seme	ter Neptun code	Course name	credit no.	no.of classes/w eek - theorv	no.of classes/ week - practice	Level	Lecturer	e-mail	Institute	Short description
autur	n GEAGT101-B2a	Descriptive Geometry	4	2	2	BSc	Óváriné Dr. Zsuzsanna Balajti	zsuzsanna. ovarine. balajti@uni-miskolc. hu	Mathematics	Representation of Monge: mapping of space elements, incidence, connection, intersection. Intro-ducing new image planes. Orthogonal space elements, revolution of planes, micric problems. Polyhodra: representation, intersection with lines and planes, interpretation. Representation of circles. Mapping of spheres, conce and cylinders for revolution, their intersection with lines and planes, interpretation. Thes of involution, their intersection with lines and planes, interpretation.
autur	n GEGET001-B2a	Fundamentals of Machine Elements	4	2	2	BSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella v.bognar@uni-miskolc.hu	Machine and Product Design	Mechanical work and performance in motion on straight line. Sliding friction and rolling re-sistance. Weightlifting work, potentional energy. The law of conservation of energy in a closed mechanical system. The force of acceleration and inertia. Characteristics of rotating motion. Torque work and performance. Efficiency, machine losses, energy figures. Periodic motion of macchines. Bevel gear, crank gear. Determination of motion characteristics. Main types of gears. The flywheet, the degree of inequality. Drive systems. Friction drive. Floribed drive. Gear drive. Brakes, single-jaw and double-jaw brakes. Band brakes. Springs. The spring characteristic. Spring con-stant of a spring connected in series and in parallel.
autur	n GEIAK201-B2a	Computer Studies	4	2	2	BSc	Dr. Károly Nehéz	karoly.nehez@uni-miskolc.hu	Information Science	Familiarization with the structure and operation of the Computers, building user competencies for the advanced use of MS Office applications, providing knowledge on the topic of viruses, devel-oping intermediate C language recomprehense skille.
autur	n GEMAN114-B2a	Analysis I.	5	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	Set theray, properties of real functions, sequences, Limit value, continuity of unkreiter test functions. Notable curves, Differential acclusias and its applications, Mean value theorems of dif-ferential calculus (Rolite, Lagrange, Cauchy), L'Hooghat inues, Function analysis. The indefinite integral, integration rules. Rational fractional functions, decomposition of rational fractional functions into partial fractions, integration of partial fractions, integration of rational fractional functions of the exponential function, coc(x), sin(x).
autur	n GEMAN203-B2a	Linear Algebra	5	2	2	BSc	Dr. Laura Veres	laura.veres@uni-miskolc.hu	Mathematics	Vectors in 2D and 3D, vector algebra, norm, dot product, projection, cross product, lines and planes. Vector Spaces, subspaces, linear independence, bases, dimension. Pivot table techniques. Matrices and matrix operations, rules of this arithmetic, different methods of finding the inverse, determinant. Introduction to systems of linear equations, Homogeneous and inho-mogeneous systems, Gaussian elimination, putor table technique. Complex numbers, general form, polar form, operations with complex numbers, polynomials, operations, Horner echome.
autur	n GEMTT001-B2a	Structural Materials I.	5	2	2	BSc	Dr. Marcell Gáspár	marcell.gaspar@uni-miskolc.hu	Materials Science and Technology	Commen- Classification of materials used in engineering practice and their production technologies. Structural overview of material properties and behaviour. Test methods for mechanical proper-less (Unixiaid tersion test and Hardening test). Basic crystallography- Ideal, realistic crystal lat-lice. Laws of crystallization of non-ferrous metals: Theoretical basis of properties of single-phase metallic materials. Alloys, equilibrium diagrams of two-constituent systems. Henry-Chargy twint diagram of from-carbon alloy system. Analysis of crystallization of typical iron-carbon alloys. Bending, compression, impact tests. Mechanical properties and fabric struc-ture of non alloy steels.
sprin	GEAHT211-B2a	Engineering Thermodynamics	3	2	1	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	Basic concepts - Thermodynamic systems classification, state and state variables. Intense and extensive, specific and molar state variables. Equation of state. Theorem 1 of Thermodynamics - Internal energy, work of volume change, work of friction and total work. Heat, Principal Theorem I for validancy closed systems, Principal Theorem I for moving closed systems, Principal Theor-em I for open systems. Entropy, exergy, anergy and the second law of thermodynamics. Cycles - The Cartot cycle, Thermal efficiency, Exergetic efficiency. Thermodynamics of pure moda - The ideal gas, incompressol trajest drait cycles. Energy conversion cycles - The Joule cycle, Steam working fluid cycles. Energy conversion cycles - Compressor trafficient cycles in the transfer furdamentals - Heat conduction in a sold wall, Networks line in the transfer.
sprin	GEFIT001-B2a	General Physics I.	4	2	2	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Basic concepts of kinematics. Newton's laws. Work and power. Conservative fields, the law of me-chanical energy. The law of momentum. Torque. The law of angular momentum. Central force fields. Damped linear free oscillations. Forced oscillations. The law of momentum and angular momentum for a system of mass points. Euler description of continuous media. Continuity equation. Bernoutli equation. Thermodynamics of gases, solids, and fluides. Processes of itodal gases. First law of ther-modynamics. Entropy. Second law of thermodynamics. Cyclic processes.
sprin	GEGET002-B2a	Mechanical Drawing	4	2	2	BSc	Dr. Zoltán Bihari	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	Technical drawing is the international language of communication between technical professionals. The technical drawing is a system of rules, the elements of which are fixed by international standards. In the framework of the subject, the rules applicable to the field of mechanical engineering will be presented. In addition to the general representation rules, the drawing rules of the most important machine elements are also explained, as well as the special solutions required for machine design.
sprin	GEIAK210-B2a	Information Technology for Engineers	4	2	2	BSc	Kunné Dr. Judit Tamás	judit.tamas@uni-miskolc.hu	Information Science	Introduction to graphics programming in C language. Deep knowledge of Excel, up to Visual Basic programming. Giving an overview of computer networks, diabases. Introduction to the basics of using and programming MatLab: Introduction to the possibilities of Wolfram Alpha and the se-mantic mature of the second sec
sprin	GEMAN124-B2a	Analysis II.	5	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	The definite integral and its applications, improper integral. Bivariate functions. Double integral and its applications. Triple integral and its applications. First-order ordinary differential equations, second-order differential equations with constant coefficients. Vector-scalar functions. Scalar-vector functions. Vector-vector functions.
sprin	GEMET001-B2a	Statics	5	2	2	BSc	Dr. Balázs Tóth	balazs.toth@uni-miskolc.hu	Mechanics	Introduction to engineering mechanics. Fundamental concepts and models in mechanics. Equi-librium of a particle. Moment of a force about a point and an ask. Three-dimensional force systems acting on a rigid body. Resultants of a force and couple system. Equivalent and equilibrat-de systems of forces. The main theorem of statics. The Counten-model of dry friction. Supports for rigid bodies. Equilibrium of a rigid body. Their free-body diagram. Distributed loading and its resultant. Center of gravity, center of mass and the centre's Equilibrium of structures. Plane and space trusses. The method of joints and the method of sections. Internal forces and moments. Cables. Cable force and moments. Cables. Cable force and the moments. Cables. Cables.
sprin	GEMTT002-B2a	Structural Materials II.	5	2	2	BSc	Dr. Marcell Gáspár	marcell.gaspar@uni-miskolc.hu	Materials Science and Technology	The aim of the course is to develop students' knowledge of structural materials. The object of the course is to familiarise students with the typical properties, potential damage, and applications of the most important groups of materials. During the semester, the following topics are covered in detail: the effect of temperature on the structure and properties of steels. Classification and designation of steels. Structural steels. Tool steels. Non- ferous and light alloys. Typical loads on and damage to metallic materials. Defect detection tests. Technical ceramics. Engineering poly-mers. Composites, charms.
autur	n GEAHT321-B2a	Engineering Fluid Mechanics	3	2	1	BSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	Properties of liquids and gases: compressible/fincompressible fluids. Ideal/real fluids, surface tension, capiliarity. Hydrostatic law, pressure variation in fluids. Communicating vessis, ma-nometers, barometer. Pressure variation in the atmosphere. Hydrostatic thrust on submerged plane and curved surfaces. Kinematics of fluids, Lagrangian and Eulerian specification of the flow fluids. Just and the submerged plane specification of the flow fluids. Sureamities, the path line, stream tube. continuity equation for stady flow. Ber-noull's equation. Specific energy diagram, applications of the Bernoull's equation. Venturi me-ter, orifice flow where. Pitot-static tube. Discharge from open tank and pressurized vessel, time of discharge. Energy equation. Minor and major losses in piping systems. Modry diagram. Flow in channels. Hydraulic diameter, radius. Buoyanor (troce and drag in flow.
autur	n GEFIT002-B2a	General Physics II.	3	2	1	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Electric charge, field, potential, Gauss' law. Conductors in a stallic electric field. The flow of electric charges. Vollage sources. Klinchoff's laws. Jodie's law. The concept of magnetic induction. Magnetic field strength. Dae, para-, and ferromagnetism. The magnetic Gauss law. Ampere's law. Biol-Sawat law. Neumann's law and Faradays law. Displacement current. Amper- Maxwell law. The system of Maxwell's equations. EM waves in homogeneous isotropic insulators.
autur	n GEGET003-B2a	Machine Elements I.	4	2	2	BSc	Dr. Ferenc Sarka	ferenc.sarka@uni-miskolc.hu	Machine and Product Design	The aim of the course is to familiarize students with basic machine components. Get to know their operation and properties. Know their sizing, checking or selection. With the help of mid-year tasks, mastering the basic level of planning and construction. Basic principles of sizing ma-chine components. Connection methods, detachable and non-detachable joints. Dimensioning of mover and the screws. Couplings. Springs. Dimensioning of shafts. Basics of tribology. Friction. wear, lubrication. Dimensioning and structural designs of sliding bearings. Rolling bearings and their selection. Mechanical drives, their grouping, their most important characteristics. Flexible drives. Gaskets.
autur	n GEGTT100-B2a	Manufacturing Technology	5	2	2	BSc	Dr. Csaba Felhő	csaba.felho@uni-miskolc.hu	Production Engineering	Main scientific fields, basic terms structure and systems approach characteristics of manufactur-ing technology. Manufacturing de technological process. Cutting by tools with define edge geom-etry. Main characteristics of chip removal. Basic elements, workpiece, tool, movements cutting parameters. Role of bases and dimension charis in manufacturing technology. Edge geometry materials of cutting tools. Wear and tool life of cutting tools. Main cutting methods, triving, shaping, difiling, boring, face- and slab milling. Fine machining methods, grinding superfinishing, honios, Mechanical, optical, electrical and laser measuring devices used in length and angle measurements.

autumn	GEMAK631-B2a	Numerical Methods	5	2	2	BSc	Dr. Attila Korei	attila.korei@uni-miskolc.hu	Mathematics	Basic elements of model building. Types of errors, classical error analysis. Error propagation. 2. Vector and matrix norms. Linear algebraic equations. Gauss elimination. 3. LU and Cholesky decomposition. Matrix inversion. 4. Jacobi and Sediel Iteration. 5. Eigenvalues and eigenvectors. The power method. 6. Rods of equations: bisection method, fixed-point iteration, Newton method. 7. Curve fitting: Lagrange interpolating polynomials. 8. Least-squares regression. 9-10. Numerical differentiation and integration. 11-12. Runge-Kuta methods for solving ordinary differential equations. 11-12. Runge-Kuta methods for solving numerical problems. 13-14. Using Matab (Cctave) in solving numerical problems.
autumn	GEMET002-B2a	Mechanics of Materials	5	2	2	BSc	Dr. Sándor Szirbik	sandor.szirbik@uni-miskolc.hu	Mechanics	Basic concepts of mechanics of materials. Introduction to matrix and tensor algebra. Deformable bodies. Deformation gradient, displacement gradient. Strain tensor and trotation tensor. Strain energy: Elastic defor-mation of an axially loaded member. Torsion of circular shafts. Bending of straight members. Shear in straight members. Moments of inertia for an area. Combined loading, design of beams and shafts. General equations of elasticity: equilitum equations, kinematic equations, general-ized Hooke's law. Mor's circle. Principia stresses and strains. The concept of equivalent terss. Theories of laiure. Deflection of beams and shafts. Curved beams. Statically indeterminate beams and shafts. Buckling and stability of columns.
autumn	GEMTT003-B2a	Material Technologies	5	2	3	BSc	Dr. Åkos Meilinger	akos.meilinger@uni-miskolc.hu	Materials Science and Technology	Definition of heat treatment, groups of heat treating technologies. Microstructural changes during heat treatment. Heat treating processes for hardness and strength increase. Hardenability, Machinability improving by hardness and strength increase. Hardenability, Machinability improving by hardness and strength increase. Hardenability, Machinability improving by harnealings. Thromo-binnicial heat treatments. Hieronity of the treatments during thermochemical heat treatments. Microstretic Losas of heat treating, Welding and related technologies. Definition and classification of welding. Welding and submerged are welding; principles, characteristics, technologies, welding materials, equipments and applications. Metal active/inter gas and turgaten inter gas welding processes: principles, characteristics, technologies, welding materials, equipments and applications. Pressure welding materials cence background of forming. Cutting technology planning, Layout and strip plans, determination of technologies and characteristics. Bending tools. Deep drawing technology planning: rumber of reating. Strengt design. Characteristics of forting technology planning Layout and strip plans, determination of technologies and characteristics. Bending tools. Deep drawing technology planning: rumber of reating. Cutting design. Characteristics of forging lechnologies and characteristics. Bending tools. Deep drawing technology planning: rumber of reading in the design. Characteristics of forging lechnologies and characteristics. Bending tools. Deep drawing technologies and their technological design. Characteristics of forging lechnologies in principles for forging. Forming machines, principles of machine selection. Processing of plastics: extrusion, injection midding, overview of their technological design and tools.
spring	GEAGT121-B2a	Fundamentals of CAD	3	1	2	BSc	Sándor Lajos	sandor.lajos@uni-miskolc.hu	Mathematics	Basic concepts related to CAD systems. Structure, hardware and software components, basic functions of CAD systems. Computer aided drawing systems. Georemitric modeling systems. Wirdframe, surface and solid models. Representations of models, visibility agorithms, lighting, shading, photorasilistic rendering. Parametric and direct modeling systems. Repid prototyping methods. Learning basic solid model creation methods using a specific parametric design system (Creo Parametric). Creating parts, assembles, mechanisms, animations and photorealistic imag-es, Create technical drawings of parts and assemblies.
spring	GEAHT431-B2a	Fluid Machinery	5	2	2	BSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	Categorization based on the direction of energy conversion: fans, pumps and turbines. Charac-teristic curve of pipes. Basic operating characteristics of pumps and turbines. Pump in a piping system. Operating characteristics of turbomachines. Principie of operation, characteristics, curves and regulation of turbopumps. Principie of operation, characteristics, curves and regulation of turbopumps. Hard, main properties and characteristics apend of impulse and reaction type water turbines. Hydrodynamic torque converter and hydrostatic transmission. Operation of turbocompressors. Main properties and fields of application of turbocompression. Advances and the system of the system of the system of time, effect of ai vessel. Reciprocating compressor. Radial and axial piston pumps. Types of rotating piston pumps, fluid delivery.
spring	GEGET004-B2a	Machine Elements II.	5	2	2	BSc	Dr. Károly Jálics	karoly.jalics@uni-miskolc.hu	Machine and Product Design	Expansion and application of the knowledge acquired from the Mechanical Drawing, and Ma-chine Elements I subject. Familiarization and calculation of toothed machine elements (spur, helical, beel, internal gears, wom drives), manufacturing of gears. Crank mechanisms, flexible drives, Design issues of manufacturing of gears.
spring	GEGTT102-B2a	Industrial Machining	4	2	2	BSc	Dr. Csaba Felhő	csaba.felho@uni-miskolc.hu	Production Engineering	utamenisations. Machining procedures of flat and cylindrical surfaces, their kinematics, machines, tools and de-vices. Machining of shaped rotational surfaces and torque-transmitting surfaces. Proceedures for the manafacturing of external and internal threads. Machining of different hypes of gear parts, e.g. spur gears, heical genes, straight and sylindre hypes of gear parts, e.g. spur gears, heical genes, straight and sylindre hypes of gear parts, e.g. spur gears, heical genes, straight and sylindre hypes of gear parts, e.g. spur data of each machining, monitoring the processes. Introduction of service life- enhancing treatments. Description of non-traditional ma-chining processes.
spring	GEMET003-B2a	Dynamics	5	2	2	BSc	Dr. Edgár Bertóti	edgar.bertoti@uni-miskolc.hu	Mechanics	Kinematics of a particle. Kinematics of a rigid body: translation and rotation, relations for veloci-ties and accelerations. Relative-motion analysis of particles and rigid bodies. Kinetics of a partic-te. Newforks laws of motion. Principie of impulse and momentum. Power and work of a force. Principle of work and energy. Conservative forces and potential energy. Equation of motion for a system of particles. Kinetics of a rigid body. Linear and angular momentum. Moments of inertia. Tensor of inertia. Newfork-Euler equations of motion for a rigid body. Kinetic energy of a rigid body. Power and work of system of forces acting on a rigid body. Delamberts principle. Con-strained motions. Planar kinetics as a system of trigid bodies. One-degree-of-freedom whatais on at rigid body. Equation for direction, and natural frequency. Undamped, damped and forced vibrations. Resonance.
spring	GESGT001-B2a	Machine Tools	4	2	2	BSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Definition of machine tools. The development history of machine tools and their impact on in-dustrial culture and economic progress. Grouping the division of machine tools. The structural design and main building units of machine tools. Characteristics of the design of main and sec-ondary drives. Description of lather-type machine tools. Description of milling machines. Description of administration of milling machines. Description of administration of main and sec-ondary drives. Description of lather-type machine tools. Description of and thread processing machines. Drilling and milling centers. Description of turning centers. Description of plastel forming machines. Description of high energy density radial machine tools and spark cutting machines. Description of machine tools. Theory of machine industry measurements applicable to machine tools.
spring	GEVGT001-B2a	Chemical Technologies and Equipment	4	2	2	BSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	World history of the chemical industry, Hungarian and regional conditions. Basic operational concepts, physical quantities and equations describing units in unit operation, classifying of operations. Sedimentation, filtration, dust and drop separation and their equipment. Certifuga-ion, mixing, size reduction and their equipment. Theoretical foundations of heat transfer, heat exchange. Heat transfer calculation and equipment. Theoretical foundations of mass transfer, distillation. Rectification, batch distillation, structural designs. Basic concepts of pressure vessel design, Sizing foundations. Risks, hazardous materials. The overpressure protection, designation of designing guidelines, subsystems. Overpressure protection, designation of valves and rupture discs and panels.
autumn	GEIAK100-B2a	Technical Communication	5	2	2	BSc	Dr. Károly Nehéz	karoly.nehez@uni-miskolc.hu	Information Science	Students will learn about basics of logic, numerical systems, basics systems theory, description of information, coding, encryption and semantics, model modelling and fundamentals of computer aided modelling.
autumn	GEIAL301-B2a	Computer Architectures	5	2	2	BSc	Dr. Szilveszter Kovács	szilveszter.kovacs@uni-miskolc.hu	Information Science	Basic computational models. Computer architecture concept. Neumann architecture: processor, memory, I/O devices, system bus. The general microprocessor architecture. Structure of processors, instruction set architecture. Processor performance measures and enhancement. CISC and RISC concept. Internal parallelization. State-of-the-art processors. The storage, semiconductor storage, their classification, operation and performance enhancement. Trends in the development of semiconductor storage devices. Duese, their classification and performance enhancement. Bus standards. I/O devices, their classification and the role of I/O control circuits. The construction of the common devices (imagelici and optical disks, displays, keyboards, pointing devices, printers), their operating principles, and performance enhancement. Command language user interfaces. Shell programming. Graphical user interfaces.

autumn	GEIAL311-B2a	Fundamentals of Programming	6	3	2	BSc	Dr. Baksáné Dr. Erika Varga	erika.b.varga@uni-miskolc.hu	Information Science	We will discuss the following topics: basics of computer programming, programming paradigms and programming languages, the operation of compliers and interpreters, steps of program development, how to develop an algorithm and how to implement it in C, basic concepts of structured programming and control structurers. You will also beam about memory management, the scope and lifetime of variables and recursive problems. In practical classes you will earn the sorthar and semantics of C programming constructs. You will work with primitive data types, pointers, arrays and structs. You will work with primitive data types, pointers, arrays and structs. You will work with primitive data types, pointers, arrays and structs. You will work with primitive data for defining and calling functions.
autumn	GEMAN102-B2a	Linear Algebra and Discrete Mathematics	6	3	2	BSc	Dr. Sándor Radelaczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Sets of numbers, the Cartesian product of sets, binary relations and their graphs, the inverse of a binary relation, the notion of a function, composition of the functions, blicitive and inverse functions, permutations, operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and the semigroup of the semigrou
autumn	GEMAN151-B2a	Mathematical Analysis I.	5	3	2	BSc	Dr. Szilvia Árval-Homolya	szilvia.homolya@uni-miskolc.hu	Mathematics	Sets, operations on sets. Relations, functions. Real numbers and their properties. Topology of real numbers and their properties. Convergent sequences, Series of real numbers and their properties. Convergent sequences, Concepts of single variable function, limits, continuity. Elementary functions. Differentiation: derivative of elementary functions, differentiation rules, Applications: L*Noglita func, extreme value calculation, function nules, Curves given in parametric and polar coordinates.
spring	GEFIT010-B2a	Introduction Into Physics	5	2	2	BSc	Dr. Gábor Pazota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Basic concepts of kinematics. Newton's laws, Momentum and fis conservation, Work, energy, power. Conservative fields and potential energy. Torque. Equilibrium of rigid bodies. Fine and forced linear oscillations, hybrids, and's public discussion. The second second linear oscillations, hybrids, and's publics. Head procession. Electric charge, field, potential conductors in electrostatic field reline for or decisit charges. The concept of current, current density, voltage. Voltage sources, electromotive force. DC current, current density, voltage. Voltage sources, electromotive force. DC fields to the sec. The concept of magnetic induction. Forces in a magnetic field. Dia-, para-, and ferromagnetism. Ampere's law. Electromagnetic induction. Neuramon's law. Faraday's law of induction. AC circuits. Journet -Maxwell law. EM waves.
spring	GEIAL302-B2a	Operating Systems	5	2	2	BSc	Dr. Attila Baksa	attila.baksa@uni-miskolc.hu	Mechanics	Having knowledge about the operation and the implementation's technology of hardware and software components in information systems, as well as how to solve tasks asting from their operation, and how to connect them with other technical systems. Having knowledge about the terminology and specific expressions used by software engineers in English.
spring	GEIAL313-B2a	Object Oriented Programming	5	2	2	BSc	Dr. Baksáné Dr. Erika Varga	erika.b.varga@uni-miskolc.hu	Information Science	In the lectures we will discuss the four basic principles of object oriented programming: encapsulation, information hiding, inhertance and polimotifism; and you will earn the syntax and semantics of Java and C2 constructs. In practical classes you will use either Java or C2 to work with classes, constructors, and methods. You will use encapsulation to improve the robustness of the code and reduce the impact of change. You will re-use code using inhertance and composition, so as to understand the problems with inhertance and how composition solves these problems. You will also develop loosely-coupled, lestable and destensible applications using interfaces. The course also covers advanced concepts like exception handing, sitting handing, in the handling and basic utility classes.
spring	GEMAK121-B2a	Data Structures and Algorithms	5	2	2	BSc	Dr. Attila Házy	attila.hazy@uni-miskolc.hu	Mathematics	The representation of real numbers. Algorithms of number theory (greatest common divsor, Euclidean algorithm, Fermat-test), RSA. Algorithms: Definition, Properties, Petrformace Anaysis-Space Complexity, Time Complexity, Asymptotic Notations (Order of growth, the master theorem (method)) Data structures. Introduction, Data Structures types, arrays, linked lists (singly linked lists, circular linked lists, doubly linked lists) stack and queue. Sorting (Introduction, Selection sort, Bubble sort, Insertion sort, Marge sort, oucks sort, Hago Sort) and searching (Introduction, Inear search, Binary search, Fibonacci search). Trees (Introduction, definition and basic terminologies, representation of trees), binary Trees (basic terminologies and types, binary search trees) and graphs.
spring	GEMAN122-B2a	Discrete Mathematics II.	5	2	2	BSc	Dr. Séndor Radeleczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Theory of relations, fundamentals of graph theory. Connected components of a graph, trees, forests. Planar graphs, Euler's polyhedron formula and its conclaines: Kuradowski's theorem, characterization of bipartile graphs, independent edge sets (matchings), König's theorem, Half's theorem. Ore's theorem. Existence of Eulerian path and Eulerian circuit. Hamiltonian path and Hamiltonian circuit. Graph coloring, chromatic number, four-odor theorem. Adjustency and incidence matrices. Relations defined over sets, equivalence relations. Partial orders, patrially ordered sets, chains and antichains. Linner extension of lattices. Complemented, modular and distributiva lattices and their characterization. Boolean algebra, Boolean functions and their normal forms.
spring	GEMAN161-B2a	Mathematical Analysis II.	5	3	2	BSc	Dr. Szilvia Árvai-Hornolya	szilvia.homolya@uni-miskolc.hu	Mathematics	Indefinite integrals, basic integrals, techniques of integration. Riemann condition of integrability. The Newton-Leibnitz theorem, Improper integrals, applications of the define integral. Real multivariable functions. Partial derivatives of multivariable functions, directional and partial derivatives. Externer value of multivariable functions. The concept properties and calculation of the double integral. Volume, area, surface calculation. Interpretation, properties and calculation of the tripie integral. Introduction of the variables (cylindrical and spherical coordinate system). Applications of the the tripie integral. Offerential equations of the first order. Higher order differential equations. Ordinary differential equations of the first order. Higher order differential equations.
autumn	GEIAK120-B2a	Integrated ERP Systems	5	2	2	BSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The course topics include production planning, paying for or acquiring parts /spare parts, maintaining stocks, cooperating with suppliers, making customer services available, and following orders. ERP can also include application modules for a business's finance and human resources aspects. Some of the ERP subcontracing markets are J. D. Edwards, System Application and Production (SAP), People soft, as well as IBM, Microsoft, and Oracle
autumn	GEIAL304-B2a	Computer Networks	5	2	2	BSc	Dr. Szilveszter Kovács	szilveszter.kovacs@uni-miskolc.hu	Information Science	Layered network architectures, physical layer, media access control sub- layer, channel sharing methods, common media access control shardards (IEEE Ro2 3, 802 11), the data link layer, frame formation procedures, basic nowledge related to error protection, the network keyser functions and services, traffic control methods, congestion control, inter-network cooperation, common network architectures (IPv4, IPv6), the Internet and Its services.
autumn	GEIAL314-B2a	Software Technology	5	2	2	BSc	Dr. Péter Mileff	peter mileff@uni-miskolc.hu	Information Science	Basic concepts of software engineering. Features of software as a product. The software development steps and life cycle models: waterautum model, Evolutionary software development. Component-based software development, incremental (leretavie) development paperad. The spiral model. Process Activities, Presentation of Software requirements. Functional, non-functional requirements, user and system requirements. Functional, non-functional study. Scenarios et mongraphy. Requirements balancing process. Exploration and analysis. The requirements document and feasibility study. Scenarios et mongraphy. Requirements Validation of Software Design. Architectural design, system build models. Modular decomposition, functioned pipus, controlling types, object-oriented design. Unlind Modeling Language (UML). Version control systems, principae of user interface design.
autumn	GEIAL322-B2a	Database Systems I.	5	2	2	BSc	Dr. László Kovács	laszło.kovacs@uni-miskolc.hu	Information Science	Overview of persistency methods; Foundation of database systems; DBMS and DB; Semantic modelling, ER model; Relational structure and integrity rules; Convertion of ER Into relational model; overview SQL; SQL DDL commands; SQL DMC and relational algebra; Query expressions in SQL: conversion relational algebra into SQL; Relational database objects; Indexes and VEW demets; normalization of relational schema. Security larger in DBMS; Basic operations in SQL: SQL API (foundations for JDBC;
autumn	GEMAK131-B2a	Probability Theory and Mathematical Statistics	5	2	2	BSc	Dr. Sándor Fegyverneki	sandor.fegyverneki@uni-miskolc.hu	Mathematics	Concept of probability. Conditional probability. Independence of events. Random variables, distribution, cumulative distribution function, density function. Moivre-Laplace theorem. Law of large numbers. Conditional distribution and density function. Independent random variables. Distribution of minima and maxima. Central limit theorems. Sample space. Sample, sampling methods. Monte Carlo methods. Point estimations, unbiased estimations, efficiency, consistency, sufficiency, Rao-Cramer inequality. Rao- Backwell Kömgorov-theorem. Interval estimations, thypothesis testing, uniformly best tests. Parametric and non-parametric tests. Testing homogeneity and independence. Correlation and regression analysis.

autumn	GEVAU195I-B2a	Digital Systems	5	2	2	BSc	Dr. József Vásárhelyi	jozsef, vásárhelyi@uni-miskolc.hu	Automation and Communication Te	The subject presents the operation of the basic elements of embedded systems, making digital abstraction, developing skills for simple tasks with direct hardware, or low-level software solution. Through the presentation of binary arithmetic, the design of operators, functional units, and controllers, at the use of elementary CPUs. Understand and design simple applications will microcontroller device with the use of standard peripherais. During the evercices and laboratory essions: related to the subject, the emphasis is on learning modern computer aided design methods and gaining direct, basic design/development experience.
spring	GEAGT123-B2a	Introduction to CAD Systems	5	2	2	BSc	Sándor Lajos	sandor.lajos@uni-miskolc.hu	Mathematics	Learning the geometric and graphic background of CAD systems, as well as the basic solid and surface modeling methods. Learning basic solid model creation methods using a specific parametric design system (Creo Parametric). Centing assemblics, mechanisms and animations, creating photorealistic images, 3D printing. Import and export models.
spring	GEFIT014-B2a	Modern Physics	2	2		BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Some basic concepts of special relativity, Conservative fields. Experimental foundations of quantum mechanics (black body radiation, photoelectice effect relativistic effect). Matter waves, uncertainly relations. Fundamentals of quantum physics. The structure of atoms, systems with one or more electrons, chemical bods, energy levels, band structure. Atomic physics fundamentals of lasers. Radioactivity, basics of nuclear physics. Reactors. Particle accelerators, Interaction between radiation and matter.
spring	GEIAL30B-B2a	Security in Computer Systems	5	2	2	BSc	Dr. György Wagner	gyorgy.wagner@uni-miskolc.hu	Information Science	Data; information; information security. Protection demand; sources of danger; classification of risk classes; defense costs. Protection of information; protection against physical injury; protection against number/classification; intrusions. Constraint and the cost of the cost o
spring	GEIAL316-B2a	Software Technology Lab	5	1	3	BSc	Dr. Tamás Tompa	tamas.tompa@uni-miskolc.hu	Information Science	The nest important Jopobased frameworks and the applications will be resented in addition to the Jopo programming language. Technologies and techniques covering the entite enforce life cycle will be introduced that the student is confident in a Java-based software delexponent after completing the course. The course involves the followings: continuous integration, continuous development, software testing, software design patterns, version control systems, etc.
spring	GEIAL31A-B2a	Java Programming	5	2	2	BSc	Dr. Tamás Tompa	tamas.tompa@uni-miskolc.hu	Information Science	The course helps deepen object-oriented programming knowledge and application of these methodology in Java techniques. Course topsc:s: Effective use of basic Java classes (The java lang package classes). Using collections. UO programming (Streams, filter streams, pipes (Pipes), file access, File class). Internationality. Network management. Other technologies.
spring	GEIAL323-B2a	Database Systems II.	5	2	2	BSc	Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Overview SOL API architectures (OBEC, JDBC, JPA), JDBC class hierarchy, JDBC classes and methods; cursor handling in JDBC; netadata in JDBC; stored procedure in Oracle, ownew of PL/SOL language; SOL operations in PL/SOL cursor management in PL/SOL usage of PL/SOL packages; Transaction management architecture, history types in DBMS; locking protocol; operation of the locking, dmiziation states, query exclution plan In DBMS, algebraic execution graph, dmiziation tsates, query execution plan
spring	GEIAL33H-B2a	Basics of Web Technologies	3	1	2	BSc	Dr. Anita Agárdi	anita.agardi@uni-miskolc.hu	Information Science	Overview of HTTP standard (HTTP protocol, Request/Response model,HTTP methods), Presentation of the Network basics (Elient-server architecture; Podresses and DNS), Learning the HTML basics (Structure of an HTML document, list, table, image, link, forms), CSS basics (Syntax and usage of CSS, Inline, internat, and external stytes, Codors, fonts, spacing, borders, and box model, CSS selectors), Usage of Javascript (Variables, data bypes, operators, control structures, functions and events, form validation), Jquey language (DOM traversal and manipulation, event handling), JSON data structure (structure and syntax of JSON, converting between JSON and JavaScript (Detcis).
autumn	GEAGT107-B2a	Basics of Technical Description	4	2	2	BSc	Szilvásiné Dr. Erika Rozgonyi	erika.szilvasine.rozgonyi@uni-miskolc.hu	Mathematics	Sketching in axonometry. Constructions in the representation of Monge, mapping of points, lines and planes, intersection problems. Introducing new image planes. Representation of crickes. Representation of polyhedra and surfaces of revolution, and their intersection with plane. Preparations of technical drawings and documentations. Standards, drawing types, lines and captions, Views, section views, profiles for mechanical drawings. Special drimensions. Representation of threaded parts. The ISO tolerance system. Geometric and position telerance, surface finality, Connecting parts, ISO system of fits. The basics of Computer Aided Design (CAD), rapid prototyping.
autumn	GEGET101-B2a	Fundamentals of Machine Elements	4	2	2	BSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella v. bognar@uni-miskolc.hu	Machine and Product Design	The ain of the course is to summarize the meat important basic principles of mechanical engineering, to present the basic physical and mechanical quantilies, the concepts and methods necessary for the examination machines and processes, and the way of negotating engineering processes. The student learns about the smooth operation of machines, the calculation of efficiency and losses, different drives (friction, het, gear drive), pulley and card drives, as well as the basics of flow engineering processes, the Bernoulli equation, the vulnit tube, the real fluid flow losses, the movement contitions of springs and brakes.
autumn	GEIAL31S-B2a	Computer Studies	4	2	2	BSc	Dr. György Wagner	gyorgy.wagner@uni-miskolc.hu	Information Science	Building on the office applications of Ms Office 365, getting to know and practicing the basis functions that can be used during the basic logistics training. To prepare the students to be able to use electronic correspondence text editing and spreachsheets, to process data and tata series with the help of the built-in and self-created functions during their training and after graduation.
autumn	GEMAN213-B2a	Linear Algebra	5	2	2	BSc	Dr. Béla Kovács	bela.kovacs@uni-miskolc.hu	Mathematics	A concise but informative description of the knowledge to be acquired. The 3 dimensional real weatcryspace, vector algebra, equations of straight and plane weator spaces, linear dependence, independence, base, dimension, comptes numbers, operations, polynomias, operations radicel factor shape, matrices, matrix operations, matrix rank, determinant, matrix inverse, base transformation, homogeneous and inhomogeneous systems of linear equations, solvability, solution methods, linear mapping, characteristic polynomiai, eigenvector, eigenvalue, diagonalizability, the real number n's are spaces.
autumn	GEMAN610-B2a	Mathematics in Logistics I.	6	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	Set theory, relations, functions, range or interpretation, set of values, series, limit of series, limit of univariate real functions, continuity, notable curves, differential calculus and its applications, function testing, indefinite integral calculus, rules of integration. The definite integral and its applications, impropuls integral.
autumn	GEMTT201-B2a	Materials Science and Testing	4	2	2	BSc	Dr. Péter Kovács	peter.kovacs@uni-miskolc.hu	Materials Science and Technology	Introduction to material-adated engineering concepts, acquisition of the basic knowledge necessary to develop an engineering approach, definition of the exploration of property of the second of the second secon
spring	GEALT500-B2a	Technical Logistics	6	3	2	BSc	Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	During the course, the students are introduced to the professional knowledge of logistics; to show the development of logistics and its relationship with material handling; determine the professional content of logistics; to develop the technical-logistics approach; explore the relational system of material and information flow, describe the main technical and IT equipment belonging to the operation of the logistics system.
spring	GEALT501-B2a	Occupational Health and Safety in Logistic	2	2		BSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	The place and role of occupational health and safety in logistics. Getting to know the basic workplace hazards, as well as the basic methods and procedures for minimizing the risks they pose in relation to material handling systems. Getting to know the comprehensive organization and main areas of application of the relevant standards, provisions and regulations. Presentation of examples of correct and incorrect occupational health and safety practices of examples of correct and incorrect occupational health and safety practices and the standard sta
spring	GEFIT021-B2a	Fundamentals of Physics	3	2	1	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Fundamental concepts of kinematics. Newton's laws. Power, work, energy. Linear free oscillation. Forced oscillation. Electric charge, field, potential. Conductors in electric field. The flow of electric charge. Concept of current density and current. Conduction of current in metals. Dc circuits. The integral form of Judie's law. The concept of magnetic induction. Forces in magnetic field. Dia-, para-, and ferromagnetism. Ampere's law. Electromagnetic induction. Neumann's law. Faraday's law of induction. AC current. Ampere-Maxwell law. EM waves.
spring	GEGET073-B2a	Vehicle Components	5	2	2	BSc	Dr. Károly Jálics	karoly.jalics@uni-miskolc.hu	Machine and Product Design	The aim of the subject is to wide the horizons of the students. The subject is used for individual logistical purposes, or describes the basic characteristics of usable vehicles and the tracks and roads they use, with increased emphasis placed on independent work and continuous discussion of topics.
spring	GEGET285-B2a	Mechanical Engineering Knowledge	5	2	2	BSc	Dr. Zoltán Bihari	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	The aim of the course is to acquaint students with the various machines, machine elements, their mechanism of operation and to use the basic physical connections in practice.
spring	GEMAN620-B2a	Mathematics in Logistics II.	5	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	The definite integral, its properties, areas of application. Improprius integrals, Bivariate functions. Numeric rows. Dual integral and its applications. Triple integral and its applications. Differential equations. Vector-scalar functions. Scalar vector functions. Vector-vector functions.
spring	GEMTT202-B2a	Mechanical Technologies	4	2	2	BSc	Dr. László Kuzsella	laszlo.kuzsella@uni-miskolc.hu	Materials Science and Technology	Introduction to material technologies, such as heat treatment, forming, casting and welding of materials. It describes the theoretical background and the most relevant technologies beside of these fields.

autumn	GEALT502-B2a	Material Handling Machines	4	2	2	BSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	Main objective of the course is to present the types, operation characteristics and elements of material handling machines for the students. During the semester the planning, operation and maintenance aspects of the machines are also presented. At the end of the course, students gain sufficient knowledge for the application, operation and control of handling machines. During the practical lessons students get deeper knowledge about the machines and apply the theoretical methods.
autumn	GEALT503-B2a	Simulation Modelling of Logistics Processe	5	2	2	BSc	Dr. Tamás Péter	peter.tamas@uni-miskolc.hu	Logistics	The course introduces the simulation modelling, evaluation and efficiency improvement capabilities of typical logistics systems. Using the knowledge gained, students will be able to model, evaluate, improve, and design logistics processes using a simulation framework.
autumn	GEALT504-B2a	Logistics Systems	4	2	2	BSc	Dr. Bányainé Dr. Ágota Tóth	agota.banyaine@uni-miskolc.hu	Logistics	The course introduces students to the planning and management methods of the various subsystems of the enterprise logistics system. The course will introduce the structure and main elements of the enterprise logistics system. The aim is to provide the theoretical basis for the optimal design and operation of logistics systems and to introduce the design principles, which can be further developed in the Master's programme.
autumn	GEGTT500-B2a	Basics of Manufacturing Technology	5	2	2	BSc	Dr. Zsolt Maros	zsolt.maros@uni-miskolc.hu	Production Engineering	Main scientific fields, basic terms structure and systems approach characteristics of manufacturing technology.
autumn	GEMET266-B2a	Mechanics	5	2	2	BSc	Dr. Dávid Gönczi	david.gonczi@uni-miskolc.hu	Mechanics	Introduction, basic concepts. The task and main models of mechanics. Statics of a material point. The moment of a concentrated force calculated on point or ais. Force system acting on a rigid body, Balance and equivalence of force systems. Distributive power systems. Static moment, center of mass. Static problems of simple and complex structures. Stresses of bars. Stress diagrams of straight supports. Basic solid concepts. Characteristics of the displacement, deformation, stress and energidic static of a solid body. Simple uses of bars. Pulling a prismatic rod. Twisting of a prismatic rod with circular and ring cross-section. Mechanical characteristics of ski ridges. Bending of a prismatic rod. Complex stresses of prismatic bars. General issue of dimensioning and control. Mich's stress circle dargam.
autumn	GEVEE050-B2a	Electrotechnics-Electronics	5	2	2	BSc	Dr. Judit Molnár	judit.molnar@uni-miskolc.hu	Physics and Electronic Engineering	Introducing the basic electrical and magnetic phenomena, laws and circuit calculations in the case of direct current, single and three-phase alternating current excited heaviors. Introducing the main characteristics of equipment used in electrical energy generation, distribution, conversion and utilization electrical energy generation, distribution, conversion and utilization diversions. Dir other the conversion and utilization induction machines DC relatives, birtotical timp estication, dioxé, transistor, rectifier circuits, power electronic converters.
spring	GEAHT433-B2a	Fluid Transport Systems and Machines	5	2	2	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	Properties of fluids (density, velocity field streamlines, potential function, voticity vector), Evalation of continuity, Bernouil equation for ideal and non- ideal, incompressible and compressible flows. Flow losses in pipelines and fittings. Equivalent pipe length. Classification of machines. Man characteristics of flow machines. External energy diagran of working machines. Realistic characteristic curves of pumps. Suction power of pumps. Working point of pumps series and parallel cornection. Starting and control of pumps. Types of water turbines. Characteristic curves of valet turbines. Energy diagram and characteristic curves of valet
spring	GEALT505-B2a	Basics of Process Development	5	2	2	BSc	Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	The history of the development of Lean. 5 principles. Methods to define value- creating, non-value-creating processes, and losses (MUR), MUDA, MURA). Steps to draw a value stream map. Preparation of a present and future state map. Introduction to Lean tools (SS. Andon system, visual management principles, Poka Yoke, SMED, Pull principle, JIT, Karban, Jidoka, Heljunka, Kaizen, etc.). Application of Lean tools in practice.
spring	GEALT506-B2a	Transportation Systems	6	3	2	BSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	Characterization and development of transport systems, transport system connections. Transport sectors, transport technical systems, transport tenve, whickes, energy supply, dive systems, transport service facilities. Trans- European networks (TEN) and pan-European corridors. Rail, road, water, and and combined transport. Environmental effects of transport, environmental impact, sustainability aspects. Evaluation and qualification of transport services, service quality assurance. Transport strategies, National Transport Strategy. EU Mobility Strategy. Introduction to the basics of traffic simulation othware.
spring	GEALT528-B2a	Engineering Calculations for Material Hanc	5	2	2	BSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	During the course, students are introduced to the design methods of material handling machines. The aim is to create the theoretical foundations necessary for the design of the equipment, with which you will be able to solve the problems that arise during practical application.
spring	GEVAU193-B2a	Control Engineering	5	2	2	BSc	Dr. Attila Trohák	attila.trohak@uni-miskolc.hu	Automation and Communication Te	We learn about the structure, operation, and programming of PLC-based control systems. We deal with the basics of operation of sensors and actuators and their installation. We learn about structure, operation, and configuration of human-machine interfaces.
autumn	GEMAK629-Ma	Probability Theory & Mathematical Stati:	5	2	2	MSc	Dr. József Túri	jozsef.turi@uni-miskok.hu	Mathematics	To acquire knowledge in: - basic concepts of probability theory, including discrete and continuous random variables and their distributions, density functions, expectations, mean, and variance. - important specific discrete and continuous distributions, - basic sampling distribution theory and implications of the Central Limit Theorem. - how to develop mathematical problem-solving skills and to apply them to solve applied problems in - how to develop mathematical problem-solving skills and to apply them to solve applied problems in - warous statistical topics, such as frequency distribution, elementary probability. - various statistical topics, such as frequency distributions, (parametric / non-parametric) hypothesis testing, and regression analysis. - how to solve practical - how to solve practical appoblems. - how to add or practical problems.
autumn	GEMET101-Mə	Mechanical Vibrations	5	2	2	MSc	Dr. László Péter Kiss	laszło.kiss@uni-miskolc.hu	Mechanics	Principles of modelling dynamical systems. Central and eccentric impact of rigid bodies, the Maxweldiagram. Modelling of mechanical vibrations, methods for the derivation and solution of the equations of motion. Vibrating systems with one degree of freedom (free vibrations, forced vibrations, damped freeand damped forced vibration). Vertical vibrations, for any protection. Vibration of discrete systems with more degrees of freedom (equations of motion, natural frequencies, Wration of discrete systems with more degrees of freedom (equations of motion, natural frequencies, Wration modes): Egenvalue-problems and their solutions, properties of the eigenvalues and eigenvectors. Vibration of continuous systems. Longitudinal, bending- and torsional vibrations of elastic beams. Raylegi-hamping. Critical angular speed of rotating shafts. Laval problems. Bearing reactions of rotating shaft-bearing systems. Dynamic analysis of slider-crank mechanisms. Balancing of a multicylinder engine. Introduction to the measurement of dynamical parameters. The subject covers the fundamental principiles and methods necessary to understant, Ananyles and solve different vibration problems and to make correct modeling decisions in the finite element simulations of vibrational problems in mechanical engineering.
spring	GEMAN500-Ma	Differential Equations	5	2	2	MSc	Dr. Mihály Bessenyei	mihaly.bessenyei@uni-miskolc.hu	Mathematics	The theory of differential equations is a basic tool of driverse fields of science. Students of this course should be able to understand their behaviors and to derive solutions of differential equations. The analysis of differential equations includes numerical, geometrical and analytical methods. The course covers linear and nonlinear, and also ordinary and partial differential equations. Norlinear equations are studied by their linearization around the equilibrium solution. A short introduction to complex functions is presented. Laplace and Fourier methods are applied both to ordinary and partial equations.
spring	GEMTT001-Ma	Materials Science	5	2	2	MSc	Dr. Sisodia Raghawendra Pratap Sin	raghawendra.sisodia@uni-miskolc.hu	Material Science and Technology	The main groups of materials: fundamental materials (metals, ceramics, polymers) and their relative morphous structures of metals. Composites concerning their composition, structures and application fields: structure related specific properties of metals, ceramics and polymers; engineering application of monolithic and composite materials, Mechanical behaviour: physical background of the mechanical behaviour of the different group of materials, deformation mechanisms, material models; the characteristic application related failure mechanisms, material. The relationship between the structure/processing/properties and functional performance and ther interactions. Development trends in materials sciences. Strengthening of ceramics, selective polymer design for specific applications of polymers.

spring	GEAHT001-Ma	Engineering fluid mechanics and heat tra	5	2	2	MSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	General properties of fluids, surface tension, capillarity, Newton's law of viscosity. Hydrostatics, pressure variation in a fluid at rest. Thrust on submerged plane and curved surfaces. Control to the surface of
autumn	GEVGT301-Ma	Environmental Management	5	2	1	MSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	The structure of the energy consumption, composition, energymix and the related problems. Energy sources and their usage and the distribution all around the globe. Possibilities of electricity production. The resources of energy sources and the possibility of the depletion time and their causes. The CO2 content in the atmosphere and the possible causes, possible ways to decreasing it. The atlenatives of the fossil fuels. Nuclear energy. Hydro energy. Pump-storage hydro power plants: as an efficient way of energy storage. Biomass usage. Energy density increment technologies of biomass. Mechanical and themal process. Possible biomass replacement of crude oil. Biomass as a plastic source.
autumn	GEMTT002-Ma	Advanced Materials Processing	5	2	2	MSc	Dr. Marcell Gyula Gáspár	marcell.gaspar@uni-miskolc.hu	Material Science and Technology	Advanced materials processing for primary shaping. Technology of powder metallurgy, characteristic metallic, ceramic and composite products. Advanced casting processes used in machine part manufacturing, Properties and design principles of cast products. Introduction to welding theories. The most important fusion and pressure welding processes and their modern process varians. High energy density welding processes. Brazing and soldering. Thermal culture, Heat treating processes. Brazing and soldering. Thermal culture, Heat treating processes. Targeting and soldering. Thermal culture, Heat treating processes. Targeting and strengthening processes. Toughening processes. Structure and properties modification in surface layers with thermal, physical and chemical methods. Advanced cold and hot metal forming for machine parts manufacturing.
autumn	GESGT001-Ma	Automated Machine Tools	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Definition of automation. Discrete and continuous systems, methods for describing and handling tem. Basic types of controllers. Principle of Numerical Centrol (NC). History of NC. NC generations. Functions of NC controllers. Controlled machine functions. Geometry of NC machine tools. Condinate systems: machine GS, programmer GS, tool CS. Programming methods. Structure of NC programs. Codes, programming bps. WOP in CNCs. Manufacturing cells, manufacturing systems as higher level of automation in machinery. Simulation of discrete systems (e.g. manufacturing cells): event-based simulation. Theory of interpolation. Interpolation methods. 2-3-50 interpolation.
spring	GEGET501-Ma	Machine Structures and Design	5	2	2	MSc	Dr. Ferenc Sarka	ferenc.sarka@uni-miskolc.hu	Machine and Product Design	Significant computations to eliminate the fatigue failure. Fundamentals of design theory and methodology. Gear drives connecting intersecting axes. Geometrical design and manufacturing methods for bevel gears. Kinematics of epicycle gear drives. Geometric and strength calculation of epicycle gear drives. Construction of epicycle gear drives. Types of flexible gear drives. Strength
spring	GEGTT800-Ma	Manufacturing Processes and Systems	5	2	2	MSc	Dr. Csaba Felhő	csaba.felho@uni-miskolc.hu	Production Engineering	calculation of flexible gear. calculation of flexible gear. Basic concepts and main characteristics of manufacturing processes and systems. The main tasks of technological design and production planning, and the relationship between them. The theoretical basis for technology care-planning, operation sequence, operation and operation- element planning, Impact of the manufacturing environment to the technology planning. The modern technological procedures, tools and technological organizational and methodological fundamentals of manufacturing systems. Technological undamentals of manufacturing system design. Systems of the flexible automated manufacturing optimization and simulation in design of manufacturing processes and systems.
spring	GEVEE201-Ma	Measurement, Signal Processing and Elec	5	2	2	MSc	Dr. Dávid Matusz-Kalász	david.matusz-kalasz@uni-miskolc.hu	Physics and Electronic Engineering	operation of modern measurement systems. Students learn Electronic principles to build measuring instruments from Lectures cover structure and operation of semiconductor devices, properties and parameters of amplifier circuits, passive and active filter configurations, operational and instrumentation amplifiers, properties and operation of different type of sensors and transducers, measurement theory, types and operation of analog instruments, process and building blocks of analog to digital converters, signal processing theorems and principles. Students gain practical laboratory experiences in measurements with instruments, building and testing simple electronic circuits and doing simple signal processing tasks.
autumn	GESGT002-Ma	iCAD Systems 1	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Structure of the integrated CAD systems, typical features. Managing processes in ICAD environment, typical strategies. Sketching, geometrical constraints, dimensioning. Part modelling. Different modelling techniques. Surface modelling principies. Creating assemblies, assembly constraints, assembling strategies. Documenting ICAD works. Possibilities for enhancement of the designing process, managing teamwork. Portability of CAD files, compliance between CAD systems, file types and conversions. Examples from the field of designing manufacturing devices.
spring	GEMTT071-Ma	iCAD Systems 2	5	2	2	MSc	Dr. Zsolt Lukács	zsolt.lukacs@uni-miskolc.hu	Material Science and Technology	Nowadaye, different CAD/CAM solutions play a significant role in process playming of shear metal products. In this course, first a general overheir is given on CAD/CAM program systems and I will be demonstrated how these provements of the course probability of the fundamental provides and the process playming and do do the process provement the basic principles of their working -the main input pranneters need to given and -the main results that can be achieved by using them. During the course here of CAD/CAM process planning of sheet metal forming will be presented. The first one is the Autoform FEM code, which gives possibility of examining frashibity of process planning of sheet metal forming. The second one is NX Sheet Metal, which permits of planning of such parametric workplace, which make design processing procedure faster.
autumn	GESGT003-Ma	Methodical Design	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Progression of design methodology. Various design approaches, models and their quality aspects. Development of CAD systems. Ranges of the CAD, various CAxx technologies. Development flow chart of manufacturing devices. The design requirement lists. Defining functions and function structures. Methods of finding solution principles. Methods of combining and selecting solution principles. The step of designing in case of manufacturing devices, digital prototype. The design rules. The rules of productioncorrect design, DFM(x) requirements. Reverse- engineering design technique. Rapid-prototyping technologies. Rapid tooling technologies. Safety in design (ISO standards).
spring	GEMTT114-Ma	Computer Aided Process Planning	4	2	2	MSc	Dr. Zsolt Lukács	zsoltJukacs@uni-miskolc.hu	Material Science and Technology	Computer Aided Engineering methods in forming processes. Analysis of the technological processes from the point of view of Computer Aided Process Planning. The various methods of Computer Aided Process Planning: the variant and the generative approach. Application of knowledge based systems in the process planning of forming processes. Technological databases: development, structure and handling of technological databases: development, structure and handling of technological databases. The balance of interactivity and porjarnmed processes planning (batch processing) in manufacturing processes. The documentation requirements. Connection between CAD, CAPP and CAM systems. Application of commercial CAD systems to support the tool design. The concept of Computer Integrated Manufacturing.
spring	GESGT004-Ma	NC programming	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Programming methods of NC machine tools: manual programming, WOP, computer aided programming, Advantages and disadvantages of methods. Process of computer aided NC programming, Introduction to Topsolid program. Merus, windows, bars. Machine and control definition. File handling, importing and drawing the geometry. Editing the geometry. Coordinate systems, views. Solids, solid operations. Technological operations. handling of operation manager. Tod choice. Machining parameters, setup of work piece. Toolpaths is milling machines. Checking the NC program. Postprocessing, editing the NC program. Documentation, setup sheets. Examples.

spring	GEMTT075-Ma	Numerical and Physical Simulation of We	1	2	0	MSc	Dr. Sisodia Raghawendra Pratap Sin	raghawendra.sisodia@uni-miskolc.hu	Material Science and Technology	Introduction to materials science, welding processes and its importance in various industries; Types of joints and design guidance, Fundamental of heat transfer in welding; Weldabilly, Ihemal cycle, cooling time concept. Welding introduction to thermal analysis in welding. Physical simulation (Gleebile); Physical simulation experimental demonstration with Gleebile; HAZ simulation; Case studies; Physical simulation to (Gleebile); Physical simulation experimental demonstration with Gleebile; HAZ set studies; Physical simulation to study weldability. Introduction indication; 20:20; Physical simulation to Study weldability. Introduction (Joint geometry; 20:30; Physical, Phata Source model, model-fing, thermal analysis; EBW joint simulation, thermal and mechanical analysis.
autumn	GESGT005-Ma	Hydraulic Units and Systems	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Classification of hydraulic drives. Changing the motion characteristic by current flow of adjusting the specific working volume. Series and prallel unbading, rapid switching, multi-puis, working volume of prantice unbading, rapid switching, multi-puis, multi-pressure systems. Coverload prevention, load holding, traking switching. Accumulato ricruits. Losses in hydraulic circuits. Isetaiting of the working fluid. Tark sking for heating. Proportional magnetically operated hydraulic elements. Structure and design of direct and pilo-operated pressure controllers, infectional control valves. Proportional throttle and flow stabilizing elements. Aspects of proportional wave selection.
autumn	GESGT006-Ma	Simulation of Manufacturing Devices	5	2	2	MSc	Dániel Kiss	daniel.kiss2@uni-miskolc.hu	Machine Tools and Mechatronics	Construction analysis of machine tools units. The finite element analysis of structures composed of these units. structural, thermal, and vibrational analysis of the cover plates of devices, vibration analysis of machine bods and the cutting process, balancing problems.
autumn	GEMTT074-Ma	Materials Selection	5	2	2	MSc	Dr. László Kuzsella	laszlo.kuzsella@uni-miskolc.hu	Material Science and Technology	The role of materials selection in fulfilling functional, technological, economical and environmental aspects in design, process planning and manufacturing processes. Effect of material properties on design and manufacturing processes, and on the reliability of engineering structures. The development and evolution of material selection procedures. The nature of the selection process. Computer Aided Materials and Process selection. Conventional and electronic material satabases. Sources of information on materials. Procedures for implementing networked materials database systems.
autumn	GEMAN383-Ma	Discrete Mathematics and Applications	5	2	2	MSc	Prof. Dr. Sándor Radeleczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Pascal's triangle, Fibonacci numbers, semigroups and groups, Lagrange and Cauchy theorems for finite groups, rings and fields, number fields, the algebra of ophynomials, Euclidean algorithm, inducible factorizations of polynomials, introduction to graph-theory, trees, the greedy algorithm, planar graphs, the chromatic number, biparitie graphs, matchings, graphs and matrices, partial and linear orders, the order dimension of a poset, lattices and complete lattices, distributive and Boolean tatices. Boolean functions, and complete lattices, abrituative and Boolean tatices. Boolean functions, and completeness, Post lattice, De Morgan and Heyling algebras.
autumn	GEMAK116-Ma	Numerical Methods and Optimization	5	2	2	MSc	Dr. Attila Körei	attila korei@uni-miskolc.hu	Mathematics	To provide suitable and effective methods for obtaining approximate representative numerical results of the problems. To solve complex mathematical problems using only simple arithmetic operations. To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems. To improve the student's skills in numerical methods and optimization by using computer facilities.
spring	GEMAK126-Mə	Information Theory and Cryptography	5	2	2	MSc	Dr. Sándor Fegyverneki	sandor.fegyverneki@uni-miskolc.hu	Mathematics	To master basic concepts in information theory, including source coding, and algorithms of channel capacity. To irvestigate important specific codes and channels. To continue to develop problem-solving skills and to apply these skills to the solving of application problems in communication theory. Be able to apply the gained knowledge to the solution of practical problems in engineening areas through evaluation and selection of appropriate statistical techniques. Specification: Source coding : entropy, I-divergence, classification of codes, Kraft-McWillian inequality, source coding theorem, Shannon-Fano coding, Gilbert-Moore coding : entropy. Extended Huffman coding. McMillian's theorem Channel capacity: joint and conditional entropies, mutual information. types of discrete memoryless channels, BSC, BEC, channel capacity, Arimoto-Blahut algorithms. Channel coding, Hamming weight, Hamming distance, minimum distance decoding, single parity codes, Hamming codes, repetition codes, linear block codes, syndro codes, syndrome calculation, encoder and decoder Continuous source, entropy, channels, minimum entropy method.
spring	GEIAK682-Ma	Enterprise Application Integration	5	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	Enterprise Application Integration, or EAI, has existed as a technical term since free early 2000s, but the central problem that it attempts to solve is much older. In a nutshell, EAI is an approach, or more accurately, a general category of approaches, to providing interoperability between the multiple disparate systems that make up a bylical enterprise infrastructure. Each applications, which provide the various services the infrastructure. Each applications, which provide the various services the company releasupon to applications, which provide the various services the company releasupon to applications, which provide the various services the company releasupon applications, which provide the various services the company releasupon to applications, which provide the various envices from a third party vendor, to manage their supply chain, customer releatonships, employee information, and business logic. This modularization is often desirable. In theory, breaking the task of muning a business in the multiple smaller functionalities allows for each area, and quick adaptation to changing business needs. However, to gain the benefits of this kind of distributed, modular system, an organization must implement technologies that deal with the problems presented by this architecture.
spring	GEMAN533-Ma	Theory of Error-Correcting Codes	5	2	2	MSc	Dr. Csaba Rakaczki	csəbə.rəkəczki@uni-miskolc.hu	Information Science	Coding theory is concerned with successfully transmitting data through a noisy channel and correcting errors in corrupted messages. The aim of the course is to familiarize students with the theory of errorcorrecting codes. The course covers the simpler families of codes such as linear, Hamming, Redd-Solomon, cyclic, BCH codes with encoding and decoding methods
autumn	GEVAU218-Ma	Architectures and Embedded Systems	5	2	2	MSc	Dr. József Vásárhelyi	jozsef.vasarhelyi@uni-miskolc.hu	Automation and Communication Te	Embedded system components and structure. Input output elements of and embedded system. Signal conditioning, signal processing; Micro-controllers, microprocessors PFOA architecture. Digital signal processors; processing elements and optimal solution for system integration. Embedded system communication (wired and wireless): Hardware – software co-design, nardware in the loop simulation/testing. Embedded system design process from hardware to software development: Operating systems for embedded system applications; Model based development. Debugging embedded systems. Re-configurable and adaptable architectures. Open standard processor architecture. RM
autumn	GEIAL501-Ma	Operation Systems and Networks	5	2	2	MSc	Prof. Dr. Szilveszter Kovács	szilveszter.kovacs@uni-miskolc.hu	Information Science	Introduction to mainframe architectures and data center technologies (hardware redundancy, efficient data storage, clustering, data center architecture and operation, mananging backups). Devilew of supercomputing and high performance computing (HPC): Massive Parallel Processing, Single System Image, high-performance interconnect (InfiniBant, RDMA) supercomputers and applications. Borearing and with the second structure of the second structure performance of the second structure of the second structure performance of the second structure structure performance of the second structure beams of the second structure beams of the second structure Details of virtualization technologies: emulation, kernel-based (containers), para-virtualization, hardware assisted virtualization, cloud technologies. Overview of the advanced features of modern file systems. Analysis of the TCPIPIC Computer Networks architecture. Theoretical and design aspects. Special elements of Network kiyer (IPV4 and IPv6) Switched Networks; VLANs; DHCP; NAT for IPv4. Devine the datamodule.
spring	GEIAL521G-Ma	Modern Database Systems	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Overview of DB datamodels; Relational databases; PL/SQL; Hierarchical models: XML database, LDAP database and Java API; LINQ interface, Lemba dacluus; ORM systems, Hypenate and myBatis; ORDBMS model and SQL commands; MongoDB datamodel, CRUD commands, database API in Java, Neo4J datamodel, CRUD commands, databases; overview of Hadoop , HDFS and mapReduce.
spring	GEAGT232-Ma	Geometric Modelling and its applications	5	2	2	MSc	Imre Piller	imre.piller@uni-miskolc.hu	Mathematics	Description of curves, interpolating and approximating curves, spline curves. Osculating plane, arc length, curvature, torsion, Frenet frame. Definition and properties of Hernite ac, Frequencia and Overhause splines. Parametric description and properties of Bader curves, de Catleljau agorithm. Parametric form and properties of Bader curves, becarpilor of surfaces, tangent plane, normal, surfaces swept by a moving curve. Interpolating and approximating surfaces: Coors patch, Bader and B-spline surfaces. Generation of rational Beder and B-spline surfaces and their properties. Surface and solid modeling in CAD systems.
spring	GEIAL511-Ma	Software Engineering	5	2	2	MSc	Dr. Zoltán Krizsán	zoltan.krizsan@uni-miskolc.hu	Information Science	Software Engineering course gives a detailed insight into the modern software development methodologies and processes. Students gets understanding of coceparation of wide range of team work technologies. The strudent learn how to use the GIT, JIRA and Jankins tool. The core technologies that are presented are source code management, project management, issue tracking, static code analysis and continuous integration. In addition to their bachedr studies, students acquire some team leading abilities that are indispensable for project managers or scrum masters.
autumn	GEIAL519-Ma	Development of Distributed Systems	5	2	2	MSc	Dr. Zoltán Krizsán	zoltan.krizsan@uni-miskolc.hu	Information Science	The students will learn the concepts and technologies of web-service oriented software development. Presentation of the platform and implementation independent component intervation

spring	GEIAL51C-Ma	Integrated Software Systems and Testing	5	2	2	MSc	Dr. Péter Mileff	peter.mileff@uni-miskolc.hu	Information Science	The course provides the theory and practice on the development of complex software systems, including cofware interrution, software quality metrics and testing
autumn	GEIAL526V-Ma	Data Analysis and Data Mining	5	2	2	MSc	Prof. Dr. László Kovács	laszło,kovacs@uni-miskolc.hu	Information Science	Overview of data analysis tools and levels, basic statistical tools, Bayesian network, comparison of OLAP and OTLP; decision support tools, MD data model, semanitic MD models, MD datenz, Oracle PE OLAP commands, programming MD databases in PE, Overview of MDX language, basic MDX queries, derived sets and measures; FEL processes, Overview of data mining, Data clustering methods, SOM, data classification methods, BPNN, SVM, mining association rules, detection of outliers, dimension reduction methods, PCA.
spring	GEIAK647-Ma	Software System Security	4	2	2	MSc	Dr. Olivér Hornyák	oliver.hornyak@uni-miskolc.hu	Information Science	The aim of the course is to acquaint the student with the basic concepts of computer security, relevant standards, recommendations and good practices. In practical classes the goal is to help learners develop the habit of properly assessing and improving cyber risk posture in real computing, networking, and software systems.
spring	GEIAL51D-Ma	Mobile and IoT Application Development	4	2	2	MSc	Dr. Anita Agárdi	anita agardi@uni-miskolc.hu	Information Science	The purpose of the Mobile Application Development is to learn the basic programming techniques on Android systems. The main topics are the followings: Android basics, overlew, Structure of Android applications, building graphical user interfaces, making animations, putting vector graphics, mold elements into user interface, overlevel or darbities fragments, hinetis, services, broadcase receivers, passing parmeters to activities, fragments, handling return values, overlevel of data binding fragments, calling web services, introducing google play services, overview sensors of deveces, publishing applications into Google Play Store.
spring	GEIAK631-Ma	Applied Machine Learning	4	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The aim of the course is to acquaint students with the essence of the applied machine learning algorithms and one of their representatives, the possibilities of the Microsoft Azure studio. Provide insight into specific areas of applied Artifician Intelligence. It gives an overview of robots and then details the structure, operation and motion control of humanoid robots. Demonstrates particle swarm-based optimization. Describes behavioral robotics, visual systems and speech recognition technologies and learning algorithms of humanoid robots. Provides an overview of brain-machine interfaces. It analyzes the expansion of brain capabilities and the ethical issues of machine intelligence in terms of human competitiveness.
spring	GEFIT003M-A	Physical Basis of Information Technology	2	2	0	MSc	Dr. Endre Kovács	endre.kovacs@uni-miskolc.hu	Physics and Electronic Engineering	The course is an introducion to the fundamental concepts, phenomena, backle adments of exterdynamics and modern physics, especially some backle adments of condensed matter physics. Based on these the students can understand the operation of the most important parts of the computer Indivare, e.g. the CPU and the hard disk.
autumn	GEIAK691-Ma	Technical English	5	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The subject covers a wide range of lessons on "Classic literature in Technical Science" and "Information Science & Technology" using tests and materials taken from textbooks, newspapers, computer magazines and websites. Classic literature in Technical Science mainly focuses on the comprehensive learning of materials needed to set up students lianguage skills and ability in classic engineering sciences. The lessons are based on those materials which taken from different textbooks, they include material science, sold mechanics, fluid mechanics, electric, electronic & computer science, ol industry, energy and innovative engineering sciences. The covering topics of Information Science and Technology involve principles on computer architecture, computer application, operating systems, application programs, networks, communication systems, and IT (recent and future developments). The main aim of the subject is to provide students 'ability in expanding their knowledge in R&D (Research and Development) using the English language.
autumn	GEIAL551-Ma	Modern Information Technologies	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	The subject introduces one of the critical points of information systems, the concepts of computer security, the components used for security purposes, and heir role. It explains the principles and basics of encryption in more detail. It covers public key cryptography and its role. In the second part of the course, basic programming techniques that can be used to automate business processes using MS Excel are presented.
autumn	GEALT176-Ma	Intelligent Material Handling Machines and System	5	2	2	MSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	Cubjective of the course is to present the intelligent material handling solutions for the students. The course gives an overview about the types, structures and operation of the automated handling machines applied in logistic processes.
autumn	GEVAU303-Ma	Industrial Automation	5	2	2	MSc	Dr. Attila Trohák	attila.trohak@uni-miskolc.hu	Automation and Communication Te	Introducing the fundamentals of automated production and the role of Programmable Logic Controllers (PLC). Introducing the sensors which are able to provide information about pre manufacturing system and the actuators which are able to influence the production process. The types of Human Machine Interfaces (HMI) which can inform the operator about the machine. The wired and wireless communication methods providing data exchange with MES/REP systems. Introducing the development method of unique production surveillance systems.
spring	GEGET335-Ma	System Engineering and System Modeling	5	2	2	MSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella.v.bognar@uni-miskolc.hu		Notelling of the elements of mechanical systems and their relation system, recognition of the internal laws of the systems, mathematical description. Setting to involve the basic elements of modeling, the general conditions of application, taking into account its limitations.
spring	GEIAL529-Ma	Introduction into Datamining	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Foundation of the state management and bala analysis. Statistical tests and databases, Basic statistical tools for data analysis; Statistical tests and regression; introduction into data mining; Overview of the basic clustering and dassification methods, introduction in neural networks, Learing how to use Excel, rapidMiner and Python for basic data analysis tasks,
spring	GEALT177-Ma	Design of Material Handling Systems and Warehouses	5	2	2	MSc	Dr. Tamás Bányai	tamas.banyai@uni-miskolc.hu	Logistics	The course introduces students to the design methods of material handling and warehousing systems, enabling them to solve practical design problems. During the course, students will be introduced to the possibilities of
spring	GEALT178-Ma	Simulation Examination of Logistics Systems	5	2	2	MSc	Prof. Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	simulation modeling, evaluation and efficiency improvement of typical logistics systems. Using the knowledge gained, students will be able to model, evaluate, develop and design logistics processes with a simulation framework.
spring	GEALT179-Ma	Quality Management of Logistics Systems	5	2	2	MSc	Dr. Bányainé Prof. Dr. Tóth Ágota	agota.banyaine@uni-miskolc.hu	Logistics	During the course, students will be introduced to the relationship between quality assurance and logistics, as well as the application of the basic methods and techniques used in quality assurance in logistics.
autumn	GEALT173G-Ma	Industry 4.0 and Logistics	5	2	2	MSc	Dr. Bányainé Prof. Dr. Tóth Ágota	agota.banyaine@uni-miskolc.hu	Logistics	The Fourth Industrial Revolution will fundamentally change the operation of production and service systems, so within the course we aim to introduce students to the benefits of the Fourth Industrial Revolution as an Industry 4.0 system. Students will gain an overview of Industry 4.0 technologies, with a particular focus on cloud-based systems, cyber-physical systems, and smart factories. We focus on the impact of Industry 4.0 solutions in logistics. Through case studies, students will become familiar with logistics solutions operating in an Industry 4.0 economic environment. Our goal is to provide students with the theoretical knowledge required for Industry 4.0 applications.
spring	GEALT196-Ma	Mechatronics in Logistics	5	2	2	MSc	Dr. Ákos Cservenák	akos.cservenak@uni-miskolc.hu	Logistics	Nowadays, in logistics, material handling cannot be carried out without the use of various mechatronic equipment and tools. The aim of the course is to present the concept and subject areas of mechatronics to students of logistics engineering. Mechatronics covers three main disciplines, and the subject presents them as well. Another element of the subject is the fit of mechatronics into logistics.
autumn	GEALT182-Ma	Standard Solutions in Logistics Networks	5	2	2	MSc	Prof. Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	During the course, students will be introduced to the standard processes of supply chain identification, data collection, and data sharing. The process activities and their measurement techniques, that mainly occur in logistics, play a major role in the course. The course also aims to familiarize students with the practical uses of sector-independent standards and solutions developed to make business communication and supply chain processes more efficient.
spring	GEIAL550-Ma	Industry 4.0 Information Systems	5	2	2	MSc	Prof. Dr. László Kovács	laszło.kovacs@uni-miskolc.hu	Information Science	Overview of the role of information systems in 4.0 architecture. Different ppes of applications (DLTP OLP). Foundation of data warehouses. MD models and operations, application areas. Web-based applications: architecture and application areas. Application of intelligent sensors, data analysis. Cloud and Big Data architectures. Application of blockchain technologies. Smart applications. During the course, students will be introduced to the structure of the road
spring	GEALT197-Ma	Modeling and Simulation of Transport Systems	4	2	2	MSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	transport system, the basics of road traffic and public transport modeling, the use of modern traffic simulation and traffic planning software, and the application possibilities of the latter.
autumn	GEVAU519B-A	Embedded Systems	5	2	2	BSc	Dr. József Vásárhelyi	vajo@uni-miskolc.hu	Automation and Communication tec	Embedded Systems overview Example Embedded Systems and their Requirements Processor technologies and 1C technologies Design technologies Processors (custom single purpose general purpose and standard single purpose) Memory Interfacing Soft processors (Picolaize MicroBiaze PowerPC ARM) erpitherals Embedded all programmable SOC Design Flow. Embedded Development Kil Software debugging Event handlers times System on a Chip Architecture and Code Structure A code walk through Board evaluation in software Board evaluation in hardware.
spring	GEVAU518B-A	Programmable Logic	5	2	2	BSc	Dr. József Vásárhelyi	vajo@uni-miskolc.hu	Automation and Communication tee	Jugua urutut technologies and programmable logic technologies Characteristics of Programmable Logic devices (PLD), Application Specific Integrated Circuits (ASIC) ASIC versus PLD, Simple programmable Logic Devices (SPLD) Complex Programmable Logic Devices (CPLD) Field Programmable Gate Arrays (FPGA) architectures, Application of FPGA, System on Chip architectures, Hardware Description Languages. VHDL Verlog and High level synthesis. Open CL basics.

autumn	GEAHT013-Ba	Renewable Energy	4	2	1	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	Renewable energy basics, introduction. Sub-Jypes of water furbines, small sample measurement. Sub-Jypes of hydroshchic power plants. Energy diagram, plepine blocking, Heat pump, Geothermal energy geotherman energy. Wind furbines operation, determining their performance. The theory of water ratiation, about A black body, gray body radiation. The solar collector construction, application. Biomass.
autumn	GEVGT003B-a	Unit Operation I.	4	2	2	BSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	Definitions and principles dimension analysis hydrostatics hydro dynamics flow of compressible and incompressible fluids transporting of fluids pumps pipes avies bick flow diagrams process flow diagrams and P and D hidrodynamical and mechanical unit operation heat transfer and its equipments mass transfer equipments of the mass transfer
spring	GEVGTLCA-a	Life Cycle Assessment (LCA)	4	2	2	BSc; MSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	The role of life cycle assessment in environmental management. Phases of LCA. Writing input-output scales for technological processes. Life Cycle inventory IC(1) analysis. Life Cycle impact Assessment (LCA) methods. Design of innovative environmental technologies with GaB software. availation of technological processes. Product If cycle analysis. Life Cycle Thinking (LCT). Life Cycle Management (LCM), Holdistic decision making. Environmental LCA (E-LCA). Life Cycle Costing (LCC), and Life Cycle Sustainability Assessment (LCSA).
both	GEIAK153B-a	Scheduling Models and Algorithms	4	2	2	BSc	Dr. Kulcsár Gyula	gyula.kulcsar@uni-miskolc.hu	Information Science	Introduction to scheduling. Classification of scheduling problems. Resource environments. Job characteristics and constraints. Objective functions. Single machine scheduling. Parallel machine scheduling. Flow shop, job shop, open shop, and general shop scheduling. Disjourcive graph model. Scheduling resources with limited availability in time. The role of simulation. Mult-objective optimization. Search matchuristics: Resource-constrained project scheduling. Predictive, reactive, and proactive scheduling. Industrial scheduling case studies.
spring	GEIAL015B-A	Programming of Graphics	5	2	2	BSc	Dr. Péter Mileff	peter.mileff@uni-miskolc.hu	Information Science	The aim of the course is to understand methods algorithms behind real computer graphics applied in modern computer graphics. Todays most widely used 2D and 3D technologies (e.g. structure of the pipeline bounding box collision detection (pithning and shadows ect) are presented. This integrated knowledge helps students to create graphics oriented applications and computer ames.
both	GEIAK132B-a	Introduction to Neural Network	5	3	1	BSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	Work on artificial neural networks commonly referred to as neural networks has been motivated right from its inception by the recognition that the brain computes in entirely different way from the conventional digital computer. The fundamentals of Artificial Neural Network (ANN) covers mainly the structural levels of organization in the brain models of a neuron neural networks viewed as directed graphs feedback network architectures knowledge representation visualizing process in neural networks artificial intelligence and neural networks and historical problems. Furthermore learning process and perceptron as basic conciderations are the essential parts at study of neural network.
autumn	GEIAL506M-a	Protection of Information Systems	4	2	2	MSc	Gyðrgy Wágner	gyorgy.wagner@uni-miskolc.hu	Information Science	Protection from physical damage, unauthorized access. Data loss; intruders; attack against security systems; advice from DEC; source of danger, riska, threats, costs; Confidentially, integrity, availability, functionality, concept of protection, expand concept of protection; Need to Krow'; protection domain; Access Matrix and permissions; implementation of Access Matrix. Global Table, Access Control List. Capability List; Formal methods; Ball LaPadata, Bab, MAC, DAC; Finevals; components of finewals; Packet filtering finewait; Circuit nev) gain two; Application level gain way; Dateb Packet filtering firewait; Circuit Review; Capability, Circuit Review; Dateb Packet filtering firewait; Circuit Nev); Circuit Circuit, Nev; Stateb Packet filtering firewait; Circuit Circuit, CISEC; Common Criteria; Attack in Herdost; DoS; Steganorgany, cryphography; Krechff, symmetric and asymmetric cryptography; problems of key share; solutions; Diffie-Helinan-Merkle, public key infrastructure; PGP. NTFS=FFS; digital signature and the Hash; the certificates; virus search methods.
both	GEGET065-Ba	Environmentally-friendly design	4	2	2	BSc	Dr. Ágnes Takács	agnes.takacs@uni-miskolc.hu	Machine and Product Design	Introduction to the DfE. Rules, strategies of the design for the environment. Learning the elements of environmentally frinedly design.
both	GEGET702-Ba	CAD systems	3	1	2	BSc	Dr. Bihari Zoltán	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	Demonstrate the basic functionality of the Solid Edge 3D parametric design system while modeling different machine components. Simple shapes in the Part module. Creating a part drawing in the Draft module. Making assembles in the Assembly module. Creating an exploided www. Design of different fasteners, design of toothed machine elements, design of bearing arrangements.
both	GEGET015-Ba	Lubrication and Sealing	4	2	2	BSc	Géza Németh	geza.nemeth@uni-miskolc.hu	Machine and Product Design	Lubrication, lubrication conditions, lubricants, lubricant characteristics, lubricant tests, lubrication of machine parts. Lubricators. Static and dynamic seals, sealing problems. Analysis of complex lubrication and sealing systems.
both	GESGT001B-a	CAD design and Simulation of Machine To	4	2	2	BSc	Dr. György Hegedűs, Kiss Dániel	hegedus.gyorgy@uni-miskolc.hu, kiss.daniel	Machine Tools and Mechatronics	Introduction to elements of machine tools (bearings spindles slides etc.). CAD modelling techniques of above mentioned elements. FEM modelling of complex assemblies (drives spindles lathes), FEM analysis of assembly modells including vibrational structural and thermal influences.
both	GEMRB004B-a	Mechatronic Systems	4	2	2	BSc	Dr. László Rónai, József Lénárt	laszlo.ronai@uni-miskolc.hu, lenart.jozsef@	Machine Tools and Mechatronics	The structures and properties of mechatronics systems. Discussing the BIBO stability of LTI systems. Creating the state-space representation of systems. Laplace transformation to produce the transfer function of a system. Designing steps of the pole placement method. Introduction to PLC programming with the use of Revort ottXP PLC, Revort bitXP software. Programming of simple, practical tasks to learn the Ladder diagram. Sequential Function Chart, Function Block diagram and Continuous Function Chart programming languages.
both	GEGTT460-Ba	Production systems	4	2	1	BSc	Dr. György Kovács	gyorgy.kovacs@uni-miskolc.hu	Manufacturing Science	Global production tendencies. Changes in production philosophies and production processes. Characteristics and comparison of Push and Pull production concesses. Introduction of the Pull based production philosophies (JIT, Kanhan, Lean). Characteristics and main activities of production systems and processes. General types and characteristics of intermittent and continuous production processes. groject production, job-shop production, hath production, mass production and process production. Flexible manufacturing systems. Basic principles and main phases of production processes' design. Types and applications of industital robots. Essence of Computer Integrated Manufacturing (CIM). Case studies.
both	GEGTT 462-Ba	Efficiency improvement of manufacturing	3	2	1	BSc	Dr. György Kovács	gyorgy, kovacs@uni-miskolc.hu	Manufacturing Science	Aims, main activities and characteristics of production systems and processes. General types and characteristics of intermittent and continuous production processes: project production, job-shop voluction, hatch production, masses production and process production. Performance measurement of production processes, most often usued Key Performance Indicators (KPI). Main aims of the efficiency improvement of manufacturing processes. Analyzation methods of manufacturing processes. Efficiency improvement methods for processes. e.g. Lean, Facility Layout Design, Simulation, MTM (Methods-Time Measurement) methods. Case studies.
autumn	GEMTT080M-a	Polymer Processing	4	2	1	MSc	Dr. Péter Kovács	peter.kovacs@uni-miskolc.hu	Materials Science and Technology	Having mastered the basics of polyme processing, students are prepared to master computer-aided design of plastic forming tools, and can become involved in the work of plastic processing industry. They are discussing: The material properties of plastics, their special formability properties. A detailed discussion of the technological evanties of plastics forming, taking into account the specific characteristics of plastics, affecting the basic designs of machine and tool solutions. The technology of injection molding will be analyzed in detail.
autumn	GEMTT302M-a	Fusion Welding	4	2	1	MSc	Raghawendra P. S. Sisodia	raghawendra.sisodia@uni-miskolc.hu	Materials Science and Technology	Fundamentals of joining. Theoretical bases of welding. Energy sources. Heat flow. Fluid flow phenomena. Transfer of heat and mass. Fundamentals of weld solidification. Solid-state transformations. Short overview of principal fusion welding processes: GTAW, SMAW, GMAW, SAW, FCAW and PAW. Advanced usion welding processes: electron beam and laser beam welding. Application. Process planning.
autumn	GEMAK001B-a	Operation Research	2	4	0	BSc	Dr. Attila Körei	attila.korei@uni-miskolc.hu	Mathematics	Introduction to optimisation models. Graphical solution to simple LP problems. Simplex method. Duality and sensitivity analysis. Solving the transportation problem by the distribution method. Assignment problem and its solution by the Hungarian method. Special integer programming problems.
both	GEMAK137-Ba	Time series analysis and its applications	5	2	2	BSc	Dr. József Túri	jozsef.turi@uni-miskolc.hu	Mathematics	Different time series will be presented during the course. We show what time series we can use to model different phenomena. During the course, we solve the modeling of many technical phenomena with the help of time series.
spring	GEMAN003B-a	Complex functions	3	2	0	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	Complex algebra Complex function: Elementary complex functions Riemann surfaces, Limit and continuity of complex integration and Cauchys theorem. Cauchys integral formula, Laurents series. The residue theorem. The unitational Laplace-transforms and its properties. Evaluations of inverse transforms. Applications.
autumn	GEMAN101BA	Mathematics for Economic Analysis I.	4	2	2	BSc	Dr. Péter Varga	peter.varga@uni-miskolc.hu	Mathematics	Functions derivatives and limits, the definite integral. Techniques of integration applications of integration. Introduction to single variable probability. Random variables. Distributions

both	GEAGT002B-A	Descriptive Geometry	3	3	0	BSc	Óváriné Dr. habil. Balajti Zsuzsanna	zsuzsanna.ovarine.balajti@uni-miskolc.hu	Mathematics	Monge's representation is the basis of true-to-scale engineering communication. Representation The introduction of Monge's representation and reconstruction of the base elements of the space. The mutual position, Ning, parallelism and intersection of the base elements of the space. The mutual position, Ning, parallelism and intersection of the base elements of the space. The mutual position, Ning, parallelism and intersection of the base elements of the space. The standard the representation of an object onto newly inforduced projection bases parallelism and intersection of the base elements of the space. The standard Rotating a plane this a position parallel to the plane of projection to selve performed. The standard standard standard intersections with a straight line and a plane. Representation of a cricle and a disc, a sphere, a cyninder of revulution, a core of revolution, and the intersection of all these with a straight line and a plane. Affine and central collineation relations between coris esections. Intersections between the sphere, the cone and the cylinder. Helices and helicoid surfaces.
both	GEAGT106B-a	Geometric design	4	2	2	BSc	Óváriné Dr. habil. Balajti Zsuzsanna	zsuzsanna.ovarine.balajti@uni-miskolc.hu	Mathematics	The aim of this course is to introduce the principles of the clear mapping of the 3 dimension into the 2 dimension and the reconstruction of objects from the images through real engineering examples to show students how to apply the descriptive geometry in engineering design. The Monge representation of the point, line, plane and their incluences (intersections). Parallelism and perpendicularity. Special views and rotation to particular position for metric problems. Intersection of pyramid and prism. Affin connection between the circle and its eliges projection. Representation of the sphres surface normalis and tangent planes. Intersection curves between the cylinders and conse. Helix and its evolvent surface with the spiral section in the perpendicular plane to the axis. Centroids, axoids.
autumn	GEMET014B-a	Finite Element Method	4	2	2	BSc	Dr. Bəlázs Tóth	balazs.toth@uni-miskolc.hu	Mechanics	Principle of the stationarity of the total potential energy. Principle of the local approximation. Treatment of 2D and 3D elastic problems with isoparametric elements (shape functions stiffness matrix load vectors). The construction and characteristics of the system of linear equations. The problems of modelling: substructure technique the treatment of prescribed displacements excentric links oblique support bilateral contact . fitting of machine elements- and elastic foundation. Isoparametric thick plate element. Error analysis . Theory of plasticity. Miess and Treace. St Venants yielding criteria postulates of Drucker and Prager Prantif-Reuss equations and Levy-Miesses theory. The formulation of the elastic-plastic constitutive matrix. Incremental formulation of the finite element equations using the principle of the virtual displacements. The theory of plastic limit loadings (static and kinematic). Elastic plastic plates.
autumn	GEMET206M-a	Continuum Mechanics	3	3	0	MSc	Prof. Dr. György Szeidi	gyorgy.szeidl@uni-miskolc.hu	Mechanics	A short introduction to tensors. Kinematics of continua. State of velocity. Nonlinear theory of deformations (deformation gradients, strain tensors). State of velocity (Velocity gradient, rade of deformation tensor, vorticity tensor, vorticity vector). Variation of tensor fields with time (material time derivatives, objective time derivatives). Linear theory of deformations. Fundamental laxes of continuum mechanics in spatial and material descriptions. Stress tensors (Cauchy, Polia Kinchelt), and I. J. Equation of continuity. Equations of motion. Moment of momentum. The fundamental principles of themodynamics. Special vector fields in continuum mechanics (various admetsible tensor fields). Principles of virtual gover, Principles of principles of tensor (Paudamenta) and the stress tensors (autors admetsible tensor fields). Principles of principles of tendemental ad inters effective). The dual system of elasticity. Equations of compatibility. Castiguinary principle. Variational principles (the whole system of these principles). Book recommended: Gydryg Szeait: Continuum mechanics. Lecture notes. 2016. Provided free to the students in pdf format.
both	GEVEE533B-a	Energy production and storage systems	5	2	2	BSc	Dr. Radányi László Ádám	laszlo.adam.radanyi@uni-miskolc.hu	Physics and Electronic Engineering	This course is an introduction of the energy storage possibilities. This is included gas power plant systems too and the method and calculations of natural and biogas combustion and gas power plant systems, powered by different gases. We will investigate the production of the energy by photovoltair method.
both	GEFIT005M-a	Modern physics	3	2	0	MSc	Dr. Endre Kovács	endre.kovacs@uni-miskolc.hu	Physics and Electronic Engineering	Experimental basis of quantum physics, Blackbody radiation, photoelectric effect. Bohr's model. Lab demonstration. Wave particle duality of particles. Wave functions and operators. The Schrödinger equation. The Heisenberg uncertainty principle. Quantum tunnelling, Quantum statistics. Structure of atoms and molecules. Nuclear physics. radioactive decay. Nuclear energy production. Fundamentals of solid state physics: Band theory of solids. Semiconductors, diodes, transistors. Superconductivity. Graphene and siliccee.