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Abstract. This paper deals with the stress state in a thin elastic disc which is loaded by a
uniform radial load on its outer curved boundary surface. Two solutions are presented. The
first is an elastic solution based on the governing equation of the plane stress state. The
second is a strength of material solution. The results obtained from the plane stress model
are compared to those obtained from the strength of material solution.
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1. Formulation of the boundary value problem

Figure 1 shows the thin elastic disc which is loaded by uniform radial load on its
outer curved boundary part. The plane domain of the middle section of the elastic
disc is denoted by A and the boundary curve of A is ∂A = ∂A1 ∪ ∂A2 ∪ ∂A3 ∪ ∂A4.
The formulation of the boundary value problem is presented in the Orφ cylindrical
coordinate system. It is evident that

A = {(r, φ) |a ≤ r ≤ b, 0 ≤ φ ≤ π} , (1.1)

∂A1 = {(r, φ) |a ≤ r ≤ b, φ = 0} , (1.2)

∂A2 = {(r, φ) |r = b, 0 ≤ φ ≤ π} . (1.3)

∂A3 = {(r, φ) |a ≤ r ≤ b, φ = π} , (1.4)

∂A4 = {(r, φ) |r = a, 0 ≤ φ ≤ π} . (1.5)

The displacement vector t = t(r, φ) can be represented as

t (r, φ) = u (r, φ) er + v (r, φ) eφ, (1.6)
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Figure 1. Thin elastic disc with uniform radial load

where er and eφ are the unit vectors of the cylindrical coordinate system Orφ (see
Figure 1). The expressions of the strains are as follows [1–5]

εr =
∂u

∂r
, εφ =

u

r
+

1

r

∂v

∂φ
, (1.7)

γrφ =
1

r

∂u

∂φ
+
∂v

∂r
− v

r
. (1.8)

Based on the strain-displacement relationships [1–5] the following equations are valid

εr =
σr
E

− ν
σφ
E
, εφ = −ν σr

E
+
σφ
E
, (1.9)

γrφ =
2(1 + ν)

E
τrφ. (1.10)

In equations (1.9) and (1.10) σr and σφ are the normal stresses, τrφ denotes the shear-
ing stress, E represents the modulus of elasticity and ν means the Poisson number.
For this problem the equations of mechanical equilibrium are

∂σr
∂r

+
1

r

∂τrφ
∂φ

+
σr − σφ

r
= 0, (r, φ) ∈ A, (1.11)

∂τrφ
∂r

+
1

r

∂σφ
∂φ

+
2

r
τrφ = 0, (r, φ) ∈ A. (1.12)

The following boundary conditions are prescribed in this problem:

τrφ = 0, v = 0 on ∂A1, (1.13)

σr = −p = constant, τrφ = 0 on ∂A2, (1.14)

τrφ = 0, v = 0 on ∂A3, (1.15)

τrφ = 0, σr = 0 on ∂A4. (1.16)

The solution to the boundary value problem formulated by equations (1.7–1.14) will
be solved under the conditions

u = u(r), v(r, φ) = 0, (r, φ) ∈ A ∪ ∂A. (1.17)
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2. Plane stress solution

From equation (1.17) it follows that the equations of mechanical equilibrium are
reduced to one equation, which is

d

dr
(rσr)− σφ = 0, (r, φ) ∈ A. (2.1)

The general solution of stress equilibrium equation (2.1) in terms of stress function
F = F (r) can be represented for a thin elastic disc as

σr(r) =
1

t

F (r)

r
, σφ(r) =

1

t

dF (r)

dr
, (r, φ) ∈ A ∪ ∂A, (2.2)

where t is the thickness of the elastic disc. From equations (1.7) and (1.9) it follows
that

Et
du

dr
=
F

r
− ν

dF

dr
, (2.3)

Et
u

r
= −ν F

r
+

dF

dr
. (2.4)

The combination of equation (2.3) with (2.4) gives an ordinary second order differen-
tial equation for F = F (r)

d2F

dr2
+

1

r

dF

dr
− F

r2
= 0, a < r < b. (2.5)

According to the traction boundary conditions (1.14), (1.16) F = F (r) satisfies the
following boundary conditions

F (a) = 0, F (b) = −pbt. (2.6)

The solution to the boundary value problem formulated by equations (2.5), (2.6) is

F (r) =
b2tp

b2 − a2

(
−r + a2

r

)
, a ≤ r ≤ b. (2.7)

The expressions of normal stresses σr and σφ can be represented as

σr(r) =
b2p

b2 − a2

(
−1 +

a2

r2

)
, a ≤ r ≤ b, (2.8)

σφ(r) = − b2p

b2 − a2

(
1 +

a2

r2

)
, a ≤ r ≤ b. (2.9)

Based on equations (1.7), (1.9)1 and (1.17) it is evident that

u(r) =
r

E
(σφ − νσr) (2.10)

from which the following formula can be obtained for the radial displacement

u(r) =
b2p

E(b2 − a2)

[
(ν − 1)r − (1 + ν)

a2

r

]
, 0 ≤ r ≤ b. (2.11)
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3. Strength of material solution

The formulation of the strength of material solution is based on the paper [5], which
uses the displacement field

u(r, φ) = U(φ)er +

(
rϕ(φ) +

dU

dφ

)
eφ. (3.1)

The corresponding strain field as a function of the displacement field given by equation
(3.1) is

εφ =
W (φ)

r
+

dϕ

dφ
, W (φ) =

d2U

dφ2
+ U(φ). (3.2)

Figure 2 shows the strength of material model according to paper [5]. The resultants
of the tractions acting on the boundary surface segments ∂A1 and ∂A3 are F1 and
F3. The moments of traction acting on the boundary surface segments ∂A1 and ∂A3

are M1 and M3 and we have M1 =M3 =M0. The value of M0 is obtained from the
condition

ϕ(φ) = 0, 0 ≤ φ ≤ π (3.3)

according to the results presented in Section 2 of this paper. Application of the Hooke
law gives

σφ(r, φ) = E

(
W (φ)

r
+

dϕ

dφ

)
. (3.4)
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Figure 2. Strength of material model.
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The normal force and bending moment on an arbitrary cross section can be calcu-
lated as

N =

∫
A

σφdA, M =

∫
A

rσφdA. (3.5)

Detailed forms of expressions of N = N(φ) and M(φ) are as follows:

N(φ) = Et

[
W (φ) ln

b

a
+ (b− a)

dϕ

dφ

]
, (3.6)

M(φ) = Et

[
W (φ)(b− a) + c(b− a)

dϕ

dφ

]
, (3.7)

where

c = 0.5(a+ b). (3.8)

In the present problem the solution of equilibrium equation [5]

d2N

dφ2
+N − fr = 0 (3.9)

is

fr = −btp = constant, 0 ≤ φ ≤ π. (3.10)

The shear force S = S(φ) vanishes since

S(φ) = −dN

dφ
= 0, (3.11)

and from the moment equilibrium equation it follows that

M(φ) =M = constant, 0 ≤ φ ≤ π. (3.12)

If ϕ = 0 (0 ≤ φ ≤ π) then

M = −t (b− a)b

ln b
a

p, (3.13)

W =
d2U

dφ2
+ U = − bp

E ln b
a

. (3.14)

Substitution of equation (3.14) into equation (3.4) gives

σφ(r) = − b

r ln b
a

p, a ≤ r ≤ b. (3.15)

From the stress equilibrium equation

d

dr
(rσr) = σφ (3.16)

it follows that

rσr(r)− aσr(a) = − bp

ln b
a

ln
r

a
, a ≤ r ≤ b, (3.17)

that is

σr(r) = −bp
r

ln r
a

ln b
a

, a ≤ r ≤ b. (3.18)
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Thus, the normal stress σr given by equation (3.18) satisfies the stress boundary
conditions

σr(a) = 0, σr(b) = −p. (3.19)

Integration of equation (3.14) provides the radial displacement

U(φ) = − bp

E ln b
a

+ α cosφ+ β sinφ, (3.20)

where α and β are the constants of integration and

V (φ) =
dU

dφ
= −α sinφ+ β cosφ. (3.21)

By means of the boundary conditions

V (0) = V (π) = 0, V
(π
2

)
= 0 (3.22)

it is easy to prove that

α = β = 0, (3.23)

so the radial displacement has the form

U(φ) = − bp

E ln b
a

= constant, 0 ≤ φ ≤ 2π. (3.24)

4. Determination of Von Mises stress

In the present problem the equivalent Von Mises stress is obtained from the formula

σ(r) =
√
σ2
r(r) + σ2

φ(r)− σr(r)σφ(r) , (4.1)

which yields the following result for the plane stress model

σ1(r) =
b2p

(b2 − a2) r2

√
r4 + 3a4 (4.2)

and for the strength of material model

σ2(r) =
bp

r ln b
a

√
1− ln

r

a
+

(
ln
r

a

)2

. (4.3)

5. Comparison of the solutions

In the following, the effect of the geometric parameters on the stresses is examined.
First of all the radial normal stresses are considered. The radial normal stress is
obtained from plane stress solution σps

r [see equation (2.8)] and it can be reformulated
in the following manner:

σps
r =

pb2

b2 − a2

(
−1 +

a2

r2

)
= p

1

1−
(
a
b

)2 [
−1 +

(a
r

)2
]
. (5.1)
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Similarly, the radial normal stress derived from the strength of material solution σsm
r

[see equation (3.18)] can be written in the form

σsm
r = −bp

r

ln r
a

ln b
a

= −p b
a

a

r

ln r
a

ln b
a

. (5.2)

New variables are introduced:

λ =
a

r
, ψ =

a

b
. (5.3)

Since a ≤ r ≤ b it is easy to prove that

0 < ψ < 1, ψ ≤ λ ≤ 1. (5.4)

Substitution of equations (5.3) into equations (5.1) and (5.2) yields

σps
r = p

1

1− ψ2

[
−1 + λ2

]
, (5.5)

σsm
r = −p λ

ψ

ln 1
λ

ln 1
ψ

. (5.6)

Let ∆r = ∆r(λ, ψ) denote the dimensionless difference of the radial normal stresses

∆r(λ, ψ) =
σps
r − σsm

r

p
=

1

1− ψ2

[
−1 + λ2

]
+
λ

ψ

ln 1
λ

ln 1
ψ

. (5.7)

Figure 3 illustrates the dimensionless difference function ∆r(λ, ψ).

Figure 3. The dimensionless difference function ∆r = ∆r(λ, ψ)
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The tangential normal stresses can be modified similarly. In the case of the plane
stress solution, according to equation (2.8) one can write

σps
φ = − b2p

b2 − a2

(
1 +

a2

r2

)
= −p 1

1−
(
a
b

)2 [
1 +

(a
r

)2
]
. (5.8)

The modified form of the tangential normal stress in connection with the strength of
material solution from equation (3.15) is as follows

σsm
φ = − b

r ln b
a

p = −p b
a

a

r

1

ln b
a

. (5.9)

Substitution of equations (5.3) into equations (5.8) and (5.9) provides

σps
φ = −p 1

1− ψ2

(
1 + λ2

)
, (5.10)

σsm
φ = −p λ

ψ

1

ln 1
ψ

. (5.11)

Another dimensionless difference function denoted by ∆φ = ∆φ(λ, ψ) can be estab-
lished according to tangential normal stresses (5.10) and (5.11)

∆φ(λ, ψ) =
σps
φ − σsm

φ

p
= − 1

1− ψ2

(
1 + λ2

)
+
λ

ψ

1

ln 1
ψ

. (5.12)

Figure 4. The dimensionless difference function ∆φ = ∆φ(λ, ψ)

Figure 4 shows the ∆φ = ∆φ(λ, ψ) function. Figures 3 and 4 represent that the
differences between the two solutions converge to zero when λ, ψ → 1, which means
that the outer radius b of the disc converges to the inner radius a (Figure 1). In that
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case the problem actually becomes a curved beam problem and then the two solutions
are in good congruence. If ψ → 0, namely the parameter b is significantly higher than
a (so the disc is wide), then the difference between the two solutions increases.

6. Numerical examples

6.1. Narrow disk. The following data are used in the first numerical example: a =
0.1 m, b = 0.2 m, E = 2×1011 Pa, ν = 0.3, p = 25×106. According to the parameters
ψ = a/b = 0.5 in this case. Investigating Figures 3 and 4, the example is close to
a beam problem as the dimensionless difference functions (5.7) and (5.12) provide
relatively low discrepancy between the two solutions. A plane stress FEM analysis
has been also made to check and compare the results. In Figures 5 and 6 the plots
of σr and σφ are shown as functions of r. The graphs of Von Mises stresses as a
function of r are presented in Figure 7. Figure 8 represents the radial displacement
functions as a function of r. The values of the radial displacement for r = a, r = b,
r = 0.5(a+ b) are listed below

u(a) = −0.000033334 m, u(b) = −0.0000341666 m,

u

(
a+ b

2

)
= −0.0000319444 m, U = −0.000036067 m.

It can be clearly seen that the plane stress solution and the FEM solution (plane stress
model too) produce practically the same results for all the stress and displacement
functions. In this case the strength of material solution does not differ significantly
from the plane stress results, either.

Figure 5. The plots of the radial normal stress functions σr(r) (nar-
row disk)
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Figure 6. The plots of the tangential normal stress functions σφ(r)
(narrow disk)

Figure 7. The plots of the Von Mises stress functions σ(r) (narrow disk)

Figure 8. The plots of the radial displacement functions u(r), U (nar-
row disk)
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6.2. Wide disk. In this example a wide disk is analysed. The data are the same as
in Example 6.1 with one exception. The outer radius of the disk b = 1 m. The ratio
of the geometrical parameters a/b = ψ = 0.1, which means a much higher difference
between the two analytical solutions according to dimensionless difference functions
(5.7) and (5.12) (see Figures 3 and 4). A plane stress FEM analysis was carried
out for this wide disk, as well. In Figure 9 the radial stress functions are shown as
a function of r. The tangential stress functions as a function of r can be seen in
Figure 10. Figure 11 represents the Von Mises stress functions in terms of r. The
displacement functions in terms of r are also given in Figure 12. The values of the
radial displacement for r = a, r = b, r = 0.5(a+ b) are listed below:

u(a) = −0.000025253 m, u(b) = −0.000090025 m,

u

(
a+ b

2

)
= −0.000051596 m, U = −0.000054287 m.

Figure 9. The plots of the radial normal stress functions σr(r) (wide disk)

Figure 10. The plots of the tangential normal stress functions σφ(r)
(wide disk)
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Figure 11. The plots of the Von Mises stress functions σ(r) (wide disk)

Figure 12. The plots of the radial displacement functions u(r), U
(wide disk)

It can be concluded that the plane stress solution and the FEM solution (plane
stress model too) yield the same results for all of the stress and displacement func-
tions as in the previous example 6.1. In this case the strength of material solution
significantly differs from the plane stress results, as was expected.

7. Conclusions

The investigation of the state of stresses of a thin elastic disc is presented by applying
two different mechanical models. The first model uses the governing equation of
the plane stress deformation. The second model is a strength of material model.
The results derived from the two models are in good agreement when the thin disk
problem converges to a curved beam problem according to the geometrical parameters.
When the disk becomes wider the results of the models diverge. Numerical examples
illustrate the application of the derived formulae.
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The results of the calculations illustrate that the radial and tangential normal
stresses calculated with the two different models differ slightly when the thin disk can
be considered as a curved beam according to the geometrical parameters. The same
remark applies to radial displacements. The examples also represent the divergence of
the stresses and the displacements derived from the two models in the case of a wide
disk. The examples were also investigated with FEM analysis to check the results of
the two models.The plane stress FEM analysis yields practically the same results as
the analytical plane stress model in all examples investigated.
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