X6 Ve) ik - ie = (X Ve) Ore =
=xeVie=Xxe0=Xx1,1+X22+ Xx33. (1.173)
The curl of the vector field x is defined by the following cross product:
curl x =V x x = Vi X xeip = Vixe ip x ip =( ) )= CherXekir
1.43
or eperViXe = exerxen - (1.174)
The vector field x is said to be conservative or rotation free if curl x = 0.
Assume that there exists a scalar function ¢(x1,x2,x3) such that x =
Vé(z1,22,23). Then
curl x =V x V¢ =0, (1.175)
which means that the vector field x is rotation free. The function ¢(x1,x2,x3)
is called potential function.
Let T = tye iy o iy, tre = tre (21,22, 23;t) be a tensor field. Its gradient is
defined by the following relationship:
ToV = (treigoir)o(i,V,) =tgeV,igoigoi,, or gV, =tg,. (1.176)

The gradient of T is a tensor of order three (a triad).
The divergence of rhe tensor field T is defined by the following dot product:

T V= (tké iy o iﬁ) : (irvr) =tpeVyigpip -1, =i tre Ve, (1.177&)
——
647"
or simply
UtV = tioe - (1.177b)

The divergence of T is a vector field.
The Laplace operator (or Laplacian) is defined by the following dot product:

= (1.178)

1.5.2. Integral theorems.

1.5.2.1. Divergence theorem. Let A be a finite closed surface enclosing a
volume V. Further let H = Hyy i o iy be a continuously differentiable tensor
field defined on V. The outward unit normal to A is denoted by n. Equation

/H~VdV:/H-ndA,
\% A

/HkngdVZ/Hkg)ngZ/HkgngdA
\% \% A

(1.179)
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is the divergence (or Gauss) theorem’. With the aid of the Gauss theorem one
can transform a volume integral into a surface integral and vice versa.

Let t be a sufficiently smooth tensor field on V. Further let u be a suf-
ficiently smooth vector field regarded also on V. Consider now the volume
integral

/Vu-(%-V)dV

in which a down arrow shows the quantity to which the operator V is ap-
plied. By utilizing (a) the product rule of derivation, (b) the divergence theorem
(1.179) and then (c) property (1.96)3 of the inner product we can manipulate
the above integral into the following form

/Vu-(%-V)dv/V{(u-t).vﬁ-t-v}dv
:/Au-t-ndA—/ t - (uoV)dV,

v
(1.180)
/ Uglpe,edV = / [uptie,e + wp ptie — upetre]dV =
v V N —————

(uktke),z
Z/ [(Uktké)’g - uk’gtkg} dV = / Uptreny dA—/ Tho Uk, ¢ dVv.
\% A 1%

This equation is the rule of partial integration.

1.5.2.2. The Stokes theorem. Now let S be an open surface. The positive
description on the closed curve g bounding S (the positive direction for the arc
coordinate s) is the one which leaves the surface on the left — see Figure 1.12.

FIGURE 1.12. An open surface

The unit normal on S is n, the unit tangent to g is denoted by 7, the vector
v = 7 X n is the binormal. Let H be a differentiable tensor field both in A and

"Carl Friderich Gauss (1777-1855)



in the neighborhood of S. The Stokes® theorem reads as follows

1
/H-(n><V)dS:}£H-7'ds7
5 g (1.181)

/S(Hkpvr) NyClor ds = %Hkap ds.
g

1.5.2.3. Scalar valued tensor functions. The scalar field f(E) = f (Ex¢) in
which the tensor field Ej, is the independent variable is referred to as scalar
valued tensor function or real tensor function. Its increment is given by

of of of . . . .
df = dEw = —— 0pmOmdEm, = —— i - p -1, dE,, =
f 0E,, “Pr = gp,, Hmdt "= 9B 11«6 i 11)6 iy n
dEke km in

1 - ( of
(i) (ie-in)=(iroie)~(imoin)  \ Okt

i oig) o (AEmnim 0ip) , (1.182)

where the tensor of order two

of _ of

—— = ——ijoi 1.183
oF 8E1€g T o1 ( )

is the derivative of f. In applications the tensor E is in general a symmetric
tensor.

1.6. Curvilinear coordinate systems

1.6.1. Important properties of curvilinear coordinate systems. In
a curvilinear coordinate system the coordinate lines, along which only one coor-
dinate changes and the other two are constants, are in general not straight lines
but space curves. The coordinate surfaces, on which one coordinate is constant
and the other two changes, are not planes but curved surfaces. The tangents
(unit tangents) of the coordinate lines form a vector triad or a basis since any
vector or tensor field can be given in terms of these vectors. The main problem
is that this basis is not constant but changes in the 3D space.

1.6.2. Cylindrical coordinate system.

1.6.2.1. Figure 1.13. shows a cylindrical coordinate system. Figure 1.13.
also represents the coinciding coordinate lines of the two Cartesian coordinate
systems (zyz) and (x12223) we have applied so far. Asregards the point P in the
cylindrical coordinate system (R, ¥, z) (a) the coordinate R is the perpendicular

8George Stokes (1819-1903), Lord Baron Kelvin (1824-1907); the first and fundamental form
of the theorem is in letter [72] sent to Stokes in 1850 by Kelvin.
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Z:X3 Z:X3
i/
. 9
13 ig
p v
- i,
1 ip R
x=Rip+zi,
— . |
1,=15 A
i ':.. =X
10) Y- ) Y=Xy

FI1GURE 1.13. Cylindrical coordinate system

distance of P from the coordinate axis z = z3, (b) the coordinate ¥ (¥ €
[—7, 7], ¥ is positive in Figure 1.13) is the angle formed by the perpendicular
projection of the position vector x on the coordinate plane (zy) = (x122) and
the coordinate axis x = x; (often called polar angle) and (c) the coordinate
z is the same as the coordinate x3 in the coordinate system (xyz), i.e., it is
the perpendicular projection of the point P on the coordinate axis x3. The
coordinate surface R = constant is a cylinder of radius R with a centroidal axis
coinciding with the coordinate axis z. It is obvious that the coordinate ¥ is
undetermined if the point P is on the axis z.

The coordinate triplets R, ¥, z and x1, xo, x3 are related to each other via
the following relations:

z1 = Rcos?, To = Rsind, 3

I
w

(1.184a)
or

R = /2% + a3, 9 =tan! 22 | z=u1x3. (1.184b)
T1

The vector ig is the unit tangent to the coordinate line ¥ = constant,
z = constant. Similarly the vector iy is the unit tangent to the coordinate line
R = constant, z = constant. It is clear from Figure 1.13 that

x = Rcos?i; + Rsind iz + zij (1.185)



is the position vector. Hence,

iR:a—X:COSﬁi1+Sinﬁi27 igzaixz
OR ROY (1.186a)
Ix
IZ = E = 13
are the unit tangents to the coordinate lines at the point P. It can now be seen
with ease that

—sinti; 4+ cosis,

di di

ﬁ —iy  and % = —ig. (1.186b)
Given the vectors ig, iy and i, equations (1.186a) can be solved for iy, is

and is:

i1 = cos¥ip —sindiy, is =sinvip + cosViy, is=1i,. (1.186¢)

REMARK 1.14: Any vector or tensor field which describes the mechanical behavior
of a material point in an elastic body is regarded in a local basis attached to the
material point itself. If we work in a Cartesian coordinate system the local basis
is the same at every point within the body and can also be referred to as a global
basis which is usually attached mentally to the origin O. Figure 1.13 shows these
bases (formed by the orthonormal vector triad iy, iz, i3) at P and O as well.
The unit vectors ig, iy, i, given by equation (1.186a) meet the orthogonality
condition

iy i, =0, (m,n=R,9,2z; m#n), (1.187)
therefore, they form an orthonormal vector triad and constitute the local basis in
cylindrical coordinate systems. It is worth emphasizing that the base vectors ig, iy
are not constants and this fact should be taken into account when the derivatives
of vector and tensor fields are to be determined in the cylindrical coordinate system
(RYz). Figure 1.13 also shows the local basis constituted by the vector triad ig, iy
and i, at the point P.

1.6.2.2.Let u(R, 9, z) be a vector field given in the coordinate system (R1z).
We can give it in the form

u=ugr(R,v,2)ir +ug(R,V,2)iy +u(R,0,2)1,, (1.188)

where ug, uy and u, are the (scalar) components of the vector u.
It is obvious that
x =Rig+zi, (1.189)
is the position vector in the local basis.

Further let ¢(R,¥,z) be a tensor field considered again in the coordinate
system (R9¥z). If we know the image vectors

tr =trrir +tyriv +t.ri.,
ty =troip + tyo iy + 1291z, (1.190)
tz = tRz iR + tﬁz i19 + tzz iz



46 1.6. Curvilinear coordinate systems

which belong to the local base vectors iy, iy, i, we obtain the tensor in the form
t=troip+tygoiyg+t,oi,. (1.191)
Its matrix can be given in terms of the column matrices tr , ty , t. :
(3x1) (3x1) (3x1)
trRr try tR:
t =[tplte | t:]=1| tor too to. |. (1.192)
3x1
(3x1) (3x1) (3x1) (3x1) o by ta.
Here tgr, tor, tzr, tro,-..,t., are the (scalar) components of the tensor ¢ in
the coordinate system (R¥z).

REMARK 1.15: The Cartesian coordinate system and the cylindrical coordinate
system have a common property: the local base vectors constitute an orthonormal
triad. Assume that the subscripts R, ¥, z of the coordinate system (Rdz) cor-
respond to the subscripts 1, 2, 3. It follows from the common property we have
mentioned and the assumed correspondences between the subscripts that we can
apply all the notational conventions we introduced when dealing with indicial nota-
tions and tensor algebra in Sections 1.4 and 1.4.7.

Consider for instance the product T - n (|n| = 1) which is the image t(™) of the
unit vector n. In indicial notation we can write

£ =ty (1.193a)
which yields on the basis of the correspondences 1 <+ R, 2 <+ 1, 3 <> 2 that
t(}?) =trrNR + trony +tRN:,
t£9n) =tyrnR + tyong +ty.n., (1.193b)
tM) = t.rng + toong +tn,.

Assume that the cylindrical coordinate system is the primed coordinate system, i.e.,
i{ =ig, iJ =iy, i{ = i,. Making use of relations (1.30) we get that

UR [ Qi1 Q2 Qus Uy
u = uy | =] Q1 Q2 Qus ug | =
(3x1) U, | Q31 Q32 Qs u3
_ill-il 1/112 11113 (5%
= | i5-i; ih-ip i5-is upg | = 1 =
iy dpedy dhedy | | wg | (11569
costy sind 0 Uy
= | —sind cos?d 0 ug | = Q u (1.194a)
0 0 1 us (3x3) (3x1)
or
u,é = Qk/ﬂu, (1194b)

where [Qy¢] is the transformation matrix between the coordinate systems (R1z)
and (z1x2x3).
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1.6.2.3. The nabla operator in the cylindrical coordinate system (Rvz) is
defined by the following relation:
3] 1 d 0

V= omint posin+ o (1.195)

Let ¢(R, ¥, z) be a scalar field. Its gradient is

0 10
82 ip + E% iy + a—d)lz. (1.196)

OAVAES
Consider now the vector field
v(R,Y,2) = vr(R,V, 2)ig(9) + v9(R, 9, 2) ig(¥) + v, (R, 9, 2)i,.  (1.197)

The right gradient of the vector field v in the cylindrical coordinate system and
its matrix are given by the following relations:

v 1 0v ov
l=voV= 1 =_—oig+—=—oipy+——o0i,= 1T =
(1.195) OR f R 09 0z (1.186b)

—%—Ri—i—av —l—aloi—i—
“\Brrtgr vt ir) iR

+ l%_vj ip+ l%_ki +%‘ o 19+
Rov R)"W \Row "R™) 0"

ov ov ov, .
+<R RJri19 19+1R>01Z

0z 0z 0z
=lgpoip+lyoig+1l.01i,, (1.198)
[ Qv 1Ovr vy Ovg |
OR RO R 0z
U =[la |ty | L ]=| % LOw ve Jw | (1199
(8x3)  (3x1) (3x1) (3x1) OR ROY R 0z
ov, Ov, Ov,
L OR oY 0z |
Tensor I can be resolved into symmetric and skew parts:
_1 T 1 T\ _
l_2(l+l>+2(l—l)_d+!2. (1.200)
d 2

The divergence of the vector field v can be obtained from (1.198):

dvr  10vy wg  Ovg
OR R 9V OR

where dj is the first scalar invariant of the tensor d. The divergence of the
gradient ¢ o V can be calculated similarly:

9. [ 1dp, 9, 0 19 d .\ _
(poV) V= ((’)R R+E% 19+(,T ) (8R RJFE%WJF@ >

vV = =dy, (1.201)
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2 2
Sy LD (gl 10 g
(1.186b) ROR

Here

OR?  ROR R2092 022
is the Laplace operator (Laplacian) in the cylindrical coordinate system. If we
apply it to the vector field

(R, 9, 2) = up(R, 9, 2) ig(0) + ug(R, 0, 2) ig(¥) + us(R,9, 2) i, (1.204)

we get

2 Ouy ugR) . 2 Jur uy )\ . .
Au: (AURR2619+R2> 1R+(AU19+R2819R2 179+AUZIZ.
(1.205)

If we take into account that dx = dRigp + Rd¥iy + dzi, we can determine the
linear part of the change in the vector field v caused by the change dx in the
position vector:

(1.203)

ov ov ov
dV—l-dX—(VOV)‘dX—@dR+%dﬁ+£dz. (1.206)

1.7. Problems

PROBLEM 1.1: We know the coordinates of the points A, B and C' in the coordinate
system (z1z223): A(2;0;5) m, B(—1;4;0) m, C'(—3;0;4) m.
(a) Determine the angle o at vertex A in the triangle ABC.
(b) Calculate the area of the triangle ABC' and the volume of the tetrahedron
OABC.

PROBLEM 1.2: Assume that the sum of three vectors vanishes: a+b +c¢ = 0.
Prove that
axb=bxc=cxa.

PROBLEM 1.3: Prove equations (1.16).

PROBLEM 1.4: Show that the matrix
/2 —1/vV2 —1/2
Q =| 1/2 1/vV2 -1/)2
(3x3) 1/v2 0 1/v2
is a proper orthogonal matrix.

PROBLEM 1.5: Show that the transformation matrices are popper orthogonal ma-
trices.

PROBLEM 1.6: Give the unabridged form of each equation listed below. If the
indicial notation is used incorrectly explain why.
(CI,) FiZGi—FHijaj, (b) U; = Vj,
0P

(C) Fe:Ag-f-BZjCij, (d) \Ilfzaiv
Zy



(e) d=/zpwy, (f) ta = oapng.
PROBLEM 1.7: Simplify the following expressions:
(@) Dpgrbrs, (0) FremOem, (€) CpgrsOpmOgn s (d) areerdgs -
PROBLEM 1.8: Show that equation (1.43) is equivalent to equations (1.14)s.

PROBLEM 1.9: Show that the expression |axi| = epgrapiaq2ay,3 is the expansion of
the determinant by columns.

PROBLEM 1.10: Let n (Jn| = 1) be the normal to the plane S that passes through
the origin. Further let r| be that component of the position vector r which lies in
the plane S. Show that r is given by the mapping r; = W - r where

W=1-non. (1.207)

PROBLEM 1.11: Let P be the tip of the position vector r in the previous problem.
Show that the reflection P” of the point P with respect to the plane S is given by
the mapping ro, p» = W - r where

W =1—-2non. (1.208)
PROBLEM 1.12: What is the matrix of tensor (1.207)7
PROBLEM 1.13: What is the matrix of tensor (1.208)7
PROBLEM 1.14: Prove that
Winn = Qe Qrer Why - (1.209)

PROBLEM 1.15: Show that relations (1.83) follow from the definition given for the
transpose of a tensor.

PROBLEM 1.16: Show that (a) sge = sg if S is symmetric; (b) sge = sg, i.e.,
811 = S22 — S33 — 0, 812 = —S821, S13 — —S831 and 893 — —S832 if S is skew.

PROBLEM 1.17: Assume that we know the axial vector that belongs to the skew
tensor S = Sgkew. Show that the matrix of the tensor can be given in terms of the
components of the axial vector in the following form:

0 —s:(f’) séa)
S =lswl=| s 0 s, (1.210)
(3x3) _Sga) sga) 0
PROBLEM 1.18: Given the matrix of a tensor T in the coordinate system (z1z2x3):
80 O 0
T =| 0 40 -32 [N/mm?]. (1.211)
(3x3) 0 —32 —80
Find the tensor components ¢}, if
1 1
=1, = (dip—i3), i, = — (ip + 4is) . (1.212)
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PROBLEM 1.19: Let § = s,4ip 01y, T = trsir 0is and W = wyy iy 0 iy be three
tensors. Prove that

S-~(T-W):(TT-S)~-W:(S-WT)--T. (1.213)
PROBLEM 1.20: Given the tensor W in the form
W:Ii(l—i10i1)+’y(i10i2+i2011)‘ (1214)

Show that the eigenvalues and eigenvectors are as follows:

1 1 A
/\1:E**V/f2+4’72a n12<311+i2>;

2 2 ¥
s
(%)
A2 =k, np = i3; (1.215)
1 1 A
)\3 :E — I€2+4"}/2, ng — ———— 7*1i1+12 .
2 2 A2\
1+ (%)

PROBLEM 1.21: Prove that the permutation symbol is a tensor of order three in
Cartesian coordinate systems. (Hint: e, = [i}, i;i.].)
PROBLEM 1.22: Prove the following relationship:

0 det (W)

_ -T
S = det (W)W (1.216)



CHAPTER 2

Kinematics

2.1. Deformation gradient

2.1.1. Configurations. The body B is a set of material points denoted
by P. The assignments of these points to a unique position in the 3D space is
a configuration of the body. The region V° with boundary A° = dV*° the body
occupies at time ¢ = ¢t° = 0 is called reference configuration since the other con-
figurations of the body are to be compared against the reference configuration.
The region V with boundary A = 9V the body occupies at time ¢ is the current
(or deformed) configuration of the body. The initial configuration of the body

Initial

configuration
(coincides with
the reference
configuration)

Current
configuration

Xo= X,

Xi= Xq

FIGURE 2.1. The body B in the initial and current configurations
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52 2.1. Deformation gradient

is that of the body at time ¢t = t® = 0. We shall, therefore, assume that the
initial configuration of the body coincides with the reference configuration. It
might be, sometimes, advantageous to apply two different (in most cases curvi-
linear) coordinate systems, one for the initial configuration, the other for the
current configuration. We shall, however, use the same Cartesian coordinate
system for the two configurations. Distinction between the two configurations
is made, in general, in two ways: (a) by typesetting a small circle as a su-
perscript to a quantity regarded in the initial configuration or (b) by applying
different notations in the two configurations: [capital (uppercase)| {small (low-
ercase)} letters will be used, in general, for denoting scalars, vectors, tensors
and subscripts in the [initial] {current} configurations.

A material point (particle) is denoted by P. In the initial (reference) con-
figuration P (¢t°) = P°, in the current configuration P (t) = P.

The initial coordinates of a material point, i.e., its coordinates in the initial
(reference) configuration are denoted by capital letters (lightface majuscules).
For denoting the coordinates of the same material point in the current con-
figuration, however, small letters (lightface minuscules) will be used. Indices
(subscripts) in the [initial] (current) configuration are typeset, as has already
been said, also in lightface [majuscules| (minuscules). Hence,

X:XAiA and X:.%‘gig (2.1)

are the position vectors of the material point P in the initial and current con-
figurations.

The coordinates X7, Xo, X3 identify the material point P in the initial
configuration, therefore they are called material coordinates.

The coordinates x1, x2, x3 show where the material point P can be found
in space at time ¢, therefore they are called spatial coordinates.

Equation

x =x(X;t), xp = xe (X1, Xo, X3;1) (2.2)

is the motion law: it gives the location of the material point P at time t,i.e, in
the current configuration. Its inverse, i.e., the inverse motion law is of the form

X =x"t(xt), X4 = le (z1, 22, 23;1) . (2.3)

This equation shows where the material point (particle) P was when the motion
began. We shall assume that relation (2.2) is one to one: then it has a unique
inverse.



EXERCISE 2.1: Assume that the quasi-static
law of motion xp = x¢(X1, X2, X3) in the unit
cube shown in Figure 2.2 is of the form X3

r1=X1+a X3, ro=Xo+as,
r3=X3+0a3XX3,

(2.4)

where aq, as and ag are positive constants. 1
Find the inverse motion law. 1
If we solve the above equations for X 4 in X,
terms of x, we get

Xz

Xi=z1—ay (3?2—&2)2, Xo=1z2—az,
1 —|—CL3(1‘2 — ag) '

2.1.2. Material and spatial descriptions. Let S(P;t) be a tensor which
represents a physical quantity, i.e., it describes a state of the material point p
in the current configuration. This tensor can be given in two ways: (a) either
as a function of the material coordinates X7, Xo, X3 and time ¢, (b) or as a
function of the spatial coordinates x1, x2, z3 and time ¢.

In the first case we speak about material description since the tensor S is
attached mentally to the material point (particle) P.

In the second case we speak about spatial description since the tensor S
describes the spatial distribution of the physical quantity considered, i.e., it
gives the physical state of that material point only which is at the spatial point
Z1, T2, x3 at time ¢ (which passes through the spatial point 1, o, 3 at time
t).

It is noteworthy to mention that the two descriptions are equivalent. For
solid bodies we more often use the material description. For gaseous and fluid
continua, however, the spatial (or Eulerian') description is more convenient.

For [material| {spatial} description the tensor function S is of the form

[S =W (X1, X2, X551)]  {S =P (x1,32,237)}. (2.6)

It is obvious that

FIGURE 2.2. Unit cube
X3

4 (xlvaa ],‘37t):¢ [Xl (X1’X27X3;t) » X2 (X17X2aX3; t) > X3 (Xla X27X3; t) 5t] =
:!p(X17X27X3;t)' (27)
2.1.3. Displacement field. The displacement of a material point is de-
fined by the following equations:
u® =x(X;t) - X, ua = xa (X1, Xo, Xs5t) — Xa; (2.8a)
(material description)
u=x-x '(xt), we=x0— X, (T1,72,23;1) . (2.8b)

(spatial description)

Leonhard Euler (1707-1783)
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It is obvious that
u’ =u. (2.9)

In material description the displacement vector is attached to the initial
position of the material point point P (to the point P°), in spatial description
to the spatial point (1,22, 23) where the material point P is at time ¢.

With u® the motion law is of the form

x=x(X;t)=X+u°. (2.10)

2.1.4. Deformation gradients. Equation °(s°) is that of a material
line in the initial configuration — s° is the arc coordinate measured on the ma-
terial line considered. The material line k°(s°) is deformed into the material
line k(s;t) of the current configuration, s is the arc coordinate along the de-
formed material line. Figure 2.3 shows, among others, these two material lines.

FIGURE 2.3. A material line before and after deformation s

The material line element vector (arc element vecror)
dX =e°ds®, dX 4 =eads®, le°] =1 (2.11a)

at the point P° on the material line k°(s°) is deformed into the material line
element vector (arc element vector)

dx =eds, dz, = epds, le| =1 (2.11b)

at the point P on the material line k(s;t). The two material line element vectors
are related to each other via the following equation

. 0x _ J . _ o)
dx

A

1A> dX (2.12)
A

AvAl



where
oxe . . . Ixe
F = ° = = =F Fop = —<— 2.1
xoV lem ox, roia=Fulreia, =gy (2.13)
is the deformation gradient. Equation
diL‘ZF~dX, d.fC@ZFgAdXA (2.14)

is a homogeneous linear relationship between the material line elements do and
dX.

Consider now the inverse motion law, i.e., equation (2.3). We can write, in
the same manner as we did for equation (2.12), that

ox! 0] 0
dX = day, = (x'5— i dx=(x""o—ix | -d 2.15
8xk Tk (X 8xk> \\lk /—-’X (X ° &vk H > * ( )
d.’Ek
v
where
oxg' x5
F_lzx’loV: T :a);B iBoik:FgéiBoik; FBjklzaxB
X71:X);1 ip k Tk
(2.16)
is the inverse deformation gradient. Equation
dX=F'.-dx, dXp=Fgda (2.17)
relates dX to dx. Upon substitution of (2.12) into (2.17); we get
dX =F' . F.dX, (2.18)
which can be satisfied for any dX if and only if
F ' F=F. F'=1. (2.19)

REMARK 2.1: The deformation gradients F' and F~! are two point tensors since
[xe and X4 in (2.13)s] {x3"' and z in (2.17)2} belong to the points [P and P°]
{P° and P}.

REMARK 2.2: Equation (2.14) is one to one relationship between dz, and dX 4 if

ox1 Ix1 9x1

6X1 (9X2 8X3

J=det(F)=ce FipFhoFspr =] 92 9x2  9xe 0 2.90
(F) PQRI1PI2Q L3R X I oo #0, ( )

Oxs Ox3 Oxs

6X1 (9X2 8X3

where J = det(F) is the Jacobian®. It is proven in Subsection 6.2.1 of Chapter 6,
which is devoted to the principle of mass conservation, that J > 0. It is obvious

that )
det(F~ 1) = 7 (2.21)

°Named after the German mathematician Carl Gustav Jacob Jacobi (1804-1851)
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Making use of the equations

0 0x
XoVO:Xo@iB:ﬁiAoiB:(SABiAoile, (2.22a)
0
xoV =xo0 —a‘; i, = —89;’; if, 0 1¢ = Gy, 0 1p = 1 (2.22b)

(the gradient of the position vector is the unit tensor) and the relations
x=X+u°, x l=x-u (2.23)

we obtain the deformation gradients in terms of u® = u:

F:XOVO:XOVO+UOOVOZI+uoovo7 (224)
Fap =0ap +uaVp :5AB+UA,B§
F_1:X—1OV:XOV—110V:1—UOV, (2.25)
Fk_él = 0pe — upVy :5szuk,f' .

Equation [(2.24)] {(2.25)} gives the components of the [deformation gradient|
{inverse deformation gradient} in the [inital] {current} configuration of the
continuum.

Utilizing equations (1.105) and (1.106) we can find the inverse deformation
gradient in the initial configuration:

ol leporerix QPR _
PL ™ 9 |Farn|
11

1
= j§ePQR€LJK (5JQ+U3,Q) (5KR + ukR) = j]-“PL. (2.26)

FprL

This equation can be also be given in direct notation:
f, f:pripOiL. (2.27)

EXERCISE 2.2: What are the Cartesian components of F' in terms of the Cartesian
displacement components?

It follows from (2.24) that

0. 0 0.
I+ax  ox e
(353) [Fas] e ltaxs 0% ' (2.28)
Oug Oug 1 + Ouz

0X4 0X2 0X3
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2.1.5. Relations between gradients taken in the initial and current
configurations. Let

@(1'1,1'2,273) = ¢[x1(X17X27X3;t)7x2(X17X27X3;t)7x3(X17X27X3;t>} =
= (X1, X2, X3:1)

be a scalar field regarded in the current and initial configurations. Our aim is
to clarify how the gradient &V, which describes the local changes in a small
neighborhood of the spacial point P, and the gradient #V°, which describes
the local changes of the same scalar field in the neighborhood of the point P°,
i.e., in the initial configuration, are related to each other. If we apply the chain
rule we can write

0 0P Oxy 0P
OV =P—ip = — ig = = —Fpaiq =
8XA1A axg aXAlA (2_1;3) 83:4 tala
D 1 0
= 875k5F£AiA = @iik . (FeAig 9] iA) =V F
8l‘k 0x;€
or
" . .
PV =dV-F and SV=0V°.F !, (2.29a)

where the down arrow shows the quantity the operator V should be applied to.
Dot multiply equation (2.25) from right by F and substitute then expression
(2.24). We obtain

1=F ' F=F—-(uoV)-F=1+u’0V°—(uoV): F
from where it follows that

uwoV°=(uoV)-F and uoV=(uoV°) F'. (2.29b)

Equations (2.29a), and (2.29b), can easily be obtained from (2.29a); and (2.29b)
if we dot multiply the later by F~'. According to (2.29) it also holds that

V°=V-F and V=V°-F ' or V4=V Fis and V,=V, F;}. (2.30)

2.2. Strain tensors

2.2.1. Strain tensors in the initial configuration. Making use of equa-
tions (2.11), (2.14) and (2.17) we may write

ds® — (ds°)? = dx -dx — dX -dX = (F - dX)* —dX -dX =
—dX-FT.F.dX —dX-1 -dX:2(ds°)2e°~%(FT-F—1)-e°. (2.31)

On the base of the above relationship we define the right Cauchy-Green® tensor
(right Cauchy-Green deformation tensor) C [9, 5] and the Green-Lagrange®

SAugustin Cauchy, 1789-1857; George Green, 1793-1841
4Joseph Loius Lagrange, 1736-1813



58 2.2. Strain tensors

strain tensor F by the following equations:

C=F" F, E:%(C—1)7
. (2.32)
Cap =FambFup, FEap= 3 (Cap —6aB) -

Both the right Cauchy-Green tensor C' and the Green-Lagrange strain tensor
FE belong to the initial configuration of the body.

REMARK 2.3: The right Cauchy-Green tensor C' as well as the Green-Lagrange
strain tensor E are clearly symmetric:

c=cT, E=E",
(2.33)
Cap =Cpa Eap =Epa.

REMARK 2.4: The inequality

ds’ =dx-dx=dX-FT . F.dX=dX -C-dX >0 (2.34)
holds for any dX # 0. Thus the right Cauchy-Green tensor is positive definite.
REMARK 2.5: Upon substitution of equation (2.11a) into (2.34) we get

ds> =dX - C-dX = (ds°)’e® - C - €°

from where

d
\C = ds‘i =Ve° C-e°. (2.35)

Here A° is the stretch ratio (or stretch for short).

REMARK 2.6: The axial (or normal) strain is the change in length per initial length
for a material line element:

_dsmdS e 4 Ve Ce—1- + =

ds® (2.34) C=1+2E
=\e* (1 +2E)-ec—1=+1+2e° - E-e° —1. (2.36)

It is also customary to define the axial strain as the change in length per the length
of a material line element in the current configuration:
_ds—ds® 1 A-1 e°¢
Toods X ae e
The axial strain is either positive or negative depending on whether the material
line element experiences tension or contraction. If the length of the material line
element does not change then the axial strain is zero.

oe

56

(2.37)

REMARK 2.7: Assume that |e° - E - e°| < 1 for any e°. Utilizing the estimation
V1+2zx~1+zif |z| < 1 we obtain from (2.36) that

e°¢=e"-e%-¢€° (2.38)

in which we applied the notation: e° = FE if |e° - E - e°| < 1.
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The Green-Lagrange strain tensor can be given in terms of the displacement
vector. To this end substitute (2.24) into (2.32) to get

B= (€ 1)=} (FT-Fo1) = J[(1+ 77 0w) (1 + 0o ¥7) - 1]

from where it follows that

1
E:5[u"OVO—|—V°ou°—|—(Voouo)-(uoovo)]7

1
Eap = 3 [uaVp 4+ Vaup + (Vaug) (ugVp)], (2.39)

1
Exp = 3 [ua,B +up A+ UK AUK,B] -

REMARK 2.8: Assume that |u4 | < 1. Then the quadratic term can be neglected:

1 1
s°=§(u°ov0+v00u°), 5AB:§(UA,B+UB,A)- (2.40)
Note that we have applied the same notation for the strain tensor here as in Remark
2.7. The reason for this is very simple: if |us | < 1 then it also holds that
e’ - E-e° 1.

REMARK 2.9: Let dX;, dx; and dX;;, dx;; be two different arc element vectors
— see Figure 2.4. The angles formed by dX;, dX;; and dx;, dx;; will be denoted

—F.dX=dx —
— dX=Ft.dx —

FIGURE 2.4. Angle change
by a® and «. It is obvious that

dX; = e9ds5, dX1 =eldss,
0 1o 1 1o (2.41a)
dXII:eIIdSII7 dXA :eAdSII
and . ,
dx; = eydsy, dz; = e dsy,
P (2.41D)
dxrr = errdsyy, dzy’ =€, dsir.

With these arc element vectors we get
dX[ . dX[] - dX] . dX[] = (F . dX]) . (F . dX[]) - dX[ . dX]] =
= dX; - (FT F— 1) CdX ;= 2ds3dsS e - E e, (2.42a)
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On the other hand

dxy - dx;; — dX; - dX;; = ds;dsyrcosa — dsjdsy;cosa® . (2.42b)
Hence
ds; d
T S5 s a — cosa® = AfAGpcosa —cosa® = 2e} - E - e7;. (2.43)
dsg dsg;

This equation makes possible to calculate the angle .

Assume that a® = 7/2 and a = a® — 712 where 715 is the angle change for the
angle a® = m/2. Then we get from (2.43) that
2e9 - FE - e 2e - FE - e}
cos (m/2 — yi2) =sinyp = —L——H = L L. (2.44)
AT AT (1+¢e5°) (1 +e%7)
If the deformations are small siny12 &~ v12, 1 +e9¢ ~ 1, 1 +e9f ~ 1, E = &°.
Consequently,

‘ Y12 = 2e7 -€° - el . ‘ (2.45)

REMARK 2.10: The inverse C~! is the Piola® strain tensor:
Cap = FanFop- (2.46)

2.2.2. Strain tensors in the current configuration. If we utilize equa-
tion (2.17) we may rewrite (2.34) into the following form:

dx-dx —dX - dX =dx-dx— (F'-dx)- (F'-dx) =
_dx-(1-F 7. F ") dx=2(ds)e- 2 (1-FT.F ).
= dx (1 FT.F ) dx = 2(ds)%e 2(1 FT.F ) e. (2.47)

On the basis of the above equation we define the left Cauchy-Green tensor (left
Cauchy-Green deformation tensor) b~! and the Euler-Almansi® strain tensor e
by the following relations [36, 37, 38]:

b'=FT.F', e=-(1-b""),

(2.48)

bt = FraFar s exe = 5 (Oke — by -

N~ N

REMARK 2.11: The tensor
b=F-F',  by=FyaFa (2.49)
is the Cauchy strain tensor.

REMARK 2.12: The left Cauchy-Green tensor b1, the Cauchy strain tensor b and

the Euler-Almansi strain tensor e are all symmetric tensors:
b l=b"T, b=>b", e=¢e’,
. . (2.50)
bre = by » bpq = bgp » €kt = €Lk -

5Gabrio Piola, 1794-1850
6Emilio Almansi, 1869-1948



REMARK 2.13: The inequality
(ds°)?=dX - dX =dx-F 7 - F ' dx=dx-b"'-dx >0 (2.51)

holds for any dx # 0. Thus the left Cauchy-Green tensor b~ is positive definite.
If b=' is positive definite then so is the Cauchy strain tensor b.

REMARK 2.14: As regards the stretch ratio we can write
(ds°)? =dx-b'-dx=ds’e-b"'-e.

Hence ds )
€= o = Nrrears (2.52)
REMARK 2.15: With (2.52) the definition of the axial strain (2.36) yields
L (S S P
Ve b loe b-l=1-2e
1 1
-7 _26)16—1:m—1. (2.53)
REMARK 2.16: Assume that |e - e - €] < 1. Making use of the estimation
Vit2r~1Fuxif 2| <1
we obtain from (2.53) that
e°=e-e-e, (2.54)

where we applied the notation: e = e if [e-e-e| < 1.

The Euler-Almansi strain tensor (likewise the Green-Lagrange strain tensor)
can also be given in terms of the displacement vector. To this end substitute
(2.25) into (2.48) to get
1 1
- (1-b" =7(1 —F—T-F—1> -
e=3 ) =3
from where we have

[1-(1—-Vou) (I —-uoV)

N

e =

%[uov+Vou—(VOU)~(u0V)1’

1
ey = 5 [UkV/ + Viue — (vkum) (umV/)] ’ (255)

1
ere = 5 [Whe + We b — U kU, e] -

REMARK 2.17: Assume that |ug ¢| < 1. Then the quadratic term can be neglected.
Thus we get
1 1
€= i(roJrVou) ) Ere = i(uk’Z+W’k) . (2.56)
Note that we have applied the same notation for the strain tensor here as in Remark
2.16. The reason for this is very simple: if |ug¢| < 1 then it also holds that
e-e-exkl.
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EXERCISE 2.3: Determine the angle change using the equations that are valid in
spatial description.

On the basis of Figure 2.4 we can write
dx; - dxg; — dX; - dX ;= dx; - dxp — (F7'-dxg) - (F7' - dxgg) =
= 2dxy - % (1 —FT. F_1> ~dxy; = 2dsydsirer -e-ejr. (2.57a)
On the other hand
dx; -dx;; —dX; - dX;; = ds;dsyrcosa — dsjdsy;cosa® . (2.57b)

A comparison of equations (2.57a) and (2.57a) yields

ds9 ds?
cosa — —L I 65 0° = cosa — v
dS[ dS[] )‘I )‘II

cosa® =2e;-e-egy. (2.58)

This equation makes possible again to calculate the angle .

If &« = a® — y12 where a® = /2 and 7,2 is the angle change we have
cosa = cos (/2 — y12) = sinyi2 = 2e; - e - ey (2.59)

EXERCISE 2.4: Find the left Cauchy-Green tensor b~ and the Euler-Almansi strain
tensor e for the motion given in Exercise 2.1.

The inverse deformation gradient is given by equation (2.98). If we substitute it
into the definition (2.48) of the left Cauchy-Green tensor we have

1 0 0
—asr3
-1 -1 -1 —1 -1 —2a1 (r9—ag) 1
(323) = [bre | = [0 ] [Fea Faz ] = 1 (@2=a2) [14as (z2—a)]* | ¥
1
0 - -
1—|—a3 (1‘2—&2)
1 —2&1 (.132 — a2) 0
0 1 0 _
—asrs 1
[1+as (v2—ay)]® 1+as (r2—as2)
[ 1 0 0 ]
2.2

azx —asx
| —2a1 (w2—ag) 1+ 4a? (:c2—a2)2 + 373 . 323 ;
- [1+as (z2—az)]” [14a3 (z2—a2)]

—asxs 1

[1+as (z2—a2)]’ [1+as (z2—a2)]? ]
(2.60)
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2.2.3. Eigenvalue problems, principal stretches. It is obvious on the
basis of equation (2.34) that the square of the stretch ratios can be given in
terms of the tensor C, which belongs to the initial configuration. It follows
from equation (2.52) that the reciprocals of these quantities can be given in
terms b~ which, in contrast to C, is a tensor of the current configuration:

2 dS 2 1 1
(%) =< O) =e°-C-e°, —— =e-b -e. (2.61)
ds (Xe)

Let us denote the eigenvalues, eigenvectors and principal directions of the
tensor C by A}, A3, A3; n$, n3, ng and ng, n3, n3 ((n°) designates the coordinate
system constituted by the principal directions).

Let us further denote the eigenvalues, eigenvectors and principal directions
of the tensor b~' by 1/A}, 1/A3, 1/A3; ny, ng, nz and ny, na, n3 ((n) designates
the coordinate system constituted by the principal directions).

1

e Principal Principal
1 directions for directions for
C.ECtu ble.b.v

FIGURE 2.5. Principal directions in material and spatial descriptions

Since any direction is principal direction for the unit tensor 1 it follows
form (2.32), (2.48) by taking, in addition to this, into account that the principal
directions of a tensor and its inverse are the same that the tensors C, E, C~!
defined in the initial configuration are coaxial. A similar reasoning shows that
the tensors b~ !, e, b of the current configuration are also coaxial.

EXERCISE 2.5: Give C' and its matrix C as well as E and its matrix E in the
coordinate system of the principal axes (n°).

It follows from equations (1.116) and (2.61); that

X2 o0 0
) —Z)\AnAonA7 C=|0 X o0]|. (2.62)
SR (n°) 0 0 A
With (2.62) equation (2.32) yields
Yoo 123: ©on%, E =1 A%(;lAQOl 0
5 5 - nA omny, & =3 27
2\ n°> 2 & @) 21 0 0 A-

(2.63)
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EXERCISE 2.6: Determine b~ ! and its matrix b!, b and its matrix b as well as e
and its matrix e in the coordinate system of the principal axes (n).

It follows from equations (1.116), (1.121) and (2.61)2 that

54 /A2 0 0
b =) Sz neon:, blt=| 0 1/ o0 . (2.64)
() A (n) 0 0 1/)2
With (2.64) we may write
3 A0 0
b=> Anon, b=|0 X 0 |. (2.65)
m = () 0 0 A2

Note that C = b. (However C # b.) It also holds that
(n°)  (n)

3 1-1/23 0 0
1 N ( 1> 1 I )
e=—(1-b"")=- E 1-—= ) nyony, e =-— 0 1-1/A 0
&2l ) "2 SN T T o/ BIRpY
(2.66)

2.2.4. Relations between the Green-Lagrange and Euler-Almansi
strain tensors. Let us dot multiply (2.48)5 by FT from left and F from right.
With regard to (2.48); and (2.32)1,2 we have

E:_FT-(2~F‘7 Fap =Farep Fip. (267)

We can get a pair of this relationship if we dot multiply it by F~7 from left
and F~' from right:

e=F T E-F ', exe =F, ) Eap Fp, . (2.68)

The above relationships are, in fact, transformations between tensors regarded
in material and spatial descriptions. The relationships that are transforma-
tions between quantities (vectors or tensors) regarded in material and spatial
descriptions are refereed to as a push-forward operation and a pull-back opera-
tion. Equation (2.68) shows that the Euler-Almansi strain tensor e (defined in
spatial description in the current configuration) is a push-forward of the Green-
Lagrange strain tensor E (defined in material description in the initial configu-
ration). The push-back operation is the inverse of the push-forward operation
— equation (2.67) shows that the Green-Lagrange strain tensor is a pull-back of
the the Euler-Almansi strain tensor.

2.3. The polar decomposition theorem

2.3.1. The polar decomposition theorem and its proof. Results for
the finite rotation appear in the polar decomposition theorem which is of fun-
damental importance in the theory of finite strains. It is worthy of mentioning
that the polar decomposition theorem was established by J. Finger [29, 71].

Consider a tensor F' which meets the condition

det(F)=|F|=J>0. (2.69)
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We remark that inequality (2.69) is the only precondition for F which, other-
wise, can be any tensor of order two, that is, this tensor is not necessarily the
same as the deformation gradient.

If precondition (2.69) holds then F' can always be given in the form

| F~R-U-V-R, | (2.70)

where U, V are positive definite symmetric tensors and R is a rotation tensor.
The tensors U and V' are given by

U=VF' . F, V=VF.-F". (2.71)

The products F = R-U and F = V - R are called right and left polar
decompositions of the tensor F'.
Symmetry. The transformations

(FT-F>T:FT-(FT)T:FT~F7

(F-FT)T: (FT)T-FTzF-FT

show that both FT . F and F - FT are symmetric. Let v be an arbitrary vector.
It also holds that

v-F-FT.v:(FT-v).(FT-v>zo,
v.-F'.F.v=(F-v)-(F-v)>0.

Since |F| > 0 the tensor F' has an inverse. This means that the right sides
of equations F - v = 0 and F? .v = 0 can be zero if and only if v = 0.
Consequently,
F' F and F.F"
are both positive definite tensors.
Uniqueness. Let F = R -U be a right polar decomposition of F' in which
the tensor R is rotation tensor. Hence the equation

FT.F=U" R' R U=U?
1
should also be satisfied. Recalling that the square root extraction for a tensor
— see definition (1.126) — is a unique operation we can come to the conclusion
that there is only one symmetric and positive definite U for which it is true
that U2 = FT . F. Since U is unique so is the rotation tensor

R=F.U"'. (2.72)
Ezistence. Let us define U by equation (2.71);. Further let
R=F.U'

be the rotation tensor in the left polar decomposition. If R satisfies the relations
det(R) = 1 and R" - R = 1 then it follows that (2.70); is really a polar
decomposition.
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If we take into account the assumption det(F) = J > 0 and the fact that

det(U) = det(F') we have
det(R) = det(F)det(U™") = det(F)/det(U) = J/J =1.
On the other hand
R"-R=U"'"F' - E-U'=1
——
U2

which shows that R is a rotation tensor. Hence, we have proved the existence
and uniqueness of the right polar decomposition.

Left polar decomposition. We shall define V' by the following equation

V=R-U-R". (2.73)

Since both R and U are unique so is V.
Note that V is symmetric and positive definite.
As regards the symmetry that follows from the transformation

T
VT:(R-U-RT) ~R(RUT=R-U- R’ =V.

Let v be again an arbitrary vector. Given v we can write

v-V.v=v-R-U R’ .v=v-R-VU-VU-RT .v=
——
\%

— (VU B~ (VU B -v) = (VU -R"v) =0,

in which vU - R” is invertible since |v/U - RT| # 0. If this is the case the right
side of VU - RT - v = 0 can be zero if and only if v = 0. The tensor V is,
therefore, positive definite.

For the tensor V defined by equation (2.73) it also holds that

V.R=R-U-RT - R=R-U=F,
—
1
which shows that V' - R is really the left polar decomposition.
Finally note that

V=R U R' R U -R'=F F"
F 1 FT

which shows that equation (2.71)s is also satisfied.

2.3.2. The polar decomposition theorem and the deformation gra-
dient. In accordance with the previous subsection we shall denote the square
roots of the positive definite symmetric tensors C = FT - F and b= F - FT in
the following manner:

U=VC=VFT.F, vx/B\/F-FT,} 274)

UpsUsa = Cpa = FprpFia, VksVse = bre = FrpFpe.
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With regard to (2.62) and (2.65) we can give U and v in the coordinate systems
of the principal axes:

3 )\1 0 0
U =VC=> Xanjonj, U=|0 X 0], (2.75a)
(" ) A=1 (n°) L 0 0 )\3 ]
3 [ )\1 0 i
v Z\/EZZ)\anaona, v=| 0 X 0 , (2.75b)
(n) a=1 () 0 0 )\3
g = Aqg. (2.75¢)

With U and v the polar decompositions of the deformation gradient F' is of the
form

F=R-U, F=v-R,
} (2.76)

Fya = RypUpa, Fpa=vieRens .

The tensor [UJ{v} is called [right]{left} stretch tensor. It is obvious that U is
coaxial with C while v is coaxial with b~' — see Figure 2.5.

EXERCISE 2.7: Clarify how the principal directions n% and n, are related to each
other.

It follows from (2.76); that
F-ny=R-U-n},=v-R-nj (2.77)
We can also write by utilizing equation (2.75a) that
U-nj =Xang (no sum on A) (2.78)

Let us now substitute (2.78) into (2.77). We have

R-U-nj,=v-R-nj (no sum on A)
——
Aan$
or
v-’R-nZ‘:/\A‘R-nZ‘ (no sum on A)

On the other hand it holds

v~:)\a, A= Aa, (no sum on a = A)

Hence
n, =R-n9. (2.79)

In words: The rotation tensor R as a two point tensor shifts the unit vector n%
from P° to P and then rotates it into the unit vector n,.
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Initial
configuration

X3= X3

X1= X,

FIGURE 2.6. The geometry of the finite uniaxial deformations

Figure” 2.6 is a geometrical representation of the mapping dx = F - dX
under the assumption of a uniaxial deformation. The physical content of the
mapping is explained below via equations (2.80a) and (2.80b):

dx=F.-dX=R- U-dX (2.80a)
~—

Pure deformation
of the cube into
a rectangular par-
allelepiped —  this
preceeds the rigid
body motion.

Rigid body motion of the
deformed cube: shift fol-
lowed by a rotation.

and
dx=F - dX =v- R-dX . (2.80b)
—

Rigid body motion of
the undeformed cube:
shift followed by a ro-
tation.

Pure deformation of the
cube into a rectangular
parallelepiped in the cur-
rent configuration.

7Figure 2.6 is taken form the url address https://en.wikipedia.org/wiki/Finite_strain_

theory
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2.4. Generalization of the strain tensor concept
2.4.1. Strain tensors in the initial configuration. Equations
E®O=nuU,
EYV=H=U-1, (2.81)
E(Q):E:%(UQfI)
define the Hencky® strain tensor E) [10], the Biot strain tensor EY) = H [50]
and the Green-Lagrange strain tensor E® = E.

2.4.2. Strain tensors in the current configuration. Similar relation-
ships, i.e., the equations

e = Inv,

e =h=1-v", (2.82)

1
e == 5 (1 — 'v_2)
define the spatial Hencky strain tensor e(?), the spatial Biot strain tensor e(!) =
h and the Euler-Almansi strain tensor e®) = e.

Note that the strain tensors [E?), EY) = H and E® = E] {e®, e) = h
and e(? = e} are coaxial.

REMARK 2.18: Equations (2.81) and (2.82) are the special cases of the equations

InU if n=0
EM™ ={1 _ (2.83)
—(U"-1) if n>0
n
and
Inwv if n=0
e™ =141 (2.84)

—(1—-v™™) if n>0
n
where n is a non negative integer.

2.5. Further strain measures

2.5.1. Nanson’s formula. Figure 2.7 shows the differential (infinitesi-
mal) material surface elements
Chﬁo:l’lod.j402d)(]><d)([[7 dA:ndA:dX]XdX[],
o (2.85)
n°[ =1, In| =1

given in terms of dX;, dX;; in the initial configuration and in terms of dx;,

dx;; in the current configuration. Using indicial notation we can write
dA} = dA°nY = epord X5 dXE, (286)
dA, = dAn, = erem dxﬁ dmfr{ . ’

8Heinrich Hencky, 1885-1951
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dA = MdA° dA =ndA

— F.dX=dx —
— dX=Ft.dx «

FIGURE 2.7. Deformation of the surface element dA° into the
surface element dA

Making use of equation (2.14)s we can rewrite (2.86)s:

dAy, = dAny = epem FiqFmprdX, dXE .
If we now multiply throughout by Fjp we get

FepnipdA = epem FrpFiqFnprdX5 dXE (2.87)
By utilizing (1.47) and (2.20) we may verify that

ekem FrpFrgFmr = epordet(Foap) = epgord . (2.88)

Substituting this result into (2.87) and taking then (2.86); into account yields

npFrpdA = JepordXHdXE = JdAp.

The final result can be obtained if we multiply the above equation by F/, 81 We
arrive at the following equation

neFypFpldA =ngdA=dA, = JFpldAY = JFpdAS = J Fpng dA°
N—_——

Oks
or
dAy = JFp dAp = J Fpn% dA°. (2.89a)
We can give this equation in direct notation as well:
\ dA=JF " .dA°=JF " .n°dA°. \ (2.89b)
Equation (2.89) is known as Nanson’s” formula [21]. By using Nanson’s formula

and relation (2.85) between the vectorial and scalar surface elements we can
write

(dA)’=dA-dA=J2dA°- F LF T.dA°=J% n° F~'. F Tn° (d4°)* (2.90a)
or c!

1 1
(dA°)* = dA°-dA° = - dA-F-FT.dA = 0 E FT.n (dA)® . (2.90b)
b

9Edward J. Nanson, 1850-1936



Thus

1 dA°
dA=JVn°-C~'-n°dA° and dAd=-—2 2.91
Jv/n-b-n ( )

A comparison of these two equations yields the definition of the area element
ratio:

A 1 1
JYRLINAv/Ava T B S S (2.92)

~ dA° Jvn-b-n

2.5.2. Volume change. It is clear from Figure 2.8 that the infinitesimal
volume element in the initial configuration is given by the following equation:

dVe = [dX;dX;; dX ;7] = erjr dX7 dX T AX T (2.93a)
The infinitesimal volume element in the current configuration

T

AV = [dx; dx;; dxr11] = epgrda) dah’ dal! (2.93b)

can be related to the infinitesimal volume element in the initial configuration if
we substitute (2.14), and then apply the relation (2.88)2. We get

AV = epgr FyprFyyFrg dX7 dXT dXHET = 4+ = JepydX] dXdX
—_— 2.93
ergxJ ( ) dve

or

dVv

AV =Jdve, Ay =

=J, (2.94)

where Ay is the volume element ratio.

FIGURE 2.8. Deformation of the volume element dV° into the
volume element dV

If J =1 there is no local volume change, i.e., dV = dV°. The deformation
for which J = 1 everywhere within the body is called volume preserving or
isochoric deformation.
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2.6. Multiplicative decomposition

The deformation gradient can be multiplicatively decomposed into two
parts:

F=J"31.FJ'3, (2.95)
—_—— ——
Fope Fior
where
JU3 0 0
|J1/31| — det(Jl/Bl) — 0 J1/3 0 =J (2963:)
Foor Fupr 0 0 J?
and
|FJ~/3) = det(FJ~'/3) = det(F)(J~/?)* = 1. (2.96b)

The determinant of F', is equal to J, therefore, the tensor

Fope=JY31 (2.97a)

is the volume preserving part of the deformation gradient. In contrast to this
the determinant of F, is equal to 1, consequently, the tensor

Fi, = FJ /3 (2.97b)

is the isochoric or distortional part of the deformation gradient.

2.7. Compatibility conditions

The compatibility conditions constitute a special problem in the continuum
mechanics of solid bodies.

With the 3 displacement components of the displacement field u® we can
determine the 6 independent components of the Green-Lagrange strain tensor
E by using equation (2.39).

In the opposite case when we know the 6 components of the Green-Lagrange
strain tensor and would like to determine the 3 components of the displacement
field u® we have to solve the 6 partial differential equations (2.39) for finding 3
unknowns. This problem is, therefore, overdetermined (we have more equations
than there are unknowns) and the solution exits only if the tensor field E
satisfies some restrictive conditions. These conditions are called compatibility
conditions.

In the nonlinear theory of deformations it is very difficult (in fact it is a
hopeless problem) to eliminate the displacement components from the kinematic
equations (2.39). This is the reason why the Riemann theory has come into
general use. The essence of this theory is as follows.

It is a fundamental assumption that the geometrical space is euclidean both
in the initial configuration and in the final one. Consequently, the metric tensor
of the deformed continuum should be a positive definite tensor (each metric
tensor satisfies this requirement) and, in addition to this, should also satisfy the
fourth order Riemann-Christoffel curvature tensor.
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PROBLEM 2.1: Let
1 =Xo+ X3 — X1, ro = Xo 4+ X3, r3 = Xo — 2X3
be the motion law in material description. Determine F, F~!and J.
PROBLEM 2.2: Let x = (X1 +at X2)i; + (X2 —at X7) iz + X3i3 be the motion

law in material description where a is a constant. Find (a) the deformation gradient,
(b) the inverse motion law and (c) the inverse deformation gradient.

PROBLEM 2.3: Given the temperature distribution in terms of the material coor-
dinates X 4 within the cube of Exercise 2.1: § = B(1+ X1X5) where B is a
constant. Find the spatial description of the temperature field.

PROBLEM 2.4: Find the displacement field in material and spatial descriptions
within the cube of Exercise 2.1.

PROBLEM 2.5: Making use of the motion law of Exercise 2.1 determine, within
the cube, (a) the deformation gradient in material and spatial descriptions and (b)
prove that

1 720,1 ($2 - (12) 0
F '=[Fg/]=]0 1 i 0 (2.98)
(3x3) 0 —asws/[14as(za—a2)]> 1/[14as (z2—as2)]

is the inverse deformation gradient in spatial description.
PROBLEM 2.6: Find the deformation gradient in cylindrical coordinate systems.

PROBLEM 2.7: Assume that r = R, ¥ = © + 20 and z = Z in the previous
Problem. This is the case for a rod with circular cross section subjected to twisting
— it is assumed that the cross sections rotate in their own plane. Then 9 is the angle
of rotation for a unit length. Find the displacement gradient utilizing the notations
given in Figure 4.1.

J

sin($- o)

ig

= )

u=uw
9-0=39z

FIGURE 2.9. Cross section of the rod considerred
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PROBLEM 2.8: Show that the Green-Lagrange strain tensor is of the form
0 a1 Xo 0
(3%3) =[BaBl= | 0, Xy 203X2+1a3X2  lagXs(1+asXs) (2.99)
0 %ang (1+a3Xs) asXo (1 + %ang)
for the motion given in Exercise 2.1.
PROBLEM 2.9: For the deformation
= X1, Ty = —3X3, r3 = 2X5
find F, U, v and R.
PROBLEM 2.10: For the deformation
1 = 2X7 — 2Xy, o = X1 + Xo, T3 = X3
find F', U, v and R. Prove that the matrix of the left stretch tensor v is a diagonal
matrix.
PROBLEM 2.11: For the deformation
r1 = 2X3, To = —X1, r3 = —2X9 + 3X3
determine F', U, v and R.
PROBLEM 2.12: Given the deformation in the following form:
r1 = 1/2X; cos Xs, T9 = 1/2X1sin X, r3 = X3
Find the inverse motion law, the deformation gradients F', F~' and show that the

above deformation is volume preserving.

PROBLEM 2.13: For the deformation considered in Problem 2.10 find the right
Cauchy-Green tensor, the Green-Lagrange strain tensor, the principal directions and
stretches in the initial configuration, the right stretch tensor, the rotation tensor
and the principal directions in the current configuration.

PROBLEM 2.14: Show that the Green Lagrange strain tensor and the Euler Almansi
strain tensor are independent of the rigid body rotation (of the tensor R). (Hint:
Make use of the polar decomposition theorem.)

PROBLEM 2.15: Assume that the displacement field is given by the following equa-
tions:

up = a(2X? + X1Xs), uy = aX3, ug = 0; a=10"%
Find the axial strains in the directions i; and iy at the point P(1,1,0). What is
the angle change between these directions?



CHAPTER 3

Time derivatives

3.1. Velocity and acceleration

A material point moves along a path determined by the motion law of the
continuum. Its velocity is, therefore, given by the equation

dx (X1, X, X3;t)  dx _ox (3.1)

=v(X1, X2, X3;t) = = = =
A4 V( 1,2, 37) dt dt ) ata

where the subscript (X) denotes that the time derivative is taken for the mate-
rial point with coordinates X,. If we take into account that the position vector
X = X iy in resolution (2.10) is independent of time we get the velocity field:

v =ude= o (xele) = 5 (weir) =
0 on o« o
= a [(Xl + Ul) 17 + (X2 —+ u2) is + (XS + U3) 13] —
= o7l +v5iz +v5i3 =v°, (3.2a)
where
o 3 auo ° a 8uo
vl(Xth’XS;t):%:aitl7 UZ(X17X27X3;t): X2 — 272

ot 0t T (39

o 0] Ou$
05 (X1, Xo, Xst) = 2 = 28
are the three velocity components.
With the velocity
dV(Xl,XQ,X3;t) dv ov 82X 62X
a = alXy, Xz, X5;1) dt dt |y, 0t oF  or

(3.3a)
is the acceleration field. On the basis of what has been said above it is not too
difficult to check that

2 2
MO (X1, X, Xt) = 2 = O

ot ot ot o’ (3.3b)
o 8113 82X3
a3(X17X23X3;t) - E - 8t2

ai(X1;X27X3;t) =

are the three acceleration components.
75
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For a real motion of continuum mapping x = x(X) is one to one, i.e.,
there exists the inverse motion law X = x~!(x). Consequently, if we substi-
tute the components of the inverse motion law X; = Xl_l(xl,xg,xg;t), X, =
Xo (21, 20, 235 t), X3 = Xgl(xl,xg,xg;t) into equations (3.2b) and (3.3b) we
get velocity and acceleration components at time t in spatial description:

vr = vy (21,2, 3;t) , vz = vz (T1, T2, 3;t) , w3 = v3 (T1, T2, T3;1)

V=V (21,2, x3;t) = v1 (21, T2, x3;t) i1 +v2 (21, T2, T35 ) Ia+vs (T1, 22, 233 1) i3
(3.4)
and

a1 = a1 (z1,22,23;t) , as = as (x1,x2,x3;t) , a3z = as (w1, x2,x3;1)
a=a(x1, e, x3;t) = a1 (T1, T2, x3;t) i1 +a2 (T1, T2, x3; 1) in+a3 (x1, T2, 23; 1) i3
(3.5)

REMARK 3.1: Let us assume that we know the velocity field in spatial description.
In this case we may also determine the acceleration field in spatial description. The
way how to do it is considered in Subsection 3.8 which is devoted to the concept
of material time derivatives.

EXERCISE 3.1: Assume that
x1 = X1 — Xoe™t, zo = Xje' + Xae? , x3 = X3
is the motion law. Determine the velocity and acceleration fields both in material
[v=v°(X;t); a=a° (X;t)] and in spatial descriptions [v = v (x,t); a = a (x,t)].
Calculating time derivatives we have
vy = X1et + Xoe™t | 03 = Xqet — Xae™t, 03 =0,
al = Xiet — Xoe™t,  a$ = Xqet + Xge™t | a3 =0.
In spatial description
v =22, v2=x1, v3=0,
a, =1, ag =z, az3=~0.

is the result.

3.2. Velocity gradient

If we linearize the velocity field in the neighborhood of the spatial point P
we get:

ov ov ov .,
dv=—i-dx+ — iy -dx+ —i3-dx =
0r1 ~—~—~ 0Ty~~~ 023~~~
d:El dxg dmg




or
dv =1-dx, dv, = lpg dzy, (3.6a)
where
ov . ov . ov ., ov
l:voV:a—xlou—i—a—xQolg—i—a—xSog, lpq:a—;;:vp,q (3.6b)

is the spatial velocity gradient. Using equation (3.6b) we can give its matrix in
the following form:

v v Ouy
! ! I 3x1 8x2 81’3
82 82 8X 12 s 81}2 81}2 61}2
Il=| = | = |5 |=|lalnls|=| = —— = (3.7)
8.131 81‘2 6l‘3 l31 132 133 3;E1 31’2 81’3
Qvs Jvg Ovg
0x1 Oxg Oxs

EXERCISE 3.2: Determine the velocity field and its gradient in the cylindrical co-
ordinate system (R¥z).

In this coordinate system

x = Rig + zi, (3.8)
is the position vector of the material point P in the current configuration (see
Figure 1.13 for the details), where R = xg (R°,9°,2°;t), 9 = xo (R°,9°,2°1)
and z = x, (R°,9°,2°t). Deriving equation (3.8) with respect to time and taking
relationships (1.186b) into account we have

ox . Oxr O X

~ —— ~——
VR vy Vz

With regard to equations (1.198) and (1.199) we can give the velocity gradient and
its matrix as well:

ov 10v ., ov
lfvon£01R+E%ow+501z, (3.10a)
<~ —— <~
lr Ly L.
Ovg 1 (0vr A\ Ovr
ZRR lR19 le 3R R 8’19 v 82
_ lR l19 lZ _ o ({91119 1 ({91)19 5’019
I = 2| = 2 = |lyr lyy by | = | =—= =| == +vr| =
(RYz) (Ro2) | (RYz) | (RV2) Lr Lo 1 OR R\ 09 0z
AT e ov, l ov, ov,
OR R oV

0z
(3.10b)
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According to equations (1.88) the velocity gradient can be resolved into
symmetric and skew parts:

l=d+ 0,
L)L IR P
d_2(1+l )—2(v0V+Vov)7 2= (l ! )_2(vov Vov),

(3.11a)

pq = dpq + £2pq,

1 1
dpg= 3 (lpg+Lap) =L (pg) = B} (Up,g+Vgp) s (3.11b)

1 1

Qpg= 9 (lpg—Lap) =Lipq) = ) (Vp,g—Vg,p) -

Here d is the strain rate tensor and {2 is the spin tensor. The latter is sometimes
called the rate of rotation tensor or vorticity tensor [90] — we prefer, however,
the expression spin tensor.

Let us denote the axial vector of the skew spin tensor by w. The linearized
velocity distribution (3.6a) at the spatial point P can be rewritten if we take
into account the additive resolution (3.11) and apply relationship (1.90):

1
dv=Il-dx=d -dx+ 2 -dx=d - dx+w x dx; w:—avxv. (3.12)

The vector w is called angular velocity vector. The vector w = 2w =V x v is
the spin or vorticity vector.

REMARK 3.2: The expression 2 - dx = w x dx in equation (3.12) describe the
velocity change caused by the angular velocity vector in the elementary neighbor-
hood of the material point P. On the other hand d - dx is the velocity change due
to the rate of deformation tensor and it reflects that the deformations depend on
time. For rigid bodies this term is always zero.

According to their definitions the tensor fields I, d, £2 and the vector field
w are all spatial tensors which depend on location and time.

EXERCISE 3.3: Determine the matrices of the strain rate tensor and the spin tensor
in the coordinate system (zyz).

It is not too difficult to verify using equations (3.7), (3.11) and (1.94) that

d:r:v dmy dzz
d= [ d, | d, | d, ]: dys  dyy dy. | =
zZT dzy dzz
9ve L(Ove  Ovy\ 1[0,  Ov.
oz 2\ dy Oz 2\ Jz 0z
1/ 0v, Ov, Ovy 1(0v, Ov,
S R e 4 ki (L 3.13
2(8x+8y> oy 2(82 8y> (8:13)
Lion v 1(0n on 0w
2\ 0xr Oz 2\ 0y Oz 0z
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and
00 2py (2 0 Wy —Wy
=1 2y, 2y 2. |=| —w. 0 we | =
2., $2., 2., Wy —Wy 0
0 L(0v, duy) L (0v, Ov.
2\ dy Oz 2\ 0z 0z
1/0vy, Ov, 1/0v, Ov,
= (2 -Z= (2 14
2<8x é)y) 0 2(32 ay) (8:.14)
L(0v: vy 1(dv. vy 0
2\ dx 0z 2\ dy 0z

From equation (3.14) we can also see, in accordance with (1.94), how the compo-
nents of w are related to the velocity components.

EXERCISE 3.4: Find the matrix of the strain rate tensor in the cylindrical coordinate
system (R9z).
A comparison of equations (3.10b) and (3.11) yields

drr dry dg:
d —[ dp ‘ dy ‘ d- }— dyr dygs dy. | =
(R9z) (RYz) (RYz) (RYz) dzR dzﬁ dzz
vk L(L1Ovr vy Ovg) 1(0vg  Ov.
OR 2\R 09 R OR 2\ 0z OR
_ | 1[0 Lok v Lfovw ., L(0vy 100
“|2\0R "R R R\ow "% 2\ 0z 'R Y
1 avz+% 1 lavz+% dv.
2\ OR 0z 2\ R 09 0Oz 0z

(3.15)

EXERCISE 3.5: What is the formula for the angular velocity vector in the cylindrical
coordinate system (Rvz)?

Making use of equations (3.10a) for I and (1.91) for the axial vector s* we find
that

W TV Ve or " T Ry %

ov

3.3. Time rates of the strain measures

3.3.1. Introductory remarks. Sections 2.2.3 and 2.5.1 in Chapter 2 are
concerned among others with the various strain measures. Due to the motion of
the continuum element the length and direction of the line element vectors (the
line element), the angles they form, the vectorial and scalar surface elements
and the volume element change all with time. There arises the question how
to determine the time rates of these changes. The present section is devoted to
the determination of these velocities.



80 3.3. Time rates of the strain measures

3.3.2. Time rates of the deformation gradients. On the basis of (3.1)
we may write

didx) | _oldx) _ (3.17)
dt |y, Ot

This quantity — as the applied notation shows — is the velocity difference between
the endpoints of the line element vector dx with linear approximation. Upon
substitution of (2.14), (2.30) and (3.6b) into (3.17) we arrive at the earlier result

(3.6a):

0 0 0 o
dv = grdx = ZF-dX= 1 = [(5;%) 0 2] -dX =
V-F
= [(gtx) OV} ~F(~idX: (voV)-dx=1-dx. (3.18)
We can now rewrite the velocity difference (3.18) into the form
D
Di (dx) =(dx)"' =dv =1 -dx (dz;)" = dv; = lp day (3.19)

if on the basis of (3.17) we introduce the following notational convention for the
time rates of the various strain measures:

w(x)za(--.):(...)-. (3.20)

With I we may determine the time rate of the deformation gradient. On
the basis of (2.14) and (3.19) we have

dv=1-dx=1-F-dX, and dv=(F -dX) =(F) -dX

from where it follows that

(Fy =1-F, (FT)'ZFT- 7

(Fya) = logFra, (Far) = Faglke -

(3.21a)

Since the unit tensor (identity tensor) does not change with time (it is
constant) the time rate of the product F - F~' = 1 is the zero tensor. Hence
Fy F'+F - (F'Y)=1.F-F'+F (F')=0.
(Fy-F 4P (P =1 E-F L P (P =0
1

Dot multiply this equation from left by F~'. After rearranging this result we
get the time rate of the inverse deformation gradient:

(FY=-F"'1, (FH=-1""F7",

I e (3.21b)
(FB ) - FBr lTk’ (Fk ) - lk"'FrB :

When determining the time rates of the various strain measures we shall
need the following time derivatives (3.19), (3.21a) and (3.21b).
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3.3.3. Time rates of the line elements and the angles they form.
Consider now the dot product of the two line element vectors shown in Figure
2.4:

dxg - dxyr = dsyds cosa.
If we utilize (3.19), (2.41b) and (3.11) we obtain

(dxp-dxq) = (dxy) -dxg+dxy- (dxg) =dvy-dxpp +dxy-dvp=
= dx;- 17 dxq +dxp- - dxp = 2e; - % <l + lT) e dsyds;r =
=2er-d-epdsidsy (3.22a)
for the time derivative on the left side. As regards the right side we may write
(dsydsyp cosa)’ = [(dsl)' dsip + dst (dsH)'] cosa — dsydsyr (o) sina. (3.22b)
For @ = 0 a comparison of (3.22a) and (3.22b) yields

%:edw& (er=emn=e) (3.23)

which is the time rate of the line element Equation (3.23) can be rewritten if
we take definition (2.35) of the stretch ratio A° into account:

(ds)”  (ds) ds®  (\e)

—_— — = = 1 €y . ~24
& A ds e - WmAY (3.24)
Hence
ds) D
(di) = D—t(ln)\e) =(nX) =e-d-e=epdrrer. (3.25)

Remembering that (3.22a) and (3.22b) are equal for o # 0 we have

(dSI) (dSH).
|: dSI + dSH
= [(/\Ie) + (/\ICI)} cosa — (a)'sina=2er-d-er.
Al At

] cosa — (@) sina = o

This equation can easily be solved for («)" which is the time rate of the angle
« constituted by the line element vectors.

Assume now that ey - ey = 0. Then o« = a°® — 12 = 90°, where 712 is the
angle change which is positive if a® becomes smaller. Since a° is independent
of time (3.26) gets simpler:

(M2)"=— () =2er-d-er. (3.27)
EXERCISE 3.6: Find the time rates of the axial strains £°¢ and €°.
With (2.36) and (3.25) we may write
)y =A=1)=X)=XMnX)=Xe-d-e=(1+c")e-d-e (3.28a)
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which is the first of the derivatives we look for. As regards the second using (2.37)
we get

() = (EOC): (E)\":)- - (i:(;z()\e)- ed-e—ctfe-d-e—

=(1-¢c%e-d-e=

1

/\OEe-d-e

= -d-e. (3.28b
1+5°ee e ( )

EXERCISE 3.7: Determine the strain rate tensor both in the Cartesian coordinate
system (zyz) and in the cylindrical coordinate system (R¥z). Use equations (3.25)
and (3.27) for points of departure.

On the basis of (3.25) and (3.27)

Ainm = €m - d - e, = (InAy,) m=ux,9,z

Ainn =€, - d - €, = (Ymn)” m,m==1x,9,2;, m#£n
are the diagonal and off-diagonal elements of d. Consequently,

Ay dyy dy (InAz)" (sz) (Yzz)"
d= [Q:E | Qy ’Qz ] = | dys dyy dyz | = (’wa) (In )‘u) ('7yz)' (3.29)
dzm dzy dzz (’721) (")/Zy) (ln )\z)
is the matrix of d in the Cartesian coordinate system. In the cylindrical coordinate
system we obtain in the same way that

drr dry dRr- (InAr)" (YrRo)" (VYRrz)
d =[dg|dy|d, |=|dor dyo do= | =| (yor) (InXg)" (0:)" |- (3.30)
(R92) d:r dz dz (v2r)" (720)" (InAL)

3.3.4. Time rate of change for the volume element. The right side
of Figure 2.8 shows the volume element determined by the line element vectors
d x1, dxp1, dxqq1 in the current configuration:

AV = [dxy dxp dxm] = egjpda] daf dag’’ . (3.31)

If we apply the product rule of derivation and make use of relation (3.19) we
get from here that

(@V) = eijp | (da]) defl el + dof (d2]")" dof!” + dafdel’ (aof!")'] =
= €ijk [lipdxf)dx§ldxé11 + da:fquda:édmén + dxfdw?lkrdxin] =
= €ijk [lip0iqOkr + SipliqOhr + 0ipbjglir] dafdal dal’" . (3.32a)
A comparison of the right side and (1.47) leads to the following result:
(dV)" = €4k [li10520k3 + 0511520k3 + 0510 ;20k3] €pqrd$£d$51dl‘fn =
= (ejosli1 +e1jslj2+e1oklks) AV =(l11+1l2e+1s3) AV =1;dV=d;dV. (3.32Db)

Hence

(dV) =d;dV (3.33)

is the time rate of change for the volume element.




In direct notation the time derivative of
dV = [d X1 dXH dXIH] = [eI €11 em] dSI dS 11 dS 111 (334)
———
results in the same formula
(dv) =
:(dXH X dXHI) . (dXI)'-l-(dXHI X dXI) . (d XH)'+(dX1 X dXH) . (dXIH)IZ
=dstdspdsm[(en X em)-l-er+ (eqr xer)-l-en+ (e xeq)-l-em) =

=€, (dSI dsqr dSIH) [ei" -l-eg +ef1 -l-eqg +eikH -1 -6111] =d;dV,

dv lr=d;

where we have taken into account (c) the cyclic interchangeability of the mixed
products, (b) formulae (1.21) for the dual base vectors and (d) relation (1.125a)
for the first scalar invariant (er, err, e corresponds to g1, g2, &3).
We may rewrite equation (3.33) if we make use of relation (2.94) which
defines the volume ratio. We get
@y _@vydave _ ()

dv dve dv Ay

= (ln Av) .

or

vy
v
which is the rate of change of a volume element divided by the volume element
itself.

Since dV = JdV?° it also holds that

@V) = (J) dV° = d;dV = d; JdV°,

= (ln Av) = d[ =v-V (335)

where the underlined parts are equal to each other. Hence,

(Jy=diJ=J(v-V). (3.36)

This expression is known as Euler’s formula.

3.3.5. Time derivatives of the vectorial and scalar surface ele-
ments. The vectorial and scalar surface elements in the current configuration
are shown in the right side of Figure 2.7. On the basis of the figure

dA =dxy xdxy,  dA; = e dafday (3.37)
is the vectorial surface element. Its time derivative is given by the following
equation:

(d4,)" = eizp [(dah) dafl +da} (aafl)].

We can manipulate the right side of this equation into a more suitable form if
we utilize (3.19) by taking into account that the Kronecker delta is an index
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renaming operator and if we enlarge the result obtained by the underlined terms
the sum of which is equal to zero:

(dAZ) = €4jk [lipéjqékr + &pquékr + 5ip6qu;w - lip(;jqékr} dl‘{] dl’i‘l .
If we recall (3.32) we can make the first three terms on the right side simpler:
€ijic lip0iqOkr + Oipligir + SipSjqlir] day da)! = dy epgrda da)! = didA,, .

By applying resolution (3.11) of the velocity gradient to the last term we may
write

— e,;jkl,;péjqékrdx; dl‘}ﬂl = 7lip€iqrdxé de}I == 7lzpdA1 ==
= — (dzp + le) dAZ = —dpidAi + QpldAl .

After gathering the partial results we get the time derivative of the surface
element vector:

(dA;)" = (didip — dip) dA, + Qipd Ay (3.38)

since Qip = 7Qp1 and dp,; = dzp
In direct notation the Nanson formula (2.89b) is our point of departure. Its
time derivative is given by
(dA) = (J) FT . dA°+J (F—T)' “dA°.

Substituting the derivatives (3.36) and (3.21b) this expression becomes

(dAY =d; JFT - dA° 1" JF T .dA° =d;dA — 1" dA.

— —
dA dA

If we now utilize the additive resolution (3.11) finally we get

(dA) =(d;1—d)-dA+ R -dA=(d;1—d)-dA+wxdA| (3.39)

which obviously coincides with (3.38).

REMARK 3.3: Expression £2 - dA = w x dA in equation (3.39) is the velocity
change due to the rotation of the vectorial surface element dA. On the contrary
(d; 1 —d)-dA reflects the velocity change caused by the fact that the deformation
of the surface element depends on time. When we consider the motion of a rigid
body this quantity is always zero.

As regards the time derivative of the scalar surface element dA identity
(dA)? = dA - dA is our point of departure. If we take the time derivatives of
the two sides we get

(dA)'dA = (dA) -dA.

Substitute now derivative (3.39) and take into account that the vectorial surface
element can be given in the form dA = ndA where n is the outward unit normal
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of the surface element. In this way we get the time derivative of the scalar surface
element in the following form:

(dA) (M) _ _
TRy =di—n-d-n=d- (1 —non) (3.40)

where it has been taken into consideration that
(dA) B (dA)" dA° B Aa)
dA — d4° dA A4

= (hl /\A) .

3.3.6. Time derivatives of the strain tensors. With the time deriva-
tives of the deformation gradient (3.21a) and the inverse deformation gradient
(3.21b) we can determine the time rate of change of the left Cauchy-Green
tensor (2.48):

Y =F"T) - F'+F T (F')=
=" F T F'F TP =" b1 (341)
b—l b—l

If we utilize this result we can also determine the time derivative of the Euler-
Almansi strain tensor e. To find a more suitable form of the derivative

@ = (30 -0) =S ey =S (et )

we got it is worthy of taking the relation b~' = 1 — 2e, which follows from
(2.48), into account. We have

(e)':1<l lT>—e~l—lT'e: T =d—e-d—d-e—e-2+92-e, (3.43a)
2 3.11)

(

where {2 is skew. Hence

(e)=d—e-d—d-e—exwtwxe. (3.43b)

is the time derivative of the Euler-Almansi strain tensor.

REMARK 3.4: The first part of the derivative (3.43b), i.e., the expression

eV=d—-e-d—d-e=(e)+(exw—wxe) (3.44)

is called objective Jaumann time derivative of the Euler-Almansi strain tensor |

p. 1911]. Since (a) e is independent of the rotation tensor R and (b) d is inde-
pendent of the spin tensor §2 (or the local angular velocity w) it follows that the
Jaumann time derivative reflects the velocity changes due to pure deformation. On
the contrary the effect the local rotation has on the velocity changes appears via
the terms —e X w + w x e. The material behavior of the continuum should be
independent of the local rotations. Hence those equations which relate the stress
rates to the deformation rates should contain objective time rates only. Significance
of the Jaumann time derivative can be explained by this fact.
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REMARK 3.5: Let h be a symmetric spatial tensor which describes a physical state
of the continuum in the current configuration. Its Jaumann time derivative can be
given on the basis of (3.43) and (3.44) in the following form:

hY =(h)+(h-2-02 -h)=(h) +(hxw—wxh). (3.45)
REMARK 3.6: Further objective time derivatives were introduced by Oldroyed [42],
Cotter-Rivlin [44] and Trusdell [46, 45]. For the tensor h they assume the following
forms:

hoyod = (A) =1 b —h 1T, (3.46)
hgotter—Rivlin = (h’) + lT ~h+h-1 (347)

and
hYeqet = (B) —1-h —h-1" +d;h. (3.48)

EXERCISE 3.8: Find the time derivative of the Cauchy strain tensor b.

Making use of the time derivative of the deformation gradient (3.21a) from (2.49)
we get:

f = .. T . T.: . . T . TOT: . 'T
by =(F) -FT+F - (FT) =1-F-F'+F - FL 1" =1-b+b-1". (3.49)
b b

If we take the time derivative of equation (2.67) we can clarify how the time
derivatives of the tensors E and e are related to each other. Upon substitution
of relations (3.21a) and (3.43a) into the time derivative

dE E . .
|, )_aat— (F'-e-F)' = (F')-e-F+F"-(e) - F+F" e (F) =
X

:FT~lT~e'F+FT'(dfe~lflT~e)~F+FT'e~l~F

we obtain:

(Ey =F".d-F. (3.50a)

It follows from here that

d=F"1. (Ey F! (3.50b)

which is the pair of equation (3.50a) .

REMARK 3.7: Equation (3.50a) shows that the time derive of the Green-Lagrange
strain tensor (E)" is a pull-back operation of the strain rate tensor d. According to
equation (3.50b) the strain rate tensor d is a push-forward operation of the time
derivative of the Green-Lagrange strain tensor (E)".
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The totality of the values a tensor function has in a volume region (regarded
for example either in the initial (reference) configuration or in the current con-
figuration) is called a tensor field. It is also worthy of mentioning that a tensor
field defined in one of the mentioned volume regions is always considered at
the various points of a coordinate system which we call the defining coordinate
system. If the tensor changes with time in the defining coordinate system we
speak about time dependent tensor field otherwise the tensor field considered
is a stationery one. As regards the displacement and deformation states of the
continuum Table 1 gathers the various and time dependent tensor fields:

TABLE 1.

Time dependent tensor fields
Initial Two point Current
configuration tensors configuration
u® (X17X2,X3;t) ll(.’ﬂl,ifz,l'g;t), 6(1’1,!172,%3;t)
C (X1, X2,X31t)  F(wy,20,233t)  b(wy,22,23;t), b (x1, 22, 23;t)
v° (Xl,XQ,Xg;t) F_l(l'l,l'g,xg;t) V(.’El,xg,l'g;t), l(CL'hiL'Q,IL'g;t)
t)
t)

E(XlaX27X3; R($1,$2,$3;t) d($1,$27$3;t)7 Q((El,.’lf27.’£3;t)
U (X1, Xo, X3; w(x1, o, T3;51), v(21, T2, 3;t)

We remark that the two point tensors in Table 1 are regarded in spatial
description.

In Sections 3.1 and 3.4 we dealt with the issue of how to determine the time
rates of change of some time dependent tensor fields and strain measures. In
the sequel we shall supplement and make more precise the results we have got.
A time dependent tensor field, for instance the tensor function S — see equation
(2.6) — can be given both in material description and in spatial description as
well:

S =W (X, Xo, X3;t), S =& (x1,x2,23;1) . (3.51)

If the tensor function S is given in material description its time derivative is of
the form
d 0
£W(X1,X2,X3;t) = EW (Xl,X27X3;t) (3.52&)
which reflects the fact that the material coordinates X1, Xo and X3 are inde-
pendent of time. Time derivative (3.52a) yields the time rate of change with
respect to the defining coordinate system — this is now the coordinate system
(X1, X2, X3) — at those points of this coordinate system where the tensor is
defined.
The meaning of the partial time derivative

0 0
QS— &Q ((El,xQ,.’Eg,t) (352]3)

in spatial description is similar: it gives again the time rate of change with
respect to the defining coordinate system — this is now the coordinate system

d
P
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(21,2, 23) — at those points of this coordinate system where the tensor is de-
fined. Time derivative (3.52b) can not be attached to a continuum point because
it is considered at a fixed spatial point while the material points are in motion
and can, therefore, be found at various spatial points at different points of time.
In other words we have not taken into account so far that z, = x, (X1, X2, X3; )
in (3.52b) by which tensor function @ is attached to the material point identified
by the coordinate triplet (Xi, Xo, X3).

S=¢ ($1, To,X3; t) =
=& [Xl (X17 X2) X37 t) » X2 (X17 X27 X?n t) » X3 (Xla X27 X37 t) ; t] . (353)
Consequently, the tensor field which represents the time rate of change of the

tensor function S within the body in spatial description is of the form:

DS 0
— = =P [x1 (X1, X2, X35t) , x2 (X1, Xo, X3:5t), x3 (X1, Xo, X331) 3 1] .

Dt Ot
(3.54)
This quantity is referred to as the material time derivative of the tensor function
S. By taking the relations

axg
ot
into account we can apply the chain rule to determine the material time deriv-
ative of S

bS _
Dt

rp = x¢ (X1, X2, X35t) and v = (3.55)

& & & &
_0P0r 0P 590+ 22 —(@ov). v+ 22| (3.56)

(8) " Oz, Ot Ot ot ot

If S is a scalar field denoted by ¢ (x1,x2,x3;¢) in spatial description equation
(3.56) yields:

D¢ . ¢

D = (¢) = (¢V) - v+ 5 (3.57)
If S is the velocity field v(x;t) = v (21, %9, x3;t) from equation (3.56) we get
the acceleration field also in spatial description:

Dv . ov
a:ﬁ:(v)—(VOV)~V+E (3.58a)
or - P P
ak = 8 = (o) = (V) ve + S = v+ S (3.58D)

REMARK 3.8: The velocity vector v (z1, 2, z3;t) is the time rate of change of
the time dependent position vector x = x (X7, X2, X3;t) of the material point
P(X17X2,X3). Hence v (x1,x2,x3;t) is a material time derivative. The same is
valid for the velocity (3.17) (or (3.18)) of the line element vector since the equations
referred to here give the velocity changes between the endpoints of the line element
vector with a linear approximation. Consequently, each time derivative is a material
time derivative if it is obtained by making use of the formulae we have set up for v

and dv. This means that the following quantities are all material time derivatives:
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(a) The time derivatives (3.21a) and (3.21b) of the deformation gradient and
the inverse deformation gradient,

(b) the time rate of change of the stretch ratio (3.25),

(c) the time derivative (3.26) of the angle a formed by the line element vectors
[or in a special case the derivative (3.27)],

(d) the time rate of change (3.33) of the volume element,
(e) the time derivative of the Jacobian (3.36),
(f) the time derivatives (3.39) and (3.40) of the area element vector dA and

the scalar area element dA and finally

(g) the time derivative (3.43) of the Euler-Almansi strain tensor e.

In addition to the quantities listed above Section 3.4 contains some further
time derivatives. For example (b_l)' or (e°¢)" — see equations (3.42) and (3.28a)
for details. However, it follows from their calculation that these quantities are also
material time derivatives.

EXERCISE 3.9: Prove the following relation:

(v) - V=Ww-V)+d-d—w- w. (3.59)
In indicial notation

(Uk).,k = ('Uk,k). + die drp — 2wrw, (3.60)
is the relation to be proved. Using (3.58b) we can write for the left side of (3.60)
that
3Uk k avk,k

ot ot

(k) = + Uk ke Ve + VeV = (Viek)” + Do -

(v, k)"

The last term on the right side can be manipulated into a more suitable form (a)
if we utilize the additive resolution of the velocity gradient (3.11) and then (b)
take into account that the inner product of a symmetric and skew tensor is zero.
Remembering (1.93) we can also give {2, in terms of the angular velocity vector
wy. The steps are detailed below:

lkelor = (dre + Qo) (dok + Lor) = die die — e 20 =
= dpe dre — €ptr €ks Wr Ws = dig die + 2wy Wy .
——
20,

A comparison of the two partial results shows the validity of relation (3.60).

EXERCISE 3.10: Show that
Vxv)=2w)+2w((v-V)—(voV) 2w. (3.61)

In the formal proof we shall utilize formula (3.58) of the acceleration, (b) relations
2w =V xv, V-w=0 and (c) expansion rule (1.16) for the triple cross product.
Going ahead step by step we may write:

Vx(v)':w—lexV(v-v)—i—Vx(wav):

ot 2 ——
=0
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:as—:) (2&®V)~v—(2&:®V)'v+2w(\¢/~V)—

(200)
2wV 4 20(v- V) — (26 V)V =
— 2w) — 25 @ V) -V +25(v-V) +2w(¥V-V) - (25 V)v =

=0
=2(w)4+2w(v-V)—(veV) 2w,

where the down arrow shows the quantity the operator V is applied to. The final
result of the transformations is the relation we wanted to prove.

3.5. Time derivative of an integral

It is frequently encountered in mechanics of continua that we have to determine
the material time derivative of the integral of a spatial tensor field defined in the
volume V of the moving continuum. Consider, for example, the arbitrary spatial
tensor field @(x1, xa, x3;t) which is defined in the volume region V' occupied by
the continuum at time ¢. Its integral is taken in the volume region V/ C V
which is either coincides with V' or is a part of V:

J:/ SV . (3.62)

If we take relation (3.35) into account and apply the product rule of derivations
we get the following formula for the material time derivative of the integral:

%(J):(J)'://(sﬁ)' dV+/l45 (V) :// (@) +&(v-V)]dV .

~——
(v-V)dV
(3.63)
According to (3.56)
. oP
(@) +@(v-V)= o +(PoV) v+ (v-V)
is the integrand where
1
(BoV) - v+&(V V)= (Bov) V.
Hence,
D . od
E(J)_(J) —/V/ {at—i-(sﬁov)-v dv (3.64)

is the material time derivative of integral (3.62).

Let us denote the boundary of V/ by A’ and the outward unit normal on A’
by n. It is obvious that the vectorial and scalar surface elements are related to
each other via the equation dA = ndA. Making use of the divergence theorem
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(1.179) we can transform the second volume integral on the right side of (3.64)
into a surface integral. The result

D oP
—(J)=J) = —dV D -dA 3.65
5=y = [ Frave [ @ov (3.65)
is the Reynolds' transport theorem. [32]. The surface integral
U= (Pov)-dA= | &(v-n)dA (3.66)
v’ A

on the right sided is the flux across the surface A’ per unit time.
We have a simpler case if the integral of the tensor field @ (1,22, x3;t) is
taken on the mass of the volume region V':

J:/ ddm= [ ®pdV (3.67)
’ V/

in which p(x1, 2, x3;t) is the density, dm = pdV is the elementary mass. Then
it follows from the principle of mass conservation — see equation (6.6b) — that
the material time derivative of the elementary mass vanishes, i.e., (dm)" = 0.
Consequently,

—(J):(J)'://(di)'dm: . (&) pdV . (3.68)

3.6. Problems
PROBLEM 3.1: Given the displacement field of a continuum in spatial description:

1 1
U =x1 + 3 (v +x9) et — 3 (v1 — x2) €',

1 _ 1
u2:x2—§(1:1+x2)e t—§($1—$2)6t, us =0.

Find the velocity and acceleration fields both in material (Lagrangian) and in spatial
(Eulerian) descriptions.

PROBLEM 3.2: Assume that
T = Xleit — X3 (1 — eft) s T — Xg — X3 (et - eft) s Tr3 = Xgeit

is the motion law. Find the velocity and acceleration fields both in material and in
spatial descriptions.

PROBLEM 3.3: Given the velocity field of a continuum: v = x/(1 + t): prove
that the motion law then takes the form x = X (1 + ¢). Determine the veloc-
ity and acceleration fields both in material (Lagrangian) and in spatial (Eulerian)
descriptions.

LOsbrone Reynolds, 1842-1912
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PROBLEM 3.4: Given the velocity field for a motion in the following form:
vy =oaxz,  v2=—frz,  v3=—ar+ Prs,

where o and 3 are non zero constants. Verify that this motion is a rigid body
motion. Find the spin vector.

PROBLEM 3.5: Given the velocity field of a continuum in spatial description:
_ 2wx013 B 2 — 22 _ T2
R4 ) V2 = R4 T, U3 = R2 ’
where R = /22 4+ 23 # 0. Find the velocity gradient, the strain rate tensor, the
spin tensor, the vorticity vector and the acceleration.

v =

PROBLEM 3.6: Assume that the velocity field is the gradient of a potential function
¢, i.e., v=¢V. Prove that the right side of equation

D . (0o 1
E(V)—(V) —<8t+2v v)V
is really the acceleration field.

PROBLEM 3.7: Given the velocity field of a continuum in spatial description:

R R
vy =7f(R)ar2, v2:—7f(R)x1, v3 =10,

where R = /2% + 22 # 0. Prove that this motion is volume preserving. Show,
in addition to this, that the spin vector (or the angular velocity vector) vanishes if

f(R) = —1/R.
PROBLEM 3.8: Show the validity of equation (3.59) in direct notation.

PROBLEM 3.9: Show the validity of equation (3.61) in indicial notation.



CHAPTER 4

Kinematic linearization

4.1. Linearization of the deformation gradients and strain tensors

There are many engineering problems for which the magnitudes of the axial
strains €® and angle changes 72 are, in general, much smaller than one:

le| < 1, 12| < 1. (4.1)

Then it follows from (2.44) and (2.59) that the components of the Green-
Lagrange strain tensor E and the Euler-Almansi strain tensor e are also much
smaller than one. If condition (4.1) is satisfied we speak about small deforma-
tions.

Fulfillment of condition (4.1) does, however, not necessarily mean that the
magnitudes of the displacement gradient components us p and ug ¢ are much
smaller than one. It may also occur that the rotations are finite though the
strains and angle changes are small.

In the sequel we shall, in general, assume that the magnitudes of the dis-
placement gradient components are much smaller than one, i.e., the inequalities

lua,p| <1, ug,e] < 1. (4.2)

are also satisfied. If this is the case the rotations are also small. Then (a) the
quadratic terms in ua g, ug can be neglected and in addition to this (b) the
linear terms in u4 B, uk,¢ can also be neglected provided that they are compared
to the unit.
If conditions (4.1) and (4.2) are all satisfied we speak about the linear theory
of deformation in contrast to the theory of small deformations.
The deformation gradients can be given in terms of the displacement vec-
tors:
F=14+u°oV° and F'=1-uoV. (4.3)
According to equation (2.30)2 it also holds that
V=V°.F'. (4.4)

from where substituting (4.3)y we have

V=V F'=V°. (1 -uoV) (4.5a)

93
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or
Vo =V% (0pa —upVe) = Vg (0 — Upa) » a=A, b=B (4.5Db)
in which |up 4| < 1. Hence
Vo=V, a=4A VV° (4.6)
by the use of which we have
uoV=u’oV° (4.7)
and
F=1+uoV, F'=1—-uoV. (4.8)
A comparison of equations (2.39), (2.55) and (4.6) yields
1
s":e:i(ro—i—Vou). (4.9)

REMARK 4.1: Note that here we have dropped the terms quadratic in u4 g and
ug,¢. In addition we have utilized the notations introduced in Remarks 2.8 and 2.17.
Since the Green-Lagrange and Euler-Almansi strain tensors coincide with each other
we shall denote them by the same letter € in the linear theory of deformations.

When writing linearized equations the superscript © will be, in general,
dropped and we shall use small Latin letters (lowercase letters) for the sub-
scripts. For instance:

1 €11 €12 €13
ere = = (Ug,e + e k) and € =lem]=| €1 €22 €23 (4.10)
2 (3x3)
€31 €32 €33

are the infinitesimal strain tensor and its matrix. As regards the position vec-
tors, and the letters used to identify the positions of the material points before
and after deformation we shall keep, however, the earlier notation conventions
— Figure 4.1 clearly represents these notation conventions.

With the infinitesimal strain tensor it follows from (2.38) (or(2.54)) —e° = ¢
— that

Epk = 1 - € -1k (no sum on k) (4.11)
is the axial strain in the direction i, at the point of the body where the strain
tensor is considered.

Since |y12| < 1 and the axial strains are also much less than one equation
(2.45) yields the angle change between the directions i, and i, in the following
form:

’ykg=2ik~6-ig :26k47 k#f (4.12)

We remark that the same formula follows from equation (2.59).
With (4.10)1, (4.11) and (4.12) we can rewrite matrix (4.10)s:



1 1
€11 B Y12 9 Y13
lere] = 1%1 €22 1V23
2 2
1 1
9 V31 B Y32 €33
1
U1,1 3 (w120 +u21) 5 (u1,3+us1)
_ |1 1 413
“ |3 (ug,1 + u1,2) U2,2 3 (ug3 +us2) |- (4.13)
1 1
B (us,1 + u1,3) 3 (us2 +ug3) u3,3

4.2. Geometrical description of the linear deformations

We can now determine the right stretch tensor and its inverse. Upon sub-
stitution of (4.8) into (2.74) we obtain:

=VF' . F=\/(1+Vou) - (1+uoV)~

~V1+uoV+Vou=+V1+2~1+e (414a)

and

Ve ' =VF P T =\/(1-uoV) (1 -Vou)~
~\1—-(uoV+Vou)=+v1-2e~1—¢c. (4.14b)

We proceed with the rotation tensor. Equation (2.76) yields

R=F.U'= 1t =(1+uoV) (1-¢)=
(4.8), (4.14b)

zl+rof€:1+uovfé(ro+Vou):1Jr%(rofVou):
=1+%, (415)

where

W:%(rofVou) (4.16)

is the tensor of infinitesimal rotation. Since the mapping
R - dX=(1+4+%)-dX=dX+? -dX
is distance preserving — |R - dX| = |dX]| — it follows that the product
¥ .dX =du

is the displacement that belongs to the tip of the vector dX.



96 4.2. Geometrical description of the linear deformations

X

FIGURE 4.1. Displacements of two neighboring material points

Figure 4.1 shows the displacements of the material points P° and QQ° under
the assumption that both dX and dx are sufficiently small. It is obvious that

1 1
UOVZi(uOV—l—Vou)—l—i(uOV—Vou):s—i—u'/ (4.17)

€ 1'4

is the additive resolution of the displacement gradient. Utilizing equations (2.14)
and (4.8); we can write

dx=F|po -dX = (1 +uoV)|p, -dX =dX + (uoV)|p, -dX, (4.18)

—_——
du
where
dx = dX 4 du, du = u|ge — ulpe (4.19)

Substitute (4.19) into (4.18) and take the additive resolution (4.17) into account.
We obtain

uge =  upe  + (WoV)|p.-dX (4.20a)
~~ —_—
shift relative displacement
(translation)
or
uge = upe  + Wlp-dX 4+ elp.-dX . (4.20Db)
~— N—_—— —
shift‘ displacement displacement from
(translation) from rotation pure deformation

ridid body motion
The above equation is a geometrical interpretation of the motion in the neigh-
borhood of the material point P°.

The tensor ¥ is skew. Assume that we know its axial vector ¥(¥ = ®.
Recalling equations (1.90) and (1.91); we can calculate the displacement from
rotation in the small neighborhood of any point within the body by using the
formula

1
W.dX =¢p xdX  where ¢(“):¢:—§uxv. (4.20c)




It also follows from equations (1.93) and (1.91), that

1
Ui = —ererpr 1/’5(1) =@r = ) Up,qCpqr - (4.21a)
Hence
Uig = =Wy = —e123p03 = — 3,
Vo3 = —W30 = —e23101 = —p1, 0 —v3
Wre] = | 3 0 —p
Vs = —¥13 = —ez1202 = —¥2, —py 1 0

Wy =0 if k£ 0
(4.21Db)

REMARK 4.2: The axial vector (rotation vector) 'Y = ¢ describes small rotations.

It also holds that

Wip = —eper P\ = —Spmemert)l) = Semt){™ emer (4.222)
which can be given in symbolic notation as
U=1xyp@. (4.22D)

4.3. Volume and surface elements

It follows from (2.20) and (2.32); that
J =det(F) = +/det(C) = det(U). (4.23)

If we know the principal values of the stretch ratios we can use (2.75a)q for
determining the Jacobian:

J = det(U) = )\1)\2/\3 5 (424)

where, recalling equation, (2.36) we can give A, in terms of the principal strains
ge: Ap = 1+¢ep. With these formulae the volume change (2.94) can be rewritten
into the following form

dV = JdV° = XM 3dVe = (1+¢e1) (1+e2) (1 +63)dV° =
~dV° + (g1 + &2 +e3)dV° (4.25)
T
in which e is the first scalar invariant of the strain tensor €. The dilatation ey
is defined by the equation
_dV —dV®

= — 1= q = . 4.2
ave A1 A2 A3 €1+é€2+ €3 €r ( 6)

v

With the dilatation
AV :/ ey dV° (4.27)

is the volume change of the body.
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It is also clear that
Jrl4er~1. (4.28)
As regards the relations we have established between the vectorial and scalar
surface elements we may write
dA= J F7 .dA°=~dA° (4.29a)
~N S—~—
~l+e; 1—Vouxl
Hence it also holds that
dA =~ dA°. (4.29b)

EXERCISE 4.1: The displacement field in the unit cube of Exercise 2.1 in material
description is given by solution (B.2.6) to Problem 2.3:
uy = a1 X3, up=as, uz=a3XyXs.

Find the matrices of (a) the displacement gradient, (b) the infinitesimal strain
tensor, (c) the infinitesimal rotation tensor and (d) determine the components of
the infinitesimal rotation vector.

It can be checked with ease that

0 201 Xs 0
[ukel =] O 0 0 ,

0 a3Xs a3zXs

0 a1 Xo 0
ene] = [uwp] = | e Xa 0 azXs/2 |, (4.30)
0 a3 X3/2 a3z Xs
0 a1 Xa 0
[Pre] = [U[k,éﬂ = | —a1 X3 0 —az X3/2

0 a3 X3/2 0

Making use of equation (4.21b) we can now find the components of the infinitesimal
rotation vector:
o1 =0a3X3/2, w2 =0, 3 =—a1Xo.

If we drop the quadratic terms in solution (B.2.8) of Problem 2.5 we shall find that
the Green-Lagrange stain tensor coincides with solution (4.30): E = €.

4.4. Equations in cylindrical coordinate system

Equation
1
z-@::§(ro—I—Vou)7 (4.31)

which gives the strain tensor of the linear theory, is called either kinematic
equation, or defining equation. The second name reflects the fact that the above
equation defines the strain tensor in terms of the displacement vector. The later
is called fundamental variable since the displacement field is, in general, the
unknown we would like to determine. The terms defining equation, fundamental
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variable we have introduced are those of E. Tonti [57, 58, 51, 52] who has
established a unified classification for the field equations of some problems in
mathematical physics.

The kinematic equation can be given not only in a Cartesian coordinate
system but in any curvilinear coordinate system. If the cylindrical coordinate
system (R¥z) is our choice first we have to give the displacement vector in this
coordinate system. Recalling (1.197) which is formally a velocity field given in
cylindrical coordinates we get

u(R,9,z) =ugir +uyiy + u, i, (4.32)

in which ug, uy and u, are functions of R, ¥ and z. If we now utilize both
(1.195) and (1.198) we arrive at the following result

U=uoV=uroig+ugoiy+u,oi,, (4.33)

where

ou  Oug, +%1 +a“"i
OR~ OR TR ™ T OR

Up = (4.34a)

_18u_ 1(’9uR_u79 . 1 Juy ou, .
WRw<RwR)“%R&N‘> gy & (4:34D)
and
ou Oug. Ouy . ou,

Y=, T o BT e T G,

in (4.34c)

are the images of the unit vectors ig, iy and i,. With ug, uy and u,

[ Our 10ur wuy Our |
OR RO R 0z
U =[up|ug|u |=| o 10w ur Ouy |y 35
(3x3)  (3x1) (3x1) (3x1) OR RO R 0z
ou, Ou, Ou,
L OR 09 0z |

is the matrix of the displacement gradient in cylindrical coordinates. By ap-
plying the additive resolution theorem we can now determine the linear strain
tensor

e=-(uoV+Vou) (4.36)

l\.')\»—l
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and its matrix

1 1 T
€RR §'YR19 i’YRz
€RR €RY €Rz
e =[erles|e]=]con coo o | = le £99 1%92 =
(3%x3) (3x1) (3x1) (3x1) EsR €9x Exs 2 2
%7212 %7192 Ezz 1
[ Our 1/10up uy Oug\ 1 [Our Ouy\ ]
OR 2 (RM_R+M%) 2 (az+aR)
| 1 (Ouy  10urp wuy 1 duy ug 1 /0wy Ou.
- 2<5R+R&9_R) Rov R 2<82+ aw)
1 auz auR 1 auz au19 auz
2<8R+6z> 2(&9 +3z> R ]
(4.37)

EXERCISE 4.2: Assume that the displacement field is axisymmetric and the axis z
is that of the symmetry. Then the displacement field is independent of ¥ and is of
the form

u(R,z) =urip +u.i,. (4.38)
Determine the matrix of the linear strain tensor.

It follows from (4.37) that the matrix of the strain tensor is simplified to

i Jupr 1 (Our Ou, T
0 -
OR > ( 92 6R>
UR 10u,
E = 0 - = 4.39
(3x3) R 2 09 ( )
1 Oou, n Our 1 Ou, Ou,
2\ 0R 0z 2 0v 0z i
4.5. Compatibility
For a given and differentiable displacement field
1 1
€=3 (uoV+Vou), She =5 (uk,e + we k) (4.40)

is the linearized (infinitesimal) strain tensor. If we take the symmetry of the
strain tensor into account we come to the conclusion that the six tensor compo-
nents ;¢ are uniquely determined by tree displacement components uy,. We can
raise the opposite question: What if a strain tensor is given and the displace-
ment field is unknown. Then, because of the symmetry of the strain tensor, we
have six equations — see equations (4.40) — for three unknowus, i.e., the problem
is overdetermined: we have more equations as there are unknowns. If for a given
strain tensor e there exists such a displacement field u that equation (4.40) is
satisfied then the strains ex (the strain tensor €) are (is said to be) compatible.
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Saint-Venant! was the first who attacked this problem in a lecture presented in
Paris on July 28, 1860. His results were published later in 1861 [18, 25] though
the correct proof of the results was given by Boussinesq” in 1871 [20].

Let us define the tensor of incompatibility 7 for a given strain tensor € by
the following relation

n=-VxexV, Nre = —€qpr V ¢Eps ViCske = €pqreski€ps,qk - (4.41)

Note that i is a symmetric tensor.

REMARK 4.3: The concept of the incompatibility tensor was introduced by I. Kozak
[62, 61]. In this respect it is also worth citing the following paper and thesis [63,
] here.

The diagonal and off-diagonal components of the incompatibility tensor are
given by the following equations:

M1 = €22,33 + €33,22 — 262323 ,
——

23,23
M22 = €33,11 + €11,33 — 2€31,31 ,
N——" (442&)
31,31
733 = €11,22 + €22,11 — 2€12,12
N——
Y12,12
and
M2 = (€132 +€23,1 — 812,3)73 — €33,12,
%(W13,2+723,1—"{12,3)13
723 = (521,3 + €312 — 523,1)71 —€11,23,
(4.42b)

%(V21,3+731,2—"/23,1),1

31 = (532,1 +e12,3 — 631,2)’2 —€22.31 -

%(732,1+’le,3*731,2)32
EXERCISE 4.3: Prove that

N=-VxexV=

= [(tre)V?—=V-e:V]14+V-e0V+Voe-V—eV’— (tre)VoV.
(4.43)

In indicial notation

Nre = €pqreski Eps,qk (444)
is the left side of the equation to be proved. Let us manipulate it into the desired
form by (a) substituting (1.48) for the product of the two permutation symbols and

1Jean Claude Barré Saint-Venant, 1797-1886
2Joseph Valentin Boussinesq, 1842-1928
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(b) expending then the determinant by the third row. If in addition to this we take
into account that the Kronecker delta is an index renaming operator we get

Ops  Opk  Ope
TNire = €pqreskl Eps,qk = Eps,qk 5(13 6qk 6q€ =
57’3 5rk 57“2

= €pr,gk (OpkOqe — Opedqk) +Eps,qr (0pedqs — OpsOqe) +Eps,qk (OpsOgk — Opkdys) Ort =

= €kr,lk — €rr,qq + €lq,qr — Ess,lr + (gpp,kk - €kq,kq) 57‘l . (445)

V.eoV—eA Voe-V—(tre)VoV (tre)A—V-e-V
That was to be proved.

Assume that e is compatible, i.e., for the given strain tensor & there exists
such a displacement field which satisfies equation (4.40). Then

1
nz—szxV:—Vx§(ro+Vou)><V=

1
:—§[V><(ro)xV—i—Vx(Vou)xV]:O, (4.46a)
or

Nre = €pqr €ske Eps,qgk = 5 Epqr Eske (up,s + us,p),qk -

1
= 5 Epqr Eske (up,sls'q + Us,qu) =0. (446b)
Consequently, the strain tensor is compatible if the tensor of incompatibility is

zero tensor. The six equations

mi1=n2=n33=0, Mma=n21=0, nes=mn32=0, N3 =m3 =0

(4.47)
the components of the compatible strain tensor € should fulfill are called Saint-
Venant’s compatibility equations (conditions) [18, 25].

REMARK 4.4: Let () be an infinitesimal rotation vector. Further let up(t) be
the displacement vector at the point P of the body BB. The position vector of the
point @ (@ # P) with respect to the point P is denoted by xpg(t). Equation

u=1up+ e xxpg(t)
describes a rigid body motion to which there belong no deformation, i.e., it holds
that e,5 = 0. This means that the equations of compatibility are identically satisfied
for any rigid body motion. Consequently, the solution of equations (4.40) for the
displacement field is not uniquely determined: it is determined with the accuracy
of a rigid body motion only.

REMARK 4.5: If in a body every closed curve which does not intersect itself can
be shrunken to a point in such a manner that the curve remains within the body
then the body (the region occupied by the body) is said to by simply connected.
In contrast to this if in a body there exist such closed curves which can not be
shrunken to a point within the body then the body is said to by multiply connected.
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Fulfillment of equations (4.46) is a necessary and sufficient condition for the
strain field € to be compatible if the body is simply connected. For multiply
connected bodies, however, fulfillment of equations (4.46) is not sufficient for the
strain field € to be compatible: additional conditions should also be satisfied
to ensure the compatibility of strains. We shall present these conditions in
Subsection 4.6.

It follows from equation (4.41) that

n-V=—(VxexV)-V=0. (4.48)

Hence the six Saint Venant compatibility equations are not independent?.

Fulfillment of equation (4.46) reduces the number of Saint-Venant’s com-
patibility equation by three. It is, however, a further issue how to solve the
following problems: (a) what are the three compatibility conditions to be sat-
isfied (how to select them); (b) are there other conditions to ensure that the
strains be compatible. In the sequel we shall investigate these problems on the
basis of paper [62] and thesis [60].

Let a0 = aqp(X) ig 0dp be a sufficiently smooth and symmetric tensor field in
V. Furthermore, let w = w;(X) i, be an unknown vector field (a vector field to
be determined later) in V. By 45 we shall denote those subsets of the possible
values of the index pairs 45 for which the differential equations

1
3 (wA,B + wB:A) = W(A,B) = QAB VX eV (4.49)

always have a solution for the vector field wy. It is obvious that the index pairs
Ap may have only three distinct values. For instance 11, 22, 33, Or 125-921, 23-392,
3113 (here, for symmetry reasons, the order of the indices does not count).
Let rs be the set of those index pairs the union of which with the set of
index pairs 4p is the set of index pairs 5. (If 11, 22, 33 i the set of index pairs
AB then 12=21, 23=32, 31=13 is the set of index pairs RS-)
With regard to equation (4.48) it is obvious that

W~(n-V):W-7i7-V:O (4.50)

no matter what value € has — the down arrow shows the quantity the operator
V is applied to. Integrate the above equation on the volume V of the body. If
we apply the integration by parts theorem (1.180) we get

o:/w#;.VdV:/(w n)-Vav — /w n-vav =
1%

/w n-ndA — / -(woV)dV. (4.51)

In principle we can prescribe the fulfilment of condition 77-n = 0 on the surface
A of the body. We shall call it compatibility boundary condition. (a) Assume
that the compatibility boundary condition is fulfilled. (b) Since 7 is a symmetric
tensor it also holds that

3The above equation corresponds to the Bianchi identity of the Riemann geometry [18]
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n--(woV)=mn--(woV) (woV)

=7n-- (W o V)sym = NabW(a,b) - (4.52)

sym T’ ’ skew —

By taking (a) and (b) into account we can rewrite equation (4.51) into the
following form:

0—/W77ndA / “(woV) /n--(WOV)dV:
1%

= / NabW(a,b) dv. (4.53)
1%
Consider now the equations

W(A,B) = XAB = NAB - (4.54)

in which w;(X) is the unknown, and a4 stands for nap.
Note that these equations are the same as equations (4.49).
Given the solution for wy, we can rewrite equation (4.53) into the form

/v [Z(QAB)Q + > wir.s)As

AB RS

dv =0 (4.55)

in which the summation is to be carried out for every possible value of the index
pairs 4p and rs. Assume that the equations of compatibility

Nrs =0 (4.56)
are fulfilled. Then it follows from (4.55) that

/VZ (aap)?dV = /VZ (nap)?)dV =0.

AB AB

The above equation can be satisfied if and only if
nap =0 VX eV. (4.57)

In other words the fulfillment of three compatibility conditions and the com-
patibility boundary conditions

Nrs =0 VX eV and NgNap =0 VX e A (4.58)

ensures the fulfillment of the equations
nap =0 vXel. (4.59)

Consequently, three field equations — see (4.58); — and three boundary con-
ditions — see (4.58)2 — are equivalent to the six Saint-Venant’s equations of
compatibility.
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4.6. Cesaro’s formulae

Derivation of the Cesaro-Volterra formulae [33, 34] needs some preparations.
We shall use, among others, the following relationship:
P YoV =Vxe. (4.60a)

We can verify it if we substitute (4.40); for € and take formula (4.21a) for ()
into account:

1 1
VXEZVX§(UOV+vou):7§(uxv)ov:¢(a)ov.

The product ¥ oV can be transformed into a more suitable form if first we
substitute (4.22b) and then make use of (4.60a). We get

!I/OV:(I x¢(“))oV:1x(¢(a)ov>:1x(VXs). (4.60b)

We have now all the tools we shall need to manipulate the expression
(uo V) oV into such a form which makes possible to establish Cezaro’s formu-
lae. Substitute first the additive resolution (4.17) of the displacement gradient
and take then into account the previous equation. We obtain

(uoV)oV=e0oV+WoV=co0V+1x(Vxe). (4.60c)

Making use of relations (4.60b) and (4.60c) we can determine the rotation
vector ’(/)(a) = ¢ and the displacement vector u at any point of the body provided
that we know the strain field € = (X7, X2, X3) as well as the rotation vector
@p and the displacement vector up at an arbitrary but fixed point (denoted
by B) of the body — the vectors ¢ and ug determine a rigid body motion of
the body.

FIGURE 4.2. The material line g between the points B and P
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Let us assume that r(s) is the equation of an arbitrary and differentiable
space curve g which lies in the volume region V occupied by the body — see
Figure 4.2 for details. The parameter s is, in general, the arc coordinate mea-
sured along the curve g. The curve begins at the point B while its endpoint is
denoted by P. On the curve

dr
dr = 7d = 4.61
r=rds, =13 (4.61)
is the tangent vector and it follows from equations (4.60a) and (4.17) that
dp=(poV)-dr=(V xe)-dr (4.62)
and
du=(uoV)-dr=eg-dr+ ¥ -dr=e-dr+ ¢ xdr. (4.63)

If we integrate equation (4.62) along the curve g we obtain the rotation at
P provided that we know ¢ g:

<pp:<,03+/(V><€)'dr. (464)

In order to find the displacement vector up at P we have to integrate
relation (4.63) along the curve g. For this purpose substitute the relation

dr=d[rp —r(s)] (4.65)
into the second term on the right side of equation (4.63) and perform then an
appropriate transformation:

du=e-dr+d{e x [rp —r(s)]} —de X [rp —r(s)]. (4.66)
We can now insert the expression di from equation (4.62) here. If integrate

the result along the curve g — from B to P — we get the displacement vector at
P:

up =ug+ @ X [rp —rp| +/{€— [rp—r(s)] x (Vxe)}-dr.| (4.67)

Equations (4.64) and (4.67) are the well known Cezaro-Volterra formulae.
Using indicial notation we can write dX, = 7y ds and V,epnircremeds =
emkrEke,mTe ds for the terms dr and (V x &) - dr in equation (4.64). Hence

¢r (P) = or (B) + / EmkrEke,mTe ds (4.68)
9

is the first Cezaro formula in indicial notation. It can be shown in the same
manner that

un(P) = un(B)+erqn<pT (B) (Xq (P) - Xq(B)) +

+ / {ene + [X4 (P) — X4] €ngrémkr €ke,m } Te ds
g

(4.69)

is the second Cesaro formula in indicial notation.
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REMARK 4.6: E. Cesaro and V. Volterra published these two relations in the first
decade of the twentieth century [33, 34]. They assumed that the tensor € was
sufficiently smooth — derivable continuously at least twice. If € is a square-integrable
function their proof is not valid. For this case Ciarlet and his coauthors proved the
two formulae in 2009 [33].

EXERCISE 4.4: Let N, v, E and A be constants. Assume that the strain compo-
nents are as follows:

_ N _ _ N
EH_AE’ €22 = €33 = VAE’

€12 = €91 = €93 = €32 = €31 = €13 = 0.
Find the displacement field if there are no displacements and rotation at the origin.

The solution is given by the second Cesaro formula (4.69) in which B is the origin
O and

UH(O):O, ©r (O):Oa gkf,m:O-

Hence
Un(P) = un(B) + ergnipr (B) (Xq (P) — X¢(B)) +

/ {5n1 + ) X (B)) Engrmkr aké,m} Tpds = /5n€7—é ds.

9
The curve g is the union of three line segments g1, g2 and g3 where: (a) g1 is the line
segment between the points (0,0,0) and (X1,0,0), (b) g2 is the line segment be-
tween the points (X1,0,0) and (X1, X2,0), (c) g3 is the line segment between the
points (X1, X2,0) and (X1, X5, X3). See Figure 4.3 for details. The line segment

X,

Xy

FIGURE 4.3. The union of the three line segments ¢;, g2 and g3
(0,0,0), (X1,0,0) lies on the axis X1, the line segment (X;,0,0), (X1, X5,0) is
parallel to the axis X5 and the line segment (X1, X5,0) (X1, X5, X3) is parallel to
the axis X3. Consequently, 7, ds is equal to

(a) 71 ds = dX; on the line segment (0,0,0), (X1,0,0)
(b) 72 ds = d X3 on the line segment (X1,0,0), (X3, X>3,0) and
(b) 73ds = d X3 on the line segment (X1, X2,0) (X3, X3, X3).
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On the basis of all that has been said above we get

X1 Xl
ul(P):/ 1171 ds = €11 (1)(12511)(17
0 ~—~—~

0
dX,

X2

X2
uz(P) = / €22T2ds = €22 dXo = €20X>,
0 —~— 0
dXo

X X
uz(P) =/ €3373ds = 833/ dX3 = £33X3.
0 ~ 0
dXs
Thus
N N N
AFE

Uy =

AE AE

Xl, Ug = —V7X27 uz = —Vng .

(4.70)

Let us assume that we have a bar with constant cross section A. Assume further
that the bar is made of homogeneous and isotropic material for which E is Young's
modulus and v is Poisson's number. If the bar is subjected to an axial force IV then
solution (4.70) is the displacement field within the bar provided that the center line
of the bar coincides with the axis X; and the origin is located at the left end of the

bar.

4.7. Equations of compatibility from conditions of single valuedness

Let g be a piecewise continuous and closed curve in V' which does not inter-
sect itself. Furthermore let S be a surface, also in V', which is bounded by the
curve g. The unit normal to S is n, the unit tangent to g is 7, the binormal on
g is denoted by v — see Figure 4.4, which shows g, S, 7, n and v, for details.

FIGURE 4.4. An open inner surface in V

Let the rotation and displacement fields be single valued. For B = P, i.e.,
for the closed curve g it follows from the Cezaro-Volterra formulae (4.64) and
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(4.67) by taking the continuity conditions up = up, 5 = @p into account
that

%(Vxe)ﬂ'ds:o, f{E*[I‘p*I‘(S)] x(Vxe)}-mds=0. | (4.71)

g g

Equations (4.71) are called conditions of single valuedness or macro condi-
tions of compatibly, or conditions of compatibility in the large.

If we make use of the Stokes theorem (1.181) — the cross product (V x €)
corresponds to H in (1.181) — we can transform the first line integral in (4.71)
into a surface integral:

j{(sz)-rds:/[(sz)xV]~ndS:0. (4.72)
g S
For any S bounded by ¢ the previous integral can vanish if and only if
(Vxe)xV=VxexV= 1 =-n=0. (4.73)
(4.462)

Repeating the previous line of thought for the second line integral in (4.71)
yields

f{E—[I’p—I’(S)] x (Vxeg)}-rds=

g
:/{{E—[rp—r] X (Vx )} xV}-ndS =0.
s
Hence
exV—[rp—1r)x(Vxe)]xV=0. (4.74)
Consider now the second term on the right side. We can write

—[(rp—r)x (Vxeg)]xV=

:—[(rp—r)aij x(Vxe)xig—(rp—1)x[(Vxe)x V], (4.75)

is

where
is x (Vxe)xig= 1t =i X (im Xig) (peVim)olg X iy = T =
e=cpeixoig (1.16),(1.39)
= (5skim - 5smik) (gklvm)oif X is = e(spgsﬁvm imoipfgk'ﬁ ikoilxvsis = —exV.
~——
erspip =0
Consequently,

—[rp—1r)x (Vxe)]xV=—exV—(rp—r)x[(Vxe)xV]. (4.76)
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Upon substitution of this result into (4.74) we get
(rp—1)x[(Vxe)xV]=0

which holds for any rp —r. Therefore the condition of single valuedness (4.71)y
is equivalent to the compatibility equation

n=-VxexV=0. (4.77)

4.8. An overview of the results

As regards the conditions of single valuedness the most important results
are as follows:

— Since the line integrals in (4.71) vanish independently of the fact what
shape the closed curve g has it follows that the Cezaro-Voltera formulae
(4.64) and (4.67) give the rotation vector ¢p and the displacement
vector up independently of the shape the open curve g between the
points B and P has — see Figure 4.2 — provided that the compatibility
equations

n=-— (V X E) xV=0, Nab = €akmCblpEkl,mp = 0 VX,eV (4.78)

are satisfied in the simply connected volume region V. The vectors g
and up in equations (4.64) and (4.67) determine a rigid body motion
of the body described by the relationship
u(r)=up+¢¥g x(r—rp).

Consequently, as has already been mentioned in Remark 4.4, it is infi-
nite the number of those rotation and displacement fields which belong
to the single valued strain field e(x!, 22, 2%) provided that the later
satisfies the compatibility condition (4.78). These rotation and dis-
placement fields may, however, differ from each other in a rigid body
motion only.

In other words: for a single valued strain field e(z', 2%, 23) and given
15 and up the rotation and displacement fields obtained form (4.64)
and (4.65) are also single valued.

— For a simply connected region V vanishing of the line integrals in (4.71)
is equivalent to the compatibility conditions (4.77) and conversely ful-
fillment of the compatibility conditions (4.77) ensures that the line in-
tegrals in (4.71) vanish.

— A torus is a double connected volume region V. Let g be a closed space
curve inside the torus. We assume that g surrounds the hole in the
torus and does not intersect itself. It is obvious that g can not be the
boundary curve for such a simply-connected surface S which lies inside
the torus. Consequently, we can not apply the line of thought for which
equations (4.71) are the points of departure and which are based on the
use of the Stokes theorem and resulted in the compatibility conditions
(4.73) (or (4.77)). Hence for the strains to be compatible within the
torus not only the mentioned compatibility conditions should be fulfilled
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but the conditions of single valuedness (the compatibility conditions in
the large) (4.71) as well on any such space curve g which surrounds the
hole inside the torus. It can be proved — see for example [31] or [91] —
that fulfillment of the compatibility conditions in the large on a space
curve g which surrounds the hole of the torus ensures the fulfillment of
these conditions on any other space curve which surrounds the hole.

4.9. Problems

PROBLEM 4.1: Given the displacement field of a solid body:

u=C (X1 X311 + X2 X3is + X3X7i3) ; C=10"° [1/mm?*] . (4.79)
Show that
X2 X, Xy X1 X3 0 X X —X1 X3
[e’:‘kg]zc X1 X2 X?? X2 X3 ; [Wkg]zc —Xl X2 0 X2 X3
X1 X3 Xo X3 X? X1 X3 —X2X3 0
(4.80)

Determine the displacements at the points
Xp = —20i; + 30ip + 40i3 [mm] s XQ =Xp+1 [mm} .

Then compare the value Au = ug — up calculated using the exact solution for u
and the approximation

Aux (uoV)|p. - AX, AX =Xg —Xp =iy [mm].
PROBLEM 4.2: Show that the diagonal and off-diagonal components of the incom-
patibility tensor are given by equations (4.42).

PROBLEM 4.3: Assume that (a) €, is independent of X5 and e,3 = €3, = £33 = 0.
Find the compatibility equations for this strain tensor and clarify the conditions

under which the strain components
€11 :k(X12_X22); €12 = €21 = {X1Xo, €22 = kX1 Xo, (4 81)
€x3 = €35 = €33 =10 ’

are compatible if £ and ¢ are arbitrary not zero constants.

PROBLEM 4.4: The strain field in Problem 4.3 is compatible if kK = —¢. Find the
rotation field.

PROBLEM 4.5: Find the displacement components for the strain field in Problem
4.3.






CHAPTER 5

Various stress measures

5.1. The stress vector concept

5.1.1. Interaction on inner surfaces of the body. Consider a material
body in the current configuration. The forces exerted on the body (or within
the body) can be divided into two groups depending on what the causes of the
forces are: if they are exerted on the body by other bodies we speak about
external forces, however, if we consider the forces exerted by one part of the
body on another part of the body we speak about inner forces.

The external forces can again be separated into two distinct classes: body
forces which act on the volume (or mass) elements of the body, and surface

AF’=0bAV

FIGURE 5.1. Inner forces acting on the surface S and body
forces on the volume V'
113
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forces (or tractions) which are, in fact, contact forces. They are exerted on the
body by those bodies which are in contact with the body we examine.

Assume that the resultant of the body forces acting on the volume element
AV is AFB. Equation

. AFB
px, ) b(x;t) = lim —=,

(5.1)
in which p(x,t) is the density, defines the body force per

[unit volume p(x,t) b(x; )] {unit mass b(x;t)}.
The resultant of the external forces acting on the volume of the body is given
by

FB:/ pbdV (5.2)
\%4

One of the most important axioms of mechanics is the so called Cauchy’s hy-
pothesis [3], which is related to the contact forces acting on the inner surfaces of
the body. The hypothesis says that at any point of time and on any inner sur-
face element of normal n at the point P within the body there exists a system
of surface forces.

Consider now body B again in the current configuration. The volume region
occupied by body B is V with boundary A = 9V. The inner surface S = S; =
St slices the body into two parts denoted by V; and Vi;. Let n be the outward
unit normal of surface S; at point P. The scalar area element at P on Sy
is denoted by AA. Let AF® be the resultant of the surface forces acting on
the area element AA. The density of the surface forces at P is defined by the
equation

. AF®
blo,xit) = T =

(5.3)

and is called stress vector. It is obvious that the stress vector inside the body
depends (a) on the orientation of the surface element, i.e., on n, (b) on the
location of the point P (on x) and (c¢) on time ¢.

The stress distribution t(n,x;t) on S; expresses the mechanical effect of
the part of the body in V;; on the part of the body in V;. The mechanical effect
of the part of the body in V; on the the part of the body Vjs is represented
by the stress distribution t(—n, x;¢) since the sign of the unit normal has been
changed. It follows from the law of action and reaction that

t(n,x;t) = —t(—n,x;t). (5.4)

This equation shows that the stress vector is an odd function of n.
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FIGURE 5.2. Stress vector on the inner surfaces S’ and S”

It is worth mentioning a consequence of Cauchy’s hypothesis. Namely, if
we consider two or more inner surfaces which contain the point P (pass through
the point P) and have the same unit normal at P — Figure 5.2 depicts two such
surfaces which are denoted by S’ and S’ — then the stress vector t(n,x;t) is
the same at P on each inner surface.

For a fixed point of time and at a given point P of the body the stress vector
depends only on the normal n. Then we shall apply a simplified notation:

t(n7 X3 t)|xzconst.;t:const4 = t(n) . (55)

REMARK 5.1: According to a more general assumption to describe the mechanical
interaction on the inner surfaces of the body a couple system distributed on the
inner surfaces of the body might also be taken into account. Its density is denoted
by p(n,x;t) and is called couple stress. It satisfies a relation similar to (5.4):
p(n,x;t) = —p(—n,x;t). This concept was introduced by the Cosserat brothers
who, however, did not deal with the constitutive equations in book [35]. Making
use of the concept of couple stresses various elasticity theories have been developed.
In this respect it is worth citing book [55] by Witold Novaczky.

5.1.2. Cauchy’s theorem. In this subsection it is our aim to determine
the function t(™ = t(™)(n) . To this end consider now those conditions the
small tetrahedron PABC with volume AV removed mentally from the body B
in the current configuration should meet in order to be in dynamic equilibrium.
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F1GURE 5.3. Tetrahedron PABC with the forces acting on it

The outward unit normal to the front face ABC' of the tetrahedron is denoted
by n: n = ngip. The edges PA, PB and PC are determined by the local base
vectors' iy, iy and i3. The outward unit normals to the side faces PBC, PAC
and PAB are —i;, —ip and —iz. The area of the front face is denoted by A(™).
The areas of the side faces are given by the following equations:

1
Ay = =bc, Ao = —ca, As = §ab. (5.6)

Let h be the height of the tetrahedron that belongs to the front face. With this
height AV = hA(™) /3 is the volume of the tetrahedron. It is clear from Figure
5.3 that the area vector of the front face is

1
AP — A(n)nzixAB X XA =

1 1 1 1
= 5(—ai1 +bis) X (—aiy + ciz)= ibcil + 5ca iy + iabig. (5.7a)

~— ~— ~—
A1 A2 A3

Hence
A™n = Ay, (5.7b)
from where we get
A=A n Ay =AM, A3 =AM ng

Un Cartesian coordinate systems there is no difference between the local and global base
vectors.
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The densities of the surface forces acting on the side faces and the front
face of the moving tetrahedron are clearly —t(*1), —t(#2) —t(*3) and (™). They
are associated with the body forces pb and the effective forces pa. If a body,
say the tetrahedron, is in dynamic equilibrium then the external forces acting
on the body are equivalent to the effective forces. A necessary condition for the
equivalence is the fulfillment of equation

/ tMdA— [ t@)da— [ tE2)qAa— t(f”3)dA+/ pbdV =
Aln) Aq As 14

Az

Resultant of the external forces exerted on the tetrahedron
- / padV  (5.9)
\%4

Resultant of the
effective forces

which says that the resultants of the external and effective forces are equal.
Each integral in equation (5.9) can be given in a product form in which the first
factor is the average value of the integrand (denoted by angle brackets), while
the second one is the measure of the region over which the integral in question
is taken. Consequently, we can write

<t > AW <t > A <t > Ay— <t > Az < pb > AV =
=<pa> AV.

Substituting (5.8) for A, and hA(™ /3 for AV then dividing throughout by A(™
yield:

<t >=<t) > 4 < t@2) > nytr < t®3) > py—< pb— pa > h/3.
(5.10)
Let us now take the limit of each term in this equation by assuming that the
front face of the tetrahedron moves towards P (h tends to zero) in such a manner
that its orientation, i.e., n remains unchanged. Since both pb and pa are limited
(neither the body forces nor the effective forces can be infinite) we obtain

lim < t™ >=t™|p =t
h—0
lim <t >n, =t, ng, no sum on /
70 ( ) (5.11)

=ty|p=ty

lim < pb—pa>h/3=0,
h—0

where ty is the stress vector at P on a plane with normal i,. Utilizing equations
(5.11) we can determine the limit of equation (5.10). We have

t(n) :tg’ng = (tgoig) -1, (512)

19

where
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is the Cauchy stress tensor defined in the current configuration of the body.
With (5.13) we can rewrite equation (5.12) into the form

t") =¢.n. (5.14)

In words: the stress vector (Cauchy stress vector) on any surface passing through
the point P is a homogeneous linear function of the normal to the surface at P.
This is Cauchy’s theorem.

REMARK 5.2: Cauchy published this fundamental result by investigating the equi-
librium of the infinitesimal tetrahedron at the beginning of the nineteenth century
[3, 5]. The condition under which Cauchy"s theorem is valid has been clarified
much later by Gurtin [59, 54].

REMARK 5.3: The Cauchy stress tensor is a symmetric tensor. We shall prove this
statement latter in Subsection 6.2.3 of Chapter 6.

Each stress vector (t, in indicial notation, t;, t, and t, in the coordinate
system (zyz)) can be resolved into components along the coordinate lines xy or
x, y and z:

= Ogqly + Tyxly + T2alz,
Toy 1z + Oyyly + T2y, (5.15)
Tezle + Tyzly + 0.1, .

t,
ty = trei, ty = ope iy, t,
t.

Equations (5.15) reflect some notational conventions. (a) If we use indicial
notations the stress components are denoted either by ¢ or by oy¢. If we use the
coordinate system (xyz) — see equation (5.15)3 — a further distinction is made:
the stress components parallel to the normal of the surface element on which the
stress vector is acting are denoted by the Greek o and are called normal stresses:
Oxws Oyy, Ozz. The components lying in the surface element are denoted by the
Greek 7 and are referred to as shear stresses: Ty, (Mm,n = x,y,2; m #n).

In accordance with all that has just been said the matrices of the Cauchy
stress tensor can be given by the following equations:

t11 ti2 t13 011 012 013
t =t = tor taa tog |, o =ow]=| 021 022 O
(3x3) (3x3)
t31 32 33 031 032 033
(5.16a)

and
Oxx Taxy Taz

t = o = Tyz Oyy Tyz . (5.16b)
(3%x3) (3%3)
Tze Tzy Ozz

It is worth resolving any stress vector t() into two components, one parallel
to the normal of the surface element and the other perpendicular to the normal n
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P X=X

FIGURE 5.4. (a) Resolution of the stress vector into normal

and shearing stresses; (b) Cubic stress element with the stresses

acting on its front faces
lying, therefore, in the plane of the surface element. The normal component
o™ = o, is the normal stress, and the component (™) perpendicular to n
is the shear stress (or shearing stress). Figure 5.4.a represents graphically the
resolution of the stress vector t(™). It is obvious that

0™ =06, =n-t" = 1 =n-t-n, (nosumm on n). (5.17a)
(5.14)

With ¢(™ we can calculate 7("):

£ — 40 _ )y

) ) = f ) — (6| (5.171)

It is also customary to represent the stress components in the stress tensor
on the front faces of a cubic stress element as shown in Figure 5.4.b. We would
like to emphasize that the cube that is used to depict the stress components
graphically has no dimensions: we regard it as if it were a point cube, therefore,
the nine stress components shown on the cube are all acting at the same point
P.

EXERCISE 5.1: Given the matrix of the Cauchy stress tensor in the coordinate sys-
tem (z1xox3). What is the dyadic form of the tensor? Show the stress components
on a stress element. Determine the stress vector and the normal and shearing
stresses on a plane with normal n.

92 —20 0
b =[t[to[tg ]=[-20 -4 0] [N/mw’],
(3x3) (3x1) (3x1) (3x1) 0 0 —40
1
n= 7(5i1 —ig).

V26
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X3

FIGURE 5.5. The cubic stress element for the given stress tensor

Making use of equation (5.13) we can write

N
t= tg o ig = (92i1 - 20i2) o il - (20i1 + 4i2) o i2 - 40i3 o i3 |: 2:| . (518)
mm

The non zero stress components are represented on the stress element. Equations
(5.14) and (5.17a) yield the stress vector and the normal stress:

1 92 —-20 0 5 1 480

tW=tn=—1]-20 -4 0|]|-1|=—|-96]| |N/mm?|,
V26 0 0 —40 0 V26 | [ }

o™ = ¢ .y 5 % 480 + 96) = 96 [N/mmﬂ .

1
_%(

With t(™ and (™) we can calculate the stress vector by utilizing equation (5.17b):

(n) _ (n) _ _(n) N 9 | ° ’
g g — | 96 | -2 | -1 |=]0
B - V26| V26 | 0

Since 7(") = 0 it follows that the normal n and the stress vector t(™ = ¢(™n are
parallel to each other, therefore the direction n is a principal direction.

EXERCISE 5.2: What is the matrix of the Cauchy stress tensor in a cylindrical
coordinate system?

Recalling equations (1.190), (1.191) and (1.192) we have
t=tpoep+tyoey+t,oe, (5.19a)
in which
tr =lrrer +tyrey tt.r€, = 0grrer+Tyre€y + T2rE:,
ty =tryer ttypey +t.9e. = TRyer + 0yp€y + T29 €z, (5.19b)
tz = tRz er + tﬁz ey + tzz €, = TR;€R + Ty.€y +0.9€;
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are the three stress vectors. Hence

trRr tRo tR: ORR TRY TRz
|: tj ti ti :| tyr toy tvz | = | TOR 09y Toz
s (Rdz) | (RYz) | (RYz)
(R9z) z i i tin try tas T:R Tz29 Ozz
(5.20)

is the matrix sought.

5.2. Further stress tensors

5.2.1. The Kirchhoff stress tensor. The Kirchoff stress tensor is defined
by the following equation:

T=Jt,  me=Jt. | (5.21)

5.2.2. The first Piola-Kirchhoff stress tensor. Figure 5.6 shows an
infinitesimal surface element before deformation (in the initial configuration)
and at time ¢ (in the current configuration).

FIGURE 5.6. Surface element before deformation and at time ¢

The resultant of the Cauchy stresses acting on the surface element dA is given
by the relation
dF® =t-ndAd=1t-dA. (5.22)
Recalling Nanson’s formula — see equation (2.89) — we can rewrite the above
equation
dF¥ =Jt-FT.dA° =Jt-F~ T .n°dA°,

dFy = Jty FinpdA°.

On the basis of this result we define the first Piola-Kirchhoff” stress tensor [12,
I, [87], [6, &, 11] by the following relation

(5.23)

P=Jjt-F T, Pip = JtwF 5 . (5.24)

REMARK 5.4: The first Piola-Kirchhoff stress tensor P is a two point tensor. If
the tensor P is known we can calculate the force dF*° by using those geometrical
data which belong to the initial configuration. It is also worthy of mentioning that
the first Piola-Kirchhoff stress tensor is not symmetric tensor.

2Gustav Robert Kirchhoff, 1824-1887
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5.2.3. The second Piola-Kirchhoff stress tensor. Let dF°° be a fic-
titious force acting on the surface element dA° which belongs to the initial
configuration. We shall assume that

dF°Y is related to dF®

in the same manner as
dX is related to dx

dX=F1'.dx ),
(

that is,
dF°% = F~1 . dF¥. (5.25)

If we now substitute (5.23); for dF® in the above equation we have
dF°S = JF~'. t-F~ 1 .n°dA° (5.26)

in which

S=JF "' - t- FT=F "' P, Sup=JF taF,5 =F; P

(5.27)
is the second Piola-Kirchhoff stress tensor.

REMARK 5.5: The stress vector

to = JF L . FTon® = §.n°, ") = JF} tee FipinS = Sapn$ (5.28)
is a pseudo stress vector. Since dF°% = t°(™) dA4° and dF® = t(") dA it follows
from equation (5.25) that

dA dA° dA°
o(n) — p—1.¢(n) (n) — p.¢o() =F.S n°—— . 2
t t dAOandt t 1A SndA (5.29)
REMARK 5.6: The second Piola-Kirchhoff stress tensor belongs to the initial con-

figuration. It follows from its definition that S = S7', i.e., the tensor is symmetric.

REMARK 5.7: In the linear theory of deformations we can simplify the relations
that define the first and second Piola-Kirchhoff stress tensors. Recalling equations
(5.24) and (5.27) we may write

P=Jt-FT=1 tx~(l+4¢e)t-(1-Vouxt=0c (5.30)
(4.28)(4.3)

and
S=JF 't FTxQQ+¢e)(1-uoV)-t-(1-Vou)x~t=0c. (531)

Hence, we can assume that the three stress tensors are the same within the frame-
work of the linear deformation theory. In accordance with (5.30) and (5.31) we
shall denote it by o.
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5.2.4. The Biot stress tensor. The Biot stress tensor [50] is defined by
the equation:

1 1
T:§(U'S+S' U) s TABzi(UALSLBJrSALULB) . (5.32)

The Biot stress tensor is a symmetric tensor in the initial configuration.

5.2.5. The Kirchhoff stress tensor. The Kirchhoff stress tensor is di-
rectly proportional to the Cauchy stress tensor:

T=Jt, Tre = Jte. (5.33)

It is obvious that the Kirchhoff stress tensor is symmetric.

5.2.6. Nominal stresses. The nominal stress tensor is defined by the
following relationship:

NZF_l-t, NAz:ngltkg. (5.34)

The nominal stress tensor is not symmetric.

5.3. Extreme values of the normal and shearing stresses

5.3.1. Extreme values of the normal stresses, principal directions.
For a fixed point of time ¢ the Cauchy stress t(™, the normal stress o™ and
the shearing stress 7(") are functions of the surface normal at the point P of
the current configuration. In the case their extreme values are known we shall
be able to decide whether the material of the body is capable of resisting to the
stress state at P without any damage.

We seek, therefore, the extreme values of the function (™ = ¢(™(n) =
n - t - n under the side condition |n| = 1. (The normal vectors n are centered
at P and their tips are located on a sphere of unit radius.) The side condition
can be taken into account by the Lagrange multiplier method. Consequently, it
is our aim to find the stationary conditions for the Lagrange function

L(n,o0)=n-t-n—o(n*-1), (5.35)

where the Lagrange multiplier is denoted simply by o. Changes of n are char-
acterized by the operator

0 0 0
(") = 4+ — i+ —1i5. 5.36
v 8”1 bt 8712 2t 8n3 13 ( )
It is not difficult to check that
nov® = (n1 i1 + nois +ng 13) oV =1. (537)

By taking the above relation into account we have
L(n,o) V™ = fot-nv® 4yn-t-2av® —2n. (noV(")) =
—on-t- (nov<”>) —2m-1=2(t—01)-n=0

—_———
t
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or

(t—c1) n=0 (5.38)

which is the first stationary condition. Note that the down-arrow shows the
quantity the operator V(™) is applied to. It should also be mentioned that we
have utilized the symmetry of the Cauchy stress tensor in the transformations.

The second stationary condition is obtained if we derive the Lagrange func-
tion (5.35) with respect to the multiplier 0. The result is the side condition for

n:

oL
—_— = —1=0. .
5, =1 0 (5.39)

EXERCISE 5.3: Derive the stationary conditions for the normal stress o(™) in indicial
notation.
It is easy to check with regard to (5.35) that

L(n,0) = nptreng — o (ngne — 1) (5.40)

is the Lagrange function. If we take the symmetry condition ¢3¢ = tg into account
and write k for ¢ and £ for k where necessary, the first stationary condition yields

0L(ns,0)  Ony Ony Ony
— = trene + nptpe =— — 20 =
on, on, Rerte Kokt on, on,
~—~— ~— ~—~—
Jkr 57‘@ 67“2
= Oprtrene + s — 20p4ng =
——

=neterOkr=0krtrene

= 2oy — 20 Oppnip = 2 (trg - U(SM) ng =10

or
(tre — o (SM) neg=20. (5.41)
The second stationary condition is again the side condition:
OL(ns,
# = ngng—1=0. (5.42)

According to the stationary conditions (5.38) (or the equivalent stationary
condition (5.41)) the principal values of the eigenvalue problem of the symmet-
ric Cauchy stress tensor give the extreme values of the normal stresses. The
elements in the ordered set o1 > o9 > o3 of the eigenvalues are called princi-
pal stresses, the corresponding principal directions are named principal stress
directions. These are given by the eigenvectors ng, £ = 1,2, 3.

Let us denote the scalar invariants of the Cauchy stress tensor by Ty, Ty
and Tyyr. It follows from (1.113) that

Tr=ty=t11+ten+1s3, (5.43a)

t11 t13
t31  t33

too o3

1
== (trrtee—treter) ,  (5.43b)
t32  t33

t t
TII‘ 11 t12 :

to1  to2
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Trrr =det (tge) = | to1 too  tos | = ewertintoetsy (5.43c)
t31 t32  t33

are the scalar invariants. After having the scalar invariants determined we
obtain, by utilizing (1.112b), the characteristic equation

tin—o t12 t13
P3(0) = —det (t—0l) = —| ta1  taa—0  to3 =
t31 t32 t33 — 0o

203—T102+T][O'—T]]]:0. (544)

The roots of the characteristic equation are the principal stresses, i.e., the ex-
treme values of the normal stress ¢(™). Having determined the roots we can
calculate the principal stress directions by solving equation system (5.38) (or
(5.41)) for n (nyg).

Recalling (1.116) and (1.118) we get the spectral decomposition and the ma-
trix of the Cauchy stress tensor in the Cartesian coordinate system constituted
by the principal stress directions:

3 01 0 0
t =Y o @ng, t =|0 oo 0 |. (5.45)
(n1m2n3) =1 (n1nansz) 0 0 o3

EXERCISE 5.4: Given the Cauchy stress tensor in a dyadic form:
t = axpizoiy — fryizoiy + (awpip — B ip) ois,

where o and 3 are positive constants. Determine (a) the scalar invariants, (b) the
principal stresses and (c) the principal stress directions at the point (a;, 3, 0).

We can read off from the characteristic equation

—o 0 af
Pyo)=—| 0 —0 —aB|=0%—Tio?+Ti0 — T =0° —2a2% =0
af —af —o
that
Ty =0, T = —2a°87, Trrr=0.
Hence

01 = \/ﬁﬁaa g =0, 03 = —\/560[

are the three principal stresses. If £ = 2 the equation system

—oy 0 ap n 0
(t—0¢1) - n=0, 0 -0 —af ng | =101}, £=1,23
af  —af —oy ns 0

which gives the principal stress directions, yields by taking the relation 02 = 0 into

account that
1 . .
n2:7(11+12), |Il2|:]..

V2
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If £ =1 (61 = V/2Ba) we obtain the following homogeneous equation system for
calculating the first principal stress direction:

\/§n1+n3:07 \/i’l’LQ—TLg:O, TL1—’I’L2+\/§77,3:0.

The solution is of the form

Lo .
11125(11—124-\/513)7 \n2|:1.

With the eigenvectors n; and ny

(41 +is + x/§i3)

N |

n3 =n; X ng =
is the third eigenvector.

5.3.2. Extreme values of the shearing stresses. We shall determine
the extreme values of the shearing stresses in the Cartesian coordinate system
(€nC) constituted by the principal axes. In this coordinate system the coordinate
axes &, 1 és (¢ are the first, second and third principal directions:

ig =1ny, i,7 =Ny, i( =ns. (546)
Hence
g1 0 O
t=o01i¢0ie +02i,0i,+03ic0ic and t =| 0 o2 O (5.47)
(&n¢) 0 0 o3

are the Cauchy stress tensor and its matrix. The unit normal to the surface on
which the shearing stress has an extreme value is of the form

n=ngic+n,i, +ncic, [n/=1 (5.48)
in the coordinate system (£n¢). Consequently,

t(n) =t-n= o1Mg ig + oany iT] + o3n¢ ic R

(5.49)
o™ =n.-t-n=n-t, zolng—i—agn?]—&—agng

are the Cauchy stress vector and the normal stress. Making use of equation
(5.17b) we can determine the square of the shearing stress:

(T<n>) 2= (¢ — gmp). (¢ — gp) =
= [t™]2 = (¢™)2 — (t™ — (n) . o = |t2 = ()2 =
=0

= (o1ne)? + (o2ny)* + (o3n¢)? — (Ulng + 0'27’1% + Ugng)Q . (5.50)

It is our aim to find the extreme values of this quantity under the side condition

n? + n% + ng =1. (5.51)
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Let us substitute nf from here into (5.50). We obtain

(T0)?(ng, ny) =

= [(01)2 — (03)2] ng + [(02)2 — (03)2] ?7 — [(01 — ag)ng + (o2 — 03)71,27]2 .

(5.52)
Thus
87’3 2 2
a—ng = 2n¢(o1 — 03) {01 —03—2 [(01 —03) ng + (02 —03) ”n]} =0,
972 (5.53)
877”:] = 2n, (02 — 03) {02 — 035 — 2 [(01 — 03) ng + (092 — 03) ni]} =0

are the necessary conditions for an extremum. A possible solution is ng =
n, = 0, n¢ = £1. Let us repeat the previous steps by substituting first n,,
second n¢ from (5.51) into the formula for (7(™)2. We obtain the solutions
ne =ne =0, ny, = £1 and n,) = n¢ = 0, ng = £1. The three solutions we have
determined are the principal directions of the stress tensor which shows that
the three shearing stresses are all equal to zero: we have found local minimums.

Further solutions can be obtained from (5.53) if we assume merely that n; =
0. Then equation (5.53), yields n,, = £1/v/2. Making use of these solutions
from side condition (5.51) we get the third component of n: n; = £1/v/2. After
setting n,, to zero equation (5.53); and side condition (5.51) result in the values
ne = j:l/\/§ and n¢ = :i:l/\/?. For the case ne = 0 the first in the equation
pair 972/0n,, = 0 and 972 /0n¢ = 0 together with side condition (5.51) lead to
the result n,, = £1/v/2 and ng = £1//2 — the line of thought is the same as
before.

A summary of the results is given by the table below: the equation rows
contain the normal sought and the square of the shearing stress that belongs to
it:

+

[\)

. . " 1
n (i, —1i¢), (T( ))221(02—03)27

n=+—(@G —i), ()= %(01 —03)?, (5.54)

-5

. . " 1
n=+—(@—1i,), (T( ))2 = Z(Ul - 02)2'

3

We remark that (7(™)? is calculated by using equation (5.50). If we take into
account that the principal stresses form an ordered set (o1 > 02 > 03) we can
read off from the above relations that

Am:;m_@| (5.55a)

max

is the maximum shearing stress. Assuming a positive sign

n— i\%(lg - lc) 5 (555]3)
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is the normal to the surface element on which 7% is the maximum shearing

stress. With this normal, equations (5.49) yield the Cauchy stress vector and
the normal stress on this surface element:

. . 1 . .
t) =¢.n= o1ng ig + oany, iy + osneic = E (011 —o3i¢)
(5.56)

1
0(”):n-t-n:n-tnzalnz—i—agn%—i—agng:g(ol—i—ag).

5.4. Boundary and initial conditions

The boundary conditions prescribe the values of some physical quantities
(vector and/or tensor fields) on the boundary of the body.

The initial conditions are prescriptions on the displacement and velocity
fields at the beginning of the motion (in the initial configuration).

B B
Ay Ay
X3 At X3 At
0 X o X,
X, X

FIGURE 5.7. The parts of the boundary surface A

Assume that the boundary surface A of the body is divided into two parts
A, = A, and A; which are separated from each other by the curve g: A, UA; =
A; Ay N Ay =0. In a limit case A, = A, = A (or Ay = A).

Prescribed quantities on the boundary will be denoted by a tilde over the
letter that identifies the quantity in question.

We speak about kinematic boundary conditions if the (velocities) [displace-
ments]| are prescribed on (A,) [A4,]. The kinematic (or displacement) boundary
conditions have the form

vV=v, v = Uy, Vx € A, (5.57)
u=nu, up = Uy . Vx € A, (5.58)

We speak about dynamic (or traction) boundary conditions if the stress
vector (the traction vector) is prescribed on A;.

t(n) —t-n= E , tgl) =tpmy = {k . Vx € At (559)
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The boundary value problem is of (Dirichlet) [Neumann] type if (displacements)
[tractions]| are prescribed on the whole boundary.

A further type of boundary conditions is constituted by the mixed boundary
conditions. Then we make partly kinematic, partly dynamic prescriptions on the
very same part of the boundary. Consider a part of the boundary A,,; € A and
assume that tractions parallel to the normal (denoted by ¢|,) and displacements
perpendicular to the normal (lying therefore in the tangent plane and denoted
by ) are prescribed on A,,;. If this is the case the boundary conditions take
the forms

n-t-n=1), nx(uxn)=u—-n(u-n)=ua;, Vxe€Ad, . (560)

Consider now the part of the boundary A,,> € A and assume that the displace-
ment in the normal direction (denoted by ) and stresses in the tangent plane
(denoted by t - these are shearing stresses) are prescribed on A,,5. Then

n-u=a, nx(t(") xn) :t(”)—n<t(")~n) =t Vx € Apma . (5.61)

are the two mixed boundary conditions.

We remark that equation ((5.60)2) [(5.61)1] remains valid for the velocity
field as well provided that the velocity is prescribed (in the tangent plane of
A1) [parallel to the normal on A,,].

When solving dynamical problems the knowledge of boundary conditions is
not sufficient to make the equations governing the problem determinate. At the
beginning of the motion (in the initial configuration) one should also prescribe
the displacement field and the velocity field. Let us denote the prescribed
displacement and velocity fields by u, and v, at t = t, = 0, that is, at the
beginning of the motion. Then

u(X,t)|i=t,—0 =u, and W(X,t)|t=t,—0 = Vo vX e Ve (5.62)
are the initial conditions. We remark that the compatibility conditions
u, = l~l|t:t0:0 and v, = ﬁ't:to:O VX € AZ (563)

should also be satisfied. They express that the initial conditions and the dis-
placement boundary conditions should be consistent with each other.

5.5. Problems

PROBLEM 5.1: Given the matrix of the Cauchy stress tensor at the point P of the
current configuration of the body. The unit normal to a plane which passes through
the point P is denoted by n:

584 0.0 —288 /3
00 —400 0.0 | [MPa],  n=070 +0Liz+ - es.
288 0.0 416

I+
I

Determine (a) the principal stresses and principal directions and (b) the normal
stress 0(™) as well as the shearing stresses 7(™) acting on the plane with normal n.
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PROBLEM b5.2: Consider a circular cylinder of radius R and assume that the axis
of the cylinder coincides with the coordinate axis z3. The Cauchy stresses in the
cylinder are given by

ti3 =t31 = —/14191}2, to3 = t32 = /M9$1 ’
ti1 =tog =133 =t12 =121 =0,

where (1 is a positive constant and 9 is constant. Show that the outer surface of
the cylinder is stress free.

PROBLEM 5.3: Given the deformation of a continuum
X = aX1i1 — bX2i2 + CX3i3 y

where a, b and ¢ are non zero constants. Assume that the Cauchy stress tensor is
known:

tin 0 0 0 0 0 00 O
[tke]=]1 0 0 O |, [te] = | 0 ta2 O |, [tkel=10 0 O
0 00 0 0 O 0 0 t33

where t11 = tos = t33 = 0, = constant. Find the first and second Piola-Kirchoff
stress tensors for each [tye].
PROBLEM 5.4: Given the matrix of the Cauchy stress tensor in spatial description:

0 0 azrs
t= 0 0 —bxs
ary —bxs 0
Assume that the stresses are considered at the point P with coordinates z; = 0,
x9 = b? and w3 = a. Find (a) the three scalar invariants, (b) the principal stresses
and principal directions and then (c) determine the maximum shear stress and the
normal to the plane on which it acts.

PROBLEM b5.5: Let n and n be unit normals to two different surface elements at
the point P in the current configuration of the body. The stress vectors on these
surface elements are denoted by t() and t(™). Prove that the relation

n-t™ =n-.¢t®
holds if and only if the Cauchy stress tensor is symmetric.
PROBLEM 5.6: Prove the following equalities:

S=F1'.7.F T, Sap =Fy mecFyp (5.64)

1 1
T=3 (RT -P+P". R) , Tap = 5 (RarPrp + ParRip) - (5.65)



CHAPTER 6
Fundamental laws for deformable bodies

6.1. Principle of mass conservation

6.1.1. Mass and density. The mass of the body is a measure of the
material quantity that is in the body. The mass is a positive quantity. Consider
now body B in the current configuration. Let Am be the mass in a volume
element AV. The mass distribution within the body is characterized by the
limit

_ Am  dm
Pl = WAy T v

which is called density. We shall assume that the density p is a continuous (or
a piecewise) continuous function of the location at a point of time ¢.

(6.1)

REMARK 6.1: We used this concept when we introduced the concept of body forces
for a unit mass in Subsection 5.1.1.

With the density
m = / pdV (6.2)
%

is the total mass of the body. Equations (6.1) and (6.2) are related to the
current configuration. In the initial configuration

Am°  dm°
SR 1 - o _ o o .
P A Ays T qpe mdom / s (6:3)
are the density and the total mass of the body.
It follows from their definitions that the densities p° and p are positive
quantities.

6.1.2. Principle of mass conservation in global and local forms.
The body is said to be closed if no material is added to it (or removed from it)
during the motion. In the sequel we shall assume that the body we consider is
closed.

It is a fundamental law of Newton’s mechanics that the mass can not be
transformed into energy. It is therefore an invariant, i.e., a constant quantity:

m° =m. (6.4)

This principle is that of the mass conservation in global form.
131
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Let V° be a subregion of the volume region V° occupied by the body in
the initial configuration. In a limit case we allow equality, i.e., V' C V°. The
boundary surface of V°' is denoted by A®. The outward unit normal on A® is
denoted by n°. During the motion subregion V' of the body is deformed into
subregion V/ C V of the current configuration. Subregion V' is bounded by the
surface A’ with outward unit normal n. Figure 6.1 shows among others, the
subregion V' and its surface A'.

According to the principle of mass conservation

/ p°dVe = / pdV = constant .
VO/ ’
Hence

</,pdv>.//(p)' dv+//p(dV)'://[(p)'+p(v.v)]d‘/:0’

where we have taken relation (3.35) also into account. Since V' is arbitrary it
follows that the integrand should vanish:

(P) +p(v-V)=(p)+pvee=0. (6.5a)

This equation is the principle of mass conservation in local form. We can rewrite
it into other form if we utilize formula (3.57) set up for the material time
derivative of a scalar field:

Ip

dp
=57 +(pve)  =0. (6.5b)

Equations (6.5) are also referred to as continuity equations in spatial description.
According to the principle of mass conservation the masses in the volume
elements dV° and dV are the same, therefore, it holds that

dm = p°dV° = pdV (6.6a)
from where we get
(dm) = (p°dV°) = (pdV) =0. (6.6b)
Upon substitution of equation (2.94) into (6.6a) we have
dVO o __ 1 (o] . po
p=qu P =3P or J= 5 (6.7)

which proves that the Jacobian is a positive quantity. This conclusion is in
accordance with Remark 2.2.
Equation

o)

is the continuity equation in material (Lagrangian) description.
In the linear theory of deformations a comparison of equations (4.28) and
(6.7) shows that p° = p.



6. 133

6.2. Balance laws

6.2.1. External and effective forces. Two systems of forces are said to
be statically equivalent if the moment vector spaces that belong to the two force
systems are the same. A necessary and sufficient condition for the two force
systems to be equivalent is that the resultants and the moment resultants (they
should be taken about a fixed point for example about the origin) are the same.
In this section we shall clarify what are the necessary and sufficient conditions
for the dynamic equilibrium.

Subregion V' of the body B — see Figure 6.1 for details — is subjected to
body forces pb and surface forces t(™ exerted on A’ by the part of body B
outside V'. These force systems constitute the system of external forces acting
on the part of body B in V’'. We shall denote the system of external forces
simply by [pb,t(")]. The density of the system of effective forces on V' is pa
where a is the acceleration. The system of effective forces is denoted by [pa].

FIGURE 6.1. Free body diagram for the inner part of the body
in V’

The system of external forces acting on the part of body B in V' should be
statically equivalent to the system of effective forces acting also on this part of
the body:

(b, 6] 2 [pal (6.9)

This condition is the fundamental law of dynamics.
We remark that the letter m over the equality sign expresses that the mo-
ment vector spaces are the same for the two force systems considered.
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6.2.2. Equation of motion.

6.2.2.1. Equation of motion in spatial description. Figure 6.1 is a free body
diagram for the subregion V' of the body. It shows both the external forces and
the effective forces. Since they are statically equivalent the resultants have to
be the same. Consequently, it holds that

/ pbdV +/ tMdA= [ padV. (6.10)
’ ’ V/
If we now substitute (5.14) for t(™) we get

/pde+/ t-ndA:/ padV . (6.11)

We can now apply the divergence theorem (1.179) to transform the surface
integral into a volume integral. After a rearrangement we have

/ (t-V+pb—pa)dV=0. (6.12)

Since the subregion V' is arbitrary it follows that the integrand should vanish:

| t-V4pb=pa,  tuetpb=par. (6.13)

This equation is the equation of motion in spatial description.

6.2.2.2. Equation of motion in material description. In the initial configu-
ration the volume region V' and its boundary surface A’ are denoted by V'’
and A°’. The outward unit normal on A° is n°. The body forces for a unit

mass are given by
b® = b x (X:1)] (6.14)
which shows that b° is regarded as if it were a function of the material coordi-
nates. If attached to the point P° the acceleration is denoted by
d? .

a’° =al[x(X;t)] = Y = (6.15)
According to the principle of mass conservation p°dV° = pdV. It is also worth
recalling that ndA = JF~T.1n°dA°. On the basis of all that has been said in
this Subsection so far we can rewrite equation (6.11) into the following form:

/ /p°bOdV°+//Jt~F*T~n°dAO:/ pPatdv, (6.16)
where in view of (5.24) and (5.27)
Jt-FT=P=F. (JF—I-t-F—T) —F-8S.
Hence

/ Jt-FT.n°d4° = P -n°dA° = F-S-n°dA°
AO/ Ao/ Ao/
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is the form of the surface integral in (6.16). After transforming it into a volume
integral by utilizing the divergence theorem we get

/ Jt-F T .n°dA° = F~S-nodA°:/ (F-8)-v°dv®.

or

AO/
Inserting this result into (6.16) yields

/ [(F-8) V°+p°b° —p°a’] dV° =0 (6.17)

from where, because of the arbitrariness of the volume region V' it follows
that

‘(F-S)~V°+p°b°:p°a°.‘ (6.18)

This equation is the equation of motion in material description.

6.2.3. Symmetry of the Cauchy stress tensor. It also follows from
the conditions of equivalence that the moments of the external and effective
forces about the origin should be the same:

/ xprdV+/ x x t™MdA = x x padV .
’ ’ V/
Substitute again (5.14) for t(®). We obtain

/xprdV+/ xxt-ndA:/ x X padV (6.19)

where the surface integral can be transformed into a volume integral by the use
of the divergence theorem (1.179). We obtain

/ xxt-ndA= (xxt)-vVdV, (6.20)
’ V/

in which the integrand in the volume integral can be manipulated into a more
suitable form by performing, where possible, the derivation:

(xxt)-V:%cxt-aixeig—l—xx(t-V)zg—;xtig—i—xx(t-V):
~~ te

i

2

—_——
ta

=2<—1t5 Xie) +x X (t-V)ZQta—‘rXX (t-V). (6.21)

Here t* is the axial vector of the Cauchy stress tensor. Substitute (6.21) into
the right side of (6.20) and then the result into (6.19). After a rearrangement
we have
/ [2t" +x X (£-V 4 pb— pa) }deZ/ t*dV =0.
’ S——

’

=0 (compare to (6.13))

Since V' is arbitrary it follows that

‘ t* =0. Hence t =1t". ‘ (6.22)
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In words: The Cauchy stress tensor is a symmetric tensor.

On the basis of equations (5.24) and (5.27) we may conclude that the first
Piola-Kirchhoff stress tensor is not symmetric while the second Piola-Kirchhoff
stress tensor is symmetric.

EXERCISE 6.1: Determine the equations of motion in a scalar form in the Cartesian
coordinate system (zyz).

It follows from a comparison of equations (6.13) and (5.12) that

% + % + ot
oz dy 0z
is the vectorial form of the equation of motion in this coordinate system. If we now

recall resolution (5.15) of the stress vectors we get the following scalar equations

+ pb = pa (6.23)

002y L OTzy L 0Ty Yo — pa

OTyz  Ooyy 0Ty,

Ox + oy + 0z

OToy  O0Tny 00
+ +

Oz dy 0z

+ pby, = pay, (6.24)

+ pb. = pa, .

6.2.4. Equilibrium equations. A reference frame is a model of a rigid
body from where we observe the motion of other bodies. We may attach various
coordinate systems to the rigid body mentioned, we shall, however, regard one
of these coordinate systems as the reference frame — see Subsection 8.2.2.1 for
more details in this respect. The reference frame is an inertial reference frame
if the body on which it is defined is at rest, i.e., there are no forces acting on
it. When devising the equation of motion and the symmetry condition for the
Cauchy-stress tensor we assumed tacitly that the moving body is considered in
an inertial reference frame.

If we assume that a = 0 we arrive at an equilibrium problem by which
we mean that the load is applied gradually and the body gets into the current
configuration via a series of equilibrium configurations. If the acceleration is
not negligible we shall write f(®) for pb — pa — see equation (7.28b) in Section
7.3.4 — by attacking the dynamic problem considered as if it were an equilibrium
problem. However, we can apply this simplification only if the acceleration field
in the body is, ab ovo, known.

For equilibrium problems we can drop the term pa in the equation of motion:

t-V+pb=0, thee+pbr =0. (6.25a)

This equation is called equilibrium equation. For simplicity it is worth intro-
ducing the notation

where f is the body force per unit volume.
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EXERCISE 6.2: Consider a body assuming infinitesimal deformations. Then there
is no difference between the Cauchy stress tensor and the second Piola-Kirchhoff
stress tensor which are known for the body considered:

(11X12 0 (LleXQ
t = S = o = 0 (L2X3 a2X2

(3%x3) (3%3) (3x3) CL1X1X2 a2X2 a2X3

where a; and ay are non zero constants. Find the body forces f required for the
body to be in equilibrium.

Note first that the symmetry condition is satisfied. Rewriting equations (6.25)2 in
the form

fre = —thiy
we get
= (gi;ll 01 + gﬁ;j) = 20X,
= (o o o) =0
(g(;ll 80322 g?j) = —a1X1 — 2az

which means that
f= 720,1X1 i1 — (a1X1 + 2(12) i3

EXERCISE 6.3: Given the stress state of the beam shown in Figure 6.2 by the
following relations:

3§02 4a2 3 4 b
o011 = 3¢ <1—$1>9~"3, 022 =0, 033—f< z3+ >,

203 02 2b 3b?
3fz 423
o12 =021 =0, o3 =032 =0, 031013;;(1@3)-

Though there are no body forces the stresses depend on a parameter f. Are the
equilibrium equations satisfied? What is the load on the lateral faces of the beam

in terms of {7
Ed
X b( X

T g

02 02

X
Y

FIGURE 6.2. Beam with uniform rectangular cross section
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Making use of the derivatives

80'11 _ 712fX1X3 30'22 -0 80'33 _ ﬁ . 4X§
0X, b 0Xo ’ 0X3  2b b2 )’
60'12 _ 80'12 _ 80'23 _ 8023 :0 80’31 _ ﬁ B 4X§
0X: 00Xy 00Xy 0X3 ’ 00X, 2b b2 )’
(90'13 o 12fX1X3
0X3 b3
we get
60’11 + 80’12 80’13 _ _12fAXt1X3 + 12f)((1X3 _ 07

00X, 0Xe 0X3 b3 b3
0021 002 0023

8X1 8X2 aXS
8031+3032+8033__?)f< _4X§> 3f <1_4X32):0

b2 2b b2

0,

80X, 08X, 0X; 2b

which shows that the equilibrium equations are satisfied.

On the lateral faces x5 = —1/2 and 25 = 1/2 the stress vectors vanish: t(~%2) =
t(®2) = 0. These faces are, therefore, free of load.

On the bottom face x3 = —b/2 we have:

—tlme) = (01311 + 02312 + 033 13) [1,=—p/2 =
3f$1 . 3f b b b .
- - -2 (24242 i, =o0.
oy (LD 2b<2+6+3 '

This face is also free of load.

On the top face z3 = b/2 we obtain similarly:

t(3) = (01311 + 093 iy + 03313) lzg=b/2 =

_ 3 Lo SF (b b by
= % (1 1) 11—|—2b (2 6—|—3> 13—f13.

This result shows that the beam is subjected to a constant surface load on the top
face of the beam.
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6.2.5. Equations in cylindrical coordinate systems. Figure 6.3 shows
a stress element in the cylindrical coordinate system (Rdz) by using the no-
tations of Exercise 5.2. With these notations we can give the stress tensor

FIGURE 6.3. Cubic stress element in the cylindrical coordinate
system (RUz)

and its matrix in the same way as we did in Exercise 5.2:
t=tgpoigpttyoiy +t,0i,,

ORR TRY TRz
ty | t. ] (6.26)

(3x3)

t = t7R
(3;3) (3x3)

-z =\ 7 o T,
(3x3) YR 099 Toz

TR Tz Ozz
Assume that o is a function of the cylindrical coordinates. Then for the diver-
gence of o we can write by detailing the calculations that

IS PN
ORE TR 02"

t-V= 1 :(tROiR+t190i19+tZOiz)~(
(1.195)

I L T TALL S
TOREET ORI ET grEE
=1 =0 =0
Otr ., . trpdi, Oty . . ty diy ot. .
Toaglr gt 5 0 Tt ooty ly+ o =l + o1 1y +

Otp, . Oty, . Ot
+—1r "1, + —1y-1, + —1,-1; =
=0 =0 =1
78tR tﬁ Oty ot

“or "R TRov " 92

(6.27)
Upon substitution of the divergence o -V into (6.13) we obtain the equation of
motion in a symbolic form in terms of the stress vectors tg, ty and t,:

tp tr 10ty ot.
ok TR TRov ' o:

Making use of the derivative

L0 _ (10mry _ovoyy L (Ooww AN T
R \R o0 R)EB"R\op TTR) T Ron Y

+pb = pa. (6.28)
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we can also set up the scalar equations of motion:

Oo ORR — O 107 ot
RR  ORR— 09y 1 0TRy I;ZJFPbR:PaRa

OR R R 09 0
OT9r  Tor+Try 1 0oy  OTy.
sl b = 6.29
OR R R o9 " or PP (6.29)
z z 1 z zZ
OT.r TR 8Tﬁ+8a + pb. = pas .

R R R ' 9z

For equilibrium problems ag = ay = a, = 0.
EXERCISE 6.4: We speak about axisymmetric problems if

orr = 0RrR(R,2), 099 =099(R,2), 0..=0..(R,2),

TR =TR:(R,2), TrRo=Tor=0, Tp.=Tw =0.
What are then the scalar equilibrium equations? (Keep in mind that by = 0 for
axisymmetric problems!)
We obtain the following equilibrium equations from (6.29):

0 — OTR»
ORR | ORR — 09y OTR —
a z z 8 zZz '
TRy TR Ty b, = 0.

oR T R | o2

6.3. Energy theorem

6.3.1. Energy theorem in spatial description. Dot multiplying the
equation of motion (6.13) by the velocity field v yields

pv-a=v-(t-V)+pv-b, P UL G = Vg tree + p Uk b (6.31)
in which
1 1 .
pv~a:pv~(v)':§p(v-v)':§p(v2) (6.32)
and
1 ¢
v-(t-V)y=(v-t)-V—v-t-V. (6.33)

If we take relations (1.96)s, (3.6b) and (3.11) into account we can rewrite the
above equation into the following form

V(£ V) = (vet) Vet (voV)=(v-t) V—t.--1=
(V) Vted— b2 = (V1) -V—t--d, (6.34)
=0

where the energy product ¢ - - £2 vanishes since t is symmetric and {2 is skew.
Let us now substitute (6.32) and (6.34) back into (6.31) and integrate the result
over the volume V. We get

%/Vp(v2)'dV:/V(v-t)-VdV—/Vt~-ddV+/va-de. (6.35)
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Note that the first volume integral on the right side can be transformed into a
surface integral by using the divergence theorem. Thus

1 .
f/p(VQ) dV:/v-t-ndA+/pv-de—/t~-ddV. (6.36)
2 Jv A v v

This equation includes the following quantities:

e The time derivative of kinetic energy of the continuum:

1

Ky = <;/va2 dV>. = i/vp (v¥) av. (6.37a)

(Because of the mass conservation (pdV)" = 0!)
e The power of the external forces, i.e., that of the surface tractions t(")
and body forces pb:

Pext:/v-t-ndA+/pv~de. (6.37b)
A 14

e The stress power per unit volume in the current configuration (stress
power density):

pr=t--d. (6.37c)

e The power of the internal forces:

Pim:f/ ¢Tdv:7/ b dav. (6.37d)
1% 1%

Consequently, equation

(K:) = Fext + Ijint P (638)

which follows from (6.36), is the global form of the energy theorem.
REMARK 6.2: For rigid bodies Py,; = 0, therefore, the energy theorem simplifies:
(’C) = Lext - (639)

Note that equation (6.35) holds not only for the whole body, which occupies
the volume region V', but for any parts of the body in the volume region V' —
see Figure 6.1. Hence

1 .
3P (V*) +¢r=(v-t)-V+pv-b,

1 . 6.40
§p (02) + teedie = (Vptpg),q + PV by, ( )

ér

which is the local form of the energy theorem.
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6.3.2. Energy theorem in material description. Since v(x;t) = v°(X;t)
and pdV = p°dV?® it follows on the basis of (6.37a) that

(K) = (;/opo (v)? dV°>': %/p (Vo vy dV° = /Opovo 2% dVe
(6.41)

By taking equation (5.29)s and then the mass conservation low again into ac-
count for the power of external forces we get

Pou= [ vFesawran s [ pvepeave. (6.42)

As regards the integral
I_)int:_/ tddV
1%

it follows from

(a) equation (5.27) that
t= %F -S-FT, = %FkASABFBK- (6.43a)
(¢) According to (3.50b) it also holds that
d=F T (Ey-F ', dwu=F,,(Eun) Fy;- (6.43b)

Making use of equations (6.43) we can manipulate the energy product t-- ddV
into a more suitable form:

1 _ R o
t--ddV = tydudV = S FyaSanFp Fo (Bun) Fyp JdVO =
av
= FyaSapFri Fpy (Bun) Fyp dV° = Sap FypFoa FpeFryy (Eyy)” dV° =
—— ——
ONA 0B M
=Sap (Eap) dV°=S8-- (E) dve, (6.44)
where we have taken into account that ¢y = ¢/.. Hence
Pint:—/t--ddV:— S--(E)dve® (6.45)
1% Vo
A comparison of equations (6.38), (6.41), (6.42) and (6.45) yields

o ) v

:/ V°~F-S-n°dA°+/ p°ve-b°dV® — S--(E)dV® (6.46a)
o o VO

or if we apply the divergence theorem
1

5/0 o ((VO)Q)' Vet | S (Byave=

:/ (v°-F~S)~V°dV°+/ p°v°-b°dV°. (6.46b)
o VO
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Consequently,

%p ((v)2) +8-(By = (v F-8)- 9+ °v° - b°. (6.47)

This equation is the local form of the energy theorem in material description.

REMARK 6.3: It is worthy of mention that the energy theorem is not a fundamental
law of continuum mechanics since we have derived it from the equation of motion
by performing appropriate mathematical transformations.

6.4. The first theorem of thermodynamics

6.4.1. The first theorem of thermodynamics in spatial description.
First we shall introduce some new quantities:

e Assume that there exists an internal energy per unit mass (specific
internal energy) within the body. We shall denote it by e = e(x;t).
With e the total internal energy £ within the subregion V' of V' is given
by

&= pedV . (6.48a)
V/

e The internal heat generation in a unit mass per unit time (heat source
distribution) is denoted by h = h(x;t) (possibly from a phase change or
transmission of electric current). It is obvious that the heat produced
(or subtracted) in subregion (from subregion) V' is

Qv = / phdV . (6.48b)

e The heat flux vector q is the heat energy that passes through a unit
surface perpendicular to q per unit time. With q the heat flow across
the surface element dA = ndA is given by —q-ndA. The heat input (or
output) of the subregion via its surface A’ can, therefore, be calculated
as

QA:—/lq-ndA:—//q-VdV. (6.48c¢)
e Hence, the total heat input (or output) is
Py =0y +Q4 :/,pthf/,q'ndA:/,(ph7q~V) dV. (6.48d)
e The kinetic en‘e:rgy of the sﬁbregion is

1
K= 5/ pvidV, (6.48e)

where v(x;t) is the velocity field of the body in spatial description.
e On the basis of (6.37b)

Pext:/ V-pde—l—/ v-t-ndA. (6.48f)

is the power of the external forces acting on the subregion V.
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The first theorem of thermodynamics® states that the time-rate of change
of the total energy is equal to the sum of the rate of work done by the external
forces and the change of heat content per unit time [13]. The total energy is
the sum of the kinetic energy and the internal energy. The principle of energy
conservation can, therefore, be expressed as

(’C + 5) = Poxt + PQ . (649)
Upon substitution of equations (6.48¢), (6.48a), (6.48f) and (6.48d) we have

(;/ pv2dV+/ pedV) =

:/ V-pde—l—/ v~t-ndA+/ (ph—q-V) dV, (6.50)

1 ’ 1
(/ pv? dV) = / pv-adV + 7/ vZ (pdV)", (6.51a)
2 ’ ’ 2 ’ N——

where

(//pedv>'://p(e)'dv+;//ew, (6.51b)

(conservation of mass) and

/v~t~ndA:/ (v~t)'VdV:/ v-(t-V)dVJr/ Vot-vav.

As regards the last integral in this equation we can utilize (1.96)3, (3.6b) and
(3.11) to manipulate its integrand into a more suitable form:

Vot V=t (voV)=t-l=t--d+ t- -2 =t--d. (6.51c)
=0
Hence
/v-t-ndA: v-(t~V)dV+/ t..ddv . (6.51d)
!’ V/ !

Substitute equations (6.51a), (6.51b) and (6.51d) into equation (6.49). A sub-
sequent rearrangement yields

D
/ [v~(t-V—|—pb—pa)— (ij—t~d—ph+q-Vﬂ dv =0 (6.52)
’ N——p—

Since V' is arbitrary it follows that

pley)=t--d + ph—q-V . (6.53)
éT b0

IRudolf Julius Clausius, 1822-1888
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where ¢ and ¢¢ are the stress power density (or simply stress power) and heat
power per unit volume (or simply heat power) in the current configuration. For
rigid body motions the strain rate tensor d is zero tensor, therefore, the stress
power is also zero.

Equation (6.53) is the local form of the first law of thermodynamics in
spatial description.

In words: the time rate of the specific internal energy is the sum of the
stress power density and the heat power per unit volume.

6.4.2. The first theorem of thermodynamics in material descrip-
tion. With the mass conservation pdV = p°dV° the total internal energy takes
the form:

&= pedV = p°e®dVe (6.54)
1% Vo
where e°(X;t) = e[x (X;t);t] = e(x;t). We get in the same way from (6.48Db)
that
Qy = / phdV = p°h®dV° (6.55)
v vor
in which h°(X;t) = h[x (X;t);t] = h(x;t).
By using (2.89) we can rewrite the integral (6.48c) into the following form

QA:—/ qndd=— [ JFT.q-n°dA° =
’ AO/

= —/ q°-n°dA° = —/ q°-V°dv°, (6.56)
AO/ VO/

where
=JFT.q (6.57)
is the heat flux in the initial configuration. Consequently,
Po=0Qv+094= / (p°h° —q°-V°) dV° (6.58)
VO/

is the total heat input (output) for the body in material description.
EXERCISE 6.5: Prove that
VO.F.-8§-V°=Jd--t=8--(E) (6.59)

Take relations (2.30)1, (5.27) and (3.11b) into account and consider the transfor-
mations

\i/'o -F.8.V° = (VO OVO) . (F . S) = (UPVB)(FPASAB) =

= 4 = ((UPVQ)FBQ) (FpaSag) = 0 =
vp=vp, VB=V,FBy SAB=JFA7kltk5F[Bl
= (Upg) Fy g Fg FpaFl Tty = 1 = Jdretre + J e the =
P Mu Vg, e=dge+2pe S——
Seq Spk =0
=Jd--t= 1T :S--(E)'.

(6.44), (2.94)
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which prove our statement.

Upon substitution of (6.41), (6.54), (6.42) and (6.58) into (6.49) we have
/ pv®-a®dVe° +/ p° (e°) dV° =

:/ v°~F~S~n°dA°+/ p°V°~b°dV°+/ (p°h°® —q°-V°) dV®
(6.60)
in which
/ VO-F-S-nodAoz/ (VO~F-S)~V°dV°:
AO/ VO/
2/ $O'F'5'VOdV°+/ ve-((F-8)-V°)dve = t =
Vver Vveor (6.59)

= S~-(E)'dV°+/ ve . ((F-8)-V°)adve
VO/ Vo/

Rearranging equation (6.60) by utilizing the above relation yields

/ |:vo.((F_S)'vo+pobo_poso)_
VO/
=0

—(p ey =8 (BY —ph + " ~V°)} Ve =0 (6.61)

from where it follows the local form of the first theorem of thermodynamics in
material description:

0° () = 8§ - (E) + p°h° — q° - V°. (6.62)

6.4.3. A possible form of the constitutive equations. If the temper-
ature is constant (there is no energy dissipation in the form of heat) h = 0,
q = 0. Consequently, equation (6.53) simplifies to the form

pley) —t--d=0. (6.63)

Note that this equation is valid in spatial description only.
If we set h® and g° to zero in equation (6.62) we get (6.63) in material
description:

p°(e?)—=8--(E)=0. (6.64)

REMARK 6.4: Assume that the body considered has an internal energy function
€° = e. Assume further that the temperature of the body is constant, i.e., there is
no heat input or output into or from the body. If the internal energy e® = e is a
function of the Green-Lagrange strain tensor E only we have

Oe®

() = 55 (Ban) (6.65)
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With this result we can rewrite equation (6.64) into the following form:

a [e]
<p° 8EZB - SAB) (Eap) =0. (6.66)

Since the previous equation should be fulfilled for any (E4p)" it follows that

o [e]
. 0e . Oe

S=p 98’ Sap=p 9Eap

(6.67)

This equation is a possible constitutive equation.

REMARK 6.5: An equation similar to (6.67) but valid in the current configuration
can also be derived. According to (2.68) it holds that

e=F T E-F'  eu=F_FEapFy.

Hence
de 1 4 Oere 1 1
87E—F OF y aEAB—Fk_AFBZ
and
Qe® . Qe Ode __, Oe __p
9E " ve 9B T ae T
oe® Oe Oeyy _, Oe

_— = —_— = F F 1 .
8EAB e:TeD 36}% (9EAB Ak 86 ¢B

Making use of the previous equations yields the following partial result:

8 T _1 36 T _ 86
F- 2B -F' =F. [F "B F~ } -F =355
Oe® 4 Oe ;4 Oe
Foq Xy, = F % poil gy = (6.
Y 0Bap T { Ak ey ZB} B Dere (6.68)

A comparison of equations (5.27) and (6.7) leads to the following relation:
1 T_ P T
t:jFSF :EFSF . (669)

Dot multiply equation (6.67) by L F from left and by FT from right. If in addition
we take relations (6.68) and (6. 6 ) into account we have

Oe Oe

tzl)%, tkezpaTM-

(6.70)

Here we should assume that the internal energy density e is given in terms of the
Euler-Almansi strain tensor eyy.
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6.5. The second theorem of thermodynamics

6.5.1. The second theorem of thermodynamics in spatial descrip-
tion. We shall need the second theorem of thermodynamics? [4, 16] if we want
to clarify what effect the non-uniform temperature distribution has on the con-
stitutive equations.

Let s be is the entropy per unit mass — the entropy itself is such an elemen-
tary thermodynamical quantity which increases if we input heat into the body
and decreases if the body loses heat.

Knowing the entropy density we can calculate the total entropy within the
part of the body V':

S = psdV . (6.71)
v

Since the entropy is related to the heat energy stored in the body it has
also a strong relationship with the temperature distribution within the body.
(The temperature © at a given point of the body is an objective comparative
measure which shows if the body is hot or cold at the point considered. On the
absolute scale the temperature © is a positive quantity © > 0.)

Relationship

g [ Pav_ [ 9.naa (6.72)
v O 4 O
is the entropy input rate that gives the entropy contribution (increment or
decrement) to the part of the body in V'’ per second. The quotient h/O is
the entropy source density (or entropy supply density), while the vector q/O is
called entropy flux.

The second theorem of thermodynamics is an axiom which says that the
material time derivative of the total entropy is greater than the entropy input
rate (equality is possible for reversible processes only):

(5)-=/ psyav>9= [ Lav— [ 9 444, (6.73)
, v © a O
If we utilize the divergence theorem we can transform the surface integral into
a volume integral:

. ph q
-4 (=) >0. .
/I{p(s) o (3) V]dV_O (6.74)
Since this inequality holds for any subregion V' of the body it follows that
.. Ph q
> (=) .
sy =5 -(5)v. (6.75)
or
- (6V - (6V
p0 (s = ph—aq -7+ LT gy SOV )

2Sadi Carnot, 1796-1832
Rudolf Julius Emanuel Clausius, 1822-1888
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where, according to (6.53), ¢¢ is the heat power. Inequality (6.76), which is
known as Clausius-Duhem inequality® (or entropy theorem), is the local form
of the second theorem of thermodynamics [16, 31].

We define the dissipation power per unit volume by the following equation:

Sp=pO(s) — (ph—q-V) =pO(s) —p(e)+t--d>0. (6.77)

pq=p(e) —t-d

It follows from the definition that the dissipation power can not be negative.

It is worthy of mention that relation (6.77) is known as Clausius-Planck
inequality” [16, 24].

The local form of the entropy theorem, i.e., inequality (6.76) can be given
in terms of the dissipation power too:

q- (V)

o >0. (6.78)

If & = 0 the inequality q- (OV) < 0 follows from here. This result is in ac-
cordance with the observation that the heat flows from the hotter place towards
the cooler place, i.e., in the opposite direction of the temperature gradient.

dp —

6.5.2. The second theorem of thermodynamics in material de-
scription. Let s°(X;t) = s[x (X;t);t] = s(x;t) be the entropy distribution in
the initial configuration. Making use of this relation

S = p°s®dV® (6.79)
VO/
is the total entropy in the part of the body in V. With regard to (6.55) it is
obvious that

pOhO
dV
Al @ Vo @

Recalling (6.56) we may write

-7
/%-ndA:/ 7”9 9. peda° =

/ — -n°dA° —/ = -V°dV° (6.81)
AO/ o/
A comparison of (6.79), (6.80) and (6.81) to (6.73) yields

to
/o, [po () — Ogho . <q0> V"] Ve >0, (6.82)

e

o one . P°R°
> _
p(8)79 <

ave. (6.80)

Hence

Q

> Ve, (6.83)

|

or

q° - (OV°)
—e

p°O (s°) > p°h® —q° - V° + (6.84)

3Pierre Duhem, 1861-1916
4Max Karl Ernst Ludwig Planck, 1858-1947
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It follows from the first theorem of thermodynamics that
p°(e?) —8--(E) =p°h®—q°-V°. (6.85)
Substituting this relation into (6.84) yields
q°- (6V°)
o .

Equations (6.84) and (6.86) constitute the second theorem of thermodynamics
in local form and material description.

p°O(s7) = p° () =S (E) + (6.86)

6.5.3. Energy conjugate quantities. Assume that the mechanical pro-
cesses we consider are all isothermal. Then the stress power density can be
given in various forms:

1 1
br=t--d= 1+ =-7-d= 1 =—-8.. (E) =
’ (5.33) (650 J (E)

1 . 1 o O\ -
=1 =-58(C)y=1 ==p°()=1=p(e) . (687
(2.32) 2J 6.64) J (6.8)

Utilizing the transformation

S (E) :(222): (F'.P) --%((FT)'~F+FT : (F)') _
S

(E)
:(Ffl.p)..<FT.(F)'> = 1 :(F.Ffl.p)..(p)':
(1.213)
—P..(F) (6.88)
~ F7'. P, FT and (F)" correspond to §, T and W in (1.213) — leads to the
result

1 1
—-S..(Ey=-P..(F). .
b= (B =P (F) (6.89)
REMARK 6.6: If we take the time derivative of the product R” - R we get
. . T
(RT) "R=-R" (R) = —((RT) -R) (6.90)

which shows that the product (RT)'~ R is a skew tensor.

We shall also make use of the following manipulations for which equation
(6.88) is our point of departure:

S~~(E)':s-é((FT)'~F+FT~(F)'):S.-((FT)'.F):
~s-((u-Rr") - F)=5--((Uy B -B-U+U-(R")-R-U) =

=S--((U)y-U) (6.91)
in which on the basis of Remark 6.6 it holds that
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S (U- (RT>.~R~ U) =SapUar (Rrx) Rkc Ucp =

=UraSapUpc (Rik) Rye = (U - S - U) - '((RT). : R) =0.
—_— L

symmetric
Y skew

On the other hand

1
T(U) = 1 = 5(U-S 4S8 U) () = (U (U 8) =
5.32
= (Uap) (UACSCB) =Sgc (Uga)Uac=S"- ((U) : U) . (6.92)
Compare (6.91) and(6.91) and take (6.87) into account. We get
1
br=5T-(U) (6.93)
It also follows from (6.87), (6.89) and (6.93) that

po(eo)':Jt..d:T..d:

1
=S (E)'=§S--(C)': T - - (Uy=P--(F). (694
According to this equation the energy product of a stress tensor and the as-
sociated strain rate tensor results in the time rate of the mechanical energy
per unit volume in the initial configuration. On the basis of this equation the
stress tensors Jt, 7, S, T, P and the associated strain rate tensors d, (E)",
(C) /2, (U), (F)" are called work conjugate pairs or energy conjugate pairs.
For further details concerning the work conjugate pairs the reader is referred to

[85] — see pages 144-145.

REMARK 6.7: With (6.88) equation (6.62) takes the following form:

p° ey =P --(F)+p°h°—q°-V°. (6.95)
For isothermal deformations the above relationship is simplified to
p°(e)y=P- (F) = Pya (FZA)'- (6.96)
If €° is a differentiable function of the deformation gradient F' we obtain
Oe®
°) = Fua) . :
(%) aFM( 7)) (6.97)
With this result equation (6.64) can be rewritten into the following form:
Oe®
° - P, Fea) =0. 6.98
(P OFua m) (Fra) (6.98)
This equation should be fulfilled for any (Fy4)". Hence
Oe® Oe®
P =)y Ppa=p° . 6.99
P oF” ATl kA (6.99)

Significance of the constitutive type relations (6.67), (6.70) and (6.99) will be
discussed in Section 8.5.5 which is devoted to the material behavior of hyperelastic
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materials. It is a fundamental issue concerning the isothermal case what quantity
the strain energy density e® depends on: ey, Fya of Eap.

6.6. Problems
PROBLEM 6.1: Given the equilibrium condition of a body:
r1=(1+a)X; + BXs, 2o =BX1+(1+a)Xs, x3=2Xj3 (6.100)
where « and (3 are constants. Prove that

o

_ P
SRR

Are there any restrictions on the constants o and 37 If yes give them.

(6.101)

PROBLEM 6.2: Given the velocity field

_ _ a2 2
V1 = axy — fry, v2 = Px; +oaxe, vz =7y\/2]+ 25

in which «, 8 and ~ are constants. Find the density in the current configuration
provided that p° is known. Under what condition can this motion be isochoric?

PROBLEM 6.3: Prove using indicial notation that the Cauchy stress tensor is a
symmetric tensor.

PROBLEM 6.4: Assume that the deformations are small. Assume further that we
know the stress tensor which is given by its matrix:
6X:X2 0 -2X3
t = o =a 0 12 a = 1[N/mm”] (6.102)
(3x3)  (3x3) Lox? 2 3x?
where X, is measured in mm.

(a) In the absence of body forces the stress field should be self-equilibrated.
Check if the stress field (6.102) is really self-equilibrated.

(b) Determine the stress vector at the point X = 21i; 4+ 3 i3+ 2i3 [mm] on the
plane 2X; + X5 — X3 = 5. (We remark that the unit normal to a plane
defined by the equation ay Xy, = b — ay and b are constants — is given by
the relation n = a, i,/ /aray.)

(c) Determine the normal stress o(™ and the shearing stress 7(") at this point
on the plane.

PROBLEM 6.5: Assume that the stress tensor within the body is given by the fol-
lowing equation:

2319 x1(b? — 23) 0
t =a| z1(b?—23) Fwa(a—30%) 0 (6.103)
(8% 0 0 222

in which a and b are non zero constants. Find the body forces if the stress tensor
is equilibrated.
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PROBLEM 6.6: Assume that

0
0 0 Pz xTo
t =pa 0 0 % + 21
(3x3) 06 2
8331 - 1:2 8362 + xl O

is the stress field, where p and « are non zero constants while ¢ (x1,22) is a
harmonic function, i.e., A¢ = 0. Does this stress tensor satisfy the equilibrium
equations in the absence of body forces?

PROBLEM 6.7: Given the function f(x,t). Prove that
/ Fx,08(x,1) - ndV = / [66x.0) - (/. 0) + pf(x, 1) (b= V)] da.
|4 A

PROBLEM 6.8: Given the equilibrium configuration of a body and the elements of
the Cauchy stress tensor:

1 1
;= 16X, I2:*§X2, 503:*1)(3

t1; = 100 MPa the =0 if ge#11.

Determine (a) the first and second Piola-Kirchoff stress tensors then (b) the stress
vector t(™ and the pseudo stress vector t°(") on a plane with normal n° before
deformation.

(6.104)

PROBLEM 6.9: The mass center x. a body B is defined as

:l/ pxdV.
mJjv

D3x
< = bdV t-ndA.
Di? /Vp + /A n

PROBLEM 6.10: Assume that the stress field is self equilibrated. Prove that the
average value of the Cauchy stress tensor

_ 1

tor = — | todV

=5 /v ok
can be calculated as

_ 1 n
t%:W/V (xxbe + xobr) dV_|_7/ l‘ktz )+t )dA

Prove that

PROBLEM 6.11: Prove the validity of transformation (6.88) using indicial notation.






CHAPTER 7
Energy principles

7.1. Special vector and tensor fields

The special vector and tensor fields satisfy some kinematic equations or
fundamental laws of continuum mechanics but not all of them which means
that a few other equations of continuum mechanics are, however, not fulfilled.

The velocity field v is said to be kinematically admissible (geometrically
permissible) if it satisfies the kinematic boundary conditions

V=, Vg = Vg Vx € A, (71)

and is differentiable up to a required order (at least two times).

{The strain rate tensor d is}} [[The strain rates dy, are]] said to be kine-
matically admissible (geometrically permissible) if the kinematic equations

~ 1 - 1
d:§(00V+Vo</), dkfzi(ﬁk,é“"&é,k) Vx eV (7.2)

have a solution for the velocity field ¥ (9x) and the solution satisfies boundary
conditions (7.1) imposed on the velocity field.

Conversely, the {{strain rate tensor d}} [[strain rates ds|] obtained from a
given kinematically admissible (geometrically permissible) velocity field v ()
by using kinematic equations (7.2) {{is}} [[are]] also kinematically admissible
(geometrically permissible).

E3
The strain rate tensor d is compatible if it satisfies the compatibility equa-
tion

-VxdxV=0, epqreskgdpsﬁqk =0 Vx € A, (73)

which means that equation

d:§<VOV+VOV), dkg:§<vkyz+ve7k> vxeV (74)
has solutions for the velocity field v. We remark that the possible velocity fields
v may, however, differ from each other in an arbitrary rigid body velocity field.
It is obvious that a kinematically admissible strain rate tensor also satisfies
compatibility equations (7.3).
155
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The kinematically admissible displacement field is defined in a similar man-
ner: The displacement field G is kinematically admissible (geometrically per-
missible) if it satisfies the displacement boundary conditions

fl:fl7 U = Ug . Vx € A, (75)

and is differentiable up to a required order (at least two times).

In the linear theory of deformation the kinematically admissible {{strain
tensor & is}} [[strains &j; are|] said to be kinematically admissible (geometrically
permissible) if the kinematic equations

1 1
e=5(MoV+Vou), &= (et ik Vxe V=V (7.6)

have a solution for the displacement field @ (@) and the solution satisfies the
displacement boundary conditions (7.5).

In the linear theory of deformation the compatible strain tensor b fulfills,
in accordance with all that has been said in Section 4.60, the compatibility
conditions

N=VXEXV =0, 7u=-epplsktepsge=0, VXeV°=V (7.7)
which means that equation
* 1 * * * 1 * *
e:§(uov+vou), Ekz=§(k,e+ué,k) Vxe V=V (7.8)

has solutions for the displacement field u which, however, may differ from each
other in an arbitrary rigid body motion of the continuum.

It is obvious that a kinematically admissible strain tensor also satisfies com-
patibility condition (7.8).

For given body forces pb = f the Cauchy stresses |[tx¢ are|| {{the Cauchy
stress tensor t is}} said to be equilibrated {statically admissible} if [[they satisfy]]
{{it satisfies}} the equilibrium equations

t-V4+£f=0, t_kz,z—l—szo

- - vxeV 7.9a

t" =t, tke = tek (7.92)
{and the traction (dynamic) boundary conditions

t-n= E, Ekgng = {k . Vx € Ay (79b)

}

REMARK 7.1: If the acceleration field a is also given and f = f(*) = pb — pa then
the Cauchy stresses tj, are said to be {dynamically admissible}.

REMARK 7.2: Conditions (7.1), (7.3), (7.5) the kinematically admissible velocity,
displacement and strain fields 0, @& and & meet are referred to as side conditions.
Conditions (7.9) the statically (dynamically) admissible stress field ¢ should satisfy
are also called side conditions.
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REMARK 7.3: The true solutions (or simply the solutions) v, u, & (vg, ug, exe) are
kinematically admissible. The true solution (or simply solution) ¢ (tx¢) is statically
(dynamically) admissible.

The difference between two

kinematically admissible velocity fields ov (dug)

kinematically admissible strain rate tensors od (duy)

kinematically admissible displacement fields is denoted by | du (duy)

kinematically admissible strain tensors de (0eke)

statically (dynamically) admissible stress tensors 0t (0tge)
and

virtual velocity field (virtual velocities).

virtual strain rate tensor (virtual strain rates).

is referred to as | virtual displacement field (virtual displacements).
virtual strain tensor (virtual strains).

virtual stress tensor (virtual stresses).

It follows from their definition that the virtual quantities should meet the
following field equations and boundary conditions:

v=0, (6vg, = 0) x €A, (7.10a
(

od = % (0voV +Vodv), [ddy = % (Ovge+ v )] x€V
dju=0, (dug, = 0) x €A, (7.10c

1 1
55:5(5ro+V05u), [Gere 5(51%75_,_5”[’]6” xeVe =V (7.10d

and
ot-V=0, (0tge,e = 0) xeV (7.11a)
5tT =t (6tre = Otog) xeV (7.11b)
0t-n=0. (Otgene = 0) x € Ay (7.11¢)

The above conditions can again be called side conditions the virtual quan-
tities should meet.

REMARK 7.4: The virtual quantities are named variations if the subtrahend is the
actual solution and the difference (measured in some norm) between the minuend
and subtrahend is sufficiently small.

A bit more rigorous definition for the concept of a virtual quantity is also
presented here.

Let us denote the increment of a quantity by the Greek A. Assume that
the dependency of the quantity considered on other quantities should not be
taken into account. Then the virtual quantity is a sufficiently small increment
of the quantity considered (for example: Au® = du®).

Assume now that the quantity in question (for example E) is a function of
another quantity (E is a function of u®). Then its increment is also a function
of the increment of the quantity it depends on. If this is the case the part of
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its increment linear in the increment of the quantity it depends on is its virtual
change. For instance

E + AFE = E(u°+0u°) =

= % [(W°+0u®) o V°+V° o (u°+d0u’)+(V° o (u®+du°)) - (u°+du®)o V)] =

1
:E+§ [0u® o V°+V° o du™+(V°odu®)  (u®oV°)+(V°ou): (6u®oV°)H
1
t3 (V°odu®)-(du®oVe),
where
SE =

1 .
=3 [0u® o V°+V° o du’+(V°odu®) - (u®oV°) + (V°ou’) - (du®oVe)]
(7.12)

is the virtual Green-Lagrange strain tensor (or the variation of the Green-
Lagrange strain tensor). The variation of an arbitrary tensor valued tensor
function is defined in the following manner. Let ¥(u) be an arbitrary tensor
function of u. The variation of ¥(u) with respect to u is given by the following
equation:

d

0¥ (u) = —¥(u+edu) . (7.13)

de =0
Note that definition (7.13) yields (7.12) if it is applied to the function E =
E(u°).

7.2. General and complete solution to the equilibrium equations

7.2.1. Solution on volume regions bounded by a single closed sur-
face. The stress tensor t is equilibrated if it satisfies the equilibrium equation

t-V+f=0, f=pb,
. VxeV (7.14a)
thee + fr =0, frx = pby
and the symmetry condition
t=1t7, the = tor Vx e V. (7.14b)

Let H be a symmetric tensor field on V. We shall call it stress function
tensor. Furthermore let ¢P) be a particular solution to the equilibrium equation:
t®) .V +f=o0.

Consider now the the stress field

t=-VxHxV+tP, vx € V. (7.15)
We shall prove that the first term on the right side, i.e., the stress field
t* = —V x H x V is the general solution of the homogeneous equilibrium

equation t* -V = 0 on simply connected volume regions V' bounded by a single
closed surface A. The proof is given in indicial notation.
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In the first step we shall show that t* is equilibrated.
By taking into account the symmetry of the stress function tensor H, i.e.,
condition Hyq = Hay we get that t* is also symmetric:

*
tpz = epykeédrHyd,kr = Eldrepkayd,kr = EZdrepkady,rk = t)zp y vxeV.
The homogeneous equilibrium equation t* - V = 0 is also satisfied since:
*
t plL = €pyk€edrHydkre = 0, VxeV.

Here we have taken into account (and shall do the same latter on) that the
double dot product of skew and symmetric tensors vanishes. Therefore the
product €ggrHyd kre = €dreHyd kre is equal to zero since the index pair ,, is a
skew one while the index pair ,, is symmetric. Hence we have proven that the
stress field t* is equilibrated.

In the second step we shall prove that t* is self-equilibrated.

The stress field t* is said to be self-equilibrated if (a) the resultant of the
stresses on the boundary surface A vanishes and (b) the moment of the same
stresses about a fixed point (say about the origin) also vanishes.

Condition (a) is a surface integral which can be transformed into a volume
integral by using the divergence theorem. Since the integrand in the volume
integral is the equilibrium equation in the absence of body forces it follows,
therefore, that the resultant of the stresses on A is zero:

A \%

Verification of the second condition needs more steps. Let z,, be the position
vector. When manipulating the second condition into a more suitable form we
shall utilize the relation z,, , = d,¢, the symmetry condition t*,0 = %, as well
as the fulfillment of the equilibrium condition t*, , = 0. For the moment M, of
the stresses about the origin we can now write by using the divergence theorem
that

Mv = / xueupvt*pen[ dA = / [xu’lﬁupvt*pz + "L'u6uprut*pz’z] dV =
A V ~~ N——

6 =0

=- / Eprt* e dV = 0.
V N~—~——

=0

ul

That was to be proved.

If the volume region V' is bounded by more than one closed surfaces then
the stresses are self-equilibrated on each closed surface. Consequently solution
t* = —V x H x V can not be complete because there is no guarantee that the
loads exerted on the separate closed surfaces are all self-equilibrated.

7.2.2. The general and complete solution. The general and complete
solution to the equilibrium equations was published by H. Schaefer [13] in 1953.
A mathematically different otherwise equivalent solution is given by M. Gurtin
[56]. Papers [77, 78] by Szeidl and Kozék derive Schaefer’s complete solution
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from the principle of complementary virtual work. Derivation of Schaefer’s
complete solution in this way is based partly on the knowledge of the necessary
and sufficient conditions the strains should meet to be compatible. In this
respect the line of thought in the papers cited has a methodological importance.
In what follows we shall consider Schaefer’s solution.
Let x be a solution to the Poisson equation

Ax = —pb, VxeV. (7.16)

It is well known that this problem always has a solution on V provided that
the product pb meets the usual continuity conditions. Further let H be, in the
same way as earlier, an arbitrary symmetric tensor field on V. Then the stress
field

t=-VxHxV+Vox+xoV-—(x-V)1, Vx eV (7.17)

is (a) equilibrated and (b) complete, that is, any solution of the equilibrium
equations (7.14) can be given in the form (7.16).
First we shall show that the stress field ¢ is equilibrated. Since the sym-

metric product t* = —V x H X V is a solution to the homogeneous equilibrium
equations it is sufficient to show that
tP =Vox+xoV—(x-V)1, vx eV (7.18)

is a particular solution. The symmetry is obvious. It also holds that
t?) . Vipb=(x-V)IV+x(V-V)=(x-V)V+pb=0, VxeV (7.19)
—_——
—pb
which means that (7.18) is really a particular solution.
In the sequel we shall consider the problem of completeness.
Let us assume that £ is a solution of the equilibrium equations (7.14), i.e.,

it is an equilibrated, but not necessarily self-equilibrated stress field. Let t* be
a solution of the Poisson equation

At* = —t, vx e V. (7.20)

As it has already been mentioned in connection with equation (7.16) the above
Poisson equation has a solution. It is also obvious that £* is a symmetric tensor.
Given t*, we define the stress function tensor H by the following relation:

H=t"—(trt )1, Vx e V. (7.21)

Because of the structural similarity between the expressions —V x € x V
and —V x H x V we can apply relation (4.43) for manipulating the product
—V x H x V into a more suitable form:

~VXHxV=[trH)V’ -V -H-V]1+V-HoV+VoH V-
—HV? — (trH)Vo V.
Let us now substitute (7.21) for H and take into account that
H-V=t*-V-—(trt*)V, trH =—2trt*. (7.22)
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We get
—Vx%xV:{ﬂﬁmﬂA7V¢WV+@nﬂA1+

+ (tX -V - (trtX)V> oV+Vo <15X -V — (trtx)V> -
—— ———

—t A4 (trt*)A1 +2(trt*)Vo V,
—_— ~—

where the terms underlined cancel out. Hence

SVXHXV = V)oV+Vo(t* -V)-V-t*-V— At
—~—

(7.20): —1
Let us introduce the notation )y = —t* - V and resolve the above equation for
t. We get:
t=-VxHxV+Vox+xoV-—(x-V)1, VX eV. (7.23)

Since this stress field satisfies equations (7.14) it also follows with regard to
equation (7.22) that Ax = —pb. By this last remark the proof is full: we have
shown that solution (7.17) is complete.

The body forces are said to be conservative if it holds that pb = —¥V
where ¥ is the potential function. Making use of the identity YV =¥1 -V we
can rewrite equation (7.14) into the form

t-V4pb=(t—w1)V=0. (7.24)

It is obvious from equation (7.24) that the complete solution given by (7.23)
belongs to the stress field t — ¥ 1. Consequently,

t=—-VXxHxV+Vox+xoV+W—-x-V)1, VX eV (7.25)

is the general and complete solution of the equilibrium equations if the body
forces are conservative.
The components of the stress function tensor H are called stress functions.

EXERCISE 7.1: Derive formulae for the stress components in terms of the stress
functions in the coordinate system (zyz).
It is not too difficult to verify using (7.25) that

Ouw =V + Hyyzo + Hezyy — 2Hyzye + Xaw — Xy — Xoz s

Oyy =V + Hezoe + Howze = 2Howza + Xyy — Xz2 — Xaz s

02 =V + Howyy + Hyyae — 2Hayay + X2 — Xow — Xy

Tay = Tye = Hyme + Humige — Hamos — Mmooy + X+ Xgas )
Tyz = Toy = Haayo + Hyzzo — Hyzao — Haayz + Xey + Xyo
Tow = Toz = Hay,zy + Hayoy — Heayy — Hyyae + Xoy + Xy,o -
The general solution t* = —V x H x V of the homegenous equilibrium

equations t - V = 0 was found by A. Beltrami in 1892 [28].
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Recalling that the kinematic equation (4.31) according to (4.46a) identically
satisfies the compatibility equation and taking into account that the mathemat-
ical form of the compatibility equation n = —V x & x V = 0 is the same as
the solution t* = —V x H x V to the homogeneous equilibrium equations we
can come to the conclusion that the same stress field is resulted from the stress
function tensors

1
H and 7‘[+§(WOV+VOW)

where w is an arbitrary differentiable vector field on V.

We can always select the vector field w in such a manner that three compo-
nents of the stress function tensor are equal to zero. In a Cartesian coordinate
system there are seven possibilities for selecting the non zero components of the
stress function tensor.

Well known are the following two possibilities for selecting the non zero
components of the stress function tensor:

— Maxwell’s stress functions [19, 20]:

Hi1 0 0
H= 0 He O ; (7.27a)
0 0 Hss

Note that the off-diagonal elements are all set to zero.
— Morera’s stress functions [30]:

0  Hiz His
H=| Ha 0 Ho (7.27b)
Hz1 Hiz O

Here the diagonal elements are set to zero.

7.3. Principles of virtual power

7.3.1. Some formal manipulations. Assume that the stress tensor is
dynamically admissible. Then
t-V+f@ =0 and t=1¢", (7.28a)
where
(9 = pb —pa . (7.28b)
Dot multiply equation (7.28a); by the kinematically admissible velocity field v
and integrate the result over the volume V' of the body. We get

/Vv. (E.V+f(“))dV:O, /Vvk (Ekg,ﬁf,i"))dvzo. (7.29)

To obtain a point of departure for the principles of virtual power the above
equation should be manipulated into a more suitable form. In accordance with
the rule of partial integration (1.180) we can write

/Ve-(%-V)dvz/v(o-z)-VdV—/Vé-Z-VdV (7.30)
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from where by applying divergence theorem (1.179) we have

i _ Lo
/v.(t-V)dvz/o-t-ndA_/o-t-Vdv. (7.31)
v A 1%

By utilizing equation (1.96)3 we can rewrite the integrand of the last integral
L o o1 1 )
v-t-V=t--(VvoV)=1t-- §(VOV+VOV)+§(VOV—VOV) =

—1 (d+n)=t--d+t--n=t d. (7.32)
=0

Hence,

4 _ .
/\“f-(t~V)dV:/x‘/-t-ndA—/ £.ddv,
v A v (7.33)

/ﬁkfk&ngZ/ﬁkfkgngdA—/ Ekﬂik@dv.
14 A \%4

If we substitute this result back into (7.29) after a rearrangement we obtain

/f--cidV:/fr-f(a)dV—k/\?-f-ndA,
14 Vv A
/t_kgczkng:/ ﬁkfka) dV—‘r/f)kfkgngdA.
\%4 Vv A

REMARK 7.5: Since we have not utilized the boundary conditions so far the kine-
matically admissible velocity field ¥ and the dynamically admissible stress field &
may belong to different boundary value problems (the resolution of the boundary
surface A into two parts A, and A; can also be different for the two boundary value
problems mentioned).

(7.34)

Let us assume that ¥ and £ belong to the same boundary value problem.
Then v =v on A, and £-n =t on A;. Because of the additivity of the surface
integral we can rewrite equation (7.34) into the form

/E-.&dvz/v-f<a>dv+/
\%4 14 A
/fkgczkng:/ f]kfka) dV-‘r/
\4 Vv A

This equation holds for any kinematically admissible velocity field ¥, strain
rate field d as well as for any dynamically admissible (statically admissible if
a = 0) stress field ¢.

It is worthy of mention that the above equation is independent of the con-
stitutive equations.

The left sides of equations (7.34), (7.35) are the fictitious stress powers that
the dynamically admissible stress field £ has on a kinematically admissible strain
rate field d (the adjective fictitious means that none of the two fields mentioned

x7~f~ndA+/ v-tdA,
Ay

v

(7.35)

’l~)kt_kgng dA + / f}kfk dA.
Ay

v
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are, in general, true solutions) whereas the right sides are the fictitious power
of the external forces on a kinematically admissible velocity field v.

7.3.2. Principle of virtual power. If we have two kinematically admis-
sible velocity fields we may write:

/f--JIIdV:/f(“)-\‘IIIdV+/
1% 174 A
/f~31dV:/f(“)-\71dV+/
1% 174 A

Subtract now the second equation from the first one by taking the relations

\7]1—\712(5V, (i[]—(i[:éd

{f-i-ndA—l—/ Vir-tdA, (7.36a)
At

v

ff-i~ndA—|—/ vr-tdA. (7.36Db)
At

v

into account. Since dv = 0 on A, we get

/f~-5ddV:/6v~f(“)pdV—|— Sv-tdA. (7.37)
14 \4 Ay

Assume that given f(*) (x € V) and £ (x € A;) (A,UA, = A, A,N A, =0)
in the considered configuration of the continuum. Then we may state that
equation (7.37) holds for any dynamically admissible stress field ¢ and virtual
velocity field dv.

Assume further (a) that given the vector field f* (x € V), (b) that the
stress field £(z), which we regard a fixed quantity, fulfills the symmetry condition
t =t7 x €V and finally (c) that the equation

/t~-6ddV=/ f(“)-évpdV—l-/ t-ovdA,
1% 14 Ay

(7.38a)
/ tre 0dpe dV :/ féa)évk pdV + / fkévk dA
\% |4 Ay
holds for any év under the side conditions
5d:%(5voV+Vo§v), xeV; ov=0, x€A,,
(7.38b)

1
0dpe = B (51)]{1[ + (51)@)]@) R xevV; o, =0, xX€EA,.

Then the stress field ¢ is dynamically admissible.
To prove this statement substitute the manipulation

1 1
/ treddee dV = / tre = ((51)]@,5 + (51)@7]@) dV + / tre—= ((51119’4 — 5U€,k) dV =
14 14 2 14 2

tred250=0

:/ tkg(svk’ng:/ (tkgévk.)% dV*/ tkgvgé"l)de: T =
14 14 14

(1.179)

= / treng Ovy dA — / tree bvpdV = 1 =
A=A,UA, v (7.10a)
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= / treme ovy dA — / tree dvp dV (7.39)
Ay v
into (7.38b). After a rearrangement we obtain
/ oy, (tkz,l + f]ga)> dVv + / v, (fk - tkgng) dA=0. (740)
14 At

Here the two integrals are taken over different regions and vy is arbitrary.
Consequently,

thee + f]ga) =0, xp, €V and Ek = treny Ty € A, (7.41)

which means that txs is dynamically admissible. That was to be proved.

The previous statement (the statement we have proved) is the principle of
virtual power. It is worthy of mentioning that this form of the principle is also
independent of the constitutive equations.

7.3.3. Principle of complementary virtual power. If we have two
dynamically admissible stress fields equation (7.34) yields

/EH~-3dV:/f(“)-€rdV+/ fr-iu-ndA—i—/ v-tdA, (7.42a)
\% 14 Av Afr

/i,--c‘ldvz/f@.odwr/ ff-i;-ndA—i—/ v-tdA.  (7.42b)
14 14 Ay At

It is worthy of subtracting the second equation from the first one by utilizing
the relation

E[[—EIZ(St

and taking into account that the virtual stress field §¢ is zero on A;. We obtain

/Ez--atdvz/ V-6t-ndA. (7.43)
\% Ay

Assume that given ¢ (x € 4,) (A,UA; = A, A,NA; =0) in the considered
configuration of the continuum. Then we may state that equation (7.43) holds
for any kinematically admissible velocity field ¥ and virtual stress field Jt.

Assume further (a) that given v (x € A,), (b) that the strain rate tensor,
which we regard a fixed quantity, fulfills the symmetry condition d = d” (x €
V) and finally (c) that equation

/d~-(5th:/ v-i0t-ndA,
v A,

/dkgétudV:/ VpOtpeng dA
14 A,

(7.44a)
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holds for any 6t under the side conditions

5t-V=0, 5t =otT, xeV,
6tn:0a XEAt.
(7.44b)
515]@(,4 =0, Oty =5tg’k, Tq € Vv,
dtrene =0, Tq € Ay

Then the strain rate tensor is kinematically admissible. This statement is the
principle of complementary virtual power.

REMARK 7.6: We shall not prove this statement.

REMARK 7.7: Fora=0 f(® = f = pb. The previous equations and statements
remain valid for this case as well provided that the expression dynamically admissible
is changed to the expression statically admissible.

REMARK 7.8: It is worthy of drawing the attention to the following fact. Whereas
(7.35), (7.37) and (7.43) are fulfilled by only one-one &, ¥; or %, dv; or d, Sv
tensor and vector fields the statements of the virtual power and complementary
virtual power require the examination of the all (that is infinitely many) virtual
velocity fields 0v and stress fields §¢. In spite of this the latter two principles have
significant role when we seek approximate solutions and instead of examining the
totality of the possible vector and tensor fields we select only a few which are,
however, best characterize the problem to be investigated. We mention that the
same is valid for the virtual work principles presented in Section 7.4.4.

7.3.4. Equations in the initial configuration. The equations and state-
ments we have presented in Sections 7.3.1, 7.3.4 and 7.3.3 are related to the
current configuration of the body. On the basis of equations (6.44), (2.94) and
(2.92), however, we can transform the principle of virtual power (7.38a) into
the initial configuration:

S (JE) dV°:/

Ay £ gve dve + / Aat-6vodA®. | (7.45)
A7

o

Ve

Making use of equations (5.22), (5.23) and (5.23) we may also write:

dF =t -ndA=Jt - F 7 -n°dA°=J F -F 't - F " .n°dA° =
———
1
=JF-JF 't-F ' .n°dA° =F-§-n°dA°. (7.46)
—_——
s
Hence
0t - ndA=F-§S -n°dA°. (7.47)
With this equation we can also give the principle of complementary virtual
power (7.44) in the initial configuration:

/ (E)-..(s,gdvoz/ Vv-F-§5 -n°dA°. (7.48)
o Ag
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It is necessary to emphasize that equations (7.45) and (7.48) concern the con-
sidered configuration (the initial configuration) of the body, i.e., they are valid
for given Ay, A4 and F. When applying equations (7.45) and (7.48) the quan-
tities defined in the current configuration — for instance dv, £(*) — should all,
therefore, be transformed into the initial configuration.

7.4. Virtual work principles

7.4.1. Principle of virtual work in the current configuration. Let
0t be a very small time amount. Then

du=ovot. (7.49)

Multiplying equation (7.38a) by dt and taking into account that

1
5t6d=§(6u0V+V05u):56L xeV (7.50)

we get
/t--éeLdV:/f(a)-éupdV—i—/ t-dudA (7.51)
14 14 Ay

in which e’ is the virtual change for the linear part of the Euler-Almansi strain
tensor.

Assume that given the vector field £f(* (x € V). Assume further that
the stress field ¢(z), which we regard a fixed quantity, fulfills the symmetry
condition t = t7 x € V. If equation (7.51) holds for any du under the side
conditions

5eL:%(6uOV+V05u), xeV; dju=0, x€A, (7.52)

then the stress field is dynamically admissible (or statically admissible if a = 0).
The prof of this statement is basically the same as that of the principle of
virtual power. For this reason it is omitted.

REMARK 7.9: We shall prove that §e’ coincides with the variation of the Euler-
Almansi strain tensor. On the basis of equation (2.68)2 we have

(56kg = Fk_Al 6EAB Fgél (753)

where with regard to (2.32)3 4 it holds that

1 1 1
0EAp = 55 (FarFrp+0aB) = 5 (0Far) Frp + §FAT (0F B) =

| R 1 o o
— 1 =3 (V4oug) Frp + §FAT (0urV3) .
F=I+uoV®°
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Substituting the above relationship into equation (7.53) by taking into account
that du® = du and R = r we get

1 o _ 1 __ ° _
depe = *FkAl (VA(SUT) FrBFBgl + 7FkAlFAT (6UTVB) FBZI =
2 ——— 2&,_/
57«1{ 6kr

[Fid (V9oue) + (0un V) Fill. (7.54)

[N

According to equation (2.30) VS F/ = V, while F|} (V% 6u) is the transpose
of (6u V%) F;. Hence, we have

1

ey = 5 [6ukVe + Vk(SUe] . (7.55)
7.4.2. Principle of virtual work in the initial configuration. With

regard to (7.28b), (6.14) and (6.15) it holds that
£0) . 6vdV = (b —a)-dvpdV = (b° —a°) - 6v° p°dV° (7.56)
where b = b°, a = a° and §v = dv°. The surface tractions t°(X) in the initial

configuration are defined by the following equation:

t°(X)=Aat. (7.57)

Substituting (7.56) and (7.57) into (7.45) yields
S (SE) dv° :/ (b° —a°) - 6v° p°dV® +/ t°-ovedA®.  (7.58)

° A

Ve 0
Let 0t be a very small time amount. Then
du’® = du =dvét, 0FE = (6E) 6t. (7.59)

Multiply equation (7.58) by dt. We get

S--éEdVO:/ (b°—a°)-6u°p°dV°+/ t° - du°dA°,

Ve ° A9
/ SapdEApdV° = / (b3, — aSy) 6uSy p°dV° + / £o,0uS, dA°.
o o Ato

(7.60)

Assume that (a) given the vector field p°(b° — a°®) (X € V°) and (b) the

stress field S(X), which is regarded as a fixed quantity and fulfills the symmetry

condition § = §7 (X € V°). Assume further that the equation (7.60) holds
for any du® under the side conditions

1
OF = 5[6u° oV° 4+ V°odu’+
+(V°odu®)- (u®o V) +(V°ou®)  (u’oV?)|, XeV° (7.6la)
fu® =0, XeA°, (7.61b)

where the virtual Green-Lagrange strain tensor dF is taken from equation
(7.12). Then the stress field S is dynamically admissible (statically if a = 0).
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This statement is the principle of virtual work in the initial configuration.
Substitute side condition (7.61a) into the volume integral on the left side
of equation (7.60) and take the symmetry of the second Piola-Kirchhofl stress
tensor Sap into account. If in addition to this we take (2.24) also into account
we get
/ SapdEApdV° =
1
= / SaB 3 (51&73 + §uj§,A + 0ufs a u‘;\/[,B + UJOVI,A 5“?\4,B) dVe =
:/ Sap (0uly g+ oulyy puisa) dV° =
= / (6araduyy g+ 6uly pusy ) SapdVe =

= / (5MA + u}’V[’A) Sag §u%7BdV° = FrraSas 5u}’VI_BdV°
o VO

in which Fjs4 is the deformation gradient in the initial configuration. By per-
forming partial integration it follows from here that

/ SapdEsgdV° =
:/ (FMASAB(S’UJ?W)’BdVo*/ (FMASAB),B 5u}°\4dV°:
:/ FMASAB’ILOB(SU?V[dAof/ (FMASAB)7B 5uj’\4dV°:
A°=A%UA? °
— [ FasaSapng ous, dA° — / (Faia Sap) g SuSy AV (7.62)
AP °

since du; = 0 on AJ. Substitution of (7.62) into (7.60) leads to the following
result

/ {(FMA Sag) p+p° (b3 — a}’w)} duf, AV +
+/ [tr — Fara Sapng) dug, dA° =0, (7.63)
A

where du}, is arbitrary. Hence

(Fara Sap) g+ oy = p°aly, Xy €V° (7.64a)
and
ti =FuaSapny,  Xp€A7. (7.64b)

Equation [(7.64a)] {(7.64b)} is the [equation of motion] {the traction boundary
condition} in the initial configuration. If they are fulfilled the stress field Sap
is dynamically admissible (statically if a5, = 0). This was to be proven.
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REMARK 7.10: Within the framework of the linear theory S = o, 0E = d¢,
Av =Aa=1, V=V, V° =V, A2 = A;, A2 = A, and p = p°. With these in
mind we can rewrite the virtual work principle (7.60) into the following form:

/a'-~6st:/f(“)~6udV+/ t-oudA. (7.65)
\% 14 Ay

Assume that (a) given the vector field £f(*) (x € V) and (b) the stress field o (),
which is regarded as a fixed quantity and fulfills the symmetry condition o =
ol x € V. Assume further that equation (7.65) holds for any du under the side
conditions

1
(55:5(5u0V+V05u), xeV; bu=0, x€Ad,. (7.66)

Then the stress field o is dynamically admissible (statically if a = 0, i.e., f(*) =
f = pb).

7.4.3. Principle of complementary virtual work. We present the prin-
ciple of the complementary virtual work within the framework of the linear
theory only. On the basis of equations (7.44) we may write

/s~~50'dV:/ u-do-ndA,
v Au (7.67a)

/ Ekg(sO'kng:/ ﬂkddkgngdA,
14

u

where
bo-V=0, do =dol, x eV,
bo-n=0, xeA;.
(7.67b)
d0kee =0, doe = d0u, zq €V,
50'kgng:0, SUqGAt.

The statement of the complementary virtual work principle is as follows: As-
sume that (a) given the displacement field G(x) (x € A,) and (b) the strain
field e(x) = €T (x) (x € V) is a fixed one. Assume further that equation (7.67a)
holds for any do under the side conditions (7.67b). Then the strain field e is
kinematically admissible.

The proof of this statement is different from the proof of the principle
of virtual power since side condition (7.67b); can not be substituted directly
into equation (7.67a). To avoid this difficulty we shall add the identically zero
integral

/A~(60’~V)dV:0, (7.68)
1%

in which the arbitrary non zero vector field A = A(x) is the Lagrange multiplier,
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to equation (7.67a). We get

/[€'~60'+)\'(50'-V)] dV:/ a-do-ndA. (7.69)
\% Ay

It can also be checked with ease by taking the symmetry of do into account
that the relation

1
A (do-V)=(A-00)-V=-A-d0d-V=(A-00)-V—(AoV): o=
1
= ()\~50')~V—§()\0V+V0)\)--60' (7.70)
is an identity. Since
/ (A-do)- VAV = A-dondA = 1 :/ AdondA (7.71)
1% A=A,UA, do-n=0 xcA; Ay

substituting (7.70) into (7.69) yields
1
/ e — 5(,\ov+vo>\)] ~-5UdV—/ [@—A]-d0-ndA=0. (7.72)
\% Ay

Hence

(AoV+4+Vold), xeV (7.73)

N

E =

and
A=u xeA,. (7.74)

This means that € is really kinematically admissible.

7.4.4. A solution algorithm for equilibrium problems. Two loading
cases will be considered:
I. The body forces pb = f and surface traction load At = t° are constants,
i.e., they are independent of the deformation of the body (they are independent
of the motion). This loading type is called dead load.
I1. The body forces pb = f are independent of the deformation of the body.
In contrast to this the surface traction load has, however, the following form
t = pn, where p is constant. This surface traction load is referred to as follower
load (or hydrostatc load).
The solution algorithm is grounded on the principle of virtual work which we
shall regard in material description, i.e., in the initial configuration of the body.
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FIGURE 7.1. Displacement vectors for two successive iteration steps

In accordance with Figure 7.1 we shall assume that the displacement field
in the k-th state of the continuum is *)u°. The increment A®u° of the dis-
placement field makes possible to get into the next state of the continuum.
For the sake of simplicity in our notations we shall not apply a separate nota-
tion, i.e., the prefix (k 4+ 1) to the quantities that describe the next state of the
continuum. Thus, for instance:

u® = ®y® 4 Akye (7.75)

After having the k-th iteration step performed the physical and geometrical
quantities ®u°, WE, ®)§ and ®)y *\4 are all known. Substituting u® into
equation (2.39) yields

E=WE 4+ APE = %[(““)uo + A(’%ﬁ) oV°+V°o ((k)uo + A<k>u°)}+

+% [voo(<k)u° + A“%O)} : [(“%" + A<k>u°)ov0] = WL AWEL L AWEN
(7.76)

for the Green-Lagrange strain tensor, where

AWEL — ;{ [(A<k>u0) oV +V°o (A<k>u°)}+

1
#5970 (A%u)] - [P0 7 4 970 D] [(a0w) 0 v7]
(7.77a)
and )

AMEN = 2[v7 o (AMu?)] - [(aMu°) 0 V7] (7.77b)
are the parts of the increment A*)E being linear and non-linear in A®u°. As
regards the second Piola-Kirchhoff stress tensor we can write

s =WgAlg. (7.78)
We shall assume that the virtual displacement field is given by

Ju® =4 (A<k>u°) (7.79)
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which means that we do not change the displacement field *)u°. Then
SE =§ (A(’“)E> ) (A(""‘)EL) 44 (A(’“)EN) (7.80)
is the virtual strain field in which
) (A(k)EL> = %[5u° oV°+V°o (5u°]—|—
+ ;{ [Vooou®] - [Fu® o V] + [V°o ®u°] . [su®o Vo]} (7.81a)

and
1 o o o o o o o o
5<A(k)EN> = 2{[V odu } . [A(k)u oV } + [V o AFy ] . [6u oV ]}
(7.81b)
Note that § (A(k)EL) does not contain A®u°. In contrast to this & (A(k)EN>

is a homogeneous linear function of A®u°.
The equations that are valid for the area element ratio A4 and the volume
element ration Ay have the same structure as equations (7.75), (7.76) and (7.78):

Aa = Oy 4 AR, Ay = FDy + ABN, (7.82)

Now it is our main objective to clarify how the increments A®), and
A®\y are related to the displacement gradient AFuoVe.

To begin with we shall consider the surface element vector given by equation
(2.89):

dA=JF T.dA°=JdA° - F'= 1+ =dA°.-F (7.83)
(2.27)
Hence
AMJA =dA° - AW F. (7.84)
According to (2.26)
Fpr = %GPQRCLJK ((5]@ + ’LL?]’Q) (51{3 + u‘}(yR) (7.85)

which means that

Fpr, =0 Fpr + AWFp =
1

1 o °
=0 Fpp + 5¢PQRELIK A(k)uJ,Q (0r +ugcr) +

1
+ §6PQR€LJK A(k)u;(ﬁR (5JQ + u}Q) +

1 (o) o
+ iePQReLJK A(k)u!LQA(k)uK’R =(k) Fpr+

[e] (o) 1 (o] o
+ EPQRELJK ((5JQ + ’U’J,Q) A(k)uKyR + §€PQReLJK A(k)u(]’QA(k)uK’R .
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Consequently,

A(k)pr = €PQRELJK (5JQ + u?I,Q) A(k)uﬁ(’R—F

AWFLD + %epQReLJK AufoAug p  (7.86)
AWFR)
and
AWAAL = dAS ABFp, = A, ABFD) 4 aas AWFS) (7.87)
INQEVISY A®GAP

Note that [A(k)dA(Ll)] { A(k)dA(f)} is a homogeneous [linear| {quadratic} func-
tion of the displacement gradient A®u3, .
Since 7
dA% = npdA° (7.88)
it also holds that

dA?g A(k)fgL) = H%A(k)}—gL)dA = €LJKnj’3€pQR FJQA(k)ui(7RdA =
= CeLJK [TLOPGPQR FJQVOR] A(k)u}}dA = DLKA(k)U(;{dA, (789)

where
DLK = €E€LJK [n‘};epQR FJQV%} . (790)
With (7.87) and (7.88) we get
AL =n (VFpy + AWFL) + ABFR)) | (7.91)

Now we shall proceed with the scalar surface element. Making use of equa-
tions (2.90a) and (2.27) we may write

dA?
2 = s =n°-F-F'.n°. (7.92)
(dA°)
Thus
2 A2

—n°. ((k)f+ A(k)}') : ((k)]:T n A(k)]:T> n° =2 ¢
—+ no.(k)]: . A(k)]:T no+no. A(k)]: (k)_’F'T no+no. A(k)]: . A(k)fT no ,
from where

FEy + AN, =

=My \/ 1+ﬁ (n°-F. AMFT. no 4 ne. AWF.MFT. no4ne. ACF.AKRFT.no) ~
A

1

~(k)
~IA 4+ Q(k»\i

(no-(k>.7-'-A(k).'FT- n°+n° ARF.FT. none. A(k).’l-'-A(k>J"-'T-n°) .
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Here it has been taken into account that the second term under the square root
sign is much smaller than one (v/1+ z ~ 1+ 2/2 if |z| < 1). Consequently,

1 1
AP, = v AWF W FT pe 4 o ARF . ABWFT n° (7.93)
A A

(1) (2)
ARG INOIN

We remark that [A(k)/\fj)] { A(k))\f)} is a homogenous [linear] {quadratic} func-
tion of the displacement gradient A(k)uﬁw) N-
We shall proceed with Ay. According to equation (2.24)9

AWF g = APy 5

and hence
d
Av = L ’(k)FAB +AWF gl = 1 =
dve (1.50)
1

= GCIIKEPQR ((k)FIP+A(k)U(;,P) ((k)FJQ—FA(k)ULO])Q) ((k)FKR‘FA(k)u(;{’R) 7

from where we get

1 o 1 o o]
Ay = §€IJK6PQRF1PFJQA(k)UK,R + 5el‘“’(GPQRFIPA(k)“J,QA(IC)UKJ%Jr

2y (1 (2
AGND AN

1
+ ée”KepQRA(k)u?PA(k)u}QA(k)Au‘}{)R (7.94)

(3)
INYQ.

Note that A)\ﬁ/l) is a homogeneous linear function of A5, while A)\g) and

A)\g}g ) are homogeneous quadratic and cubic functions of the displacement gra-
dient A(’“)u}’%N.
For equilibrium problems a = 0. Thus

£ qV = £dV = pbdV = Ay pbdV° = p°b°dV°.

For Loads I. and II. the principle of virtual work (7.60) assumes the following
forms:

S SEAV° = | Aypb-su®dV°+ [ Aat-ou°dA°. (7.95a)
Ve ve A9

S SEdAV® = /\Vpb~5u°dV°+/ f6u® - nAadA®.  (7.95b)
Ve Ve A2
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After substituting equations (7.78), (7.80) and (7.82) into equation (7.95a)
we get

[ (v at)- s (30) s (30

:/ (“av +APA) pb- duave + / X4+ AFN,) B ou”aac.
o A
(7.96)

or
/0 (W5 +a0s) - [5 (AWEL) +5 (AWEY)] ave =
_ / (“Av + ACKE + AGNE + AFAD) pb - su® AVt
n / O ((k)AA FAMD 4 NWAZ)) t-outdA®. (7.97)

if we take (7.94) and (7.87) also into account. A rearrangement separates the
linear and nonlinear terms in this equation:

/ AbS -5 (A(k)EL) ave + / 8.5 (A(k)EN) dvet

_ / ABND pb . gu° dv° — / AMNGE- ouc dA+

A®S .5 (ABEY) ave - / (ADAP +AGAP) pb - su® ave =

o

Ve

-l i (k)0
non-linear in A )uM,N

_ _/ Mg ..s (A(k)EL) dve +/ B\ pb - du® dV°+

+ / MAAT - 6u° dA° + / ANDE . 5ueda°.  (7.98)

. . k), 0
non-linear in A( >“M,N

If we drop the non-linear terms we obtain a linearized equation:

QL) (A(k)EL) ave + / Mg . .5 (A<k>EN) dve+

o

Vo

AP pb . su® Ve — i APNDE . 5u°dA° =
Vo ¢

(7.99)
_ / kg ..§ (A(k)EL> dve + / ) pb - ou’®dVe+

+ / FX 41 - 6u°dA°.
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As regards the case of follower loads the integral taken on A7 is different:

/ tou® -nhydA° = T =
Ag

(7.91)
-1,

Substituting this relationship for the integral taken on A{ in equation (7.97),
the following result is obtained:

in® - (WF + ADFD + AWFD) . gucdA® (7.100)

o
t

INOER) (A(’“)EL) ave + / Mg .5 (A<k>EN) dvet

o

Ve

AN pb . su® dve — / in° - AMFD . suedA°+
A7

+/ A(k)s..(;(A(’c)EN) dvo_/ (A<k>A<V2>+A<k>A§)) pb - 5u° dV° =

Ve

. ) E) o
non-linear in A( )uMJV

__ / Mg ..5 (A(k)EL) dve +/ Xy pb - du® dV°+

o,

n° -(k)]-'~6u°dA°+/ in°  AWF® . sucdA°. (7.101)
; A3

. . k) o
non-linear in A( )uM’N

Neglecting the non-linear terms in this equation yields the following result for
Load II:

/OA(’“)S = (A<k>EL) ave +/O Mg .. (A(’“)EN) dvet

AP pb - su® dve — / in° . AWFD . §u°dA° =

Ve A9

(7.102)
:_/ (k)g . .5<A<k>EL> dV°+/ By pb - du® dV°+

+/ fn° . F. §u°dA°
A

o
t

REMARK 7.11: Suppose that it is not the body forces per unit volume f = pb
but the body forces per unit mass are constants, i.e., it holds that b = b°. Then
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pbdV = p°b° dV°. Consequently, equations (7.99) and (7.102) simplify to:

/ AMS..5 (A<k>EL) ave + / NS (A<k>EN) dve+

_ / AGADE . g0 da® = / 0.5 (AWE") dver | (7103)
A? °

+ / p°b° - du®dve + / (FXAT - 6u®dA°
° A

o
t

and

/ AbS .5 (A(k)EL> dve + / M85 (A(’“)EN) dvet

AP °

+/ p°b°-5u°dV°+/ in® - F . su°dA°.
o A?

The proof of equations (7.103) and (7.104) is left for Problem 7.2.

Due to the fact that the non-linear terms are neglected the principle of
virtual work (7.99) (or (7.102)) does not related to an equilibrium state of the
body. Hence the solution (the unknown equilibrium state) can be determined
by performing a series of iteration steps. The iteration procedure should be
supplemented by appropriate error limits and a constitutive equation. If the
body is hyperelastic for instance then

0Sap
AW, p = 2= Eyn =
AB T OEwmn (DE MN
e d%e
— o 9€¢ AEynN~ p°— " AEY . (7105
p 8EAB(9EMN (ME MN p 8EAB8EMN (ME MN ( )
0SaB

As regards the derivative

a5-2 we refer the reader to equaton (8.134).

In the iteration procedure the k" state is regarded as a known state before
performing the k + 1 iteration step.

In the first step of the iteration the fields (Mu°, (WE and (VS should be
known quantities — we have to select them in some way — while the deformation
measures (D and (DA, are set to 1. The displacement increment AMu® is
the unknown.

In the k™ step of the iteration the displacement increment A*)u° is the
unknown and the increment of the stress tensor A¥)S is computed with linear
approximation from the strain tensor increment AREL,
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After performing the k' iteration step
(k+1)uo _ (k:)uo + A(lc)uo7

k+Dp = WE 1 AWE = W 4 AREL ¢ AWEN
(k+1)S _ (k)S + A(k+1)S )

7.5. Problems

PROBLEM 7.1: Prove the principle of complementary virtual power.

PROBLEM 7.2: Prove the validity of equations (7.103) and (7.104).

(7.106a)
(7.106b)
(7.106¢)






CHAPTER 8
Constitutive equations

8.1. Equations and variables in continuum mechanics

For given body forces pb and heat source distribution h the fundamental
laws of the continuum mechanics in spatial description, i.e.,

— the continuity equation (6.5a) (or principle of mass conservation in local
form):

() +p(v-V)=0, (o) +pves =0; (8.1)

— the kinematic equations (8.2a) (if the velocity field v is the unknown)
or (8.2b) (if the displacement field u is the unknown):

d= % (voV+Vov), dyp = % (Vg0 + Ve k) ; (8.2a)
or
e:%[ro—i—Vou—(Vou)-(ro)] )
1 (8.2b)
€re = 3 [Uk,e + ok — U kUm,f] 3
— Cauchy’s equation of motion (6.13):
t-V+pb=pa, tree + pbr, = pag (8.3)
— and the first theorem of thermodynamics (6.53) in local form:
ple)y)=t--d+ph—q-V, p (€)= tiedre + ph — qi.e (8.4)

contain the following scalar unknowns:

— the deunsity p: (1 scalar),
— {the velocity field v: (3 scalars),
— the strain rate tensor d: (6 scalar — symmetry)},
— [or the displacment field u: (3 scalars),
— the Euler-Almansi strain tensor e (6 scalars — symmetry)|,
— the Cauchy stress tensor ¢: (6 scalars — symmetry),
— the internal energy e: (1 scalar).

For solid bodies and isothermal case h = 0, g = 0 hence the number of

scalar unknowns (p, {v, d}, [or u, e], t and e) is 17.
181
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If the heat effects can not be neglected there are further unknowns which
should also be determined. Namely:

— the temperature field ©: (1 scalar),
— the entropy s (1 scalar),
— the heat flux q: (3 scalar).

Consequently, the total number of unknowns is 22.

It is easy now to check that the number of scalar equations is as follows:
(8.1) (1 scalar equation), (8.2a) or (8.2b) (6 scalar equations), (8.3) (3 scalar
equations), (8.4) (1 scalar equation) which means that we have altogether 11
equations.

We can, therefore, come to the conclusion that

— 6 equations are missing if there are no heat effects,
— 11 equations are missing if the heat effects are to be
taken into account.

The missing equations are called material equations or constitutive equa-
tions — the second expression is more general (the first expression is preferred if
the heat effects can be neglected).

REMARK 8.1: Note that the continuity equation (8.1) is solvable for the density p
if the velocity field v is already known. With p the strain energy density e for a
unit mass can be obtained from the first theorem of thermodynamics (8.4).

Assume that the fundamental equations are regarded in material descrip-
tion. For solid bodies and isothermal case with the displacement field as the
fundamental unknown we have

— the continuity equation (6.8) again in local form:

1
— °. 8.5
P J’O ) (8.5)

— the kinematic equation (2.39) for the Green-Lagrange strain tensor:

E=-[u"oV°+V°0u’+(V°ou®):(u’oV?)],

DO =
—
oo
=
S~—

Esp = % [uap +up A+ uK Auk B ;
— Cauchy’s equation of motion (6.18):
(F-8)-V°+ /b = p°a® (5.7
— and the first theorem of thermodynamics (6.64) in local form:

o (e) =S (E) . (8.8)
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Equations (8.5), (8.6), (8.6) and (8.7), contain the following scalar un-
knowns:

— the density p: (1 scalar),

— the displacement field u®: (3 scalars),

— the Green-Lagrange strain tensor E: (6 scalars — symmetry),
— the second Piola-Kirchhoff stress tensor S: (6 scalars — symmetry),
— the internal energy e: (1 scalar).

The number of scalar unknowns (p, {u®, E}, S and e) is 17.

The number of scalar equations is as follows: (8.5) (1 scalar equation), (8.6)
(6 scalar equations), (8.7) (3 scalar equations), (8.8) (1 scalar equation), which
means that we have altogether 11 equations. Consequently, 6 equations are
missing.

8.2. Some aspects of objectivity

8.2.1. Transformation and rotation.

8.2.1.1. Transformation. Subsection 1.2 is devoted to the issue of how to
transform a vector from the unprimed coordinate system (zxsx3) to the
primed one system (x} x5 x%) and conversely from the primed coordinate sys-
tem to the unprimed one. The transformation formulae (1.28) and (1.30) are
presented in matrix form. By introducing the concept of the transformation
tensor defined by the equation

T =T ik 0if, Trer = Qe (8.9)

the matrix equations referred to above, i.e., equations (1.28) and (1.30) can be
rewritten in tensorial form:

=77 u, up = Togug (8.10a)
u="7T - 11/ s Up = ﬁg/uz . (8.10b)

Tensorial equation {(8.10a)} [(8.10b)] is equivalent to the matrix equation {(1.28)}
[(1.30)].

REMARK 8.2: Remember that u’ and u are the same vectors. This means that
the tensor T behaves as if it were the unit tensor, since equations (8.10) map the
vector u onto itself.

It is obvious that
T =Q" (8.11)
(3x3)  (3x3)
which means that the matrix 7~ is the transpose of the matrix Q. By the
determinant of 7~ we mean the determinant of its matrix: |T;|. Comparing
equations (8.11), (1.31), (1.32) and recalling Remark 1.2 yield that the tensor
T satisfies the following relations:

TT=771, det(T)=det( T )=1. (8.12)

(3%x3)
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Using the transformation tensor 7~ equations (1.73b) and (1.209) can also
be rewritten:

w' =177 w.T, Wiy = TrrmWnn Tner s (8.13a)
W=T W .T7, Wnn = Tk Wi Torm - (8.13b)

Tensorial equations (8.13a) and (8.13b) are obviously equivalent to equations
(1.73b) and (1.209).

REMARK 8.3: Note that the tensors W and W' are the same. Therefore equations
(8.13) show again that the tensor T~ behaves as if it were a unit tensor.

The transformation tensor T is, in general, a function of time. For our later
considerations let us investigate the time derivative of the equation 7-7T T = 1.
By applying the product rule we get

(1T +T-(T7) = 0.

Hence
. T
(1T =T (T7) == (7 7T7) . (8.14)
which shows that (77)" - 77 is a skew tensor. We remark that it is worth
introducing the following notation:

(T) T = Qeigoic; Q=10 =03=0, Qu=-0p if k£L.
(8.15a)
The axial vector of (7)) - T 7 is given by the following relation:

1 ~
Wy = —§6kgrgkg. (8.15b)

8.2.1.2. Rotation. If a vector, say the vector u, is rotated together with the
coordinate system — the rotated coordinate system is called primed coordinate
system — then the components of the rotated vector U in the primed coordinate
system will be the same as those in the unprimed coordinate system. This
phenomenon is demonstrated graphically for the 2D vector u in Figure 8.1.

X1

FIGURE 8.1. Rotated vector and coordinate system
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Now we remind the reader of the fact that the unit vector i, can be given
in terms of ix. According to equation (1.26¢) we can write

i) = Qup ik, or conversely ir = Qre iy . (8.16)

The rotated vector can, naturally, be given in the unprimed coordinate system
provided that the above equation is taken into account. Substituting (8.16) into
equation

* .
u=1uly

u=uiy=u Qurir =i Qui Spm Um =
~—
ié' i7n
= (Qg/kikoi[) (U i) = QT u=R - u, (8.17)
—_————
Q=R
where (a) ugQpe is the k-th component of the rotated vector in the basis con-

stituted by the vectors i and (b) in accordance with all that has been said in
Subsection 1.4.5 the transpose of the tensor @ defined by the equation

Q= Quiroiy, Qu = Quk (8.18)

is the rotation tensor R that rotates the vector u into the vector 1.
A comparison of (8.16) and (8.18) shows that the tensor R can be given in
the following form:

R = Quiiyoir=iyois. (8.19)

REMARK 8.4: The expression rotation tensor has already been used for the tensor
R, which is included in the polar decomposition of the deformation gradient for
describing the local rotations associated with the pure deformations. The use of
the expression rotation tensor will, however, cause no misunderstanding in the sequel
because its meaning will always turn out from the context.

REMARK 8.5: In spite of equality (8.11), which is repeated here for completeness:
T =Q",
(3x3)  (3x3)

the transformation tensor 7~ and the rotation tensor Q7 = R are different since
the base tensors are not the same:

T =Tiw ik oi) = Quiiroi) # Q" = Qupigoi (8.20)

It is worth emphasizing that the rotation tensor here is a known quantity since
we also know the primed (rotated) coordinate system though the rotated vector is
considered, naturally, in the unprimed coordinate system.

REMARK 8.6: The tensor @ defined by equation (8.18) is proper orthogonal. Since
R = Q7 the tensor R is also proper orthogonal.



186 8.2. Some aspects of objectivity

REMARK 8.7: Let t be a vector and W be a tensor of order two. Then

E = Q -t = (Qf’k i@ Oik) . tm,im = T =
(1.54),
=i Qumtm =t)ie #tiy = 1+ =t (8.21a)
~——

(1.53)

t

though
Q t =t . (8.21b)
(3x3) 3x1)  (3x1)
These equations show the following: (a) the scalar components of the vector t are
the same as those of the vector t’ but t # t’ since i, # ij; (b) mapping (8.21a) is
a rotation.
We get in the same way:

W=Q W Q"= (Qumiroin) (Wsiroiy) (Qninoir) =1 =
1.73b

= Qk’m Qg/n Wmn ik o ig = wfd ik o iz 7& wﬁd l;c ] lle = ] j = WI (822&)
T (1.73c)
but
Q W Q' =w.
(3x3) (3x3) (3x3)  (3x3)
According to these two equations the scalar components (the matrices) of the
tensors W and W' are the same but W # W' since i}, o iy # i}, o i,

REMARK 8.8: Let us assume that the unprimed coordinate system is shifted by
Xxoo’ and then it is rotated by R in such a manner that the physical quantities in
it move all together with the coordinate system resulting in the primed coordinate
system with all the physical quantities being now in it — see Figure 8.2 for details.
It is worthy of emphasizing the following:

(a) Let ¢ be a scalar in the unprimed coordinate system. Then it holds that
t=t. (8.23a)

(b) Let t be a vector in the unprimed coordinate system. The product

t=R-t=(i,0ir) tmin =t (8.23b)

yields the rotated vector, which is considered in the primed coordinate
system. The scalar components of the vector t have not changed.
(c) Let T be a tensor in the unprimed coordinate system. The product

T=R-T -R"=(i,0in) (treirois)- (i,o0i)) =
= typil, 01, (8.23¢)

yields the rotated tensor which is considered in the primed coordinate sys-
tem. The scalar components of the tensor T have not changed.
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8.2.2. The role of observers.

8.2.2.1. Reference frames. Section 1.4.6 in Chapter 1 clarifies the tensor
concept by requiring that the components of a tensor quantity should satisfy
certain transformation rules. In the present subsection we shall make the con-
cept more precise by showing how the tensor concept is related to two physi-
cally important concepts namely to those of the objectivity and invariance of
tensors. A reference frame is the model of a rigid body from where observa-
tions (time and distance measurements) are made by an observer. If we have
two different reference frames then for the observer in the first reference frame

X1:X1

FIGURE 8.2. Two reference frames, the first is at rest the sec-
ond is in motion

the second performs, in general, a rigid body motion with respect to the first one,
and conversely for the observer in the second reference frame the first reference
frame performs also a rigid body motion. In a reference frame we may have more
than one coordinate system but one of these coordinate systems represents the
reference frame itself, i.e., it replaces the rigid body with the observer on it.
It is worth mentioning that we did not make a difference between reference
frames and coordinate systems in Chapter 1 but spoke simply about coordinate
systems only.

A tensor describes, in general, a physical quantity which, in most cases, is
independent of the reference frame. The deformation measures are, for instance,
reference frame independent quantities, or in other words they are independent
of the observers. Though the tensor which describes a physical quantity is, in
general, independent of the reference frame, however, the components of the
tensor considered depend on what the reference frame is (what the coordinate
system is we consider as reference frame).

Figure 8.2 shows two reference frames. The Cartesian coordinate system

{(z1 = X1,29 = Xo, 23 = X3) with unit vectors i}

[ (] = X1, 2h = X3, 2% = X3) with unit vectors i)



188 8.2. Some aspects of objectivity

represent the {first} [second] reference frame. We shall assume that the un-
primed reference frame is an inertial one and is at rest. We shall also assume
that we have two observers. The first is located at the origin of the first ref-
erence frame (at the point O), the second at the origin of the second reference
frame (at the point O’). The clocks the observers have are set to show the same
point of time. In addition the observers are capable of measuring distances by
using the same scale when performing measurements.
It is obvious from Figure 8.2 that

x=%o0 +x or X =x-—x00 (8.24)

are the position vectors of the spatial point P in the two coordinate systems.
8.2.2.2. Base vectors. It can be seen from Figure 8.2 that the position vector
of the material point P in the primed reference frame is

();/’) = (X,)/ = 1, ij, (8.25a)
for the second observer and

is for the first observer where the letters x and 2’ in parentheses identify the
reference frame in which the corresponding quantities (vectors or vector com-
ponents) are regarded (measured). It is obvious that in general
/ ! i !
=g and s L E e

The reference (or initial) configuration of the body (the region V° with
boundary A° = 9V*° the body occupies at time ¢ = t° = 0) is the same for both
observers, however the two reference frames, which are, in general, different from
each other for ¢ > 0 since the first is at rest and the second is in motion with
respect to the first one, may coincide with each other when the motion begins.
The fact that they may coincide with each other for ¢ = 0 does not violate
generality. For this reason it is assumed in the sequel that the two reference
frames coincide with each other at ¢ = t°> = 0. Hence we make no difference in
the notation of those quantities which belong to the initial state of the body.

Making use of (8.24); we get

/ / !
iy = ox _ ‘l’f% - ‘9"0? ‘9/ ) 9%k _ i;%. (8.26a)
Ory  Ox), Oxy oz, oz} (z) ) Oxy O0xy
-0 i,
Thus
F oz,
i, i =52 = T =Qumir= 1T = Tim (8.26b)
Te  (1.26b) (8.9)
which means that
oz’ oz’
= o G = Quun ik =1k T s 1= o 1y = Qur iy =1 Tog - | (8:27)
Oxy, Oz
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Utilizing (8.24)5 yields

N 0 ’ 0 ’ 83:4 ox 8XOO/ 81‘@ . 833@
=57 x =7—x—F=( - - =i (8.28a)
0z (')  Oxg () Ox), Oxy Oxy o), ox),
——
=0
Hence,
. . Ozy
1n - 1 = 87 = 1T = an’ =1 = Trrn (828b)
L (1.29b) (8.9)
which means that
0z, ., g . Owy, ..
n— —- fr nk’ = //n’ - — 1 = nIn — 1n nk’ - 8.29
i 83@211@ Qi iy, = 13, Tie iy, a%1 Qun i i, Trk ( )

8.2.2.3. Equivalence of nabla operators. It follows from the manipulation
o . 0 Ozm . 0

_ lk = _— 1’{) = =
8xk axm/ axk (8.27) a:Em’

— im/ = V/ (830&)
that the operator nabla is a reference frame independent quantity. This state-
ment is valid for any point of time. Hence

Ve = v (8.30b)

at t = t° = 0 independently of the fact whether the primed and unprimed
reference frames coincide with each other or not when the motion begins.

8.2.3. Objective tensors.

8.2.3.1. Definitions. Let us denote a tensor of order n by a superscript n in
a pair of parentheses preceding the letter that identifies the tensor in question.
For example (™ T’ (n = 0,1,2,3,....) is a tensor of order n in the moving
reference frame. Accordingly

O = is a scalar;
W' =t = tyi) is a vector;
OT =T =t,i) o) is a tensor;
G =+t,, i, oijoil  isa triad;
W1 =, i, 0ijoioi, isa tetrad;
etc.

It should be emphasized that the second observer is, naturally, capable of record-
ing these tensors in the moving reference frame.

Note that the above notation convention is in full accordance with the
notation convention introduced in Subsection 1.4.6.2 for tensors of order higher
than two.

We shall now introduce the concept of the Rayleigh product [85]. The
definition is as follows:

TO1 = (8.31a)

T M =T % (t,’ke__'pi%oizwuoi;) =

=ty (T 1) o (T -iy) 00 (T 1,), n>1 (8.31b)

P
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which shows that the Rayleigh product has no effect on the scalars: for n = 0
it coincides with the identity.

REMARK 8.9: The above definition can easily be generalized since, for instance,
the first factor can be any tensor of order two — for our aims, however, the above
definition is sufficient.

Let us assume that a tensor T of arbitrary order describes the same physical
phenomenon in the unprimed and primed coordinate systems. We shall call it
objective under the change of observer if

SOk g ROl (8.32)
Accordingly a scalar is objective if
t=t; (8.33a)
a vector is objective if
t=Tx*t' =T -t/ tm = Toner 13 (8.33b)

a tensor is objective if
T=T+«T =T -T T, twn=Tok the Torn = Tont Tner thg; (8.33¢)
a triad is objective if
Or =TT trnp = Tote Tt Tors tioers (8.33d)
a tetrad is objective if
GO =7+@O7 tmnpg = Tkt Tae: Tpr Tas' tiprs- (8.33¢)

REMARK 8.10: Note that the component form of equations (8.33) coincide with
the relations that are presented in the forth column of Table 1 since it follows from
equation (8.11) that Ty = Qo

REMARK 8.11: Assume that the vector n is objective, i.e., it holds that n = 7 -n’.
Assume further that the tensor T is also objective. Then it holds

T a=7T-T - T T -n=7T-T -n. (8.34)
1

This result means that the dot product of an objective tensor and an objective
vector is also an objective vector.

REMARK 8.12: The above definition of objectivity is based on that of Ogden [68,
]. Note that other definitions are also possible — see for instance [35].

A tensor of arbitrary order is called invariant if it holds that

M —ge®mp — @) (8.35)
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8.2.3.2. Objectivity of some deformation characteristics. Consider first the
deformation gradients. The manipulation

F:XOVO:(Xool—i—X/)OVO:XOO/OVO—l—X/OVOZ
(=) — (@

=0

= 1 T =T (X eV) =T F, (836a)
()c./):T'(DSI/) vo=vo’ (z")

in which it is taken into account that 7 - V' = 0, shows that deformation
gradient behaves like a vector.

Making use of (8.36a) and the definition of U it can be checked that the
right Cauchy-Green tensor and the right stretch tensor satisfies the following
relations:

C=F' . F=F".7".T.-FF=F".F =C (8.36b)
and
v=vc=u, U'=vu""' (8.36¢)
Utilizing the polar decomposition theorem and the previous two formulae we
et
: R=F.- U '=7T-F.-U'=T R (8.36d)
for the rotation tensor,
v=F-RT=F.- R".7T"=7T.F - R"-7T"=7T-v-T"  (8.36e)
for the left stretch tensor,
b=F .- F'=7.F . FT.77=7.% .77 (8.36f)

for the Cauchy strain tensor,

b l=T-0". T (8.36g)
for the left Cauchy-Green tensor,
1 1
for the Green-Lagrange strain tensor and
1 N _ -1 4T\ _
e=s(1-bv) =5 (1-T v T7) =

1
=73 (1-b""-T'=7T-€¢ - T" (836i)
for the Euler-Almansi strain tensor. It is also obvious that
J =det(F) = det(T - F') = det(T") det(F') = det(F')=J". (8.37)
=1

Consequently, it follows from (2.94) that the volume elements measured by the
two observers are the same.
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It also holds that
n-b-n:(T-n’)-T-b’-TT-(T-n’):
—n’ . T . . / . T . . / = / . ! . !
=n -7 -T-b-T -T -n=n-b-n.
=1 =1
Hence, it follows from formula (2.91) devised for the scalar surface elements
that
dA=dA". (8.38)
Conclusions concerning the objectivity of the considered deformation char-
acteristics may now be drown:

— The deformation gradient F' and the rotation tensor R are two two-
point tensors. They behave as if they were vectors.

— The left stretch tensor v, the Cauchy strain tensor b, the left Cauchy-
Green tensor b~ and the Euler-Almansi strain tensor e are objective.

— The right Cauchy-Green tensor C, the right stretch tensor U and the
Green-Lagrange strain tensor E are invariant.

— The volume element dV and the scalar surface element dA are also
invariant. This conclusion is consistent with the intuitive notion that
the local volume and surface changes are independent of the kinematical
description (of the observers).

8.2.3.3. Velocity and acceleration. For the second observer the following
time derivative is the velocity of the material point at P — see Figure 8.2:
vi=(x)". (8.39)

z’)

For the first observer, however,

v = (X)l _ (XOO/ +T (}(3) = (XOO/—‘,—T(XI/))' _ (XOO/)'+(T)' X/ +T( /).

. x
(z") (z’)
in which (x/’) =77 (x’ since the first observer can record (X’) only.
Recalling now equation (8.15a), which shows that the product (77)"- 77 is
skew, we get
v=(x00) +(T) T -x+T-(
=0

from where substituting the cross product @ x (x’) for the dot product 2 - (x’)
xr x

N
)

yields

x' ). (8.40)

V:(XOO/)'—i—GJX x +T(
(=) (=)

Here
T (x)
(')
is the relative velocity of the material point at P, i.e., the velocity of
the material point with respect to the moving reference frame in the
form the first observer can see it,
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(XOO’>' + o xx
()
is the transport velocity, i.e., the velocity at that point of the moving

reference frame which coincides with the material point considered at
the instant of the investigation,

(x001)’
is the velocity of the point O’ with respect to the first reference frame
and finally
w

is the relative angular velocity — in fact the angular velocity of the
moving reference frame with respect to the first reference frame.

For the second observer
a’' = (x')" (8.41)

is the acceleration.
For the first observer we have

)+ (T)y - (x)+T-(x)" =

a=(v) =(x00)" " + (@) x x' +& x
(V)" = (o)™ + (&) x %, (X @) (@)

= Gro0)” (@) X x4 @ (T )"+ (T) - ()" + T ()" =
= (x00)" + (@) x X + & x (T) T T x/)+
+2(7) -7 T- ((x/’))' +7T - ((X//)) )
Hence
2= (V)= Groo) O A& (@ T ) #20xT (e + T ()
(8.42)
in which

T ()"
(')
is the relative acceleration of the material point P, i.e., the acceleration

of the material point with respect to the moving reference frame in the
form the first observer can record it,

20 x T - (x')

()"
is the Coriolis’ acceleration [7],
(XOO’)” + (L:J) X (XI) + w x (UAJ x T - (X/))

T !

is the transport acceleration, i.e., the acceleration of that point of the
moving reference frame which coincides with the material point at P
at the instant of the investigation,

1Gaspard Gustave de Coriolis, 1792-1843
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(XOO/)“
is the acceleration of the point O’ with respect to the first reference
frame,

(.;J.
is the relative angular acceleration — in fact the angular acceleration of
the moving reference frame with respect to the first reference frame and

w x (d) x T - x’)
(')
is the centripetal acceleration.
8.2.3.4. Strain rate tensor and its additive resolution. As regards the veloc-

ity gradient we have

L=¢-F - F'=(F) - F'l= ¢ =
:?;; (8.362)

= (T-F')- (F"l -TT) =(T)-F-F T '+7 (F')-F~-T".

——
¢ .F'

Hence

=T -0 - 7T +(T)-T", (8.43)
where £ =d + 2,0 =d + ', and (T)" - T7 is skew. Consequently,

d=7T-d -T" (8.44a)

and

Q=T -2 - T " +(T) - T". (8.44b)

Equation (8.44a) shows that the strain rate tensor d is objective. The spin
tensor is, however, not objective due to the presence of the term (77)" - 77 on
the right side of equation (8.44b).

8.3. Fundamental principles for the constitutive equations

8.3.1. What equations are missing. It was clarified in Subsection 8.1
that the equations established so far should be supplemented by further equa-
tions since the number of equations we have established so far is less than that
of unknowns. As regards the isothermal case it is an open issue how the stresses
are related to the deformations. These equations are the material (or consti-
tutive) equations which should provide one-to-one relationships between the
various stress and strain measures.

The kinematic equations have been established by using geometrical con-
siderations and are, therefore, exact, i.e., no approximations were applied when
deriving them within the framework of the non-linear deformation theory. As
regards the equations of motion those are based on the equivalence of the exter-
nal and effective forces and in this sense they are also exact. The constitutive
equations (the stress strain relations) should be based partly on experimental



8. 195

investigations partly on theoretical considerations since we can measure defor-
mations only. The stresses themselves are not measurable quantities. Conse-
quently, the constitutive equations are not exact but have an approximative
character. On the other hand their mathematical form should satisfy some
fundamental requirements known as principles of the material theory .

8.3.2. Fundamental principles. The fundamental principles the consti-
tutive relations should meet are related both to fluids and to solid bodies. How-
ever, special emphasis is placed on the solid mechanical behavior and the effects
other than mechanical (electrical for instance) are left out of consideration.

Principle of determinism of stress [47, 74]: The stress at a material point of
the body is determined by the history of motion of that body.

If needed the past motion (or the history of motion) in the finite time
interval [0,¢] will be denoted by

X(X;7) |70 - (8.45)

It is an experimental observation that the stresses at a material point within
the body are independent of the motion of any other point within the body pro-
vided that the distance between these two points is greater than a given limit.
If this limit is finite we speak about non-local theories. If this limit is infini-
tesimal, i.e., if the neighborhood of influence the other points have concerning
the stresses at the point considered is as small as possible we speak about local
action and the material of the body is called simple material. In this book we
confine ourselves to considering simple materials only for which it holds the

Principle of local action [74, 79]: In determining the stress in a given ma-
terial point P the motion outside an arbitrarily small neighborhood of P can be
disregarded.

It is a fundamental issue how the introduced strain and stress measures
depend on the observers. As regards the quantities of kinematic nature Subsec-
tion 8.2.3 clarifies the observer-dependence of these quantities. For the stress
measures, however, a further requirement is needed:

Principle of material objectivity (or principle of material frame-indifference) [74,

, 85]: The material behavior must be independent of the observers, i.e., the
constitutive equations should be invariant if the reference frame changes.

8.4. Cauchy elastic bodies

8.4.1. The effect of local action. Assume that the body considered is
stress free in the initial configuration — we assume that it coincides with the
reference configuration. A body is said to be elastic if after being deformed it
returns to its original shape and size when the forces causing the deformation are
removed. We can also say that the body with this property behaves elastically.

In Subsection 8.4.2 we restrict our attention to the isothermal material
behavior only, i.e, it is assumed that the absolute temperature is constant within
the body.
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Let @Q° and P° be two different material points within the body. The
displacement the material point Q° has with respect to that of the material
point P° is given by the equation

2e(Q°) — we(P%) = xe[ X (Q°);t] — X[ X (P?); 1] (8.46)

in which differentiability is assumed for the motion law x(X;t). If Q° tends to
P° in accordance with (2.13) we have

0
z(Q°) — o (P°) = Azy = %dXA = FppdXa4. (8.47)

This equation shows that the deformation state in an infinitesimal neighborhood
of the point P° in the body is determined by the deformation gradient Fy4.
Recalling the principle of local action we conclude that deformation state should
uniquely determine the stress state in this infinitesimal environment. Hence the
Cauchy stress tensor is a function of the deformation gradient at P°: ¢ = v!(F).
Since the material properties may change within the body

t =1'(F(X;t),X) (8.48)

is the general form of the previous equation. Here the function v!(F(X;t),X)
is called response function [74].

The body for which equation (8.48) is the constitutive equation is called
Cauchy elastic body.

The body is said to be homogeneous if the material properties are the
same for each particle within the body (everywhere within the body). For
homogeneous bodies constitutive equation (8.48), which might also be called as
stress relation, is simplified to the form

t =1 (F(X;t)). (8.49)

In what follows it is assumed that the body considered is homogeneous.
8.4.2. Independence of the material behavior from the observers.
It is obvious that the independence of the material behavior from the observers
should result in further restrictions on the response function. Since the material
behavior should be the same for the observers in the unprimed and primed

coordinate systems the mathematical form of the response function have to be
the same for the two observers. With (8.36a) and (8.33c) we have

t=t'(F)=(T-F), t=T - T =TT =T (F)-T", (850)
from where it follows that
(F)=T -(F')-T". (8.51)

If we utilize the polar decomposition theorem we may rewrite the previous
equation:

d(F)= t =T-T7-F). 7= 1t =

F'=TT.F F=R-U

=T -(TT-R-U)-TT (852
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This equation should be satisfied for any transformation tensor 7, i.e., for any
proper orthogonal tensor. Consequently, if we write R for T~ and take into
account that R - R = 1 we get

t=t'(F)=R-¢'(U)-R". (8.53)
This equation should hold for any proper orthogonal tensor R. Consequently,

if we write 7 for R interchanging again the role of these two tensors and utilize
the fact that U = U’ we have:

t=t'(F)=T -«(U)-T", (8.54)
which shows that the response function t! is objective if it is a function of the

right stretch tensor U.
Recalling equation (5.27) for the second Piola-Kirchoff stress tensor yields

S=JF 't FT= ¢ —
J=det (U) F-1=U-1.RT

=det(U)U ' R" - t-R- U (855)
from where substituting (8.53) we obtain
S=det(U)U ' R R-(U)-R" R U=

= 1 =det()U ' -(U) - U,
RT.R=1

S (U)

where t¥(U) is the response function that belongs to the second Piola-Kirchoff
stress tensor. Since U = v/C = /1 + 2E we may assume that the response
function v¥ is a function of the Green-Lagrange strain tensor: t° = v%(E).
Since § = 8’ and E = E’ it follows that the material behavior described by
the response function v = t(E) is independent of the observers.

8.4.3. Isotropic material. Let us assume that the Cauchy stress is a
function of the Cauchy strain tensor b defined by equation (2.49). Then

t=1"(b), (8.56)

where t¥ is the response function for which it is expected that the objectivity
requirements be fulfilled. For the second observer t' = t®(d’) is the stress
tensor since the response function = t® should naturally be the same for the
two observers. Hence

t=1"b)=2"(T b -7T7) (8.57a)
and
t=T-t T =T @) T". (8.57b)
Comparing (8.57a) and (8.57b) yields
T ) T =TT ="(b) = ¢. (8.58)

If the response function t* satisfies this equation then the objectivity require-
ments (the requirement that the material behavior shoul be independent of the
observers) is fulfilled.
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In the sequel it is assumed that the response function t? satisfies equation
(8.58).

Note that equation (8.58) coincide with equation (A.2.32) if we write &
for t* and E for b. Consequently, the response function t® describes isotropic
material behavior.

According to the representation theorem of isotropic tensor valued tensor
functions (A.2.50) it follows from equation (8.58) that the Cauchy stress tensor
is quadratic polynomial of the Cauchy strain tensor b:

t=aol +a1b+ axb? (8.59)

where the scalars ag, a; and as are functions of the scalar invariants by, by
and brrr: ag = ao(br, brr, brrr), cn = a1 (br, brr, brrr), as = aa(br, brr, brrr).

REMARK 8.13: Note that the representation of the Cauchy stress tensor by equa-
tion (8.59) is clearly independent of the observers: it satisfies the requirement of
objectivity.

Dot multiply equation (8.59) by
det(U)F ' =det(VC)F ' =\/Ci;y F' =JF!

from left and F~7T from right then take into account that b = F - F7 while
Cc=F".F. We get
JF7 .t . FT= 1 =8(C)=aC ' +&11+&C, (8.60)
(5.27)

where &y = VCrr ae(Cr, Crr,Crrr) (¢ = 0,1,2) since the scalar invariants of
C and b are the same. Equation (8.60) shows that the second Piola-Kirchhoff
stress tensor for an isotropic body is the function of the right Cauchy-Green
tensor C.

By recalling the representation theorem of isotropic tensor valued tensor
functions (A.2.50) we can also come to the conclusion that

S(C) = ol +p1C + B C?, (8.61)

in which the coefficients 5y, 51 and [ are functions of the scalar invariants Cf,

Crrand Crrr: Bo = Bo(Cr,Cr1,C3), p1 = B1(Cr, Cr1,Cs), B2 = B2(Cr, Crr, Cs).

8.5. Hyperelastic materials

8.5.1. Thermomechanical behavior. A solid body is said to be hypere-
lastic (or Green elastic) if there exist an internal energy function per unit mass
e = e°. The Helmholtz free energy [27] per unit mass is defined by the following
equation

f=e—06s. (8.62)

REMARK 8.14: For elastic bodies the internal energy depends, among others, on
the components of the strain tensors, the entropy depends on the temperature and
also on the components of the strain tensors. Hence the Helmholtz free energy is
independent of the temperature gradient OV.
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Making use of f the dissipation power for a unit volume given by equation
(6.77) can be rewritten into the form

bp=t--d—p((e) —O(s)) =t--d—p((f)y +5(O)) 0.  (863)
With (8.63) for the local form of the entropy theorem (6.78) we get:
t~-d—p((f)'+s(@)')—%zo. (8.64)

Needles to emphasize that the thermomechanical material models take the heat
effects into account.

Note that the mechanical state of the body is determined by two different

variable groups.

(i) The first group is constituted by those variables being formally indepen-
dent of the material parameters included in the constitutive equations
and reflecting, therefore, the material behavior of the body. These
variables include the motion law x = x (X;t) — see (2.2) — and the
quantities that can be obtained from the motion law as, for example,
the strain tensors and the strain rate tensor. They describe the de-
formation state of the body and its change with time. Since the heat
effects are also to be taken into account the temperature distribution
O (X;t) also belongs to this group of variables.

(ii) The second group is constituted by those variables which formally de-
pend on the material parameters of the constitutive relations. These
include, for instance, the stress tensors ¢, P, S, the internal energy e,
the entropy s (consequently, the Helmholtz free energy f as well) and
the heat flux vector q.

Since the body considered is elastic the dissipation power is zero:

bp =t d—p((f) +5(6)) =0 (5.65)
A comparison of equations (6.59) and (6.8) leads to the following result:
Jd--t:%d--t:S~~(E)'. (8.66)
Hence .
Cop =85 (B = p°((f) +5(0)) =0. (8.67)

With regard to Remark 8.14 the material time derivative of the Helmholtz
free energy assumes the form:

Calculating now the material time derivative of equation (8.69) we may write
(&) =(f)+(O)s+(s)06O. (8.69)
Substituting (8.68) and (8.69) into (8.67) yields

< 08 g). Byt (afo +s) (@) =0 (8.70a)

(Bas) + <L (0). (3.68)

Y 00
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(PO a%{; - 5,43) (Eap) +p° (?9](: + S°> (€)= 0. (8.70D)

where f = f° — the Helmholtz free energy is for a unit mass, therefore it is
the same both in material and spatial descriptions. The same is valid for the
entropy and the internal energy as well: s = s° and e = e° — see equation (6.54)
with the relation for e° which is valid formally for f and s too.

Since equations (8.70) should be fulfilled for any (E)" and (©)" it follows
with regard to (8.62) that

S_poaf 0(86 _@83 ) or SABZPOaaf po( Oe o 0s )

P 9E " \oE " oE Ean P \0E.s 0FEap
&.71)
and
o Of°
' =-25" (8.72)

Equations (8.71) and (8.72) are material equations (or constitutive equations)
for the second Piola-Kirchhoff stress tensor and the entropy in material descrip-
tion.

REMARK 8.15: If the temperature is constant — there is no heat effect — the entropy

o

s° is zero and equation (8.71) coincides with equation (6.67).

If we write f for e in equation (6.68) we get
af° _ Oe De® of

. _ o Fop o Fpy = —2 .
OF e O AN 0EL s P T Der

Dot multiplying equation (8.71) by pF/p° from left and F” from right then
taking equations (6.69) and (8.73) into account yield

af Oe Js af de Js
t—pa—e—p <66_@8e> or t’“_paekg =p (8ek1g _@3ekg> . (8.74)
This equation is similar to equation (8.71). It is de facto the material equation
(or constitutive equation) for the Cauchy stress tensor.

It is assumed for equation (8.71) that the Helmholtz free energy, the internal
energy and the entropy are known in the forms f° = f°(FE,0), e® = ¢°(E, O)
and s° = s°(E,0). As regards equation (8.74) it is also assumed that f =
f(e,0), e=e(e,O) and s = s(e, O).

REMARK 8.16: If the temperature is constant — there is no heat effect — the entropy
s is zero and equation (8.74) coincides with equation (6.70).

F FT

(8.73)

REMARK 8.17: Equations (8.71) and (8.72) are equivalent to 7 scalar equations.
If the heat effects are taken into account the number of missing equations is 11.
This means that 4 equations are still missing. The first missing equation concerns
the Helmholtz free energy f© = f°(E,©), while the other three missing equations
should give the heat flux vector as a function of the material parameters included
in the corresponding constitutive equations.
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8.5.2. Heat conduction equation. Since the heat processes have an in-
fluence on the mechanical processes and conversely the mechanical processes
affect the heat processes it is worth clarifying what equation governs the heat
conduction in solids. This issue is not closely related to the issue of material
equations (constitutive equations), but its importance makes it worth reviewing.

It follows from equation (8.67) that

§ (B = —°((e) —0(s°)).
Substituting it into the energy equation (6.62) yields

qQ°-V°+p°O(s°) —p°h° =0, (8.75)
where according to (8.72) it holds that

<s°>'<8fo>. OF gy -2 ey

96 " 960E e
Inserting this equation into (8.75) we get
(o) o o 82f0 . ano . 0710

which is the heat conduction equation in material description. For the material
equations and the heat conduction equation, we shall restrict our attention to
the linear theory in the following.

REMARK 8.18: Equation (8.76) should be supplemented by the relationship be-
tween the heat flux vector and temperature and the free energy equation f° =
f°(E, ©) — these are missing material equations (constitutive equations). This will
also be performed within the framework of the linear theory.

8.5.3. Linearization. In the linear theory the tensor € — see (2.39), (2.55)
or (4.9) — corresponds to the tensor E, while, according to (5.31), the stresses
are given by the tensor o. Let

K = Iﬂ;kgik o ig (877)
be the heat conduction tensor (or the tensor of heat conductivity) [70]. The
material equations needed are as follows:

of
f f( Y E)? S 8@ ) ( )
of
=p°=, =—k-(OV°). 8.79
o =p"5 q=—k-(OV°) (8.79)

Note that equation (8.79)s is the Fourier law of heat conduction [23].

We remark that superscript © is omitted here and later on as well since we
make no difference between the initial and current states of the body within the
framework of the linear theory. The only exception to this rule is the density.

After substituting (8.79) into (8.76)2 we have

2 2
9 f .. (5) + ﬁ
000e 06?2

V. [k- (OV)] +p°0 ©)| +p°h=0. (8.80)
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Since the dissipation power @p is zero it follows from equation (6.78) that

—q-(BV)= t =—(OV)-k-(OV)=k--[(OV)0(OV)]>0. (8.81)
(8.79),
Note that the tensor (OV°) o (OV®) is symmetric; it is, therefore, obvious
that the skew part of the tensor x has no effect on the value of the above
energy product. For this reason it is customary to assume that the tensor k is
symmetric [67]. If the body is isotropic the tensor k is also isotropic, i.e., it has
the form

kK=kl, (8.82)
where the scalar « is a function of ©. Then equation (8.79), takes the form
q = k(OV), (8.83)

The scalar k is called heat conduction coefficient.
It is worth emphasizing the following:

— The internal energy e is independent of the entropy s.

— The Helmholtz free energy f is independent of the temperature gradient
OV.

— Due to the fulfillment of the material equations (8.78); 2 and (8.79); it
is zero the dissipation power @p. This is a fundamental feature of the
thermoelastic behavior.

Further simplifications can be achieved within the framework of the linear
thermoelasticity if not only the strains are assumed to be small but the temper-
ature changes as well. Expend the Helmholtz free energy f(©,¢) into Taylor
series in the neighborhood of the points ©® = @, and € = 0. We get

£(6,6) = 1(0.,0)+ L0 (0 - 0,) 1 HHE20)
1 9?f(6,,0 9?f(0,,0 9?f(6,,0
+3 €~-%~~€+2Wo-e(9—60)+%(9—90)2 +
oL (8.84)

We may assume that the initial value of the Helmholtz free energy can be
dropped since equations (8.78)y and (8.79); contain its derivatives only. As
regards the first derivatives it holds on the basis of the previous two equations
that

_9/(6.,0) . 0f(60,0)
06 Oe

The initial value s(6,,0) of the Helmholtz strain energy and the initial value
o(6,,0) of the stress field can be set to zero for a number of problems in
thermoelasticity. In what follows we shall assume that they can be neglected.

Within the framework of the geometrically and physically linear theory of
thermoelasticity the derivatives of order greater than two are all left out of
consideration in the Taylor series (8.84) since they describe non-linear material
behavior.

$(6,,0) = and 0(60,,0)=p . (8.85)
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Let us introduce the following notations:
(i)
82f((90,0) oazf(eo’o)
=" Cppe =P
Oe? OmnOir
This fourth order tensor is that of the elastic coefficients. Note that

Connict = Connek = Crmek = Crnmie Which means that YC' is symmetric
in respect of the index pairs mn and k.

We = poe (8.86)

52 £(05,0) 0 (65, 0)
= — %% .. /. = =—p° : 8.87
B=-—pe 9690 Bre = Bex = —p 921,00 (8.87)
This symmetric tensor gives the stresses caused by a unit temperature
change.
(iii)
92/(6.,0)
=—p°e. 07 8.88
c=—p°e 502 (8.88)

This quantity is called heat capacity for a unit volume, i.e., it is the
amount of heat that must be added to a unit volume of the substance
in order to cause an increase of one unit in temperature.

Substituting equations (8.86), (8.87) and (8.88) into the Taylor series (8.84)
and taking into account what has been said about the initial values of f, s and
o we get

1 1
pf(O.e)=e We..e—B--c(O-6,)— 5c(e—@o)2 (8.89a)

or

1 1
p°f(O,epq) = ifmncmnklgld — Breere (0 — O5) — 56(@—90)2. (8.89b)

Making use of (8.89) the following material equations (constitutive equa-
tions) can be obtained from (8.78), and (8.79);:

posz_po%:ﬁ.prc(@_@o), (8.90)
_ po%if) —@Wo..¢ - B(6-6,) . (8.91)

Let the tensor (S be the inverse of the tensor (YC — we remind the reader of
Subsection 1.4.6.3 here. Then it holds that

(4)5 c (4)C = (4)17 Spqmn Cmnk[ = Opqkt :( T ): pké(ﬂ (892)
1.162

The fourth order unit tensor (1 maps each second order tensor into itself:

WS ... .e =W1. e =€, SpgmnConkt €rt = OppOgeere = €pg  (8.93)
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Let us multiply equation (8.91) by )S. Taking (8.93) into account we get the
inverse of the material equation (constitutive equation) (8.91):

e=Ws..c+a(@-06,), (8.94)
where
a="S- B, au = SpgmnBmn - (8.95)
Since Spgmn = Sgpmn — see Problem 8.4 — the tensor a,,, is also symmetric. Its
name is tensor of the thermal expansion coefficients since it gives the strains
due to a unit change in the temperature.
Using equations (8.86), (8.87) and (8.88) we can transform the heat con-
duction equation (8.80) into the following form:
V- k- (BV)]—608--€—cO(O) =—p°h. (8.96)

For small temperature changes it holds that

6, 6,

where O, is usually 273 K°. Utilizing this relationship equation (8.96) can be
linearized:

9:60+19:90(1+19), £<<1, (8.97)

V- [k-(9IV)]—-608--€—cO, (V) =—p°h. (8.98)
Let us assume that the material is isotropic. For isotropic material it follows
from relations (1.164) and (1.169a), (1.169b) that

B8 =1 (8.99)
and
WC =21 X101 =2 ((4>1 + %1 o 1) , (8.100a)

v

1 A 1 v
Weg=_— (W1 — 1o1)=— (W1 - —101 1
o 2 < 3A+2p ° > 2u ( 1+v °7)° (8-100b)

where ( is the stress due to a unit change in the temperature, ©(©) and A(O)
and are called Lamé? numbers (or constants) [10, 14| while v is the Poisson®
ratio. In engineering practice p is also referred to as shear modulus of elasticity
and is denoted by G = p.

Making use of (8.99) for B and (8.100a) for (‘YC we can transform formula
(8.89a) of the Helmholtz free energy into the following form:

p°f(O,e) = pe--e+ %)\(51)2 — Ber (0—6,) — %0(8—90)2 , (8.101)

where e; = € - -1 is the first scalar invariant of the tensor £ and [ is the stress
change due to a unit change in the temperature.
Substituting (8.99) and (8.100a) into (8.90) yields the following material

equations
o5 = —p° of(©,¢)

p°s = 50 = fBer+¢(G-06,), (8.102)

2Baptiste Lamé, 1795-1870
3Siméon Denis Poisson, 1781-1840
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and

|0 =2ue+Xes1 —B(O-0,)1| (8.103a)

or

511> ~B(O-0,)1. (8.103b)

o (et —2
g = &
H -2

With (8.100b) for ()8 we obtain from (8.94), (8.95) and (8.99) the inverses of
the material equations (8.103):

1 A 3
- _ 1 — (®-6,)1 .104
€= o (a 3x+2u! )+3/\+2u(@ ©.) (8.104a)
or
~ (oo 1) ta@-6.)1 (8.104D)
€—2M o) 1+UJI « o s .
where
3 11-20

_ _ 1= 1
= ion mitr) (8.105)

is the thermal expansion coeflicient. The scalar invariants are given by:

1
71 = (A4 2)er ~33(0-60) = g er —3H(0-6.),  (81060)
o1 36 11-—2v
- —Yo) = 5 —Yo) - 1
1 3/\+2u+3>\+2u(@ O,) 2u1+y01+3a(@ O,). (8.106b)

The modulus of elasticity F is also a material parameter:

vE
E=2u(1 A= —————— 8.107
REMARK 8.19: The number of independent components in C,,,k¢ is not 81 but 21
only. The proof of this statement is left for Problem 8.3.

REMARK 8.20: As regards the isotropic bodies the number of independent elasticity
parameters is only two, eg. A and p, or G = p and v, or E and v.

If the body is isotropic kK = k1, 8 = 1 — see equations (8.82) and (8.99)
— and the temperature change is small the heat conduction equation (8.98)
assumes the form

V- [k (V)] — OB (e1) — O (V) = —p°h. (8.108)
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8.5.4. Elastic bodies with finite deformations. If the body under con-
sideration is Green elastic, the heat effects can be neglected and the deforma-
tions are finite the possible forms of the constitutive relations are given by (6.67)
and (6.99) for the second and first Piola-Kirchhoff stress tensors:

Oe® Oe® Oe® Oe®
L Sap=pTa—  P=pos. Py=po .
oE" " TP 9, ) T
Note that e® might be regarded as if it were the function of E and F as well.
The product ¥ = p°e° is the strain energy density for a unit volume.
We shall assume, in accordance with the paragraph that follows equation

(8.85), that t(F') vanishes in the initial configuration (in the non-deformed
body). Since then F = 1 we have:

lp_y =0. (8.110)

It is also a natural requirement that the strain energy density for a unit volume
shoul be equal to either zero or a positive quantity if the body considered is
deformed:

S=p

(8.109)

Y(F)>0. (8.111)
This means that ¢ has a global minimum if F = 1, i.e., it holds that
Y(F)>y9(1)=0, VF#1 (8.112)

Suppose that the compressive load on the body is such that the body shrinks
to a single point. Then the Jacobian must be equal to zero. However, strain
energy of infinite magnitude is required for this process to occur. Consequently,

Y(F) = +oo if J=det(F)—07. (8.113a)

If, however, the load on the body is such that its volume tends to infinity, then
the Jacobian also tends to infinity. This process also requires a strain energy of
infinite magnitude. That is

Y(F) — +oo if J=det(F) — +o0. (8.113b)

Note that ¥ should be independent of the observer. This means that the fol-
lowing equation is to be satisfied for any 7T

(F') =(F) =¢(T - F'), (8.114)

where F/ = R’ - U’ from the polar decomposition theorem. This equation
should be valid for any orthogonal tensor, therefore, if we write R'? for T~ we
get,

(F)=y(RT-R-U')=4(U"). (8.115)

This means that v is a function of the right stretch tensor U. With regard to
relations (2.32) we may also assume that ¢ = ¢(E) or ¢ = ¢(C).
In the sequel we restrict our attention to isotropic material behavior only.
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8.5.5. Compressible materials. If the body under consideration is iso-
tropic it follows from all that has been said in Subsection A.2.2 that the strain
energy function depends on the scalar invariants of the Green-Lagrange strain
tensor E or those of the right Cauchy-Green tensor C.

Assume first that ¢ = ¢Y(E;, Err, Errr) = p°e(Er, Err, Errr) in equations
(6.67), (8.109)1,2. Then

oY oy OEp oy OEr; oY OLrrr

SAB = pE s 0F; 0Bap | 9Er 0Bap  9Bi; 9Bap (8.116)

where on the basis of (1.113a), (1.113b) and (1.130)
1

E; = Fki, Err = 3 (E} — ExrELK) ,
) (8.117)
B = (—2E? + 6E1Er; + 2ExpEpqEqK) -
Consequently,
OF;
=4 8.118
8EAB AB ( a’)
OFErr OFE; 0FkL
- - Erx = Erdap — dxadrBEKL = Erdap — F
9Ean 1 9Ean 9B P 1648 — 0k A0LBEKL 1048 AB
(8.118b)
and
oF
"1 — _E264p + E110ap + Er (E1éap — Eap) +
OE4p
1
+ 3 (0xadpeEpoEqK + ExpdgadopEox + ExpEpgdgadxn) =
1
=FErdap — ErEap + 3 (EagEqgp + EaxExp + EapEpp) =
= T =FErdap — ErEap + EagEgB - (8.118c¢)

_K:Q7 P=Q,

After substituting these derivatives into equation (8.116) we get the coefficients
in the constitutive equation of a non-linearly elastic and isotropic body:

Sap =ay0ap +aiEap +asEs0FgR; S =al1+aSE + aSE?,
(8.119)
where
o o oY
o = E E 8.120

% OE; + "OE;, b OB’ ( 2)

1o} 0 0
aj = — L E; 2 as 2 (8.120b)

- 0Er’

Note that the coefficients a2, af and a$ are functions of the scalar invariants E7,
E;; and E;p;. Equation (8.119) shows that the second Piola-Kirchhoff stress
tensor is formally a quadratic function of the Green-Lagrange strain tensor.
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Substituting E for W in equation (1.129) yields:
OEq11

= FE110aB — ErEap + EaqgEqB = EHIE:UlB . (8.121)
0FE B
With (8.118a), (8.118a) and (8.121) we obtain from (8.116) that
o o oY 1
= I A+ 2 (Bybap — E Y B ELL =
Sap oE, 048 + 8EU( 104B AB) + 0B, CiEas
N oY o N
=|=—+4+F oap— —F FEirj—F 8.122
((9E1+ 18E11> AB 9E;; AB + HIaEIII e )
or
Sap =by0ap +0]Eap +b3E ;.  S=10b31+0E+b3E"" | (8.123)
where
o o o o
bp==—+F by = — b = ——FErgr. 8.124
07 9E; * YoE;; " ! OE; * 0B M ( )

REMARK 8.21: If the homogeneous and isotropic body is linearly elastic the con-
stitutive equation should be a linear function of the Green-Lagrange strain tensor.

Hence o0
Qg aEIII ( )
Then
_(9¥ 9y oy
Sap = (8E1+E18E11)6AB aEIIEAB. (8126)

Since the right side is a linear function of the Green-Lagrange strain tensor it follows
that

0
—% = 201 = constant (8.127a)
and 5
87]?1 = a.Er; «, = constant . (8.127b)
This means that the constitutive equation assumes the form
Sap = (a6 —201) Eréap + 201 Eap . (8.128)
By introducing the notations
A =A=a, — 201, w’ == (8.129)
the constitutive equation (8.128) can be rewritten into the following form:
’ Sap =24 Eap + AN Er6ap = Caprr Exr , ‘ (8.130)
where
Caprr =2u0aBKL + ANaBOKL (8.131)

is an isotropic tensor of order four. Equation (8.131) coincides with equation
(8.100a) established for linear thermoelastic material behavior and presented in
direct notation. The constants A and p are again the Lamé constants.
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REMARK 8.22: Based on all that has been said above, a consistent two plus one

parametric constitutive equation could be the following relation:
Sap =2u°Eap + \°Eréap +a3EaqEgB

where it is assumed that

ag = o _ constant
> OB '
With equation (8.132) for the derivative gg}f{i in (7.105) we get
0SaB 0
= 2u°F NI T SEA0F
EToe aEMN( wEap+ 1048 +a3EAQEQR) ,
where 5
Eap = 0pad Er=96
BBy CAB MAONB, DB ! MN
and
EiqQEgp =0unEap + Eapdun =20mnEaB.
Hence
0SB

=2u°0pA0NB + NOMNOaB + 2056 N EaB.

OFEuN

(8.132)

(8.133)

(8.134)

Assume second that ¢ = ¢(Cr, Crr, Crrr) = p°e(Cr, Crr, Crrr) in equations

(6.67), (8.110)1,2. Since
1
OFEap = 530,413
equation (8.116) yields

o, ow
 OFE4p < 0Cap
_25’7// oCt P oy 0Cr P oY OFEqr;

SaB

" 79C; 0Cap 0Cr1 0Cyup OFrr1 0Eap

where on the basis of equations (8.118) and (8.121) we have
oCr 5 aCrr
9Cap P 0Cap

9Cr11

OFap

Making use of these derivatives we obtain from (8.135) that

=Croap —Cap

= Cy16a5 — C1Cap + CagCos = CrirClLy -

Sap=ag0ap+aiCap+asCagConB, S=ag1+a5C+asC?,

where

L o oy
ag = 28(]1 + 20180H + QCH(?CIH ;
00y OV o

oCrr oCrrr’ ICrr

(8.135)

(8.136a)

(8.136b)

(8.137)

(8.138a)

(8.138b)
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By repeating the steps that resulted in equations (8.123) and (8.124) we
also have

Sap =b30ap +05Cap +05C55, S =031+b05C+b3C7", | (8.139)

where

70 __ al aw 70 _ aw 70 811)
bO =2 ( + Cf > R bl = 2801[’ bQ 80111 ——Crr11. (8140)

REMARK 8.23: For equilibrium problems the following field equations should be
solved in material description.

Kinematic equation:

Eap = % (Ul p +up 4 +uisauisp) XL eve; (8.141a)
Constitutive equation (generalized Hooke's law):

Sap =aldap +aiEap +a5EaqEgn Xpeve; (8.141b)
Balance equation (equilibrium equation):

(FAMSMB)7B+/JO OA:() Xpeve. (8.141(7)

These equations are associated, in general, with the displacement boundary condi-
tion

uy = Uy XL € A, (8.142a)
and the traction boundary condition:
FanSupng =19 X €Ay, (8.142b)

As regards the Cauchy stress tensor we recall equation (6.69) which says
that t = J~'F - § . FT. Substituting here § from (8.139) and (8.140) yields

2 o o o
try = = F) C 0AB — C
ke = FkaA <8C + I@C’;;) AB (8011 AB+
oy
Crii——~=C F 8.143
+ HI@CUI ap | Fees ( )
where
FradapFpe = FraFa =( T )= bre , (8.144a)
2.49
FraCapFpe =( 0 )= FraFamFrBFBe = bembme (8.144b)
2.32
FkAC,Z]lgFBZ :( T ): FkAFAmFmBFB€ = 6km6m£ = (SM (8.1440)
2.46
and

Cr=bi,, Crr =brr, Crir =Crur (8.144d)
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which follows from the comparison of equations (2.62)2 and (2.65)s. Hence it
holds that
2 o oY o o
tie = 7 [blll Borrr Oke + (81)1 +br— 317 ) bre (6b11 brmbme |,
(8.145)
2 o o oy o 2
t= b 1 — +b b—|=—)b7|.
[ by 11 * (351 * " obrr Obrr
It can also be proved that
2 O o N o
the = 7 l(bn 917 +brrr— Tbrrr ) Oke + ab,; 2 bre — brrr=— Bbr1 bt |
(8.146)
_ 2 oY o oY oY
t=7 l(b” Dbr; TP am,,) M T

The proof of this statement is left for Problem 8.5.

8.6. Problems

PROBLEM 8.1: Assume that the function ¢ is an isotropic function of the symmetric
tensor E. Prove that the derivative ¢/0F is coaxial with E.

PROBLEM 8.2: Derive the heat conduction equation (8.76) in spatial description.
PROBLEM 8.3: Prove that the number of independent components in C,,,,x¢ is 21.

PROBLEM 8.4: Prove that the inverse of the tensor C,,,r¢ satisfies the symmetry
conditions S7nnk€ = Smnlk = Snm[k = Snmkﬁ-

PROBLEM 8.5: Verify that equation (8.146) is correct.






APPENDIX A

Some longer mathematical transformations

A.1. Rodrigues formulae

A.1.1. The tensor of finite rotation. In this subsection the Rodrigues
formulae is proven [2]. Let ¢, ¢ € (+n) be the finite angle of rotation. The axis
of rotation n is determined by the unit vector n, |n| = 1. The tensor of finite ro-
tation R, which is unknown at the present moment, can be devised on the basis

FIGURE A.1l. Finite rotation

of Figure A.1. In the sequel we shall set it up going ahead step by step. The
tensor R rotates (maps) the vector v = OA onto the vector p = OB.
It is clear from Figure A.1 that

— — —
p:VH—‘rOB/:VH—‘rOD/-i-D/BI, (All)
where
vi=n(n-v)=(non)-v. (A.1.2a)
Thus
Vi=v-v|=(1—-non)-v. (A.1.2b)
The leg OD’ of the right angeled triangle OD’'B’ is given by the relation
—
OD" =v, cosp=(1 —non) v cosi. (A.1.3)

213
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Note the the vector ON’ is obtained by rotating the vector OA’" = v, about
the axis n counterclockwise trough the angle /2. Hence,

—
ON'=nxvy=nx(v| +vy)-v=nxv. (A.1.4)
~——

zero vector

On the other hand
ON'=0B',
by the use of which we have
D'B' = OB’'siny = ON'sin . (A.1.5)
Since the vectors ON’ and D’ B’ are parallel a comparison of equations (A.1.4)
and (A.1.5) yields
—
D'B'=n x v siny ,
where
nxv=1-(nxv)=(1xn)-v.
Consequently,
—
D'B'=(1 xn)-vsiny . (A.1.6)
After substituting (A.1.2a), (A.1.3) and (A.1.6) into equation (A.1.1) we get
the vector p in the following form:

p=[non+(f —non)cosyy+ 1 Xnsiny|-v

=[1 costp+ (1 —cosyp)non+ 1 xnsing|-v. (AL
Here
R=1 cosy+ (1 —cosy)non+ 1 xnsing, (A.1.8)
Ryo = die cosp + (1 — cosp) ngng + dknenre Ny sine

is the tensor of finite rotation.

A.1.2. TIs the tensor of finite rotation an orthogonal one. On the
basis of the results obtained in the previous Subsection it is worth investigating
if the tensor

Q=1 cosy)+ (Qrrr —cosy)non+ 1 xnsingy ,
Qre = Ope cosY + (Qrrr — cos ) ngng + Oknenre Ny SINY

which can be regarded as if it were a generalization of the tensor R in equation
(A.1.8) since Qs is an unknown parameter here, is orthogonal and if yes under
what conditions.
To this end we have to investigate what properties the product Q- Q™ has.
It is obvious that

Q" =1 cosyp + (Qrrr —cosyp)non, Q :(Q*)T (A.1.10)
is the symmetric part of the tensor Q. Note that

(A.1.9)

(1 xn)T = (igoir xn)" = (i x n)oiy = — (m x iy)oiy = —nx 1. (A.1.11)
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Hence,
Q=Q" +1 xnsiny and QT =Q*—nx 1 siny , (A.1.12)
by the use of which we have
QQ"=Q"Q"+[(1 xn)- Q" —Q" - (nx 1)]siny—sin?+) (1 xn)-(nx1).
(A.1.13)
To establish the final result we shall need the following formulas which pro-

vide appropriate expressions for the various terms on the right side of equation
(A.1.13). We shall present them with the necessary explanations:

(a) By utilizing definition (A.1.10) for Q* we get
(I1xn)-Q"=1-mxQ")=nxQ" =nx1cost. (A.1.14a)
(b) It can be obtained in the same way that
Q" (nx1)=(Q"xn)-1=Q"Xxn=1Xncosy . (A.1.14b)

(c) It is not too difficult to verify that the products n x 1 and 1 X n in the
previous two equations are the same:

nx1 :nTiT X ikoik :nrerksisoik =
=i oigepsn, =ip0dp Xi,n, =1 xXn. (A.1.14¢c)
(d) A further partial result can be obtained by the following transformation:
(1 xn)-(nx1)=(igoiprxn) (nxigoip) =

Z(ikXn)-(nxig)ikoig:[ik-(’ngn—ig)}ikoigz

i [nx(nxipg)]

= (ngng — Og¢) ipoip=mon—1 . (A.1.14d)
(e) On the basis of equation (A.1.10), which defines Q*, we have
Q* . (Q*)T _ Q* Q* —
=1 cos?+2costh (Qrrr—cost)) non+(Qrrr—cos LZJ)2 non=
=1cos’ ¥+ (Qf;; —cos’y) non. (A.l.1lde)

Substitution of the above partial results (A.1.14a),...,(A.1.14e) into equa-
tion (A.1.13) set up for the product @ - QT yields

Q- Q" =1 cos®>y + (Q7;; —cos®¢) non+ 1 sin? ¥y —non sin® ¢
(A.1.15)
=1+ (Q%H —1) non.
The tensor @ defined by equation (A.1.9) is orthogonal if and only if

Q- Q" = 1. Tt follows from equation (A.1.15) at once that this condition
is always satisfied if

Q%II:]., or Q[[[:ﬂ:]..
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In the sequal we shall clarify the meaning of Q;r;. Assume that the coor-
dinate axis z; coincides with the axis n. Then

Il:i1
and
det(Q - Q") =det(1 + (QF;; — 1) i1 0iy) =
14+Q7—1 0 0
1
0

= 0 0=Q7%,.
0

[t

which shows that Q7 is the third scalar invariant of the tensor Q.

To sum up the results it is proven that the tensor @ defined by equation
(A.1.9) is orthogonal if Q;;; = £1, where Q7 is the third scalar invariant
of the tensor. For QQ;;; = 1 the tensor @ coincides with the tensor of finite
rotation R. Consequently, then the tensor @ is proper orthogonal.

Let us assume that the tensor @ is known. Multiply equation (A.1.9) by
Oxe- Since the Kronecker delta is an index renaming operator we get

OeQre = Qr = 3cosy + (Qrrr — cosv) + egrgnypsing

where the last term is clearly zero. Hence the angle of rotation can be calculated
form the following equation:

COS’(/JZ%(QI—QIII) . (A.1.16)

Multiply now equation (A.1.9) by egs, and take into account that the
double dot product of a skew and symmetric tensor is zero. We obtain

ekéka[ = 6knek£menlrnr Sin¢ = —EenimEntrNy SiIN/J = *25mrnr = —2ny, .

Hence, the unit vector of the rotation axis is given by the equation

eremQre
= Sktmikt A117
" sin ( )

It is customary to give the tensor of finite rotation Ry, in terms of the
rotation vector

Y =1riy =7vn (A.1.18)
or of the corresponding skew rotation tensor
sz = _eklmwm . (A.l.lg)
Substituting the rotation vector (A.1.16) into (A.1.8) results in
1 —cos sin
R = by cos b + T”’ ity — f xtm P (A.1.20)

which is the second form of the tensor of finite rotation.
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Consider now the transformation

Wkswsl = €ksm wm Estr wr = €str Esmk 7/)7“ wm =
= (8em Ork = Grm 6°) Yy i = Wi o0 — Se Py P

from where
Ui Yo = WisWse + One Yr P
Making use of this result we may rewrite equation (A.1.20):

1 —cos sin
Rye = 0ke costp + Tw (Vrs¥se + Ope P ) — Tw Ektm Y™
Hence
1 -
Rye = 01 + %MJ s Wso + 512)1/) Yo (A.1.21)

which is the third form of the tensor of finite rotation.

A.2. Tsotropic tensor functions

A.2.1. Isotropic tensors. Subsection 1.4.7 defines the concept of isotro-
pic tensors. It is shown that (a) a scalar is isotropic, (b) there are no isotropic
vectors, (c¢) the only isotropic tensor is of the form adgs, (d) the isotropic triads
are of the form aegy and finally that (e) the tetrads defined by equations
(1.168b), (1.168¢) are also isotropic. These tetrads play, later, an important
role in the theory of constitutive equations.

A.2.2. Real istotropic scalar functions. Let E' = E/,i] oi/ be a sym-
metric tensor. The eigenvalues and eigenvectors of E’ are denoted by A/ and
n/ (|n/| = 1), respectively. Assume further that T = Tisp ix 0 i/ is the trans-
formation tensor between the primed and unprimed reference frames (between
the two observers). The eigenvalues and eigenvectors of the symmetric tensor
E =T -E'-T" are denoted by \, and n,.. It follows from equations (1.112) and
(1.113) that the characteristic equations of the tensors E' and E =T -E'- T
are of the form

Ps(\') = —|Bl, =N épel= (V)P =B[N +E/;N —FE/;; =0 (A.2.22a)

and

Ps(\) = —|Eps — Mops| = N> — E;N2 + Epph — Eppp =
= =Tk (B = Ake) Tos| = [ Tonl Bl = Aoe| |Tes| = 1 =
[Trk|=1Tes|=1
= |El, — Nore| = N> = E[ N+ E[;)\—FE/;; =0. (A.2.22b)
A comparison of equations (A.2.22) shows that the characteristic equations of

the tensors E’ and E =T - E'- T are the same. Hence, the eigenvalues and
scalar invariants coincide with each other:

A=A,

) ) ) (A.2.23)
EIZEIa EH:EIIy E111:E1H~
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It also holds for any 7,; that

(Ers - >\5rs) ng = ﬁkEégnsns - )\ﬁknsns =
—_——— ——
E.s Ors
= Ton (B, — Nyp) Tosns = 0 A.2.24
k(B ke) T ( )

U
T

which means that the eigenvectors are also the same: nj = Tgsns.

The inverse statement also holds. Let now E’ and E and be two symmetric
tensors regarded in the primed and unprimed reference frames for which the
scalar invariants and the eigenvalues are the same. Then there exists such a
transformation tensor which satisfies the relation

E=T-E'-T". (A.2.25)

Assume that T = Tgp i o ij. It is obvious that this tensor really satisfies
equation (A.2.25).

REMARK A.1: It follows from the previous line of thought that the eigenvalues and
eigenvectors of the tensors E’ and E are the same. This conclusion reflects the
fulfillment of the natural requirement that the eigenvalues and principal directions
of symmetric tensors should be independent of the observers.

Let E' be a symmetric tensor: E’ = E’T. The scalar valued tensor
function f = f(E') = f(E/,) is said to be a real isotropic tensor function if it
holds for all possible transformation tensors 7 that

fE"Y=f(T+E")=f(T-E'-T") = f(E). (A.2.26)

REMARK A.2: The expression for all possible transformation tensors T reflects the
fact that equation (A.2.26) should be valid in any of the possible coordinate systems
the observers select for their reference frames.

REMARK A.3: Requirement (A.2.26) says that the value of the scalar f should be
independent of the observers: it must be the same for the two observers.

It follows from equations (A.2.22), (A.2.23) and (A.2.25) that a real isotropic
tensor function should be independent of 7T ; therefore it can be represented as
a function of the three scalar invariants E/ = Ey, E/; = Er; and E/;; = Eqgg
only:

f(E/) = f(T' E'. TT) = f(EI/7EI/IaEI/II) = f(EbEILEIII) . (A-2~27)

According to equation (1.114) the scalar invariants can be given in terms of the
eigenvalues:

Er=XM+X+ A3, Eir=XX+X A3+ A3\, Errr=2AA)3. (A228)

Consequently,
F(Er Err, Errr) = f(A1, A2, A3) (A.2.29)
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If Ao, A3 and A; are substituted for Ay, A2 and A3 in (A.2.28) the scalar invariants
remain unchanged. This observation leads to the cyclic interchangeability of the
arguments A, in representation (A.2.29) of the real isotropic scalar functions:

FO, A2, 23) = F(2, A3, 00) = f(As, A1, A2). (A.2.30)

A.2.3. Isotropic tensor valued tensor functions. The tensor valued
tensor function (or tensor-tensor function)

&=dE');, =0 E =E'7 (A.2.31)
is said to be isotropic if
T-®E) T =&(T+E\=&(T-E'-T')=&(E) (A.2.32)
holds for all transformation tensors 7T .

REMARK A.4: Assume that the symmetric tensor & — the tensor-tensor function &
— describes a physical quantity. If requirement (A.2.32) is fulfilled then the tensor
@ is independent of the observers: it is the same for the two observers.

Let ¢g, ¢1,...,0n (kK > 0) be real isotropic scalar functions for which it
holds that: ¢y = ¢¢(E') = ¢o(E[, E};, Ef;;) (0 =1,2,...,k). Then the tensor
polynomial

B(E') = ¢l + p1E' + ¢o(E') + ¢5(E') + - + ¢ (E')* (A.2.33)

is an isotropic tensor valued tensor function. Instead of giving a detailed proof
we shall consider the case when @(E') = ¢o(E"')?. Then

T-SE) T =¢pT-(EN- T (A.2.34a)
and

ST E' T =T -E'" T T -E'- T =¢T - (E")*-TT. (A.2.34b)
1

Since the right sides of (A.2.34a) and (A.2.34b) are equal and ¢, is isotropic it
follows that ¢o(E")? is also isotropic. The line of thought is similar concerning
the other terms on the right side of (A.2.33).

REMARK A.5: It follows from the Cayley-Hamilton (1.128) theorem (1.128) that
(E')’ =E[(E")? -~ EE'+ By 1.

Substituting this equation repeatedly into the right side of (A.2.33) yields an
isotropic quadratic tensor polynomial in E:

B(E') = ol + 01 E' + ¢2(E")? + ¢3(E')* + - + op(E") =
=1l + 1 E' +9yo(E')*  (A.2.35)

in which 19, ¥1 and 15 are isotropic scalars.
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REMARK A.6: The tensors E (E = ET) and E* (k > 2) are coaxial. If k = 2 we
may write
EQ-nS:E-E-ns:/\s~E~ns:)\fns

which shows that E and E? are really coaxial. For powers higher than two the
proof is similar: E¥.n, = Neng,

It is now clear that the eigenvectors of the isotropic tensor valued function
given by the tensor polynomial (A.2.33) are the same as those of the tensor E’.

We shall prove that this statement is valid for any isotropic tensor valued
tensor function @(E’) [11, 80, 85].

For the observer in the primed coordinate system

3
= Z A\, njyon) (A.2.36)

is the spectral decomposition of the tensor E. For the observer in the unprimed
coordinate system it holds that

E=T E - T"= ZA@ T - oné T = ngngong, WEDYE
=1 N
ny ng
(A.2.37)
Assume that the unit vectors for the primed and unprimed coordinate systems

used by the two observers are given by the following equations:

i{ =n}, iy = nj, i, =nj (A.2.38a)
and
iir =ny, ir = —ny, i3 = —n3. (A.2.38b)
Then
T =nj;on| —nyon), —nzonj (A.2.39)

is the transformation tensor. It is obvious that
T -n} =ng, T -nh)=-ny, T -nf=—n3. (A.2.40)

Consequently,

T7.E .77 = 0 —

(A.2.39) (A.2.36)

= (njon}j —ngon,—nzonj)- (E )\@ngonz>-(n’lonl—n'gong—ngong):

3
/ AR 7
yngon, = E Aynyony = E’,

—1 ngong njon; —1

Mm

where it has been taken into account that n, ony = nj o nj, which follows from
the selection of the two coordinate systems for the observers — see (A.2.38).
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Let #(E') be an isotropic tensor valued tensor function. With regard to the
previous equation we have
T-®E') T =T -E'-T")=dE)
Dot multiplying this equation from right by 7 yields
SE')-T=T BE'.
It also holds that
SE')- T -n)=®E) - n,=T -HE') n)
from where we get
T -®(E’)-n| =®(E') n].

Since the only vector the tensor 7T maps onto itself is n} it follows that the
vector @(E’) - nj is parallel to nj. In other words: the principal direction
n) of the tensor E’ is that of the tensor valued tensor function ®(E’). If we
renumber the principal directions cyclically we can come to the conclusion on
the basis of the previous line of thought that the other two principal directions
of the tensor E’ are also principal directions of the tensor valued tensor function
&(E’). Consequently, the tensor @(E’) and the tensor valued tensor function
&(E') are coaxial. Thus

&(E') -n) = uynj, wp=ny,-®(E')-n,, (nosummon/l) (A.2.41)

where 1 is an eigenvalue of the tensor @(E’). Its spectral decomposition as-
sumes the form

3
B(E') = pynjon). (A.2.42)
(=1

In order to clarify what mathematical form the tensor valued tensor function
&(E') may have we shall consider three separate case:

(a) Assume that the eigenvalues of the tensor E’ are different: \; # Ao #
A3. Assume further that

3 3 3

/ / ! ! / / / A
E ueneong=ﬂo§ neonz+51§ Ay ny o my+
=1 =1

(=1
B(E') 1 E’
3
+ B2 (\)?mjon; (A.243)
/=1

(E")?
where f8,, f1 and 33 are unknown scalars. Note that equation (A.2.43)
is equivalent to the following three scalar equations:

1 = Bo + B + B2(N)?,
p2 = Bo + Bi\s + Ba(N5)?, (A.2.44)
p3 = Bo + Bi A + Ba(N)?.
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(©)

This is a linear equation system for the unknown f,, 61 and Bs. It can
be checked with ease that the system determinant is not zero:

d= (N = A3) (A5 = A5) (A5 — Ap) # 0.
Hence there exist a unique solution for the three unknowns. Conse-
quently, it follows from (A.2.43) that the tensor valued tensor function

®(E’) can be given in the form of a quadratic polynomial of E’ if the
eigenvalues of E’ are different:

B(E') = B,1 + BLE' + B2(E')?. (A.2.45)

It follows from (A.2.44) that e depends on A, A2 and A3 only. Conse-
quently the coeflicients f,, 51 and B3 are also functions of \;, Ao and
As. Since the eigenvalues Ay are the functions of the scalar invariants
E}, E}; and E};; we can come to the conclusion that

Bo = ﬁO(Eng}IaE}H) , b= Bl(E}ﬂE}hE}II%
Bo = B2(Et, By, Eppp)
which shows that the scalars 8,, 81 and (3 are isotropic functions. In
a view of this fact a comparison of (A.2.45) and (A.2.35) proves that
representation (A.2.35) is really isotropic.
Assume now that two eigenvalues of the tensor E’ coincide with each
other: A\; # Ay = A3. Assume further that

3 3 3
Z Wy nyony = ﬂoz nyon, + Blz Ay njony. (A.2.46)

&(E) 1 E’
This tensor equation is equivalent to two independent linear equations
for the two unknowns 3, and [3; since the third one is the same as the
second: .
p1 = Bo + P1A1,

p2 = Bo + B
The system determinant is again not zero:
d= Xy —\|.
This means that we have unique solutions for 8, and ;. In addition
setting B2 to zero in (A.2.45) yields
$(E') = 3,1+ B E, (A.2.47)

which shows on the basis of a comparison to (A.2.46) that representation
(A.2.45) remains valid for this case as well.
If A\ = Ao = A3 we assume that

3 3
Z Wy nyony = ﬁoz nyony. (A.2.48)
=1 =1

S(E') 1
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Hence
M% = 60
and representation (A.2.45) simplifies to
S(E') = p,1. (A.2.49)

Our finial conclusion is that an isotropic tensor valued tensor function can
be represented in the form

P(E') = .1+ E + B(E'). (A.2.50)

where the coefficients fy, /1 and B2 are functions of the invariants E, E7; and
E%;;. This statement is known as the first representation theorem for isotropic
tensor-tensor functions [65].






APPENDIX B

Solutions to selected problems

B.1. Problems in Chapter 1

Problem 1.1. We know the coordinates of the points A, B and C' in the coordinate
system (z1z273) Tyz: A(2;0;5) m, B(—1;4;0) m, C(—3;0;4) m.
(a) Determine the angle o at vertex A in the triangle ABC.
(b) Calculate the area of the triangle ABC and the volume of the tetrahedron
OABC.

FicUre B.1. The triangle ABC
Solution:

(a) Making use of the position vectors

ra = 2i; + bi3 [m], rg = —1i; + 4i> [m], ro = —3i1 + 4i3 [m]
we get
rap =rp —ra = —3i1 +4i> — 5iz[m|, rac =rc —ra = —5i; —iz[m],

ras| = V32 +42 + 52 = /50 ~ 7.0711 [m],
Irac| = v/5% + 12 = v/26 &~ 5.0990 [m].
It follows from the definition of the dot product (1.4) that
raB-rac = |rag||rac|cosa .
Hence

TAB " TAC 1545
- - = 0.55470
S s [rac]  7.0710 x 5.0990 ’

from where oo = 0.982 79 rad = 56.30°.
225




226 B.1. Problems in Chapter 1

(b) With the cross product
i i i3
rap Xrac=| —3 4 =5 |=4i;+ 22i> + 20iz [m?]
-5 0 -1

the area in question is given by

1 1
Sapc = lrap X rac| = 5\/42 +222 4202 = 15 m>.

As regards the volume of the tetrahedron OABC' it is well known that Voapc
is one sixth of the volume of the parallelepiped determined by the position
vectors ra, rp and rc. Thus

SN

92

1
Voapc = = [rarprc] = il - 5 = 15.333 m®.

S| =

SIINN)

Ao wm
[

w

Problem 1.2. Assume that the sum of three vectors vanishes: a + b + ¢ = 0. Prove
that
axb=bxc=cxa.

Solution: It follows from the condition the three vectors should satisfy that
bxc=bx(—a—b)=-bxa—-bxb=—-bxa=axb

and
cxa=cx(-b—¢c)=—-cxb—-cxc=-cxb=bxc.

Problem 1.3. Prove equations (1.16).

Solution: It is sufficient to show that the z coordinates are the same on the left and
right sides of equation (1.16);1 since the steps leading to the desired results are the
same for the y and z coordinates.

As regards the left side we can write
iz iy i
te ty t,

Uy Uy
Uy  Ug

tx (uxv)] i, =

=ty (UaVy — UyVs) — bz (UzVz — UzV:) .

For the right side we get

[(t-v)u—(t-u)v] i, =

= (taVa + tyvy + t20:) Us — (toUa + tyty + touz) ta
which is the same as the previous result since the terms underlined cancel out.
Likewise, we can prove (1.16)2.
Problem 1.4. Show that the matrix
/2 —1/v/2 —1/2

Q =| 12 1/vV2 -1/2
(3x3) 1/vV2 0 1/V2

is a proper orthogonal matrix.
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Solution: If Q is proper orthogonal then det (9) = 1 and QTQ = 1. It can be
checked with ease that these relations are satisfied:

i _ 1 _1
2 2
det (Q) = | 1 S B
O T
w 0 %
1 1 1 1 1 1
S T I - & R .
QQ=| -5 »n O 2 w» —2|=|[010]|=1.
_1 1 1 L 0 1 0O 0 1
2 2 V2 V2 V2

Problem 1.5. Show that the transformation matrices are popper orthogonal matrices.
Solution: It follows from (1.27) that

SVIRE P VRS RS VIR

o/ ol o/
det(Q) = i1 ih-ia ih-is | = [i] ipi5] =1 (B.1.1)
i5-ip i5-i2 i5-i3
since the rows of the determinant are the components of the vectors i} in the unprimed
coordinate system. That was to be proved.

Problem 1.6. Give the unabridged form of each equation listed below. If the indicial
notation is used incorrectly explain why.

(a) Fi =Gi+ Hija;, (b) ui=vj,
o
(¢) Fo =A¢+ By; C;Dy (d) ¥, = v
(e) d= [z ), (f) ta =0apns.
Solution:
(a)

Fi = Gi+Hiia1+ Hizaz+ Hizas,

F, = G2+ Haar + Hazax + Hazas,

F3 = Gs+ Hsia1+ Hz2a2 + Hszas.

(b) This equation is mistaken: the free indices on the left and right sides are
different: i # j.

(¢c) This equation is mistaken: the index j appears in the right side three times.

(@)

0P 0P 0P

U = — - — = —.
! 81317 2 83}2’ 3 81‘3

()

d=Vziz1 + 2272 + T323.

(f) Keep in mind that the Greek indices take the values 1,2 only.
t1 = o11n1 + o12n2, ta = 021m1 + 022n2 .
Problem 1.7. Simplify the following expressions:

(@) Dpgrors, (b) FiemOem, (¢) CpgrsOpmOgn, (d) arederdgs -
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Solution: If we take into account that the Kronecker delta is an index renaming
operator we get:

(a) quT5TS = qus 5 (b) Fklm(;Zm = kam 5
(C) Cpqrs(spm(sqn = Cmnrs , (d) akéél'r(sqs = akrfsq.s .

Problem 1.8. Show that equation (1.43) is equivalent to equations (1.14)s.
Solution: If r = 1 we can write
€k21i1 = ik X ig .

The left side is different from zero if k¥ = 2 and £ = 3 (then ez3; = 1) or k = 3 and
¢ =1 (then e3z21 = —1). Consequently, it holds that

6231i1 = i1 = ig X i3, and 6321i1 = 7i1 = ig X i2 . (B.1.2)
Equation (B.1.2); is the same as the first equation in (1.14)2. For r = 2 and r = 3
the proof is similar.

Problem 1.9. Show that the expression |axi| = epgrapiag2ars is the expansion of the
determinant by columns.
Solution: The steps leading to the solution are the same as those in equation (1.46):

Iaké‘ = €Epqrlip1Aq2ar3 =
= a11 (€1graq2ar3) + a21 (€2¢raq2ar3) + a31 (€3¢raq2ar3) =
= a11 (a22a33 — az3as2) + az1 (a13a32 — a12a33) + as1 (a12a23 — aizass) .
If we perform the first summation in ¢ or r we get the expansion of the determinant
by the second or third column.

Problem 1.10. Let n; [n| = 1 be the normal to the plane S that passes through the
origin. Show that the component of the position vector r lying in the plane S is given
by the mapping r; = W -r in which W is given by equation (1.207).

Solution: Figure B.2 shows the geometry of the problem.

F1GURE B.2. Projection of r onto the plane S
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It is obvious that the projection of r on plane S is
ri=r—ry=r—n(n-r).
——
Ty
Recalling the definition of the tensor product and the mapping properties of the unit
tensor we can write
ri=(1I —non)-r,

from where

W =1—-non
is the tensor sought.
Problem 1.11. Let P be the tip of the position vector r in the previous problem.
Show that the reflection of the point P with respect to the plane S is given by the
mapping ro, p» = W -r in which W is given by equation (1.208).
Solution: It follows from Figure B.2 that

ro,pr =r—2ry=r—2n(n-r)=(1 —2non)-r

is the image vector. Hence

W =1-2non
is the tensor of mapping.
Problem 1.12. What is the matrix of tensor (1.207)7
Solution: Since wye =1ix - W - iy and ny = n - ip it easy to check that

1—nin; —ni na —nin3
W = [wu] = —N2 N1 1-— n2 N2 —MN2 N3 . (B.l.g)
—n3ni —n3 n2 1-— nsns

Problem 1.13. What is the matrix of tensor (1.208)?
Solution: Following the steps leading to (B.1.3) we get

1—2nin1  —2nin2 —2n1n3
w = [wu} = 727’1,2111 1-— 27’L2’I”L2 7217,27’1,3 . (B.1.4)
—2n3n1 —217,3712 1-— 2’/13713

Problem 1.14. Prove equation (1.209).
Solution: Assume that we know the tensor in question in the primed coordinate
system. Then we can write

Wann = ion - W+ i = I - (whe By 084) - n = (i - 1) whe (i - i) =
—— ——
Qi Quer

This was to be proved.
Problem 1.15. Show that relations (1.83) follow from the definition given for the
transpose of a tensor.
Solution: We shall prove the last two equations only. Using the indicial notation we
can write

T T

Whe Ue = Ug Whe = e (W ek Up Wpg = Wpq Up = (W )gp Up;

T T T
(Spq War)™ = Srq Wap = (W )pg (87 )gr-
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Problem 1.16. Show that (a) sg¢e = sex if S is symmetric; (b) sk = —su, le.,
S11 = S22 = 833 = 0, S12 =— —S821, S13 — —S831 and 823 = —S832 if S is skew.

Solution: If S is symmetric then § = S7. Making use of equations (1.81a) and
(1.84) — i¢ and ik corresponds to u and v — we can write

in- S ig=1i- 8" ik=1- S ix
from where we get
i - (spgip oldq) -ir =1s- (spgip 0ig) - ik
or
Okp Spq Og¢ = Otp Spq Ogk

which means that

Ske = Stk -
If the tensor is skew then a similar line of thought yields

Ske = —Suk -
Consequently s11 = s22 = s33 = 0 and s12 = —S21, S23 = —S32, S31 = —S13.
Problem 1.17. Assume that we know the axial vector that the belongs to the skew
tensor S = Sgkew. Show that the matrix of the tensor in terms of the components of
the axial vector is given by equation (1.210).

Solution: Utilizing the properties of the permutation symbol we can check that
(1.210) follows from equation (1.93):

s11= —e11, 5 =0, S22 = —ea2, 8 =0, s11= —ea2, 5 =0,
s12 = —e12, 5. = —e123 55 = =5, 591 = —e21, 5 = —e21z s = 53,
8§23 = —€23r Sga) = —e€231 SYZ) = —Sga), 8§32 = —€32r 8£a> = —e€321 S;(;a) = sﬁ“) ,
s31 = —ea1r 8\ = —ea1 8(2(1) = *Sga)v s13 = —e1ar 5" = —e1s Sgl) = S;a) )

Problem 1.18. The matrix of a tensor T in the coordinate system (z1z2x3) is given
by equation (1.211). Find the tensor components t}, if we know the orthonormal
triplet of the base vectors that belong to the coordinate system (z}z575) — see equation
(1.212).

Solution: Utilizing the image vectors

/ 80 0 0 1 80
[T-il} - 0o 40 -3 0|l=1] 0 | N/mm?,
0 —32 —80 0 | 0
[ ] L [80 o 0o 7o . 0
T i) =——= | 0 40 —32 4 | =—| 192 | N/mm?,
VIT| 0 —32 —80 | | -1 VIT | _48
/ L [80 0o 0 70 . 0
[T.i3] —— | 0o 40 -3 1|=—| -8 | N/mm?
VIT] 0 —32 —80 | | 4 VIT | _352
we have
’ ’ ! 80
tu=i,-T-i,=[1 0 0]| 0 | =80 N/mm®,
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! ! ’ 1 80
tog =ip - T-ij=—=[0 4 —1 0 | =0N/mm?,
21 2 1 \/ﬁ[ } 0 /
!’ !’ ’ 1 80
toy =i T ,=—[0 1 4 0 | =0N/mm?,
31 2 1 \/ﬁ[ } 0 /
’7 7 ’ 1 0
t12:il~T~12:ﬁ[1 0 0]] 192 | =0 N/mm®,
—48
’ ’ !’ 1 O
bp=ip-Trip=1-[0 4 —1]| 192 =48 N/mm?
—48
!’ ! ’ 1 0
fag =dp - T ig=—=[0 1 4 192 | =0N/mm?,
32 2 2 \/ﬁ[ ] T /

’ /7 ! 1 0
tiz=1 - T-i3=—=[1 0 0]| -8 | =0 N/mm?,
VIT —352

’ ’ ’ 1 0
t23:i2-T-i3:1—7[0 4 -1]| -8 | =0N/mm”,
—352
! ! ’ 1 0
tas =1 T i =-[0 1 4]} —88 = —88 N/mm” .
—352
Consequently,
80 0 0
[tu] -~ 0 48 0 | N/mm?
0 0 -—88

Problem 1.19. Prove that

S~-(T-W):(TT-S)-~W:(S-WT)--T.

Solution: Using indicial notation we have

S (T W) = spq (tpk Whq)

(TT.S)..W:

(S.WT)..T:

((tT)kp 5pq> Wiq = tpk Spg Wkq = Spq (Lpk Whq) ,

T
(5pq (w )qk> Lpk = Spq Wiq bpk = Spq (Lpk Wiq) -

Since the right sides are equal so are the left sides.
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Problem 1.20. Show that the eigenvalues and eigenvectors of the tensor
W:H(I —1i Oil)-l-’y(iloig—f—igoh) .
are given by the following relations:
1 1 A
Alzgfix/nurhz, n1=7(fii1+iz);
MO
¥
A2 =K, np = i3;

1 1 A, .
A3 =g+§\/m2+472, n3 = ———— <—*111+12>-
1+ (A—l) )
~

Solution: It is obvious that the second eigenvalue and eigenvector are

)\2 =K, no = i3 .
Since

n; -ne=mns-n3=0

and

Az, . A, . 1
(—ill + 12> : (—*111 + 12) =1+ 7A1A2 =
Y Y Y

1 1 1
:1—1—? (E_,\/K2+472> <g+§ f<c2+4fy?> =0

2 2

it follows that ni, n2 and ns are mutually perpendicular to each other. Hence it is
sufficient to show that either n; or ns is an eigenvector. On the basis of

1 .. . . . .. Az, .
W -n = ——[yiz 011 + (yi1 + ki2) 0 i2 + kiz 0 i3] - (—311—&—12) =
A )2 v
1 1 . . 1 . .
= (Y + (k= N3)I2) = ————= (111 +12)
1 N 2 N 2 )\1
() ()

we shall calculate the cross product

A Az, . PERW
(111 + 12) X (—ih + 12> = (l + i) 13 =
A1 Y A1 Y
2
A1z, 1 1 1 .
:wm’:iv?_’_ E_,/K2+4,y2 E+7/m2+472 i3=0.
A1 A1 2 2 2 2
This means that W - n; is parallel to ni, i.e., n; is an eigenvector.
Problem 1.21. Prove that the permutation symbol is a tensor of order three in
Cartesian coordinate systems. (Hint: ey, = [i}, i i7].)
Solution: Using equation (1.26c) we can write
eir = (i1 ik] = [Qupls Qyrgls Queyir| = Qur, Q1 Qo T i ir] = Qur, @ty Qe par
(B.1.5)

Consequently, the permutation symbol is a tensor of order three in Cartesian coordi-
nate systems.
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Problem 1.22. Prove relationship (1.216):

Solution: Using indicial notation yields
det (wre + dwye) = det (wre) det (5pg + w;sldwsg) ,
where we have formally an eigenvalue problem
(w;sldwsg — )\5pg) n, =0
in which A = —1.Its determinant is the characteristic equation:
det (5,,5 + w;;dwsg) = 0pe + (w;&.ldwsg)l + (w;:dwsg)n + (w;sldwsg)ln .
Terms with order higher than 1 can be dropped. Hence we get
det (wre + dwye) = det (wre) Ope + det (wie) w;;dwsp .

On the other hand
Odet (wkz)

dwsyp .
Owsp P

det (wre + dwie) = wre +

Since the terms underlined in the previous two equations are the same we obtain

Odet (w _

% = det (wie) wyy.
or

8det(W) . T

Tow At (W)W

That was to be proved.

B.2. Problems in Chapter 2

Problem 2.1. Let
1 =Xo+ X3 — X1, T2 = Xo + X3, r3 = X2 —2X3
be the motion law in material description. Determine F, F~! and J.

Solution: Substitute the law of motion into equation (2.13)s. After performing the
derivations we get the deformation gradient:

[ 8%1 81‘1 aai‘l |
0X1 0X2 0X3
9 -1 1 1
[FZA] — [ X¢ :| — — 0o Oxo O0x2 = 0 1 1
0Xa Xe=xp 0X1 0X2 0X3 0 1 -2
drz  Oxs  Oxs
L 90X, 00X, 0Xs3 |
Using (2.20) for the Jacobian we have
dr1  Oz1  Om
00X, 0X2 0Xs
-1 1 1
J=det(F)=| 9z2 Oz Oz2 |=| 0 1 1 |[=3.
X1 0X2 0X3 0 1 -2
Ozs Ozs Ox3
0X, 0X2 0Xs
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The equation system

X1 X1
0o 1 1 Xo | = | a2
0 1 -2 X3 x3
yields the inverse motion law:
_ _ 1 _ 1
X11=X1=$2—$1, X21=X2:§(2372+$3) X31:X3—§($2—$3)
Hence
[ ox: oxi oxy | L1 o
Or1 ~ Oxa  Oxs B
—1
(5] = {3XB } _ b o= 0w oxe || o2 1
9z X5 =Xp Ox1  Oxa  Ozs 3
0Xs 0Xs3 0X3 0 11
L Ox1 Oz  Oxs 3 3

is the inverse deformation gradient.

Problem 2.2. Let x = (X1 +at X2)i1 + (X2 —at X1) iz + X3iz be the motion law
in material description where a is a constant. Find (a) the deformation gradient,
(b) the inverse motion law and (c) the inverse deformation gradient.

Solution: It is easy to check that
[ 8)(1 8)(1 6)(1 ]
8X1 8X2 an
P 1 at 0
[Fea] = {6;2} =] Oz Oxz2 9Oz | =] —at 1 O
A 0X1 0X. 0X3 0 0 1
3X3 aX3 aX3
L 0X1 0X> 0X3 |
Consider now the equation system
1 at 0O X1 x1
—at 1 0 Xo | = | a2
0 0 1 X3 T3
from where
1 —atxas + x1 1 atry + x2 1
—X, = 2T =X, = T2 =X, =
X1 1 1 +a2t2 B X2 2 1 +a2t2 3 3 Z3
is the inverse motion law and
0X; 0X1 0Xi 1 at
» Oz1 Ozmy Oz TN R
[F5/] = {?E } = 1 =|0X; 0X3 0X5 | = at 1
Te Xp'=Xp Ox1  Oxa Oxs 22 +1 a2t +1
0Xs 0X3 0Xs
0 0 1
L 8331 8%2 31’3 u

is the inverse deformation gradient.

Problem 2.3. Given the temperature distribution in terms of the material coordi-
nates X4 within the cube of Exercise 2.1: § = B (14 X1 X5) where B is a constant.
Find the spatial description of the temperature field.
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Solution: Since
xT
X1::r1—a1(:r2—a2)2, ngxz—ag, X3:—3
1-— as (ZIIQ — CLQ)

— see the solution to Exercise 2.1 — we get the temperature distribution within the
cube in spacial description in the form

0=B(1+X1X2)=B[1+ (21— a1 (z2 — a2)?) (x2 — a2)] .

Problem 2.4. Find the displacement field in material and spatial descriptions within
the cube of Exercise 2.1

Solution: Using the motion law given in Exercise 2.1 we may easily determine the
displacements in material description:

Uy = I 7X1 :a1X227 uz :$2*X2 = az, us ::L'3*X3 :a3X2 X3, (B26)

If we now substitute the inverse law of motion (2.5) we get the displacement compo-
nents in spatial description:

2
ur =21 — X1 =a1 (z2 —a2)”, u2 =x2 — X2 = ag,

T3 _ azxz(w2 —ag)

=23 — X3 =23 — = '
u3 = I3 3 =1T3 1+ a3 (z2 — az) 1+ as(z2 —a2)

Problem 2.5. Making use of the motion law of Exercise 2.1 determine, within the
cube, (a) the deformation gradient in material and spatial descriptions and (b) prove
that equation (2.98) is the inverse deformation gradient in spatial description.

Solution: Substitute the law of motion (2.4) into equation (2.13),. After performing
the derivations we obtain the deformation gradient:

axl (91'1 a:m

0X1 0X: 0X3 1 204 X 0
[Foa] = [ Oxe } - 1 = Ores Ox2 Oxo S all 2 0
a)<A X¢=Tp 8X1 8X2 an 0 a3X3 1 + CL3X2

8&1‘3 81’3 8.133
0X1 0X, 0Xs

With the inverse law of motion (2.5) we get from (2.16)2 that

X1 0X1 00Xy
1 (91'1 8x2 81‘3
[Fgel] — |:8XB :| — T — 8X2 8X2 8X2 —
Oz X5 =Xp Oxry Oxa Oxs
0X3 0X3 0Xs3
8$1 aCCQ 8%3

1 —2a1 (IQ - az) 0
=10 1 0
0 —asxs3 1

[1+a3 (332 —ag)]2 1+ as (xg *ag)
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Problem 2.6. Find the deformation gradient in the cylindrical coordinate system

Solution: The cylindrical coordinates are denoted by R, @ and Z in the initial

configuration. In the current configuration, however, by r, ¥ and z. The motion law
is of the form

x=x(X)=x(R,0,2).
It is clear that

=r(R,0,7), 9=9(R,0,7), z=2R,0,7).

The position vector of the material point in the (initial) [current| configuration is given
by (R = Rir + Ziz) [r = ri, + zi:], that is, (X = R) [x = x = r|. It holds that

dx =dr =

or [ or or or or (09 oY oY
=3 (ﬁdR—i— R&@Rd8+ 8ZdZ) Exl <ﬁdR+ 7R8@Rd@+ 87dZ) +
or [ 0z 0z 0z

+ B (ﬁdR‘i’ a@RdQ + 87dZ

) dR=dRig+RdOig+dZiz

or [ Or or or
= o (ﬁ i dR + posien dR+ o7z dR)
~~

ir

or ’19 09 ., oy,

iy

or [0z 0z 0z,
* a2 (ﬁ b dR A+ Ra@‘@'dR+a7‘Z'dR) '
~~

iz

Consequently, we have
dr = |i, ® or + or -l-ﬁ +riyg ® 819 +7819i +@i +
=@ \ar™ " Roe™ 82 P \orR™ T RGO T 07"
0z 0z
i@ (%1”38 aZ )}’dR’
from where, after some rearrangement, we get the deformation gradient:

F = al—i—ra—ﬂl—ka—l ®ir + 81—|—*r819 %i ®li+
OR" T OR "TOR” Et 56t oe™ T a6’ ) ¥ B

or oY 0z
—&—(azlr—&—ra@lg—l—az )®1z (B.2.7a)

Its matrix is given by

or 1 or or

R RoO 0Z

— | ,o0 rov o0
F "sR Rooe "soe |- (B.2.7b)

oz 1 9z oz

R RoO0 0z
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Problem 2.7. Assume that r = R, 9 = © + 20 and z = Z in the previous Problem.
This is the case for a rod with circular cross section subjected to twisting — it is assumed
that the cross sections rotate in their own plane. Then ¥ is the angle of rotation for
a unit length. Find the displacement gradient utilizing the notations given in Figure
4.1.

Solution: The displacement vector is
u=u’=ri, — Rig.
Hence

o o . . 0 . 1 0., o .
u ®V = (TIT—RIR)® (EIRJ’-E@I@—F@?IZ) =

3% Al . o .
= (TCOS’L9ZIR+’I“SIIM9219 —RIR) ® ﬁllﬁ_

+ (rcos@ziR—Frsin@zi@ —RiR) ® %%i@
A . L. . 0.
+ (rcosﬂzm—f—rsmﬂm@ —RIR) ® ﬁlz =
or

== (cosqéZiR +sindZ i@) ®in —ir ® in+
+ % (coséZi@ - sinéZiR) ®io — io ®ie+
+ o (— sindZ ir + cosHZ ie) ®iz,
where the relations z = Z and i, = iz are taken into account. Since r = R we also
have that Or/0OR = r/R = 1. Thus

W eV = (coséZiR +sim§Zi@) ®ir — ir @ int
+ (cos1§Z io — sinﬁZiR) ®Rie —ie Rie+
+R1§ (—sin@ZiR—l—coséZi@) Riz
and

cosdZ — 1 —sindZ —RdsindZ
[u @V = sin v~z cosVZ —1 RcosVIZ
0 0 0

If 9Z and JR are very small (for the case of small deformations) the matrix of the
dispalcement gradient is simplified to

o

[u®®V°] =

o O O
SO O
oy
g,
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Problem 2.8. Show that equation (2.99) provides the Green-Lagrange strain tensor
for the motion given in Exercise 2.1.

Solution: Since
2
up = a1X5, Uz =az, usz=azXsX3

equation (2.39) yields
1
E = 3 (u1,1 +u1,1 +uriur + uzu21 +us1us;) =0,
_ 1 o292 L 2o
Ezs = = (u2,2 + u2,2 + u1,2u1,2 + U2,2u2,2 + u3,2u3,2) = 2a1 X5 + §a3X3 ,
1 1
FEs3 = 5 (us,3 + us,3 + u1,3u1,3 + u2,3u2,3 + us zus z) = azXa + §a§X§ ,
1
Ei2 = E21 = = (u1,2 + u2,1 + ui,1u1,2 + uz1uz,2 + us,1us,2) = a1 Xa,
1 1 1,
Ey3 = E3p = 5 (u2,3 + us,2 + u1,2u1,3 + U2,2u2,3 + Uz 2u3,3) = iaaXa + §G3X2X3 )

1
Esy = E13 = = (us,1 + u1,3 + ui,1u1,3 + uz,1u2,3 + us,1us,;z) = 0.

Hence
Einn Ei2 Eis
E = [EAB} = | E21 Ez Ea3 | =
(8%3) Es1 E32 Ess
O a1X2 0
2 32 1 50 1
= a1X2 2a1X2 + §G3X3 §a3X3 (1 + O/SXQ) . (B28)
1 1
0 5(13)(3 (1 =+ a3X2) a3X2 1 =+ §a3X2

Problem 2.9. For the deformation
X1 :Xl, $2:73X3, ZE3:2X2

find F, U, v and R.
Solution: It can be checked easily that

1 0 0
F=|0 0 -3 |, det(F)=6>0.
0 2 0
Consequently,
1 0 0 1 0 0 1 0 O
C=U’=F"F=|0 0 2 00 —3|=]|040
0 -3 0 0 2 0 0 0 9
Note that C = U? is diagonal. Hence
1 0 O 1 0 O
Uu={02 0|, U'=|0 3 0],
00 3 0 1
3
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and
1 0 0 1 0 0 1 0 0
R=FU'=|0 0 -3 i 0]|=]00 -1],
0 2 0 o 1 0 1 0
3
while
1 0 0
det(R)=|0 0 —1|=1,
0 1 0
1 0 0 1 0 0 1 0 O
RR"=|0 0 -1 0 0 1|=]010
0 1 0 0 -1 0 0 0 1
For v we get
1 0 0 1 0 0 1 0 O
v=FR '=FR"=|0 0 -3 0 0 1|=]030
0 2 0 0 -1 0 0 0 2
Problem 2.10. For the deformation
$1:2X1—2X2, $2:X1+X2, $3:X3

find F, U, v and R. Prove that the matrix of the left stretch tensor v is a diagonal
matrix.

Solution: It can be checked easily that

2 =2 0
F=|1 1 0|, det(F)=4>0.
0 0 1
Consequently,
2 1 0 2 -2 0 5 -3 0
C=F'F=| -2 1 0 1 1 0|=|-3 5 0
0 0 1 0 0 1 0 0 1

Solution for the eigenvalue problem for the right Cauchy-Green strain tensor C (x; =
A?) is based on the observation that iz is an eigenvector with x = 1 as the eigenvalue.
Hence it is sufficient to consider the eigenvalue problem for the matrix

53

5— -3
Px) :\ X

This means that
2 _ —
_3 5*)(‘7)( 10x+16 =0

is the characteristic equation from where 8 and 2 are the eigenvalues. With the
eigenvalues

Xlz)‘%_gv X2:A2:27 X3:)‘§:17
8 0 0 22 0 0 ) 10 0
u*=|02 0|, U= 0 V2 0 U'l=—1|0 2 0
(n°) 00 1 (n°) 0 0 1 @) V2| o g 93
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As regards the eigenvectors if y1 = 8 we have to solve the equation system

5— X1 -3 TL(])_l _ -3 -3 TL(])_l _ 0
-3 5 — x2 ny, | | -3 -3 nsy | | O

from where we get

o

1. 1.
nlzﬁll—%lg7

ns =n; x nj =is x (iil — iig) = Lil + Lig
V2§ V2 V2T V2
and as we have already seen
n§ = is.

Consequently,

3
U = Z)xgn}? onj =22 (—211

=1

v
T ONC
&

2
—(iifii)olJr x 3')oi + i3 01:
21 22 1 2 \/52 2+1izo0l3
and
3 _1 9
2w
U=|l-»5 »n 0
0 0 1
from where
3 1 3 1
| T ] e PR
0 0 1 0 0 1 0 0 1
As regards the inverse of U we have
3
1 1 1
U= ngon; = —i; — —i i ia | +
25 2f<\/§1 22) (ﬁ W)
<11+1>o<11+1i)+101
— 1 —11 + —12 3013 =
HVCARVC RV, 2 V2
1 1 .
= 11 + 1 o011 + 11 + ——=1 01z +1301
(4@1 4\/52) ' (4\/51 4f2) TR
and
3 1 0
. 1
L6 — 1 3 0
42 0 42
The matrix of the rotation tensor is
1 1
eem i B AR O
=T =l v
T2 g g 0 0 42 0o 0 1
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B.
Note that
1 _1 9
V2 V2
detR)=| 5 5 0|=1
0 0 1
1 1 1 1
P I R I I A Ol I I
RR' = %5 U 0 -5 Of=]101 0
0 0 1 0 0 1 0 0 1
For the matrix of the left stretch tensor v we get
2 -2 0 % w5 0 2V2 0 0
_ -1 _ T _ i 1 _
v=FR "=FR =|1 1 0 -5 5 0|=| 0o v2 o0
0 0 1 0 0 1 0 0 1
It also holds that
2V2 0 0 % —7 0 2 -2 0
vR=| 0 V2 0 %5 5 0|=|1 1 0]|=F
0 0 1 0 0 1 0 0 1

It is obvious that the matrix of the left stretch tensor v is a diagonal matrix.
Problem 2.11. For the deformation

X1 :2X3, ) :—Xl, xrs3 :—2X2+3X3
determine F', U, v and R.

Solution: It is clear that

0 0 2
F=|-1 0 0], det (F) =430.
0 -2 3
Hence
0 -1 0 0 0 2 1 0 0
C=U>=F'F=|0 0 -2 -1 0 0|=|0 4 -6
2 0 3 0 -2 3 0 -6 13

We do not give details concerning the eigenvalue problem of the tensor C. It can
checked that

A =16, AM=X=1
are the three eigenvalues and

1 . . o . o 1 i
N T LT ety

1
V5
are the associated eigenvectors. Since

U):AlnToni’—F)\gngonS—o—)\gngong:4n‘fon‘1’+n§ong+n§on‘3’:
n

4, . . . . .. 1. . ..
5 (—12 + 213) [e] (—12 =+ 213) +1, 011 + 5 (212 =+ 13) o (212 + 13) =
1 1
=1i,0i1 + 5(4i2—8i3+4i2+2i3)0i2+5(—8i2+16i3+2i2+i3)0i3 =

1 1
= i1 [e] il + g (8i2 - 6i3) (] i2 + g (—6i2 + 17i3) [¢] i3

be
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we get that
1 0 0 1 0 0
u=|(o0o & ¢, u'l=|0 & 3
0 —6 11 3 2
5 5 10 5
Thus
0 0 2 1 0 0 0 3 4
-1 17 3 5 5
R=FU =| -1 0 0 0 5% % |=1] -1 0 0
—2 _4 3
0 3 0 13—0 % 0 5 5
It can be checked with ease that
3 4
0 5 3
det(R)=| —1 0 0|=1,
0o —4% 3
5 5
0 3 4 0 -1 0 1 0 0
T 5 5 3 4
RR'=| -1 0 0 5 0 -5 (=]010
4 3
As regards v we have
0 0 2 g -1 9 8 0 ¢
v=FR'=FR"=| -1 0 0 5 0 -5 |=]01 0
6 17

Problem 2.12. Given the deformation in the following form:
Tr1 = 2)(1(308)(27 €Tro = 2X18h’1X2, T3 :Xg.

Find the inverse motion law, the deformation gradients F, F~! and show that the
above deformation is volume preserving.

Solution: Since

2 2 X2
] + x5 =2X1, — = tan X»
T1

for 2 + 22 > 0 the inverse motion law is given by the following equations

Xlzl(:c%+x§), ngtanflﬂ, X3 =ux3.
2 T
Hence
8‘%‘1 8.%‘1 8.%‘1 1 3
cos X2 —v/2X1sinXs 0
) X, 0X; 0Xs VxR L
X¢ ox Ory Ox 1

[FeA]:[ }: T = 2 2 22 = in Xo 1/2X1cos X

XA ot X, X, 9Xs X sin Xo 1cos Xo 0

81)3 _81:3 81'3
0X1 0X2 0Xs

[en]
o
=
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and
00X, 0X;1 0Xi o o 0
1 axl 8332 a{E3
[FB}l] _ [8XB :| _ o= 0Xo 0Xo 0Xso _ | T x1 0
O Xpl=Xp Or1  Ozs Oxs 2+ 13 a2+ 23
0Xs 0X3 0Xs 0 0 1

Or1 Ox2 Oxs
As regards the Jacobian we get
J = det(Fra) = cos® Xa + sin® Xo = det(Fg, ) = 1
Consequently the deformation is volume preserving.

Problem 2.13. For the deformation considered in Problem 2.10 find the right
Cauchy-Green tensor, the Green-Lagrange strain tensor, the principal directions and
stretches in the initial configuration, the right stretch tensor, the rotation tensor and
the principal directions in the current configuration.

Solution: Using (2.32) we obtain

[CaB] = [FacFes] =

1 L 1 -
TXl cos Xo Tax; Sin Xs 0 X, cos Xo —v/2X7 sin X»
1 .
= | —v2X1sin X2 v2X1cos X2 0 MSIHXQ V2X1 cos Xo
0 0 1 0
1
| o2x 0
- 0 2X; 0 ’
0 0 1
1
— — 0 0
1 2X1

[EaB] = 5 [Cap — 0aB] = 0 2X:1—1 0
0 0 0

Since the matrix [Cap] is diagonal equation (2.62) yields

1

no = i 5 )\e = ;

! ' TV,

Ilg = i2 ) )\g = 2)(l 5

n§ = i3 y )\§ =1.

From equations (2.71) and (2.72) we get the right stretch tensor, its inverse and the
rotation tensor:

! 0 0 2X, 0 0
2X, 1 .
[Uap) = /[CaB] = 0 5%, 0|, [Wagl=1] 0 <. 0|



244 B.2. Problems in Chapter 2

1 -
cos Xo —v/2X;1sinXs 0
Norel 2 1 2 2X1 0 0
-1 1 . 1
[Rip]=[FxalU,p) = Norel sin Xo 1/2Xi1cosX2 0 0 X 0=
0 0 1 0 0 1

cosXos —sinXs O
= | sinXs cos Xo 0
0 0 1

The prinicpal directions in the current configuration can be obtained from equation
(2.79):

o . . .
ng = R-nj =1i;cos Xy —izsin X,

il SinXQ + i2 COS X2 5

ng = R-nj
ns = R- n§ = i3 .
Problem 2.14. Show that the Green Lagrange strain tensor and the Euler-Almansi

strain tensor are independent of the rigid body rotation (of the tensor R). (Hint:
Make use of the polar decomposition theorem.)
Solution: Substitute the right polar decomposition FF = R - U into the definition of
the right Cauchy-Green tensor. We have
C=F" F=U"-R" RU=U"U=(U)?.
—

I
which means that C' is independent of R. Hence

1

E=_(C-1)

is also independent of R.
As regards the second part of our statement take into account the left polar decom-
position F = v - R. We may write
b=F . F'=v-R-(v-R"=v-R-R" v =v-v" =v>.
——
1

This means that b and b~! are indpendent of R. Consequently,
1 -1
=—(1-0
e=1(1-v
is also independent of R.

Problem 2.15. Assume that the displacement field is given by the following equa-
tions:

uy = CL(2X12 + X1X5), us = aX2, uz = 0; a=10""
Find the axial strains in the directions iy and i» at the point P(1,1,0). What is the
angle change between these directions?
Solution: Utilizing equation (2.36) we get

. . 1
En=i1-E-ii=u1+ By (u1,1u1,1 + u2,1u2,1 + ug1uz1) =

2
= a(4X: + X2) + % (4X1 4 X2)* +0+0)
Eu|p = 5a +12.50%;
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' =V1+42i -E-i1 — 1 =+/1+2(5a+ 12.5a2) — 1 ~ 5a + 12.54°

or

e = /1+2(5a+12.5a2) — 1 =
=1+2x(5x10-4+125x 10-8) — 1 =0.0005

and
el 25 x 1074 +12.5 x 1078 = 0.000 500 125 =~ 0.0005 = 5a.

‘We obtain in the same way

. . 1
Eop =i -E- iy =u22 + 5 (u1,2u1,2 + u2,2u2,2 + us,2us3,2) =
2
= 2aXz + o (X3 +4X5 +0),
E22|P = 2a =+ 2.5@2;
' =V1+42p-E-ig —1=1+/1+2(2a+25a2) — 1~ 2a+ 2.5d°
or

e =/14+2(2a+25a%) —1=

=/1+2x (2x 104425 x 10-8) — 1 = 0.000 200 005

and
e 22 x 1071 4+ 2.5 x 107% = 0.000200025 ~ 0.0002 = 2a.

With equation (2.44) we have

sin _ 2i1 - E - is _ 2F12
TET et (1+e2)  (I+e)(1+e%)
where
. . 1
Eix =i -E- iy = 5 (u1,2 + u2,1 + u1,1u1,2 + U2,1U2,2 + U3, 1U3,2) =
1
=5 (aX1+0+a® ((4X1 + X2) X1 + 0+ 0)) = 0.5a + 2.5a° .
Hence

. FEi2 a+ 5a2
Sl Y12 = = =

(I+e)(1+e2)  (1+e°h)(1+e2)

1074 +5x 1078 _a
= = 0.9997 998 900 89 x 10
(14 0.000 500 125) (1 + 0.000 200 025) %

from where
sinyi2 & y12 = 0.9997 998 900 89 x 1074,

If we take into account that !801’ <1,t ’502| < 1 and neglect the quadratic term in

FE12 we obtain
sinyi2 & yi2 = a = 1074

Note that the quadratic terms can really be neglected.
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B.3. Problems in Chapter 3

Problem 3.1. Given the displacement field of a continuum in spatial description:

—t t

1 1
u1:x1+§($1 +x2)e —Q(acl—acg)e,

—t

1 1
u2=x2—§(az1 +xz2)e —§(x1—:v2)et, us =0.

Find the velocity and acceleration fields both in material (Lagrangian) and in spatial
(Eulerian) descriptions.
Solution: Since uy = zy — X, we have

1 1
Xi=—Z(z14z2)e " + = (1 —x2) €,

2 2
1 1 ¢
X = f§(x1+x2)e — §(x1 —xz2)e’,
X3 =3
from where
et et etpe—t
2 ) 1 Xy
efte? et—e~t z2 | | Xo
T2 2
or
sinh ¢ —cosht z1 | _ | X1
—cosht  sinht zo | | Xo |
Hence
r1 = — X3 sinht — Xscosht, ro = — X cosht — Xosinht,
T3 = X3 .
With the motion law
0. .
v = % = —Xjcosht — Xosinht = x2,
0 .
1)2:%=—X151nht—chosht:x17 v3 =0

are the velocity components in material and spatial descriptions. As regards the
acceleration components we get

a = % =—-X1 Sil’lht_XQCOSht:mh
as = % = —X1 COSht—XZSinht:‘r27
as =0.

Problem 3.2. Assume that
xr1 = Xleit — X3 (1 — eit) ) To = X2 — X3 (et — eit) ) xr3 = X3€7t

is the motion law. Find the velocity and acceleration fields both in material and in
spatial descriptions.

Solution: It can be checked with ease that the inverse motion law is of the form:
t
e _ _
X1 = ey (w3+m16 t_ xse t) , Xo =12 — x5+ x3e? |, X3 = z3€’.

With .
X3 = % = :L’36t
e—
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and
t

X1+ X3 = % (iva +£E167t)

we get the velocities:

1
v = % =—(X1+Xz)e " = Tt (w3 +21e7"),
0 _ _
vy = % = —X3 (et—i—e t) :—1‘3€t (et—&—e t),
vy = % = —Xgeit = —I3
and the accelerations:
ov _ 1 _
a1 = 8—; = (X1 4+ X3)e ' = ey (x5 + w1e t),
az = % = —X3 (et — eft) = —x3e! (et — eft) ,
a3 = % = R
3 o = =3

Problem 3.3. Given the velocity field of a continuum: v = x/(1+1t): prove that the
motion law then takes the form x = X (1+¢). Determine the velocity and acceleration
fields both in material (Lagrangian) and in spatial (Eulerian) descriptions.

Solution: It is obvious that

v=2x_
ot ’
where X = x/(1 +t). Hence
X
Mkt

The last two relations are the velocities in material and spatial descriptions. The
acceleration is zero:

8%x 8?
a=Gm = o X1+ =0.

Problem 3.4. Given the velocity field for a motion in the following form:
vl = axs, ve = —fxs, v3 = —axy + B2

where a and 8 are non zero constants. Verify that this motion is a rigid body motion.
Find the spin vector.

Solution: Since

v1,1 V1,2 V1,3 0 0 « 0 —ws wa
(lpa] = [Vp,g] = | v21 v22 v23 | = 00 B |=| ws 0 —w
V3,1 V32 V33 —a g 0 —w2 w1 0

is skew it follows that
dpq =0 and lpg = Qpq -
Hence the motion is rigid body motion for which
w1 = 2wy = 20, w2 = 2wy = 2, v3 =2w2 =0

is the spin vector.
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Problem 3.5. Given the velocity field of a continuum in spatial description:

201T2X3 a:% - x% T9

Rt 0 2T TR b BT e

v = —

where R = /22 + x2 # 0. Find the velocity gradient, the strain rate tensor, the spin
tensor, the vorticity vector and the acceleration.
Solution: Making use of equation (3.6b) we obtain the velocity gradient:

V1,1 Vi2 V1,3
[lpg] = [Vpg] = | v2,1 w22 w23 =
V31 V32 V33

,2‘253 ( 2_ 337%) 72253 (x% — 33:3) —2T1T2
= | 2 o) 2 (0 ned) oo
—2x122 x% — x% 0
Since
lpg = lgp

it follows that the velocity gradient coincides with the strain rate tensor:

dpq = lpq

Hence

1 1

(2pq = i(lpq —lgp) =0 and Wr = *ﬁepqrgpq =0

which means that the spin tensor and the vorticity vector w, = 2w, vanish. Then the
motion is said to be irrotational.

Problem 3.6. Assume that the velocity field is the gradient of a potential function
¢, i.e., v. = ¢V. Prove that the right side of equation

DBt(v):(v)' (%+ £ v)v

is really the acceleration field.
Solution: Substituting v = ¢V into equation (3.58a) yields
Dv ov | [olo} O¢

a=— =(v) =(voV)- v+ o= v (v V)—&-EV (E+ SV )V-

Problem 3.7. Given the velocity field of a continuum in spatial description:

v1 2@552, ’022—@%17 v3 =0

R

where R = /23 + 22 # 0. Prove that this motion is volume preserving. Show,
in addition to this, that the spin vector (or the angular velocity vector) vanishes if

f(R) = —1/R.
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Solution: It can be checked with ease that
V1,1 V1,2 V1,3
[lpa] = [Up,g] = | V21 w22 w23 | =
U3,1 V3,2 V33
(df(R) _ f(R)) @1z (df<R) _ f(R)) L R (C R
RAR R2 R RAR RZ ) R R
= _ (df(R) _ f(R)) 2 f(R) (df(R) _ f(R)) wiz2 |,
RdR rRZ ) R R RdR R2 R
0 0 0
(df(R) _ f(R>) ziwy 1 (df(R) FR)\ za—2f
RdR R2 R 2 R2 R
1 2 2
[da] = 5 llpa +lap] = | § (4R - L) =t — (YR @) mz o
0 0 0
and
1 (df(R) (R) F(R)
0 3 ( ar T) +t77 0
1
[qu}—i (lpg — lap] = % (dz(};&) - f(]?)) + L}?) 0 0=
0 0 0
0 —Wws 0
= w3 0 0
0 0 o0
from where
1 (df(R) _ f(R)\ _ f(R)
— Qwn = — = _ _
W= =Ty ( dR R R
is the spin vector.
Since d; = d11 + d22 + d33 = 0 equation (3.33) yields
(dV) =d;dV =0
which means that the motion is really volume preserving. For f(R) = —1/R the spin

vector is zero, i.e., the motion is irrotational.

B.4. Problems in Chapter 4

Problem 4.1. Given the displacement field of a solid body by equation (4.79). De-

termine the matrices [ex¢] and [x¢]. With the displacements at the points

Xp = —20i; + 30i2 + 40i3 [mm] s XQ =Xp+1 [mm] .

compare the value Au = ug — up calculated using the exact solution for u and the

approximation

Aur (uoV)|p, - AX, AX =Xg—Xp =i [mm].
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Solution: Making use of the derivatives

Jdu . . ou . .
u, = > CX3i1 +2CX, Xsis, uqg= X, 20X1 X211 + CX3iz,
ou . .
u ;3= 87)(3 = 20X X3is + CX1213
we get the displacement gradient and its value at the point P:
X5 2X1X. 0 9 -12 0
[ug ] = C 0 X2 2X,X5 and [ur,(P) =] 0 16 24 |107°.
2X:X3 0 X3 -16 0 4
On the basis of (4.17) we can write
1 1
€=5 (uoV+Vou), lewe) = [ume] = {5 (uk,é+ué,k):|
from where
X? X1X, X1X3 9 —6 -8
e =C | X1X2 X2 XoX3 and [exe(P))=| -6 16 12 |107°
X1X3 XoX3 X{ -8 12 4

are the symmetric part of the displacement gradient ux, . and its value at the point P.
For the skew part we get in the same way that

{ 0 X1Xo —X1X3
Wre] = [upn] = {5 (ur,e — ue,k)] =C| —-X1X2 0 XoX3 ;
X1X3 —X2X3 0
0 —6 8
Wee(P))=1] 6 0 12 [107%
-8 —-12 0
Recalling (4.21b)2
0 —p3 P2
Weel=| ¢3 0 —¢1
—p2 P11 0

is the matrix of the rotation tensor in terms of the rotation components. Hence
Y = —CX2X3 il—CXng i2—CX2X3 i3 and %2} (P) = (—1211 —+ 8i2 —+ 6i3) 10_3

are the rotation vector and its value at the point P. The displacements at the points
P and Q are obtained by simple substitutions:

u(P) =—-10"" x 20 x 30%i; + 107" x 30 x 40%iz 4+ 1077 x 40 x 20%i3 =
= —0.18i; + 0.48iy + 0.16i3 [mm],

u(Q) =—-10"" x 19 x 30%i; +107° x 30 x 40%iz + 1077 x 40 x 19%i3 =
= —0.171i1 + 0.48i5 + 0.1444i3 [mm)].

On the basis of equation (4.20a) the approximate value of the displacement vector at
Q is given by
u(Q)=u(P)+uoV|, -dX.
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Consequently, (dX, = X, (Q) — X¢ (P)) we get

—0.18 9 —-12 0 1
[ur (Q)] = [ur (P)]+[uk,e (P)][dXe] = | 0.48 +1073 0 16 24 0] =
0.16 —-16 0 4 0
—0.18 0.009 —-0.171
= 0.48 + 0 = 0.48 [mm)]
0.16 —0.016 0.144

is the approximate value of the displacement at (). The difference between the exact
and approximate values can now be calculated:

0
[AUk (Q)} = up, (Q)(exact) — up (Q)(approxlmatlve) — 0 [mm} ]
0.0004

Problem 4.2. Show that the diagonal and off-diagonal components of the incompat-
ibility tensor are given by equations (4.42).
Solution: Equation (4.41) defines the tensor of incompatibility:

Nre = €qprCkst€ps,qk -

If we utilize the properties of the permutation symbol, the symmetry of the strain
tensor and the interchangeability of the derivations we get:

M1 = €qp1€ks1€ps,qk —
= €231€231€33,22 + €321€321€22,33 + €231€321€32,23 + €321€231€23,32
—— N——
-1 -1
from where
711 = €22,33 + €33,22 — 2823,23 .

‘We can proceed in the same way:

M22 = €¢qp2€ks2€ps,qk —
= €132€132€33,11 + €312€312€11,33 + €132€312€31,13 + €312€132€13,31 =
N—— N—_——
-1 -1

= €33,11 + €11,33 — 2€31,31 ,

133 = €qp3€ks3Eps,qgk =
€123€123€22,11 + €213€213€11,22 + €123€213€21,12 + €213€123€12,21 =
N—_—— N——
-1 -1

=€11,22 + €22,11 — 2€12,12 -

For the off diagonal elements of the incompatibility tensor we obtain

M2 = €gpl1€ks2Eps,qk =
= €231€312€31,23 + €321€132€23,31 + €231€132€33,21 + €321€312€21,33 =
— —
-1 -1

= €31,23 + €23,31 — €33,21 — €21,33 = (€132 + €23,1 — 512,3)73 — €33,12,
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723 = €¢p2€ks3Eps,qgk =
= €312€123€12,31 + €132€213€31,12 + €312€213€11,32 + €132€123€32,11 =
—— ——
—1 -1

= €12,31 + €31,12 — €11,32 — €32,11 — (821,3 +€e31,2 — 523,1)71 — €11,23,

M31 = €qp3€ks1€ps,qk —
= €123€231€23,12 + €213€321€12,23 + €123€321€22,13 + €213€231€13,22 =
— ——
-1 -1
= €23,12 + €12,23 — €22,13 — £€13,22 — (832,1 + €123 — 531,2)72 — €22,31 -
Problem 4.3. Assume that (a) . is independent of X3 and e.3 = €3, = £33 = 0.
Find the compatibility equations for this strain tensor and clarify the conditions under
which the strain components
2 2
11 = k(X7 — X3), €12 = €21 = X1 X0, €22 = kX1X2,
(B.4.9)
€r3 = €3 = €33 =10
are compatible if k and ¢ are arbitrary not zero constants.

Solution: Since (a) €, is independent of X3 and (b) e.3 = €3, = £33 = 0 it follows
from equations (4.42) that the not identically zero component of the incompatibility
tensor n is

733 = €11,22 + €22,11 — 2812,12 .
Since
€11,22 = —2k, €22,11 =0, €122 =4

the compatibility condition 133 = 0 yields

l+k=0.
This equation shows that the not identically zero strain components €, are, in general,
not compatible except the case when k = —¢. Then
€11 ZZ(XQQ—Xf), E12 = €21 :£X1X2, E929 = —£X1X27

(B.4.10)
€k3 = €35 = €33 = 0.

We remark that the strain state for which conditions (a) and (b) are satisfied is called
plain strain.

Problem 4.4. The strain field in Problem 4.3 is compatible if kK = —¢. Find the
rotation field.

Solution: We apply the first Cesaro formula (4.68) to find the angle of rotation. Since
the strain components are such that (a) e, is independent of X3 and .3 = €3, =
e33 = 0 the first Cesaro formula

Pr (P) = $r (B) + / CmkrEke,mTe ds

g

can be rewritten in the following form

Y3 (P) = ©3 (B) + / Cur3ErX,uTA ds,

g9
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where

11,1 = —20X1, €112 =20X2, €121 ={Xo,
(B.4.11)
€12,2 = X1, €221 = —¥Xo, €220 =—0X;.

The curve g is selected in the following manner: (a) the point B is the origin, (b) g1
is a horizontal line segment between the points (0,0) and (X1,0), i.e., the part of the
axis X1 from the origin to the point with abscissa X1, (c) g2 is a vertical line segment
between the points (X1,0) and (X1, X2) and g = g1 U g2. Then

w3 (P) = ¢3(0) + / €un3Err,uTr ds = 3 (0) + / (€ax,1 — €1x,2) Tads =

g9 g9

X3 X2
= 3 (0) +/ (e21,1 —€11,2) m d X1 +/ (e22,1 —€12,2) 2dXo = T =
0 0

T1=72=1
X3 X2
= 3 (O)—l—f/ (X2+2X2)|X2:0 Xm—é/ (X2-|-X1) dX, =
0 0

X2
=¢3(0)—¢ <72 + X1X2>

is the rotation field.
Problem 4.5. Find the displacement components for the strain field in Problem 4.3.

Solution: We apply the second Cesaro formula to find the unknown displacement
components. Since the strain state given by equation (4.81) is a plane strain it follows
that the second Cesaro formula (4.69) is of the form

uy (P) = uy(B) + eaxup3 (B) (Xx (P) — Xo(B)) +

/ {evn + (X (P) = X)) (Gupdxn — Ounlxpn) Exxu} Tads.

9
The curve g is selected in the same manner as for Problem 4.4. Thus

Uy (P) = u, (0) + esxwip3 (0) Xy (P) +
+ [ {eva + [ X5 (P) = X3] (Gvuxn — Oundxpn) Enapt Tads.
If v =1 we have
u1(P) = u1(0) — 3 (0) X1 (P) +

+ [ {ein + (X (P) = Xy exa1 — (X (P) — Xy) e1ax fads.

{en + (Xx (P) = Xy) exa1 — (Xx (P) — Xy) €1ax fTads =

g
X1
[ en + 100 (P) = X 2 = (K (P) = X e Hyy g X1+
(0]
X2
+/ {e12 4+ (Xx (P) = Xy ) ex21 — (X (P) — Xy) €12, } d X2,
0

in which the two line integrals on the right side can be calculated by using relations
(B.4.10) and (B.4.11). We get
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X1
{811+(X1 (P)— X1)e11,1+ (X2 (P)—X2) €21,1—
0

—(Xl (P)—X1) 511,1—(X2 (P)—XQ)&‘H,Q} |X2:0 dX;: =

X1
= / {811 + (XQ (P) - X2) €21,1 — (X2 (P) - X2)611,2}\X2:0 dX; =
0

X1 X3
= e/ {—X7? — (X1 (P) — X1) X2 +2(X1 (P) — X1) X2 Hyyoo X1 = —e?l
0

and
X2
{e12+(Xx (P) = Xy) ex21 — (Xx (P) = Xy) e12,x} dX2 =
Xa

= {e12 + (X1 (P) — X1) €121 + (X2 (P) — X2) £22,1—
0

0

—(X1(P)— X1)e12,1 — (X2 (P) — X2) €122} dX2 =
- z/X2 (X1 X + (X1 (P) — X1) Xa — (Xa (P) — X2) Xa—

— (X1 (P) = X1) X5 + (X2 (P) — X2) X1} dX5 =

=/ {—X2(P) X2+ X2Xo+ X2 (P) X1} dXo =
0
X3 X3
— (-2 4+ 22 XX ) = -2 (-6X1 X3+ X5)
2 3 6
where it has been taken into account that X;(P) = X1 in the second integral. Hence

w(P) = u1(0) — 3 (0) X1 (P) — g (2X% — 6X, X3 + X3) .

4

As regards us repeating the previous line of thought we get

uz(P) = u2(0) + ¢3 (0) X1 (P) +
+ /Xl {e21 + (X (P) = Xy ext,2 — (Xx (P) — Xy ) €21,¢ }|X2:0 dX,+
0

+ {g22 + (Xy (P) — Xy) ex2,2 — (Xx (P) — Xy ) €22, }d X2,
0

where the two line integrals are given by the following equations:

X1

; {g21 + (X1 (P) — X1)en,2 + (X2 (P) — X2) e21,0—

— (X1 (P)—X1)ea1,1 — (X2 (P) — X2) €212 }xp,=0d X1 =
X1

=7 (X1 X2 +2(X1 (P) — X1) Xy + (X2 (P) — X2) X1—

— (X1 (P) = X1) X2 — (X2 (P) — X2) X1 } |x,=0d X1 =
_ €/X1{X1X2+(X2 (P)—X3) X1 — (X1 (P)—X1) Xo—

— (X2 (P)—X2) X1 }x,=0dX1=0

and
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X2

{g22 + (X1 (P) — X1) €12,2 + (X2 (P) — X2) £22,0—
— (X1 (P) — X1)ea2,1 — (X2 (P) — X2) £22,2}dXo =

0

[ XX+ (X1 (P) - X1) X1 — (X (P) — Xa) X1t
(X1 (P) = X1) Xa + (X (P) — X2) X1} dXs =

= [/X2 {-X1 X+ (X1 (P)— X1) X1 + (X1 (P) — X1) X2} dXe =

Xz X1X3
= e/ {=2X1 X2+ (X1 (P) — X1) X1 + X1 (P) X2 }dXs = =
0
Thus
X1 X2
u2(P) = u2(0) 4 3 (0) X1 (P) — ¢ 12 2.

B.5. Problems in Chapter 5

Problem 5.1. Given the matrix of the Cauchy stress tensor at the point P of the
current configuration of the body. The unit normal to a plane which passes through
the point P is denoted by n:

58.4 0.0 —-28.8 V2
T = 0.0 —40.0 0.0 [MPa) , n=0.7i +0.1,i> + 5 e3-
—28.8 0.0 41.6

Determine (a) the principal stresses and principal directions and (b) the normal stress
o™ as well as the shearing stresses () acting on the plane with normal n.

Solution: It is not too difficult to check — we remind the reader of Exercise 1.7 — that
the principal stresses are given by:

01=80.0, 02=200, o3=-400 [N/mm?].
The corresponding eigenvectors are
n; = —O8i1 —+ 06i3 , no = i2 5 ns = —0.6i1 — 08i3 .

As regards the stress vector and the normal stress on the plane with normal n we have

58.4 0.0 —28.8 0.7 20.515
t™ =Tn= 0.0 —40.0 0.0 01 | =| —40 | [N/mm?],
—28.8 0.0 41.6 vz 9.256
20.515
o™ —n.t™ = [ 0.7 01 £ —4.0 | =20.50 [N/mm?] .
9.256

With these quantities we can calculate the shear stress by utilizing equation (5.17b):

20.515 0.7 6.162
™ =t" _oc™Wn=| —40 |-20505| 0.1 | =| —6.051 | [N/mm’].
9.256 V2 —5.243

2
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Problem 5.2. Consider a circular cylinder of radius R and assume that the axis of
the cylinder coincides with the coordinate axis 3. The Cauchy stresses in the cylinder
are given by

tig = t31 = —pdxs, toz = t32 = a1,

t11 = to2 =33 = t12 = {21 =0,

where p is a positive constant and ¥ is constant. Show that the outer surface of the
cylinder is stress free.
Solution: The coordinates of a point on the outer surface is denoted by z1(R) and
z2(R). x3 is arbitrary. It is obvious that they satisfy the relation 23 (R)+z3(R) = R%.
The outward unit normal

z1(R) i + 12

R R
on the outer surface and the considered stress state are independent of x3. Since the
stress vector

n—=

0 0 —as(R) ] [ «1(R) 0
£ =Tn=H 0 0 @B || w® =0
—T2 (R) T1 (R) 0 0 0

on the outer surface of the cylinder is zero it follows that the outer surface is stress
free (unloaded).

Problem 5.3. Given the deformation of a continuum
x = aX1i1 — bXois + cX3i3 s

where a, b and ¢ are non zero constants. Assume that the Cauchy stress tensor is
known:

tiuw 0 O 0 0 O 0 0 O
[tre] = 0 0 0 {; [the] = | 0 taz O | tkel]=] 0 0 0 [,
0 0 O 0O 0 O 0 0 ts3

where t11 = too = t33 = 0, = constant. Find the first and second Piola-Kirchoff stress
tensors for each [txe].

Solution: It can be checked with ease that

a 00 1/a 0 0
F=|0 b 0|, F'= 0 —-1/b 0|, J=—abec
0 0 ¢ 0 0 1/c

Making use of equations (5.24) and (5.24) from the first Cauchy stress tensor we get
the first and second Piola-Kirchoff stress tensors:

o0 0 0 1/a 0 0 o 0 0
E:JgEflz—abc 0 0 O 0 —-1/b 0 | =—bc 0 0 0|,
0 0 O 0 0 1/c 0 0 O
S=JE TtF '=
1/a 0 0 oo 0 0 1/a 0 0
=—abc| 0 —1/b 0 0 0 0 0 -1/b 0 |=
0 0 1/c 0 0 O 0 0 1/cc
oof/a 0 O
= —bc 0 0 O
0 0 O

For the other two Cauchy stress tensors the procedure to be followed is the same.
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Problem 5.4. Given the matrix of the Cauchy stress tensor in spatial description:

0 0 axs

E = 0 0 —b$3
are —bxs 0
Assume that the stresses are considered at the point P with coordinates x1 = 0,

x2 = b? and x3 = a. Find (a) the three scalar invariants, (b) the principal stresses and
principal directions and then (c) determine the maximum shear stress and the normal
to the plane on which it acts.

Solution: The matrix of the stress tensor at the point P is given by

0 0 ab?
T=| 0 0 —ab
ab> —ab 0

If we follow the solution steps of Exercise 5.4 we shall find that

leab\/1+b2, o2 =0, o3 = —aby/1 + b?

are the three principal stresses. As regards the eigenvectors we get

1 T or T
n; = m (bll — 12 + 1+ b213) , ng = \/ﬁ (11 + le) 5
np— 1 (bi1 i — /1 +b213) .

2(1 + %)

Making use of equations (5.55) we can determine the maximum shear stress and the
outward unit normal associated to it:

o1
i = §|01 — o3| = ‘ab\/l—l—b2

)

n::ti(n1—n3) :i3.

V2

Problem 5.5. Let n and n the normal to two different surface elements at the point P
in the current configuration of the body. The stress vectors on these surface elements
are denoted by t™ and t™. Prove that the relation

n-t™ =n-t®

holds if and only if the Cauchy stress tensor is symmetric.

Solution: Recalling equation (5.14) we may write
nth-ntn=n-tn-nt -h=n- (t—tT) h=0.

It is obvious that the difference can be zero for arbitrary n and f if t = t7. That was
to be proved.

Problem 5.6. Prove the following equalities:
S=F'.7.F T, Sap = Fi/ . Fry

1 1
T= 3 (RT P+ P". R) , Tap = 3 (RakPrp + ParRis) -
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Solution: A comparison of equations (5.27) and (5.33) proves the rightfulness of the
first relation. For the second equality the transformation based on (5.32) is the proof:

T:%(U-S—&-S-U):%(U-S+(U~S)T): +o=

S=F—-1.P
:l(U.Ffl.er(U.F*l.p)T): 0 =
2 F-1—_y—-1.RT
:% U- U RT P+ (U- U’l-RT-P)T) =

:%(RT-P+PT~R).

B.6. Problems in Chapter 6

Problem 6.1. Given the equilibrium condition of a body:
xr1 = (1—|—C¥)X1 +ﬂX2, T2 :ﬁX1+(1—|—a)X2, X3 :X5 (B612)

where o and  are constants. Prove that

o

p
=0 B.6.13
T Urap—p (B:643)
Are there any restrictions on the constants o and 87 If yes give them.
Solution: As is well known
pd = p°
where
ri,1 Ti2 T1,3 1+« 153 0
J=|Fra|=| 221 222 x23 |= B l+a 0 |=(1+a)?-p5
3,1 3,2 3,3 0 0 1
Hence R
p

P= TFap =7
Since p° and p are positive quantities the inequality
1+a>8
should be fulfilled.
Problem 6.2. Given the velocity field

_ _ R 2
v1 = ox1 — Pra, v =Pr1+axz, vz =7y 2]+ 25

in which «, 8 and 7 are constants. Find the density in the current configuration
provided that p° is known. Under what condition can this motion be isochoric?

Solution: It can be checked with ease that
«a -6 0
d = g C; 0 , dr =v-V =di +d =2
R vz = V=
are the velocity gradient and its divergence. Then the continuity equation has the
form

do oy e,
dter(v V)—dter(v V)—dt+2pa—0,
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from where
2ta

e=pe
is the solution that satisfies the initial condition p = p°. The motion is isochoric if
p=p°ie ifa=0.
Problem 6.3. Prove using indicial notations that the Cauchy stress tensor is a
symmetric tensor.

Solution: One can readily rewrite equation (6.19) in an indicial form:

/ pererxeby AV + / ekerTotrsns dV = / pererxeardV,
V/ AI vl

where
/ CrtrTolrsNs dV = / Ckir (mft'rs) s dV =
A/ V/ ’
= / Crer Ti,s trs dV + / ekérxétrs,s dV =
v’ ~~ v’
62,5
= / exer tredV + / ekérzgt'rs,s av.
v’ v’
Consequently,

/ I:eklrxl (t'rs,s + pb'r - PGT):| dv + / Cker tre dV = / Crer tre dV =0.
v’ v’ v’

=0

Since the subregion V' is arbitrary we get
€ tre = 0.

This equation is the well known symmetry condition for the Cauchy stress tensor.

Problem 6.4. Assume that deformations are small. Assume further that we know
the stress tensor which is given by equation (6.102). The coordinates X, are measured
in mm.

(a) In the absence of body forces the stress field should be self-equilibrated.
Check if the stress field (6.102) is really self equilibrated.

(b) Determine the stress vector at the point X = 2i; 4+ 31i; + 2i3 [mm] on the
plane 2X; + X2 — X3 = 5. (We remark that the unit normal to a plane
defined by the equation ay X; = b — a¢ and b are constants — is given by
the relation n = a¢ i¢/+/arax.)

(¢) Determine the normal stress o
we have given on the plane.

Solution: The stress field

(") and the shearing stress 7(™ at the point

6X:X2 0 —2X3
T = o =« 0 1 2 o= lN/rnrn5
(3x3) (3x3) —ZXS 2 6X12

satisfies the symmetry condition. For the divergence of the stress field we obtain

Oo11  Ooi2 | Oois 2 2

—6X —6X2=pby = f =
8X1 8X2 + 8X3 6 3 +0 6 3 pPO1 fl 0,
O0o21  Oozz | Ooas

0X1 0X2  0X3

=04+0+0=pby=fo=0,
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O0oz1  Oosz | Ooss
= = pbs = fa =
X, 3X2+8X3 04+04+0=pbs=f3=0

which means that the stress field is equilibrated if there are no body forces. Since

X:2i1+3i2+2i3 mim and DIL(Qil—FiQ—ig)

NG
we get
48 0 —16
o = 0o 1 2 N/mm? |
(3x3) -16 2 24
) 48 0 -16 2 L[ 12
(n) _ = 2
t™W=—1 0 1 2 1 |=—| -1 N/mm”,
(3x1) VB 16 2 o4 —1 V6| 54
112
o™= nT “”:1 20 -1]| -1 |= 139:46l N/mm? |
(1x3) (3x1) 6l —54 3 3
2 33.20
P Mo g M _gm g L Ul s = | —6.67 | N/mm?.
(3x1) (3x1) @x1) V6 —54 V6 -1 —15.8

Problem 6.5. Assume that the stress tensor within the body is given by the following
equation:

rixs x1(b* — x3) 0

t =a| z(b*—23) %xz(xg — 3b?) 0
(3%x3) 2
0 0 2bxs

in which a and b are constants. Find the body forces if the stress tensor is equilibrated.
Solution: It is obvious that
t t t
fl Ipb1 = —% — @ — 9 13 = —2ax1x2+2ax1$2+0=0,
Or1 Oz  Oxs
Ota1 Otoa  Otos
81'1 6332 8133
Ots1  Otsa Otz
=pby3 = ——"~ — —2 — = =0+0 — 4abxs = —4abxs.
f3 po3 82131 asz (91'3 + abts avts
Problem 6.6. Assume that

= —ab® 4 azs —aza+ab> +0=0,

0 0 % — 32
t =pa 0 0 OM + a1
(3%x3)
% — T 812 —+ 0

is the stress field, where 1 and « are non zero constants while ¢ (x1,x2) is a harmonic
function, i.e., A¢ = 0. Does this stress tensor satisfy the equilibrium equations in the
absence of body forces?

Solution: The solution procedures is the same as in the previous problem:

9¢
0 (5% —w2)
3

?(% + )

b =040
pb2 +0+ 913

=0,
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2 _ 06
phs = a(ax@lml mz) * 8(6328231: ml) +0= gil’?

This stress field is self equilibrated.
Problem 6.7. Given the function f(x,t). Prove that

/V Fx,Dt(x, 1) - ndV = /A [t(x, t) - (Vf(x,)) + pf(x,t)(b — \‘,)] dA.

Solution: If we apply the divergence theorem we have

/ Ff(x, 0)t(x,t) -ndV = / (f(x,D)t(x,1)) - (V)) dA =
v A

:/A [(}(X,t)t(X,t)) V) + (f(x,t)é(x7t)> -V} dA —

:/A [t(x, t) - (VF(x,1) + pf(x,t)(b - ")] da.

Problem 6.8. Given the equilibrium configuration of a body and the elements of the
Cauchy stress tensor:

9

2
ox3

+ =A¢ =0.

1 1
:L‘1:16X1, :L‘QZ—EXQ, 123:—1)(3

t11 = 100 MPa the =0 if ke #£ 11

Determine (a) the first and second Piola-Kirchoff stress tensors then (b) the stress

vector t™ and the pseudo stress vector t°") on a plane with normal n° before defor-
mation.

Solution: It is obvious that

T11 X12 T1,3 16 0 0
[Fral = | 21 @22 x23 | = 0 -05 0 = [Fak],
r31 T3,2 3,3 0 0 —0.25
0.0625 0 0
[Fge] = 0 -20 0 | =[F3],
0 0 —4.0
r1,1 Ti2 1,3 16 0 0
J=|Fea|l=| w21 22 x23 |=| 0 —05 0 =20
T3,1 T3,2 3,3 0 0 —0.25
and
100 0 O
tel=] 0 0 0
0 0 O
Consequently,

[Sap] = J [Fap] [tee] [Fip] =
0.062 5 0 0 100 O 0.062 5 0 0
=2.0x 0 —2.0 0 0 0 —2.0 0 =
0 0 —4.0 0 0 O 0 0 —4.0
0 0
0 0
0 0

o
o o

Il
o
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and
t°™ = 0.78125n°1;

is the pseudo stress vector.
Problem 6.9. The mass center x. of the body B is defined as

xczi/ pxdV.
mJyv

Prove that

D?*x,
= bdV t-ndA.
"D /Vp + /A n
Solution: It is obvious that

2
Dxczi/padvzi/(t-vmb)dv
mJy \%

Dt? m

from where it follows the equation to be proved at once if we apply the divergence
theorem.

Problem 6.10. Assume that the stress field is self equilibrated. Prove that the
average value of the Cauchy stress tensor

- 1
tok = — to, AV
ok V/Alk

can be calculated as

. = L 1 (n) 4 4(m
tor = 2V/Vp(mkb4+l‘zbk) dV-i-QV/A(Z'ktZ + ¢, xz) dA.

Solution: Utilizing equilibrium equation (6.25a) the following manipulation proves
the statement of the problem:

1 1
— top dV = — t t dV =
V/Vek 2V/V(Zk+ ke) dV

1
= — / tew + xk (ter,r + pbe) + tee + xo (tkr,r + pbr)| AV =
2V Jy —_———— —_—

=0 =0

1
= — / [tgk — Okrter + (Trter) . + pxrbe + tee — dortir + (Teter) . + pwebk] dv =
2V Jy , ’
1 1
= W /V 14 (fEka + $Zbk) dVv + W [4 (mktgrnr + xltanr) dA =

= — + V+ —= + A.
= / p(xkbg xzbk) d v / (mktl tk 12@) d

Problem 6.11. Prove the validity of transformation (6.88) using indicial notation.

Solution: Making use of (6.88) we may write:

_ 1
S (E)y =Sap (Bap) = Fy, Pis 5 (Fam) Frp + Fam (Fnp)) =
= F;;PZB Fam (FmB) = 0tmPeg (Fmp) = Pip (Fyg) =P --(F) .



B. 263

B.7. Problems in Chapter 7

Problem 7.1. Prove the principle of complementary virtual power.

Solution: The proof is simple if one repeats the line of thought for the proof of the
principle of complementary virtual work being presented in Subsection 7.4.3.

B.8. Problems in Chapter 8

Problem 8.1. Assume that the function ¢ is an isotropic function of the symmetric
tensor E. Prove that the derivative 0¢/0F is coaxial with E.

Solution: If ¢ is an isotropic function of E then it should be a function of the scalar
invariants Fr, Err and Errr of E:

¢ = ¢(Er, Err, Errr).

By repeating the line of thought that leads from equation (8.116) to equation (8.119)
we may conclude that

99
8Eal7
where the coefficients ag, a7 and a3 are given by equations (8.120). The above tensor

polynomial is obviously coaxial with the tensor E.
Problem 8.3. Prove that the number of independent components in Cp,pnie is 21.

o o o
= ao(sab +a; Ea, + a2anEqb 5

Solution: According to equation (8.86)
o 82f(907 0)

C = .
mnkl 14 6Emn65k[
Since €mn = €nm and exe = €y it follows that

Cinnke = Crmpe and Cimnke = Crmnek-

The number of independent components is, therefore, 6 x 6 = 36. Since the derivation
order has no effect on the result it also follows that there is a symmetry in respect of
the index pairs mn and kl:

Cmnké - Cklnm~

This condition results in that the components with the indices

1112 & 1211 2212 < 1222 3312 & 1233

ﬂgg : g;ﬂ 1123 < 2311 2223 <> 2322 3323 < 2333
9933 o 3399 11313111 223143122 3331 3133

1213 & 1312 1223 & 2312 1323 & 2312

are the same. This means that the number of independent tensor components is
further reduced by fifteen. The final result for the number of independent components
is, therefore, 36-25=21.

Problem 8.5. Verify that equation (8.146) is correct.

Solution: Substituting b for W in equation (1.129) yields:

brmbme = brrrby, + brbge — brrdye
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Hence

tee =

2
J b1 db; Abr1 Abrg

|:51118w5kg+(81/)+b1 9 )bsz<8l) (b[][bkgl+blbk£b115ke):| =

brem bme

_2 9y oy op, O
=3 {(bn D17 + b1 8b111> Oke + 9, bre — brrr b1y bre |-
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