semester	Neptun code	Course name	credit no.	no.of classes/w eek - theorv	no.of classes/ week - practice	Level	Lecturer	e-mail	Institute	Short description
autumn	GEAGT101-B2a	Descriptive Geometry	4	2	2	BSc	Óváriné Dr. Zsuzsanna Balajti	zsuzsanna.ovarine.balajti@uni-miskolc.hu	Mathematics	Representation of Monge: mapping of space elements, incidence, connection, intersection. Intro-ducing new image planes. Orthogonal space elements, revolution of planes, interpretation. Representation, intersection with lines and planes, interpretation. Representation of circles. Mapping of spheres, conce and cylinders of revolution, their intersection with lines and planes, interpretation. The cylindrical helix, helicoid.
autumn	GEGET001-B2a	Fundamentals of Machine Elements	4	2	2	BSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella.v.bognar@uni-miskolc.hu	Machine and Product Design	Mechanical work and performance in motion on straight line. Sliding friction and rolling re-sistance. Weightfling work, potertoinal emergy. The law of conservation of energy in a closed mechanical system. The force of acceleration and linetia. Characteristics of rotating motion. Torcup work and performance. Efficiency, machine losses, energy figures. Periodic motion of machines. Bewey lear, rank gear. Determination of motion characteristics. Main types of gears. The flywheel, the degree of inequality. Drive systems. Friction drive. Flowible drive. Gear drive. Brakes, single-jaw and double-jaw brakes. Band brakes. Springs. The spring characteristics. Spring con-stant of a spring connected in series and in paralel.
autumn	GEIAK201-B2a	Computer Studies	4	2	2	BSc	Dr. Károly Nehéz	karoly.nehez@uni-miskolc.hu	Information Science	Familiarization with the structure and operation of the Computers, building user competencies for the advanced use of MS Office applications, providing knowledge on the topic of viruses, devel-oping intermediate C language
autumn	GEMAN114-B2a	Analysis I.	5	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	programming skills. Set theory, properties of real functions, sequences. Limit value, continuity of univariate real functions, Notable curves, Differential calculus and its applications, New value theorems of differential calculus (Rolle, Lagrange, Cauchy), L'Hospital rules, Function analysis. The indefinite integral, integration rules. Rational fractional functions, decomposition of rational fractional functions, integration for partial fractions, integration of rational fractional functions, differential calculus, cos(x), sin(x).
autumn	GEMAN203-B2a	Linear Algebra	5	2	2	BSc	Dr. Laura Veres	laura.veres@uni-miskolc.hu	Mathematics	Vectors in 2D and 3D, vector algebra, norm, dot product, projection, cross product, lines and planes. Vector Spaces, subspaces, linear independence, bases, dimension. Privot table techniques. Matrices and matrix operations, rules of matrix arithmetic, different methods of inding the inverse, determinant. Introduction to systems of linear equations, Homogeneous and inho-mogeneous systems, Gaussian elimination, pixot table technique, complex numbers, general form, polar form, operations with complex numbers, polynomials, operations, Homer scheme.
autumn	GEMTT001-B2a	Structural Materials I.	5	2	2	BSc	Dr. Marcell Gáspár	marcell.gaspar@uni-miskolc.hu	Materials Science and Technology	Classification of materials used in engineering practice and their production technologies. Structural overview of material properties and behaviour. Test methods for mochanical properties (Unixial tension test and Hardening test). Basic crystallography - Ideal, realistic crystal Iat-lice. Laws of crystalization of non-ferrous matals. Theoretical basis of properties of single-phase metallic materials. Alloys, enullibrium diagrams of two-constituent System. Henry-Chargy Ivini diagram of foro- action alloy system. Analysis of crystalization of horpary livin diagram of index-constituent System. Henry-Chargy Ivini diagram of foro- action alloy. Bending, compression, impact tests. Mechanical properties and fabric struc-ture of non- ality steels.
spring	GEAHT211-B2a	Engineering Thermodynamics	3	2	1	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	Basic concepts - Thermodynamic systems classification, state and state variables. Intense and extensive, specific and molar state variables. Equation of state. Theorem 10 Thermodynamics - Internal energy, work of volume change, work of friction and total work. Heat, Principal Theorem 1 for volume staticnary closed systems, Principal Theorem 1 for volume disconsidered systems, Principal Theorem 1 for volume disconsidered systems, Principal Theorem 1 for volume disconsidered systems, Principal Theorem 1 for volume difficiency. Exergetic efficiency, Thermodynamics of pure media - The ideal efficiency, Exergetic efficiency, Thermodynamics of pure media - The ideal efficiency, Exergetic efficiency, Thermodynamics of pure media - The ideal efficiency class refrigeration cycles. Energy conversion cycles - Combined cycle gas/state and, cogeneration. Heat transfer fundamentals - Heat conduction in a bold wall, Newtorks in wird fund transfer.
spring	GEFIT001-B2a	General Physics I.	4	2	2	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Basic concepts of kinematics. Newton's laws. Work and power. Conservative fields, the law of me-chanical energy. The law of momentum. Torque. The law of angular momentum. Central force fields. Damped linear free oscillations. Forced oscillations. The law of momentum and angular momentum for a system of mass points. Euler describtion of continuous media. Continuity equation. Bernoulli equation. Thermodynamics of gases, solids, and liquids. Processes of ideal gases. First law of the-modynamics. Entroty. Second law of thermodynamics. Cyclic processes.
spring	GEGET002-B2a	Mechanical Drawing	4	2	2	BSc	Dr. Zoltán Bihari	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	Technical drawing is the international language of communication between technical profes-sionals. The technical drawing is a system of nules, the elements of which are fixed by himma-toinal standards. In the framework of the subject, the nules applicable to the field of mechanical engineering will be presented. In addition to the general representation nucles, the drawing rules of the most important machine elements are also explained, as well as the special solutions required for machine design.
spring	GEIAK210-B2a	Information Technology for Engineers	4	2	2	BSc	Kunné Dr. Judit Tamás	judit.tamas@uni-miskolc.hu	Information Science	Introduction to graphics programming in C language. Deep knowledge of Excel, up to Visual Basic programming. Giving an overview of computer networks, databases. Introduction to the basics of using and programming MatLab: Introduction to the possibilities of Wolfram Alpha and the se-mantic
spring	GEMAN124-B2a	Analysis II.	5	2	2	BSc	Dr. Krisztlán Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	web. The definite integral and its applications, improper integral. Bivariate functions. Double integral and its applications. Triple integral and its applications. First-order ordinary differential equa-thores, second-order differential equations with constant coefficients. Vector-scalar functions. Scalar-vector functions. Vector-vector functions.
spring	GEMET001-B2a	Statics	5	2	2	BSc	Dr. Baláza Tóth	balazs.toth@uni-miskolc.hu	Mechanics	Introduction to engineering mechanics. Fundamental concepts and models in mechanics. Equilabrium of a particle. Moment of a force about a point and an sais. Three-dimensional force systems acting on a rigid body. Resultants of a force and couple system. Equivalent and equilibrati-ed systems of forces. The main threemoti statils. The counter-model of dry finction. Supports for the main threemotion of statils. The counter-model of dry finction. Supports for the main threemotion of statils. The counter of mass and the centrol loading and its resultant. Center of gravity, center of mass and the centrol the method of sections. Internal forces and moments in structural members. Sairs and beams: Equations of equilibrium of stremating forces and moments. Axial force, shear force and bending moment diagrams. Cables.
spring	GEMTT002-B2a	Structural Materials II.	5	2	2	BSc	Dr. Marcell Gáspár	marcell.gaspar@uni-miskolc.hu	Materials Science and Technology	The aim of the course is to develop students' knowledge of structural materials. The object of the course is to familiants exulates with the typical properties, potential damage, and applications of the most important groups of materials. During the semester, the following topics are covered in detail: the effect of temperature on the structure and properties of steels. Non- Classification and designation of steels. Structural steels. Tool steels. Non- ferrous and light alogs. Typical aceds on and damage to metailic materials. Defect detection tests. Technical ceramics. Engineering poly-mers. Composite, coms.
autumn	GEAHT321-B2a	Engineering Fluid Mechanics	3	2	1	BSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	Properties of liquids and gases: compressible/incompressible fluids. Ideal/reaf fluids, surface tension, capillarity, Hydrostatic law, pressure variation in fluids. Communicating vessels, mai-nometers, barometer. Pressure variations in the atmosphere. Hydrostatic thrust on submerged plane and curved strafes. Kinematics of Huids, Lagrangian and Eulerian specification of the flow field. Streamline, streak line, path line, stream tube. continuity equation for steady flow. De-noullis equation: Venturi me-ter, orifice flow diagram, applications of the Bernoulli's equation: Venturi me-ter, orifice flow meter. Pitot-static lubo. Discharge from open tank and pressurized vessel, time of discharge. Energy equation. Minor and major losses in piping systems. Moody diagram. Flow in channels. Hydraulic diameter, radius. Buoyanoy force and dirag in flow.
autumn	GEFIT002-B2a	General Physics II.	3	2	1	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Electric charge, field, potential. Gauss' law. Conductors in a static electric field. The flow of electric charges. Voltage sources. Kirchhoff's laws. Joule's law. The concept of magnetic induction. Magnetic field strength. Dia., para-, and ferromagnetism. The magnetic Gauss law. Ampere's law. BioL-Savart law. Neurannis fiels wan G Faraday Saw. Displacement current. Ampere- Maxwell law. The system of Maxwell's equations. EM waves in homogeneous lostorpic insultors.
autumn	GEGET003-B2a	Machine Elements I.	4	2	2	BSc	Dr. Ferenc Sarka	ferenc.sarka@uni-miskolc.hu	Machine and Product Design	The aim of the course is to familiarize students with basic machine components. Get to know their operation and properties. Know their sizing, checking or selection. With the help of mid-year tasks, mastering the basic level of planning and construction. Basic principles of sizing ma-chine components. Connection methods, declarable and non-detachable joints. Dimensioning of mover and tie screws. Couplings. Springs. Dimensioning of shafts. Basics of tholoogy. Friction. Wear lubrication. Dimensioning and structural designs of sliding bearings. Rolling bearings and their selection. Mechanical drives, their grouping, their most important characteristics. Floxible drives. Caskets.
autumn	GEGTT100-B2a	Manufacturing Technology	5	2	2	BSc	Dr. Csaba Felhő	csaba.felho@uni-miskolc.hu	Production Engineering	Main scientific fields, basic terms structure and systems approach characteristics of manufactur-ing technology. Manufacturing det chenological process. Cutting by tools with define edge geom-etyl. Wain characteristics of chip removal. Basic elements, workpiece, tool, movements cutting parameters. Role of bases and dimension charins in manufacturing technology. Edge geometry materials of cutting tools. Wear and tool life of cutting tools. Main cutting methods: turning, shaping, drilling, boring, face- nds taba milling. The machning methods, grinding superfinish-ing, honing, lapping, polishing. Machine industrial measurements and their tools. Mechanical, optical, electrical and laser measuring devices used in length and angle measurements.

autumn	GEMAK631-B2a	Numerical Methods	5	2	2	BSc	Dr. Attila Korei	attila.korei@uni-miskolc.hu	Mathematics	Basic elements of model building. Types of errors, classical error analysis. Error propagation. Vector and matrix norms. Linear algebraic equations. Gauss elimination. S. Uad Cholesky decomposition. Matrix Inversion. 4. Jacobi and Stelle Iteration. S. Eigenvalues and eigenvectors, The power method. Roto of equations: bisection method, fixed-point Iteration, Newton method. Roto and equations: bisection method, fixed-point Iteration, Newton method. Roto and equations: bisection method, fixed-point Iteration, Newton method. Roto and equations: bisection method, fixed-point Iteration, Newton method. Roto and the regression. I-12. Runge-Kuta methods for solving ordinary differential equations. 11-12. Runge-Kuta methods for solving ordinary differential equations. 11-12. Runge-Kuta methods for solving ordinary differential equations. 11-14. Using Mattab (Octave) in solving numerical problems.
autumn	GEMET002-B2a	Mechanics of Materials	5	2	2	BSc	Dr. Sándor Szirbik	sandor.szirbik@uni-miskolc.hu	Mechanics	Basic concepts of mechanics of materials. Introduction to matrix and tensor algebra. Deformable bodies. Deformation gradient, displacement gradient. Strain tensor and retailon tensor. Stress tensor. The tension-compression test. Hooks's law, Poisso'ns railo. Strain energy. Etsic defor-mation of an axialiy loaded member. Torsion of circular shafts. Bendra of straight members. Sheer in straight members. Moments of inertial for an area. Combined loading, design of beams and shafts. General equations of elasticity: equilibrium equations, kinematic equations, general-zed Hooke's law. Moh's circle. Principal stresses and strains. The concept of equivalent strats. The circular of failure. Deflection of beams and shafts. Curved beams. Statically indeterminate beams and shafts. Buckling and stability of columns.
autumn	GEMTT003-B2a	Material Technologies	5	2	3	BSc	Dr. Åkos Meilinger	akos.mellinger@uni-miskolc.hu	Materials Science and Technology	Definition of heat treatment, groups of heat treating technologies. Microstructural changes during heat treatment. Heat treating processes for hardness and strength increase. Hardenability, Machinability improving by heat treatment. Heat treatment processes for toughness increase and the treatment. Heat treatments are provided to the treating technologies. Heat treatments provided to the treating Welding and related technologies. Definition and classification of welding. Technologies. Heat treatments provided to the treating. Welding and treated technologies. Definition and classification of welding, seeding and submerged are welding principles, characteristics, technologies, welding materials, equipments and applications. Metal active welding materials, equipments and applications. Metal active/inert gas and tingsten inert gas welding processes: principles, characteristics, technologies, welding materials, equipments and applications. Pressure welding materials cience background of forming. Cutting technologies technologies are been and the transmitter of technological parameters for cutting. Cutting tools. Deen graming technological parameters for cutting. Cutting tools. The technologies and characteristics. Bending tools. Deep draming technologies and characteristics design. Characteristics of forsistions coloris. The technological design. Characteristics of the serial drawing tools. The technological design. Characteristi
spring	GEAGT121-B2a	Fundamentals of CAD	3	1	2	BSc	Sándor Lajos	sandor.lajos@uni-miskolc.hu	Mathematics	Basic concepts related to CAD systems. Structure, hardware and software components, basic functions of CAD systems. Computer aided drawing systems. Geometric modeling systems. Wirdrams, surface and solid models. Representations of models, visibility algorithms, lighting, shading, photorealistic rendering. Parametric and direct notelling systems. Rapid prototrying methods. Learning basic solid model creation methods using a specific parametric design system. (Prore Parametric). Creating parts, assembles, mechanisms, animations and photorealistic imag-es, Create technical drawings of parts and assemblies.
spring	GEAHT431-82a	Fluid Machinery	5	2	2	BSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	Categorization based on the direction of energy conversion: fans, pumps and turbines. Charac-teristic curve of pipes. Basic operating characteristics of pumps and turbines. Pump in a piping system. Operating characteristics of turbomachines. Principie of operation, characteristics, curves and regulation of turbourpus. Principie of operation, characteristics, curves and regulation of turbourpus. Head, main properties and characteristics geour of myube and reaction type water turbines. Hydrodynamic torque converter and hydrostatic transmission. Operation of turbocompressors. Main properties and fields of application of gas and steam turbines. Categorization of volumetric machines. Operating characteristics of reciprocating pumps, fluid delivery as a function of time, effect of an vessel. Reciprocating compressor. Radial and axial piston pumps. Types of rotating piston pumps, fluid delivery.
spring	GEGET004-B2a	Machine Elements II.	5	2	2	BSc	Dr. Károly Jálics	karoly.jalics@uni-miskolc.hu	Machine and Product Design	Expansion and application of the knowledge acquired from the Mechanical Drawing, and Ma-chine Elements I subject. Familiarization and calculation of toothed machine elements (spur, helical, bevel, internal gears, worm drives), manufacturing of gears. Crank mechanisms, flexible drives, Design issues of
spring	GEGTT102-B2a	Industrial Machining	4	2	2	BSc	Dr. Csaba Felhő	csaba,felho@uni-miskolc.hu	Production Engineering	transmissions. Machining procedures of flat and cylindrical surfaces, their kinematics, machining procedures of flat and cylindrical surfaces, their kinematics, torque-transmitting surfaces. Procedures for the manufacturing of external and internal threads. Machining of different types of gear parts, e.g., spur gear factures and surfaces of the manufactures of gears, inter the gears factor of the surface of t
spring	GEMET003-B2a	Dynamics	5	2	2	BSc	Dr. Edgár Bertóti	edgar.bertoti@uni-miskolc.hu	Mechanics	Kinematics of a particle. Kinematics of a rigid body: translation and rotation, relations for veloci-less and accelerations. Relative-motion analysis of particles and right bodies. Kinetics of a part-ice. Networh's laws of motion. Principle of impulse and momentum. Power and work of a force. Principle of work and energy: Conservative forces and optential energy. Equation of motion for a system of particles. Kinetics of a rigid body. Linear and angular momentum. Moments of intentia: Tensor of intentia. Newton-Euler equations of motion for a rigid body. Kinetic energy of a rigid body. Power and work of system of forces acting on a rigid body. Dialembetry principle. Constrained motions. Planar kinetics of a system of frigd bodies. One-degree-of-freedom whorlam of a rigid body. Equation of motion, circular and natural frequency. Undamped, damped and forced vibrations. Resonance.
spring	GESGT001-B2a	Machine Tools	4	2	2	BSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Definition of machine tools. The development history of machine tools and their impact on in-dustrial culture and economic progress. Grouping the division of machine tools. The structural design and main building units of machine tools. Characteristics of the design of main and sec-endary drives. Description of lather-type machine tools. Description of maining machines, planers, chisels, drilling machines, borizon type machines. Description of garantee machines, borizon type machines. Description of advance and thread processing machines. Drilling and milling centers. Description of turning centers. Description of plastic forming machines. Description of turning centers. Description of plastic forming machines. Description of twing henergy density radial machine tools and spark cultung machines. Description of rapid prototype technologies and machines. Description of wing systems used on machine tools. Theory of machine industry measurements applicable to machine tools.
spring	GEVGT001-B2a	Chemical Technologies and Equipment	4	2	2	BSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical Mi	World history of the chemical industry, Hungarian and regional conditions. Basic operational concepts, physical quantities and equations describing units in unit operation, classifying of op-erations. Sodimentation, filtration, dust and drop separation and their equipment. Centrifuga-lion, mixing, size reduction and their equipment. Theoretical foundations of heat transfer, heat exchange. Heat transfer calculation and equipment. Theoretical foundations of mass transfer, distillation. Rectification, batch distillation, structural designs. Basic concepts of pressure vessel design, sizing foundations. Risks, hazardous materials. The overpressure protection, designation of designing guidelines, subsystems. Overpressure protection devices. Safety valves and rupture discs and panels.
autumn	GEIAK100-B2a	Technical Communication	5	2	2	BSc	Dr. Károly Nehéz	karoly.nehez@uni-miskolc.hu	Information Science	Students will learn about basics of logic, numerical systems, basics systems theory, description of information, coding, encryption and semantics, model modelling and fundamentals of computer aided modelling.
autumn	GEIAL301-B2a	Computer Architectures	5	2	2	BSc	Dr. Szilveszter Kovács	szilveszter kovacs@uni-miskolc.hu	Information Science	Basic computational models. Computer architecture concept. Neumann architecture: processor, memory, I/O devices, system bus. The general microprocessor architecture. Structure of processors, instruction set architecture. Processor performance measures and enhancement. CISC and RISC concept. Internal parallelization. State-d-the-art processors. The storage, semiconductor storage, their classification, operation and performance enhancement. Trends in the development of semiconductor storage devices. Buses, their classification and performance enhancement. Bus standards. I/O devices, their classification and the role of I/O control circuits. The construction of the common devices (magnetic and optical datas, displays, keyboards, pointing devices, printers), their operating principles, and performance enhancement. Commond language user interfaces. Shell programming. Graphical user interfaces.

autumn	GEIAL311-B2a	Fundamentals of Programming	6	3	2	BSc	Dr. Baksáné Dr. Erika Varga	erika.b.varga@uni-miskolc.hu	Information Science	We will discuss the following topics: basics of computer programming, programming paradigms and programming languages, the operation of compilers and interpreters, steps of program development, how to develop an algorithm and how to implement in G. basic concepts of structured programming and control structures. You will also learn about memory management, the scope and lifetime of variables and recursive problems. In practical classes you will learn the syntax and semantics of C programming constructs. You will have exercises for reading from and writing to standard input/coupt and files, as well as for defining and calling functions.
autumn	GEMAN102-B2a	Linear Algebra and Discrete Mathematics	6	3	2	BSc	Dr. Sándor Radeleczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Sets of numbers, the Cartesian product of sets, binary relations and their graphs, the inverse of a binary relation, the notion of a function, composition of the functions, bijective and inverse functions, permutations, operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and group. Operations with permutations. The notion of a semigroup and of a field. The division of polinomials and of the integers. Euclidean algorithm. Operation with matrices, their ring. Determinants, commer's rule. The notion of a complex number, operations with complex numbers in trigonometric form, Moivre's formula. Vectors in the plane and space, operations with vectors, generation and their wectors, and the next of a matrix linear transformations and their matrices, the composition and the inverse of linear transformations and their matrices, the composition and the inverse of linear transformations. systems of lequasion, their solutions, Gauss method, Rank theorem. Eigen values and eigenvectors.
autumn	GEMAN151-B2a	Mathematical Analysis I.	5	3	2	BSc	Dr. Szilvia Árvai-Homolya	szilvia.homolya@uni-miskolc.hu	Mathematics	Sets, operations on sets. Relations, functions. Real numbers and their properties. Topology of real numbers. Sequences of real numbers and their properties. Convergent sequences, Series of real numbers. Convergence criteria for series. Concepts of single variable function. Initis, continuity. Elementary functions. Differentiation: derivative of elementary functions, differentiation rules, Applications: L'Inceptial rule, element value acaduation, function analysis. Curves given in parametric and polar coordinates.
spring	GEFIT010-B2a	Introduction into Physics	5	2	2	BSc	Dr. Gébor Pazota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Basic concepts of kinematics. Newton's laws, Momentum and its conservation, Work, energy, power. Conservative fields and potential energy. Torque. Equilibrium of rigid bodies. Free and forced linear oscillations. Hydrostatics. First law of thermodynamics. Thermodynamics of gases, solds, and liquids. Heat prograding. Bedric forange, field, potential. Conductors in electrostatic field. The flow of electric charges. The concept of current, current density, voltage. Voltage sources, electromothe force. DC circuits. Joule's law. The concept of magnetic induction. Forces in a magnetic field. Dis. para-, and ferromagnetism. Marger's law. Electromagnetic induction. Neuman's law. Faraday's law of induction. AC circuits. Anger-Maxwell law. EM waves.
spring	GEIAL302-B2a	Operating Systems	5	2	2	BSc	Dr. Attila Baksa	attila.baksa@uni-miskolc.hu	Mechanics	Having knowledge about the operation and the implementation's technology of hardware and software components in information systems, as well as how to solve tasks arting from their operation, and now to connect them with other technical systems. Having knowledge about the terminology and specific expressions used by software engineers in English.
spring	GEIAL313-B2a	Object Oriented Programming	5	2	2	BSc	Dr. Baksáné Dr. Erika Varga	erika.b.varga@uni-miskolc.hu	Information Science	In the lectures we will discuss the four basic principles of object oriented programming: encapsuidaton, information hiding, inheritance and polimoffism; and you will earn the syntax and esmantics of Java and C# constructs. In practical classes you will use entaper and C# to work with classes, constructors, and methods. You will use encapsulation to improve the robustness of the code and reduce the impact of change. You will re-use code using inheritance and compositions so also understand the problems with inheritance and more and end extensible applications. You will also develop losely-coupled, testable and extensible applications using interfaces. The course also covers advanced concepts like exception handling, string handling, file handling and basic utility classes.
spring	GEMAK121-B2a	Data Structures and Algorithms	5	2	2	BSc	Dr. Attila Házy	attila.hazy@uni-miskolc.hu	Mathematics	The representation of real numbers. Algorithms of number theory (greatest common divisor, Euclidean algorithm, Fermat-test), RSA. Algorithms: Definition, Properties, Performance Analysis-Space Complexity, Time Complexity, Asymptotic Notations (Order of growth, the master theorem (method)) Data structures: Introduction, Data Structures types, arrays, linked lists (singly linked lists, circular linked lists, doubly linked lists,) stack and quase. Sorting (Introduction, Selection sort, Bubble sort, Insertion sort, Merge sort, Quick sort. Heap Sort) and searching: (Introduction, Linear search, Binary search, Fibonaci search). Trees (Introduction, dinfinition and basic terminologies, representation of trees), linkary Trees (basic terminologies and types, binary search trees) and graphs.
spring	GEMAN122-B2a	Discrete Mathematics II.	5	2	2	BSc	Dr. Séndor Radeleczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Theory of relations, fundamentals of graph theory. Connected components of a graph trees, forests. Plenar graphs, Euler's polyhedron formula and its confairsies, Kuratowski's theorem, characterization of biparite graphs, independent edge sets (matchings). Körlig's theorem, Halls theorem, Ore's theorem. Existence of Eulerian path and Eulerian circuit, Hamiltonian path and Hamiltonian circuit. Graph cotoring, chromatis number, four-color theorem. Adjacency and incidence matrices. Relations defined over sets, equivalence relations. Partial orders, patrially ordered sets, chains and antichains. Linear extension of patrially ordered sets, chains and antichains. Linear extension of lattices. Complemented, modular and distributive lattices and their characterization. Boolean algebra, Boolean functions and their normal forms.
spring	GEMAN161-B2a	Mathematical Analysis II.	5	3	2	BSc	Dr. Szilvia Árvai-Hornolya	szilvia.homolya@uni-miskolc.hu	Mathematics	Indefinite integrais, basic integrais, techniques of integration. Riemann condition of integrability. The Newton-Leibniz theorem, improper integrais, applications of the definite integral. Real multivariable functions. Partial derivatives of multivariable functions, directional and partial derivatives. Extreme value of multivariable functions. The concept, properties and calculation of the double integral. Change of variables in double integrals, Applications of the double integral volume, area, surface calculation, Interpretation, properties and calculation of the triple integral. Introduction of the triple integral. Offenential equations of the triple integral. Differential equations. Ordinary differential equations of the triple of the fuller of the differential equations.
autumn	GEIAK120-B2a	Integrated ERP Systems	5	2	2	BSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The course topics include production planning, paying for or acquiring parts /spare parts, maintaining stocks, cooperating with suppliers, making customer services available, and folowing ordes. ERP can also include application modules for a business's finance and human resources aspects. Some of the ERP subcontracting markets are J. Dekards, System Application and Production (SAP), People soft, as well as IBM, Microsoft, and Oracle
autumn	GEIAL304-B2a	Computer Networks	5	2	2	BSc	Dr. Szilveszter Kovács	szilveszter.kovacs@uni-miskolc.hu	Information Science	Layered network architectures, physical layer, media access control sub- layer, channel sharing methods, common media access control standards (IEEE 802.3, 802.11), the data link layer, frame formation procedures, basic knowledge related to error protection, the network layer functions and services; fatfic control methods, congestion control, inter-network cooperation, common network architectures (IPv4, IPv6), the Internet and its
autumn	GEIAL314-B2a	Software Technology	5	2	2	BSc	Dr. Péter Mileff	peter.mileff@uni-miskolc.hu	Information Science	services. Basic concepts of software engineering. Features of software as a product. The software development steps and life cycle models: valeraulumn model. Evolutionary software development, Component-based software development, incremental (iterative) development approach. The spiral model. Process Activities. Presentation of Software requirements is functional incre-functional requirements. user and system requirements is document and feasibility study. Scenarics ethnography. Requirements functional alternation of Software Design. Architectural design, system build models. Modular decomposition, functioned piping, controlling byse, object-oriented design. United Modelling Language (UML). Version control systems, principles of user interface design.
autumn	GEIAL322-B2a	Database Systems I.	5	2	2	BSc	Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Overview of persistency methods: Foundation of database systems: DBMS and DB; Semantic modelling, ER model; Relational structure and integrity rules; Convertion of ER into relational model; overview SQL; SQL DDL commands; SQL DML commands; Relational algebra; Ouery expressions in SQL; Conversion relational algebra into SQL; Relational database objects; Indexes and VIEW elements; normalization of relational schema. Security layer in DBMS; Basic operations in SQLite. SQL API foundations for JDBC.
autumn	GEMAK131-B2a	Probability Theory and Mathematical Statistics	5	2	2	BSc	Dr. Såndor Fegyverneki	sandor.fegyverneki@uni-miskolc.hu	Mathematics	Concept of probability. Conditional probability. Independence of events. Random variables, distribution, cumulative distribution function, density function. Moire-Laplace theorem. Law of large numbers. Conditional distribution and density function. Independent random variables. Distribution of minima and maxima. Central limit theorems. Sample space. Sample, sampling methods. Morie Carlo methods. Point estimations, unbiased estimations, efficiency, consistency, sufficiency. Raa-Cramer inequality. Rao Blackwell Kömegorov-theorem. Interval estimations. Hypothesis testing, uniformly best tests. Parametric and non-parametric tests. Testing homogeneity and independence. Correlation and regression analysis.

	1								I	
autumn	GEVAU195I-B2a	Digital Systems	5	2	2	BSc	Dr. József Vásárhelyi	jozsef, vásárhelyi@uni-miskolc.hu	Automation and Communication Te	The subject presents the operation of the basic elements of embedded systems, making digital abstraction, developing skills for simple tasks with direct hardware, or low-level software solution. Through the presentation of binary arithmetic, the design of operators, functional units, and controllers, at reaches the description of the general-purpose microcontroller architecture, the use of elementary CPUs. Understand and design simple applications with microcontroller drock with the use of standard peripherais. During the exercises and laboratory sessions related to the subject, the emphasis is on learning modern computer aided design methods and gaining direct, basic design/development experience.
spring	GEAGT123-B2a	Introduction to CAD Systems	5	2	2	BSc	Sándor Lajos	sandor.lajos@uni-miskolc.hu	Mathematics	Learning the geometric and graphic background of CAD systems, as well as the basic solid and surface modeling methods. Learning basic solid model creation methods using a specific parametric design system (Creo Parametric). Creating assemblies, mechanisms and animations, creating photorealistic images, 3D printing. Import and export models.
spring	GEFIT014-B2a	Modern Physics	2	2		BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Some basic concepts of special relativity. Conservative fields. Experimental foundations of quantum mechanics (black body radiation, photoelectic) effect, radiaristics effects). Natier waves, uncertainty relations. Fundamentals of quantum physics. The structure of atoms, systems with one or more electrons, chemical bords, energy levels, band structure. Atomic physics fundamentals of lasers. Radiocativity, basics of nuclear physics. Reactors. Particle accelerations, interaction between radiation and matter.
spring	GEIAL30B-B2a	Security in Computer Systems	5	2	2	BSc	Dr. György Wagner	gyorgy.wagner@uni-miskolc.hu	Information Science	Data: Information: Information security. Protection demand; sources of danger; classification of risk classe; defense costs. Protection of information; protection against physical injury, protection against unauthorized access; intrusions. Common identification methods; property-based identification; monoledge-based identification; biometric identifiers; stiric identification; multifactor identification. Security policy. Firewall; invended building blocks: Packet filtering; stated japaket filtering; deep inspection filtereal; circuit level galeway; provo (frewall; Scurity Policy); retructures; VPN, Content filtering firewall; Web Application firewall; IPS and IDS systems; personal firewall, virus; kenufsk, resp. negalitive heuristis search.
spring	GEIAL316-B2a	Software Technology Lab	5	1	3	BSc	Dr. Tamás Tompa	tamas.tompa@uni-miskolc.hu	Information Science	The most important Java-based frameworks and their applications will be presented in addition to the Java programming language. Technologies and techniques covering the entire software file cycle will be introduced that the student is confident in a Java-based software development after completing the course. The course involves the followings: continuous integration, continuous development, software testing, software design patterns, version control systems, etc.
spring	GEIAL31A-B2a	Java Programming	5	2	2	BSc	Dr. Tamás Tompa	tamas.tompa@uni-miskolc.hu	Information Science	The course helps deepen object-oriented programming knowledge and application of these methodology in Java techniques. Course topics: Effective use of basic Java classes (The java.lang package classes). Using colections. (Vo programming (Strams, filter strams, pipes (Pipes), file access, File class), Internationality. Network management. Other technologies.
spring	GEIAL323-B2a	Database Systems II.	5	2	2	BSc	Dr. László Kovács	laszło.kovacs@uni-miskołc.hu	Information Science	Overview SQL API architectures (ODBC, JDBC, JPA), JDBC class hierarchy, JDBC classes and methods; cursor handling in JDBC; metadata in JDBC; stored procedure in Oracle, coverview of PL/SQL language; SQL operations in PL/SQL, cursor management in PL/SQL, usage of PL/SQL packages; Transaction management architecture, history types in DBMS; locking protocol; operation of the locking module; query optimization module in DBMS, algebraic execution graph, dimization steps; query execution plan.
spring	GEIAL33H-B2a	Basics of Web Technologies	3	1	2	BSc	Dr. Anita Agárdi	anita agardi@uni-miskolc.hu	Information Science	Overview of HTTP standard (HTTP protocol, Request/Response model/HTTP methods), Presentation of the Network basics (Client-server architectrure; Paddresses and ONS), Learning the HTML basics (Structure of an HTML document, list, table, image, link, forms), CSS basics (Syntax and usage of CSS, linke, internar, and external styles, Coders, forts, spacing, borders, and box model, CSS selectors), Usage of Javascript (Variables, data types, operators, control structures, functions and events, form validation), Juspri Aguery Borguage (DOM traversal and manipulation, event handing), JSDN data structure (structure and syntax of JSON, converting between JSON and JavaScript (botes).
autumn	GEAGT107-B2a	Basics of Technical Description	4	2	2	BSc	Szilvásiné Dr. Erika Rozgonyi	erika.szilvasine.rozgonyl@uni-miskolc.hu	Mathematics	Sketching in axonometry. Constructions in the representation of Monge, mapping of points, lines and planes, intersection problems. Introducing new image planes. Representation of circles. Representation of polyhedra and surfaces of revolution, and their intersection with plane. Preparations of technical drawings and documentations. Standards, drawing types, lines and captions, Views, section twess, profiles for mechanical drawings. Special dimensions. Representation of threaded parts. The ISO tolerance system. Geometric and position tolerance, surface finaling, Connecting parts, ISO system of fits. The basics of Computer Aided Design (CAD), rapid protocyping.
autumn	GEGET101-B2a	Fundamentals of Machine Elements	4	2	2	BSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella.v.bognar@uni-miskolc.hu	Machine and Product Design	The aim of the course is to summarize the most important basic principles of mechanical engineering, to present the basic physical and mechanical quantilies, the concepts and methods necessary for the examination of machines and processes, and the way of negotiating engineering processes. The student learns about the smooth operation of machines, the calculation of efficiency and losses, different drives (friction, bett, gear drive), pulley and crank drives, as well as the basics of flow engineering processes, the Bernoull equation, the Venturi tube, the real fluid flow losses, the movement conditions of springs and brakes.
autumn	GEIAL31S-B2a	Computer Studies	4	2	2	BSc	Dr. György Wagner	gyorgy.wagner@uni-miskolc.hu	Information Science	Building on the office applications of Ms Office 365, getting to know and practicing the basis functions that can be used during the basic logistics training. To prepare the students to be able to use electronic correspondence ted editing and spreaksheets, to process data and data series with the help of the built-in and self-created functions during their training and after graduation.
autumn	GEMAN213-B2a	Linear Algebra	5	2	2	BSc	Dr. Béla Kovács	bela.kovacs@uni-miskolc.hu	Mathematics	A concise but informative description of the knowledge to be acquired. The 3- dimensional real vectorspace, vector algebra, equations of straight and plane, vector spaces, linear dependence, base, dimension, complex numbers, operation, polynomials, operations radical factor shape, matrices, matrix operations, matrix rank, determinant, matrix inverse, base transformation, homogeneous and inhomogeneous systems of linear equations, solvability, solution methods, linear mappings, characteristic polynomial, eigenvector, eigenvalue, diagonalizability, the real number n's are spaces.
autumn	GEMAN610-B2a	Mathematics in Logistics I.	6	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	Set theory, relations, functions, range of interpretation, set of values, series, limit of series, limit of univariate real functions, continuity, notable curves, differential calculus and its applications, function testing, indefinite integral calculus, rules of integration. The definite integral and its applications, impropius integral.
autumn	GEMTT201-B2a	Materials Science and Testing	4	2	2	BSc	Dr. Péter Kovács	peter.kovacs@uni-miskolc.hu	Materials Science and Technology	Introduction to material-related engineering concepts, acquisition of the basic involvedge necessary to develop an engineering approach, definition of the main material properties and an overview of their definition options, exploration of the relationship system of material properties and material structure and the principle possibilities of modifying properties.
spring	GEALT500-B2a	Technical Logistics	6	3	2	BSc	Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	During the course, the students are introduced to the professional knowledge of logistics, to show the development of logistics and its relationship with material handling, determine the professional content of logistics; to develop the technical-logistics approach; copice the relational system of material and information flow, describe the main technical and IT equipment belonging to the operation of the logistics system.
spring	GEALT501-B2a	Occupational Health and Safety in Logistic	2	2		BSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	The place and role of occupational health and safety in logistics. Getting to know the basic workplace hazards, as well as the basic methods and procedures for minimizing the risks they pose in relation to material handling systems. Getting to know the comprehensive organization and main areas of application of the relevant standards, provisions and regulations. Presentation of examples of correct and incorrect occupational health and safety practices.
spring	GEFIT021-B2a	Fundamentals of Physics	3	2	1	BSc	Dr. Gábor Pszota	gabor.pszota@uni-miskolc.hu	Physics and Electronic Engineering	Fundamental concepts of kinematics. Newton's laws. Power, work, energy. Linear free oscillation. Forced oscillation. Electric charge, field, potential. Conductors in electric field. The flow of electric charges. Concept of current density and current. Conduction of current in metals. DC circuits. The integral form of Joule's law. The concept of magnetic induction. Forces in magnetic field. Dia-, para-, and ferromagnetism. Ampere's law. Electromagnetic induction. Neumann's law. Faraday's law of induction. AC current. Ampeer-Maxwell law. Elw waves.
spring	GEGET073-B2a	Vehicle Components	5	2	2	BSc	Dr. Károly Jálics	karoly.jalics@uni-miskolc.hu	Machine and Product Design	The aim of the subject is to wide the horizons of the students. The subject is used for individual logistical purposes, or describes the basic characteristics of usable vehicles and the tracks and roads they use, with increased emphasis placed on independent work and continuous discussion of topics.
spring	GEGET285-B2a	Mechanical Engineering Knowledge	5	2	2	BSc	Dr. Zoltán Bihari	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	The aim of the course is to acquaint students with the various machines, machine elements, their mechanism of operation and to use the basic physical connections in practice.
spring	GEMAN620-B2a	Mathematics in Logistics II.	5	2	2	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	The definite integral, its properties, areas of application. Improprius integrals. Bivariate functions. Numeric rows. Dual integral and its applications. Triple integral and its applications. Differential equations. Vector-scalar functions. Scalar vector functions. Vector-vector functions.
spring	GEMTT202-B2a	Mechanical Technologies	4	2	2	BSc	Dr. László Kuzsella	laszlo.kuzsella@uni-miskolc.hu	Materials Science and Technology	Introduction to material technologies, such as heat treatment, forming, casting and welding of materials. It describes the theoretical background and the most relevant technologies beside of these fields.

	T	[Γ		,
autumn	GEALT502-B2a	Material Handling Machines	4	2	2	BSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	Main dijective of the ocurse is to present the types, operation obtracteristics and elements of material handling machines for the students. During the semister the planning, operation and maintenance aspects of the machines are also presented. At the end of the ocurse, students gain sufficient knowledge for the application, operation and ocritor of handling machines. During the practical essons students get deeper knowledge about the machines and apply the theoretical methods.
autumn	GEALT503-B2a	Simulation Modelling of Logistics Processe	5	2	2	BSc	Dr. Tamás Péter	peter.tamas@uni-miskolc.hu	Logistics	The course introduces the simulation modelling, evaluation and efficiency improvement capabilities of typical logistics systems. Using the knowledge gained, students will be able to model, evaluate, improve, and design logistics processes using a simulation framework.
autumn	GEALT504-B2a	Logistics Systems	4	2	2	BSc	Dr. Bányainé Dr. Ágota Tóth	agota.banyaine@uni-miskolc.hu	Logistics	The course introduces students to the planning and management methods of the various subsystems of the enterprise bigistics system. The ourse will introduce the structure and main elements of the enterprise logistics system. The aim is to provide the theoretical basis for the optimal design and operation of logistics systems and to introduce the design principles, which can be further developed in the Master's programme.
autumn	GEGTT500-B2a	Basics of Manufacturing Technology	5	2	2	BSc	Dr. Zsolt Maros	zsolt.maros@uni-miskolc.hu	Production Engineering	Main scientific fields, basic terms structure and systems approach characteristics of manufacturing technology.
autumn	GEMET266-B2a	Mechanics	5	2	2	BSc	Dr. Dávid Gönczi	david.gonczi@uni-miskolc.hu	Mechanics	Introduction, basic concepts. The task and main models of mechanics. Statics of a material point. The moment of a concentrated force acluidate on a point or axis. Force system acting on a rigit body. Balance and equivalence of force systems. Distributive power systems. Static moment, center of mass. Static problems of simple and complex structures. Stresses of bars. Stress diagrams of straight supports. Basic solids concepts. Characteristics of the displacement, deformation, stress and energetic state of a solid body. Simple uses of bars. Pulling a prismatic rod. Twisting of a prismatic rod. With circular and ring cross-section. Mechanical characteristics of stridges. Bending of a prismatic rod. Complex stresses of prismatic bars. General issues of dimensioning and control. Mork's stress circle dagram.
autumn	GEVEE050-B2a	Electrotechnics-Electronics	5	2	2	BSc	Dr. Judit Molnár	judit.molnar@uni-miskolc.hu	Physics and Electronic Engineering	Introducing the basic electrical and magnetic phenomena, laws and circuit calculations in the case of direct current, single and three-phase alternating current excilent hewrorks. Introducing the main characteristics of equipment used in electrical energy generation, distribution, conversion and utilization (ore and three-phase transformers, one and three-phase synchronous and induction machines, DC machines). Introducing semiconductors, diode, timistior, rectifier circuits, power electronic convertiers.
spring	GEAHT433-B2a	Fluid Transport Systems and Machines	5	2	2	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	Properties of fluids (density, velocity field, streamlines, potential function, vorticity vector). Equation of continuity, Bernoulli equation for ideal and non- ideal, incompressible and compressibilitows. Flow losses in pipelines and fittings. Equivalent pipe length. Classification of machines. Main characteristics of flow machines. Letteral energy diagram of working machines. Realistic characteristic curves of pumps. Suction power of pumps. Working point of pumps, series and paralle connection. Starting and control of pumps. Types of water turbines. Characteristic curves of water turbines. Energy diagram and characteristic curve fans. Fan types.
spring	GEALT505-B2a	Basics of Process Development	5	2	2	BSc	Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	The history of the development of Lean. 5 principles. Methods to define value- creating, non-value-creating processes, and losses (MURI, MUDA, MURA). Steps to draw a value stream map. Proparation of a present and future state map. Inforduction to Lean tools (5S, Andon system, visual management principles, Poix Vice, SMED, Pull principle, UT, Kanban, Jidoka, Heijunka, Kaizen, etc.). Application of Lean tools in practice.
spring	GEALT506-B2a	Transportation Systems	6	3	2	BSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	Characterization and development of transport systems, transport system connections. Transport sectors, transport technical systems, transport lanes, vehicles, energy supply, drive systems, transport service facilities. Trans- European networks (TV) and pan-European corrifors. Rai, road, water, air and combined transport. Environmental effects of transport, environmental impact, sustainability aspects. Evaluation and qualification of transport services, service quality assumance. Transport strategies, National Transport Strategy, EU Mobility Strategy. Introduction to the basics of traffic simulation software.
spring	GEALT528-B2a	Engineering Calculations for Material Hanc	5	2	2	BSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	During the course, students are introduced to the design methods of material handling machines. The aim is to create the theoretical (oundations necessary for the design of the equipment, with which you will be able to solve the problems that arise during practical application.
spring	GEVAU193-B2a	Control Engineering	5	2	2	BSc	Dr. Attila Trohák	attila.trohak@uni-miskolc.hu	Automation and Communication Te	We learn about the structure, operation, and programming of PLC-based control systems. We deal with the basics of operation of sensors and actuators and their installation. We learn about structure, operation, and configuration of human-machine interfaces.
autumn	GEMAK629-Ma	Probability Theory & Mathematical State	5	2	2	MSc	Dr. József Túri	jozsef.turi@uni-miskolc.hu	Mathematics	To acquire knowledge in: To acquire knowledge in: hasic concepts of probability theory, including discrete and continuous random variables and their distributions, density functions, expectations, mean, and variance. - important specific discrete and continuous distributions. - basic sampling distribution theory and implications of the Central Limit Theorem. - how to develop mathematical problem-solving skills and to apply them to solve applied problems in probability. - variability and theory instruction of the central Limit disorder and continuous probability distribution, elementary disorder and continuous probability distributions, (parametric / non-parametric) hypothesis - how to solve practical Annon-related problems in civil engineering areas through evaluation and selection of appropriate statistical softwares, such as Statistica for Windows, Mattab, to solve practical - how to solve prac
autumn	GEMET101-Ma	Mechanical Vibrations	5	2	2	MSc	Dr. László Péter Kiss	laszlo.kiss@uni-miskolc.hu	Mechanics	I how to read and interpret computer-generated statistical outputs. Principles of modeling dynamical systems. Central and eccentric impact of rigid bodies, the Maxweldiagram. Modeling of mechanical wibrations, methods for the derivation and solution of the equations of the outputs. What may systems with more degrees of freedom (free wibrations of machine foundations. Active systems of whoreas). Vertical wibrations of protection. What and on discrete systems with more degrees of freedom (equations of motion, natural requencies, withration modes). Eigenvalue-problems and their solutions, properties of the eigenvalues and eigenvectors. What and on discrete systems. Longitudinal-, bending- and torsional wibrations of elastic beams. Rayleyd-hardmoing. Critical angular speed of rotating shafts. Laval problems. Bearing reactions of rotating shaft-bearing systems. Dynamic analysis of sider-crank mechanisms. Balancing of a multicyfinder engine. Introduction to the measurement of dynamical parameters. The subject covers the fundamental principles and methods necessary to ultimetsiand, analyse and solve different wibration problems and to make correct modeling decisions in the finite element simulations of wibrational problems in mechanical engineering.
spring	GEMAN500-Ma	Differential Equations	5	2	2	MSc	Dr. Miháły Bessenyei	mihaly.bessenyel@uni-miskolc.hu	Mathematics	The theory of differential equations is a basic tool of diverse fields of science. Students of this course should be able to understand their behaviors and to derive solutions of differential equations. The analysis of differential equations includes numerical, geometrical and analytical methods. The course covers linear and nonlinear, and also ordinary and partial differential equations. Nonlinear equations are studied by their linearization around the equilibrium solution. A short introduction to complex functions is presented. Laplace and Fourier methods are applied both to ordinary and partial equations.
spring	GEMTT001-Mə	Materials Science	5	2	2	MSc	Dr. Sisodia Raghawendra Pratap Sing	raghawendra.sisodia@uni-miskolc.hu	Material Science and Technology	The man groups of materials: fundamental materials (metals, ceramics, polymers) and heir relative importance. Bask knowledge of structure of materials: crystalline and amorphous structures of metals, ceramics and polymers; main types of composites concerning their composition, structure and applicing. Horpeties and application fields: structure related specific properties of metals, ceramics and polymers; engineering application fields: structure related specific properties of metals, ceramics and polymers; engineering application of monolithic and composite materials, Mechanica behaviour: physical background of the mechanical behaviour of the different group of materials, deformation mechanisms of the main groups of materials. The relationship between the structureprocessing/properties and functional sciences. Strengthening of ceramics, selective polymer design for specific applications of polymers.

										General properties of fluids, surface tension, capillarity, Newton's law of viscosity. Hydrostatics,
spring	GEAHT001-Ma	Engineering fluid mechanics and heat tra	5	2	2	MSc	Dr. Norbert Szaszák	norbert.szaszak@uni-miskolc.hu	Energy Engineering and Chemical M	pressure variation in a fluid at rest. Thrust on submerged plane and curved surfaces. Continuity. Eulerian equation of motion. Bernoulli equation. Momentum theorem. Navier- Stokes equations. Friction losses in pipes, minor losses. Introduction to Computational Fluid Dynamics (CFD). Forms of heat transfer: conduction, convection, radiation. One-dimensional steady-state conduction in a composite wall or in cylindrical shells. Variable thermal conductivity. Convective heat transfer. Energy equation. Hydrodynamically and thermally developed lamian flow. Couette flow, flow and heat transfer in a pipe.
autumn	GEVGT301-Ma	Environmental Management	5	2	1	MSc	Dr. Zoltán Szamosi	zoltan szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	The structure of the energy consumption, composition, energymix and the related problems. Energy sources and their usage and the distribution all around the globe. Possibilities of electricity production. The resources of energy sources and the possibility of the depletion time and heir causes. The CO2 content in the atmosphere and the possible causes, possible ways to decreasing it. The alternatives of the fossil fuels. Nuclear energy, Hydro energy. Pump-storage hydro power plants: as an efficient way of energy storage. Biomass usage. Energy density increment technologies of biomass. Mechanical and thermal process. Possible biomass replacement of crude oil. Biomass as a plastic source.
autumn	GEMTT002-Ma	Advanced Materials Processing	5	2	2	MSc	Dr. Marcell Gyula Gáspár	marcell.gaspar@uni-miskolc.hu	Material Science and Technology	Advanced materials processing for primary shaping. Technology of powder metallurgy, characteristic metallic, ceramic and composite products. Advanced casting processes used in machine part manufacturing. Properties and design principles of cast products. Introduction to welding theories. The nocl important lision and pressure welding processes and their modern process variants. High energy densitly welding processes. Brazing and solicing. Thermal cutting. Heat treating processes of their modern processes. Toughening processes. Structure and properties modification in surface layers with thermai, physical and chemical methods. Advanced cold and hot metal forming for machine parts manufacturing.
autumn	GESGT001-Ma	Automated Machine Tools	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Definition of automation. Discrete and continuous systems, methods for describing and handling them. Basic types of controllers. Principle of Numerical Control (NC). History of NC. NC generations. Functions of NC controllers. Controlled machine functions. Generative of NC machine tools. Coordinate systems: machine Sc., programmers G.S., tool CS. Programming methods. Structure of NC programs. Codes, programming tips. WOP in CNCs. Manufacturing cells, manufacturing systems as higher level of automation in machinery. Simulation of discrete systems (e.g., manufacturing cells): event-based simulation. Theory of interpolation. Interpolation.
spring	GEGET501-Ma	Machine Structures and Design	5	2	2	MSc	Dr. Ferenc Sarka	ferenc.sarka@uni-miskolc.hu	Machine and Product Design	Significant computations to eliminate the fatigue failure. Fundamentals of design theory and methodology. Gear drives connecting intersecting axes. Geometrical design and manufacturing methods for bevel gears. Kinematics of epicycle gear drives. Geometric and strength calculation of epicycle gear drives.
spring	GEGTT800-Ma	Manufacturing Processes and Systems	5	2	2	MSc	Dr. Csaba Felhő	csaba.felho@uni-miskolc.hu	Production Engineering	Construction of epicycle gear drives. Types of flexible gear drives. Strength calculation of flexible gear. Basic concepts and main characteristics of manufacturing processes and systems. The main tasks of technological design and production planning, and the relationship between them. The theoretical basis for technological design, regularities and methodology. Process and information background of technology pre-planning, operation sequence, operation and operation- element planning, impact of the technology planning. The modern methodogical geaps and structure of manufacturing systems. Technological functionnels of manufacturing systems. Technological regarizational and methodological functamentals of manufacturing systems. System sees and systems.
spring	GEVEE201-Ma	Measurement, Signal Processing and Elev	5	2	2	MSc	Dr. Dávid Matusz-Kalász	david.matusz-kalasz@uni-miskolc.hu	Physics and Electronic Engineering	The aim of this course is to provide deep understanding of the theory and operation of modern measurement systems. Students learn Electronic principles to build measuring instruments from. Lectures cover structure and operation of semiconductor devices, properties and parameters of amplifier circuits, passive and active filter configurations, operational and instrumentation amplifiers, properties and operation of different type of sensors and transducers, measurement theory, types and operation of analog to digital converters, signal processing theorems and principles. Students gain practical laboratory experiences in measurements with instruments, building and testing simple electronic circuits and doing simple signal processing tasks.
autumn	GESGT002-Ma	ICAD Systems 1	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Structure of the integrated CAD systems, typical features. Managing processes in ICAD environment, typical strategies, Sketching, geometrical constrainst, dimensioning. Part modelling, Different modelling techniques. Surface modelling principles. Creating assembles, assembly constraints, assembling strategies. Documenting ICAD works. Possibilities for enhancement of the designing process, managing tearmork. Portability of CAD files, compliance between CAD systems, file types and conversions. Examples from the field of designing manufacturing devices.
spring	GEMTT071-Ma	ICAD Systems 2	5	2	2	MSc	Dr. Zsolt Lukács	zsolt.lukacs@uni-miskolc.hu	Material Science and Technology	Nowadays, different CAD/CAM solutions play a significant role in process planning of sheet metal products. In this course, first a general overview is given on CAD/CAM program systems and it will be demonstrated how these programs can help the process planning and die designer engineers' work. By the end of this course the students will acquire the fundamental knowledge: -in various types of CAD/CAM program systems -the basic principles of their working -the main input parameters need to be given and -the main results that can be achieved by using them. During the course two program codes used in process planning of sheet metal forming will be presented. The first one is the Autoform FEM code, which gives possibility of examining feasibility of process planning of sheet metal forming will be reserved. In SX Sheet Meda, which permits of planning of such parametric workpiece, which make design processing procedure faster.
autumn	GESGT003-Ma	Methodical Design	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Progression of design methodology. Various design approaches, models and their quality aspects. Development of CAD systems: Ranges of the CAD, various CAox technologies. Development flow chart of manufacturing devices. The design requirement lists. Defining functions and function structures. Methods of finding solution principles. Methods of combining and selecting solution principles. The step of designing in case of manufacturing devices. sidjatal prototype. The design rules. The rules of productioncorrect design, DFM(x) requirements. Reverse- engineering design technique. Replic-prototyping technologies. Rapid tooling technologies. Safety in design (ISO standards).
spring	GEMTT114-Ma	Computer Aided Process Planning	4	2	2	MSc	Dr. Zsolt Lukács	zsolt.lukacs@uni-miskolc.hu	Material Science and Technology	Computer Aided Engineering methods in forming processes. Analysis of the technological processes from the point of view of Computer Aided Process Planning. The various methods of Computer Aided Process Planning: the variant and the generative approach. Application of knowledge based systems in the process planning of forming processes. Technological databases: development, structure and handling of technological databases: The process planning of the process planning the Aideh processing) in manufacturing processes. The documentation requirements. Connection between CAD, CAPP and CAM systems. Application of commercial CAD systems to support the tool design. The concept of Computer Integrated Manufacturing.
spring	GESGT004-Ma	NC programming	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Programming methods of NC machine tools: manual programming, WOP, computer alded programming. Advantages and disadvantages of methods. Process of computer aided NC programming. Introduction to Topsolid program. Menus, windows, bars. Machine and control definition. File handling, importing and drawing the geometry. Edition the geometry. Coordinate systems, views. Solids, solid operations. Technological operations, handling of operation manager. Too choice. Machining parameters, setup of work piece. Toolpathes in milling machines. Checking the NC program. Postprocessing, editing the NC program. Documentation, setup sheets. Examples.

spring	GEMTT075-Ma	Numerical and Physical Simulation of We	1	2	0	MSc	Dr. Sisodia Raghawendra Pratap Sinj	raghawendra.sisodia@uni-miskolc.hu	Material Science and Technology	Introduction to materials science, welding processes and its importance in various industries; Types of joints and design guidance, Fundamental of heat transfer in welding; Weldability, thermal cycle, cooling time concept, Welding metallurgy; phase transformation and grain growth during welding; Introduction to thermal analysis in welding, Physical simulation (Gleeble); Physical simulation experimental demonstration with Gleeble; HAZ simulation; Case studies: Physical simulation to study weldability; Introduction to numerical simulation, software for welding (Simulatz, SYSWELD); Basic joint geometry, 20, 30-meshing, heat source model, model-ling, thermal analysis; EBW joint simulation, thermal and mechanical analysis.
autumn	GESGT005-Ma	Hydraulic Units and Systems	5	2	2	MSc	Dr. György Hegedűs	gyorgy.hegedus@uni-miskolc.hu	Machine Tools and Mechatronics	Classification of hydraulic drives. Changing the motion characteristic by current flow and adjusting the specific working volume. Series and parallel connection of energy converters. Basic tasks in hydraulic systems: pump unloading, rapid switching, multi-pump, multi-pressure systems. Overload prevention, load hording, braking witching, Accumulator circuits. Losses in hydraulic circuits, heating of the working fluid. Tank sizing for heating. Proportional magnetically operated hydraulic elements. Structure and design of direct and pilot-operated pressure controllers, directional circuit valves. Proportional throttle and flow stabilizing elements. Aspects of proportional valve selection.
autumn	GESGT006-Ma	Simulation of Manufacturing Devices	5	2	2	MSc	Dániel Kiss	daniel.kiss2@uni-miskolc.hu	Machine Tools and Mechatronics	Construction analysis of machine tools units. The finite element analysis of structures composed of these units: structural, thermal, and vibrational analysis of the cource plates of devices, vibration analysis of machine beds and the cutting process, balancing problems.
autumn	GEMTT074-Ma	Materials Selection	5	2	2	MSc	Dr. László Kuzsella	laszlo.kuzsella@uni-miskolc.hu	Material Science and Technology	The role of materials selection in fulfilling functional, technological, economical and environmental aspects in design, process planning and manufacturing processes. Effect of material properties on design and manufacturing processes, and not the reliability of engineering structures. The development and evolution of material selection procedures. The nature of the selection process. Computer Aided Materials and Process selection. Conventional and electronic material databases. Sources of information on materials. Procedures for implementing networked materials databases systems.
autumn	GEMAN383-Ma	Discrete Mathematics and Applications	5	2	2	MSc	Prof. Dr. Sándor Radeleczki	sandor.radeleczki@uni-miskolc.hu	Mathematics	Pascal's trangle, Fibonacci numbers, semigroups and groups, Lagrange and Cauchy theorems for finite groups, rings and fields, number fields, the algebra of polynomials. Exclidean algorithm, irreducible factorizations of polynomials, introduction to graph-theory, trees, the greedy algorithm, planar graphs, the chromatic number, bigantile graphs, matchings, graphs and matrices, partial and linear orders, the order dimension of a poset, lattices and compilet lattices, distributive and Boolean lattices. Boolean functions, polynomial form, disjunctive and conjunctive normal forms, clones of Boolean functions, maximal clones, completeness, Post lattice, De Morgan and
autumn	GEMAK116-Ma	Numerical Methods and Optimization	5	2	2	MSc	Dr. Attila Körei	attila.korei@uni-miskolc.hu	Mathematics	Heyfing algebras. To provide suitable and effective methods for obtaining approximate representative numerical results of the problems. To solve complex mathematical problems using only simple arithmetic operations. To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems. To inprove the student's skills in numerical methods and optimization by using computer facilities.
spring	GEMAK126-Ma	Information Theory and Cryptography	5	2	2	MSc	Dr. Sándor Fegyverneki	sandor.fegyverneki@uni-miskolc.hu	Mathematics	To master basic concepts in information theory, including source coding, and algorithms of channel capacity. To investigate important specific codes and channels. To continue to develop problem-solving skills and to apply these skills to the solving of application problems in communication theory. Be able to apply the gained knowledge to the solution of practical problems in engineering areas through evaluation and selection of appropriate statistical techniques. Specification: Source coding : entropy, Lidivergence, classification of codes, Kraft-McMille integuality, source coding theorem, Shannon-Fano coding, Glibert-Moore coding, Lindfman coding, Extended Huffman coding. McMillian's theorem Channel capacity; Joint and conditional entropies, mutual information, types of discrete memoryless channels, BSC, BEC, channel capacity, Arimoto-Blahut algorithme, single apply, codes, Hamming distance, minimum distance decoding, single parity codes, Hamming codes, regettion codes, linear block codes, cyclic codes, synctrome calculation, encoder and decoder Continuous source, entropy, channels, minimum entropy method.
spring	GEIAK682-Ma	Enterprise Application Integration	5	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	Enterprise Application Integration, or EAI, has existed as a technical term since the early 2000s, but the central problem that it attempts to solve is much dist. In authself, EAI is an approach, or more accurately, a general category of approaches, to providing interoperability between the multiple disparate systems that make up a bylical enterprise infrastructure. Enterprise architectures, by their nature, tend to consist of many systems and applications, which provide the various services the company relies upon to conduct their day to day business. A single organization might use separate systems, either device of in-house of more than a third party vendor, to manage their supply chain, customer relationships, employee information, and business logic. This modularization is often device link. In their you breaking they implementation of the best and nexes to changing business needs. However, to gain the benefite of this kind of distributed, modular system, an organization must implement technologies that deal with the problems presented by this architecture.
spring	GEMAN533-Ma	Theory of Error-Correcting Codes	5	2	2	MSc	Dr. Csaba Rakaczki	csaba.rakaczki@uni-miskolc.hu	Information Science	Coding theory is concerned with successfully transmitting data through a noisy channel and correcting errors in corrupted messages. The aim of the course is to familiarize students with the theory of errororenzing codes. The course covers the simpler families of codes such as linear, Hamming, Reed-Solomon, cyclic, BCH codes with encoding and decoding methods
autumn	GEVAU218-Ma	Architectures and Embedded Systems	5	2	2	MSc	Dr. József Vásárhelyi	jozsef.vasarhelyi@uni-miskolc.hu	Automation and Communication Te	Embedded system components and structure. Input output elements of and embedded system. Signal conditioning, signal processing, Micro-controllers, microprocessors PFOA architecture. Digital signal processors; hardware - Software Co-design, hardware in the loop simulation/testing. Embedded system design process from hardware to software development. Operating systems for embedded system applications; Model based development. Debugging embedded systems. Re-configurable and adaptable architectures. Open standard processor architecture. ARM
autumn	GEIAL501-Ma	Operation Systems and Networks	5	2	2	MSc	Prof. Dr. Szilveszter Kovács	szilveszter.kovacs@uni-miskolc.hu	Information Science	Introduction to mainframe architectures and data center technologies (Inacherar etudionary, efficient data storage, clustering, data center architecture and operation, managing backups). Overview of supercomputing and high performance computing (HPC): Massive Parallel Processing, Single System Image, high-performance (HPC): Massive Parallel Processing, Single System, Mage, Algorithmane enterconnects (InfiniBand, RDMA) superating Apulan Networks (SANs): Fibre Channel, ISCSI. Basics of real-time operating systems (RTOS). Details of wirtualization technologies: emutation, kornel-based (containers), para-irfunziaziation technologies: emutation, kornel-based (containers), para-irfunziaziation technologies emutation, kornel-based (containers), para-irfunziaziation, hardware assisted virtualization, cloud technologies. Overview of the advanced features of modern file systems. Anaylas of the TCP/IP Computer Networks architecture. Theoretical and design aspects, Special elements of Network layer (IV4 and IP4) addressing schemes, Routing Concepts, Stalac and Dynamic Routing. Switched Networks, VLANS, DLAPC, PNAT for IPA.
spring	GEIAL521G-Ma	Modern Database Systems	5	2	2	MSc	Prof. Dr. László Kovács	laszło.kovacs@uni-miskolc.hu	Information Science	Overview of DB datamodels; Relational databases; PL/SOL; Hierarchical models; XML database, LDAP database and Jana API; LINQ interface, Lambda calculus; ORM systems, Hypenate and myBatis; ORDBMS model and SQL commands; MongoDB datamodel, CRUD commands, database API in Java, Neo4J datamodel, CRUD commands, database API in Java, Cloud databases; overview of Hadoop , HDFS and mapReduce.
spring	GEAGT232-Ma	Geometric Modelling and its applications	5	2	2	MSc	Imre Piller	imre.piller@uni-miskolc.hu	Mathematics	Description of curves, interpolating and approximating curves, spline curves. Osculating plane, arc length, curvature, torsion, Frenet frame. Definition and properties of Hermite arc, Ferguson and Overhauser splines, Parametric description and properties of Bézier curves, de Cateljau algorithm. Parametric form and properties of Bézier curves, de Cateljau algorithm. Parametric form and properties of Bézier curves, de Cateljau algorithm. Parametric form and properties of Bézier and B-spline surves. Description of surfaces. Cores patch, Bézier and B-spline surves. Generation of rational Bézier and B-spline surfaces and their properties. Surface and solid modeling in CAD systems.
spring	GEIAL511-Ma	Software Engineering	5	2	2	MSc	Dr. Zoltán Krizsán	zoltan.krizsan@uni-miskolc.hu	Information Science	Software Engineering course gives a detailed insight into the modern software development methodologies and processes. Students gets understanding of cooperation of wide range of team work technologies. The strudent learn how to use the GIT, JIRA and Jenkins tool. The core technologies that are presented are source code management, project management, issue tracking, static code analysis and continuous integration. In addition to ther bachefor studies, students acquire some team leading abilities that are indispensable for project managers or scrum masters.
autumn	GEIAL519-Ma	Development of Distributed Systems	5	2	2	MSc	Dr. Zoltán Krizsán	zoltan.krizsan@uni-miskolc.hu	Information Science	The students will learn the concepts and technologies of web-service oriented software development. Presentation of the platforrm and implementation independent component integration.

spring	GEIAL51C-Ma	Integrated Software Systems and Testing	5	2	2	MSc	Dr. Péter Mileff	peter.mileff@uni-miskolc.hu	Information Science	The course provides the theory and practice on the development of complex software systems, including
-										sofware integration, software quality metrics and testing. Overview of data analysis tools and levels, basic statistical tools, Bayesian
autumn	GEIAL526V-Ma	Data Analysis and Data Mining	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	network, comparison of OLAP and OTLP: decision support tools, MD data model, semantic MD models, MD digethor, Oracle PC OLAP commands, programming MD diatabases in PE. Overview of MDX language; basic MDX queries, derived sets and measures; ETL processes, Overview of data mining. Data clustering methods, SOM, data classification methods, PDN, SVM, mining association unles, detection of outliers, dimension reduction methods, PCA.
spring	GEIAK647-Ma	Software System Security	4	2	2	MSc	Dr. Olivér Hornyák	oliver.hornyak@uni-miskolc.hu	Information Science	The aim of the course is to acquaint the student with the bacic concepts of computer security, relevant standards, recommendations and good practices. In practical classes the goal is to help learners develop the habit of properly assessing and improving cyber risk posture in real computing, networking, and software systems.
spring	GEIAL51D-Ma	Mobile and IoT Application Development	4	2	2	MSc	Dr. Anita Agárdi	anita.agardi@uni-miskolc.hu	Information Science	The purpose of the Mobile Application Development is to learn the basic programming techniques on Android systems. The main topics are the followings: Android basics, overveive. Structure of Android applications, building graphical user interfaces, making animations, putting vector graphics, media elements into user interface, overveive of adulties, fragments, intents, services, broadcase receivers, passing parameters to activities, fragments, handling return values, overveive of data binding framework, calling web services, introducing google play services, overveive of sensors of devices, publishing applications into Google Play Store.
spring	GEIAK631-Ma	Applied Machine Learning	4	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The aim of the course is to acquain students with the essence of the applied machine learning algorithms and one of heir representatives, the possibilities of the Microsoft Azure studio. Provide insight into specific areas of applied Artificial Intelligence. It gives an overview of robots and then details the structure, operation and motion control of humanoid robots. Demonstrates particle swarm-based optimization. Describes behavioral robotics, visual systems and speech recognition technologies and learning algorithms of humanoid robots. Provides an overview of brain-machine interfaces. It analyzes the expansion of brain capabilities and the ethical issues of machine intelligence in terms of human competitiveness.
spring	GEFIT003M-A	Physical Basis of Information Technology	2	2	0	MSc	Dr. Endre Kovács	endre.kovacs@uni-miskolc.hu	Physics and Electronic Engineering	The course is an introduction to the fundamental concepts, phenomena, models and laws of electrodynamics and modern physics, especially some basic elements of condensed matter physics. Based on these the students can understand the operation of the most important parts of the computer hardware, e.g. the CPU and the hard disk.
autumn	GEIAK691-Ma	Technical English	5	2	2	MSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	The subject covers a wide range of lessons on "Classic literature in Technical Science" and "Information Science & Technology" using texts and materials taken from textbooks, newspapers, computer magazines and websites. Classic literature in Technical Science mainly focuses on the comprehensive learning of materials needed to set up students "language skills and ability in classic engineering sciences. The lessons are based on those materials which taken from different textbooks, they include material science, solid mechanics, fluid mechanics, electric, electronic & computer science, oil information. Science and Technology involve principles on computer architecture, computer application, operating system, application programs, networks, communication systems, and IT (recent and future developments). The main aim of the subject is to privide students" ability in expanding their knowledge in R&D (Research and Development) using the English language.
autumn	GEIAL551-Ma	Modern Information Technologies	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	The subject introduces one of the critical points of information systems, the concepts of computer security, the components used for security purposes, and their role, it explains the principles and basics of encryption in more detail. It covers public key cryptography and its role. In the second part of the course, basic programming techniques that can be used to automate business processes using MS Excel are presented.
autumn	GEALT176-Ma	Intelligent Material Handling Machines and System	5	2	2	MSc	Dr. Péter Telek	peter.telek@uni-miskolc.hu	Logistics	Objective of the course is to present the intelligent material handling solutions for the students. The course gives an overview about the types, structures and operation of the automated handling machines applied in logistic
autumn	GEVAU303-Ma	Industrial Automation	5	2	2	MSc	Dr. Attila Trohák	attila.trohak@uni-miskolc.hu	Automation and Communication Te	processes. Introducing the fundamentals of automated production and the role of Programmable Logic Controllers (PLC). Introducing the sensors which are able to provide information about pre nandfacturing system and the exclustors which are able to influence the production process. The types of Human Machine Interfaces (HMI) which can inform the operator about the machine. Interfaces (HMI) which can inform the operator about the machine. Machine Interfaces (HMI) which can inform the operator about the machine. Machine Interfaces (HMI) which can inform the operator about the machine. Machine Interfaces (HMI) which can inform the operator about the machine. Interface and writeless communication methods providing data exchange with MES/ERP systems. Introducing the development method of unique production surveillance systems.
spring	GEGET335-Ma	System Engineering and System Modeling	5	2	2	MSc	Prof. Dr. Gabriella Vadászné Bognár	gabriella.v.bognar@uni-miskolc.hu		Modeling of the elements of mechanical systems and their relation system, recognition of the internal laws of the systems, mathematical description. Getting to know the basic elements of modeling, the general conditions of application, taking into account its limitations.
spring	GEIAL529-Ma	Introduction into Datamining	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Foundation of data management and data analysis. Basic sitilis in relational databases, Basic statistical tools for data analysis; Statistical tests and regression; introduction into data mining; Overview of the basic clustering and classification methods, introduction in neural networks, Learing how to use Exoel, rapidMiner and Python for basic data analysis tasks,
spring	GEALT177-Ma	Design of Material Handling Systems and Warehouses	5	2	2	MSc	Dr. Tamás Bányai	tamas.banyai@uni-miskolc.hu	Logistics	The course introduces students to the design methods of material handling and warehousing systems, enabling them to solve practical design problems.
spring	GEALT178-Ma	Simulation Examination of Logistics Systems	5	2	2	MSc	Prof. Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	During the course, students will be introduced to the possibilities of simulation modeling, evaluation and efficiency improvement of typical logistics systems. Using the knowledge gained, students will be able to model, evaluate, develop and design logistics processes with a simulation framework.
spring	GEALT179-Ma	Quality Management of Logistics Systems	5	2	2	MSc	Dr. Bányainé Prof. Dr. Tóth Ágota	agota.banyaine@uni-miskolc.hu	Logistics	During the course, students will be introduced to the relationship between quality assurance and logistics, as well as the application of the basic methods and techniques used in quality assurance in logistics.
autumn	GEALT173G-Ma	Industry 4.0 and Logistics	5	2	2	MSc	Dr. Bányainé Prof. Dr. Tóth Ágota	agota.banyaine@uni-miskolc.hu	Logistics	The Fourth Industrial Revolution will fundamentally change the operation of production and service systems, so within the course we aim to introduce students to the benefits of the Fourth Industrial Revolution as an industry 4.00 system. Students will gain an overwire of Industry 4.00 technologies, with a particular focus on cloud-based systems, cyber-physical systems, and smart factories. We focus on the impact of Industry 4.00 solutions in logistics. Through case studies, students will become familiar with logistics solutions operating in an Industry 4.00 concine environmed. Our gail is to provide students with the theoretical knowledge required for Industry 4.0 applications.
spring	GEALT196-Ma	Mechatronics in Logistics	5	2	2	MSc	Dr. Ákos Cservenák	akos.cservenak@uni-miskolc.hu	Logistics	Nowadays, in logistics, material handling cannot be carried out without the use of various mechatronic equipment and tools. The aim of the course is to present the concept and subject areas of mechatronics to students of logistics engineering. Mechatronics covers three main disciplines, and the subject presents them as well. Another element of the subject is the fit of mechatronics into logistics.
autumn	GEALT182-Ma	Standard Solutions in Logistics Networks	5	2	2	MSc	Prof. Dr. Péter Tamás	peter.tamas@uni-miskolc.hu	Logistics	During the course, students will be introduced to the standard processes of supply chain identification, data collection, and data sharing. The process activities and their measurement techniques, that mainly occur in logistics, play a major role in the course. The course also aims to familiarize students with the practical uses of sector-independent standards and solutions developed to make business communication and supply chain processes more efficient.
spring	GEIAL550-Ma	Industry 4.0 Information Systems	5	2	2	MSc	Prof. Dr. László Kovács	laszlo.kovacs@uni-miskolc.hu	Information Science	Overview of the role of information systems in I4.0 architecture Different types of applications (OLTP,OLAP). Foundation of data warehouses. MD models and operations, application areas. Web-based applications: architecture and application areas. Application of intelligent sensors, data analysis. Cloud and Big Data architectures. Application of blockhain technologies. Smart applications.
spring	GEALT197-Ma	Modeling and Simulation of Transport Systems	4	2	2	MSc	Dr. Róbert Skapinyecz	robert.skapinyecz@uni-miskolc.hu	Logistics	During the course, students will be introduced to the structure of the road transport system, the basics of road traffic and public transport modeling, the use of modern traffic simulation and traffic planning software, and the annitration possibilities of the latter
autumn	GEVAU519B-A	Embedded Systems	5	2	2	BSc	Dr. József Vásárhelyi	vajo@uni-miskolc.hu	Automation and Communication tee	application possibilities of the latter. Embedded Systems overview Example Embedded Systems and their Requirements Processor technologies and IC technologies Design technologies Processors (custom single purpose general purpose and standar single purpose) Memory hitterfaing SQt processors and had all processors (PicoBlaze MicroBlaze PowerPC ARM) Peripherais Embedded programmable SCD Design Flow Embedded Development Kit Software debugging Event handlers timers System on a Chip Architecture and Code Structure A code walk through Board evaluation in software Board evaluation in hardware.
spring	GEVAU518B-A	Programmable Logic	5	2	2	BSc	Dr. József Vásárhelyi	vajo@uni-miskolc.hu	Automation and Communication tec	Digital Circuit technologies and programmable logic technologies Characteristics of Programmable Logic devices (PLD), Application Specific Integrated Circuits (SAIC) ASIC versus PLD. Simple programmable Logic Devices (SPLD) Complex Programmable Logic Devices (CPLD) Field Programmable Cater Arrays (FPCA) architectures, Application of FPGA, System on Chip architectures, Hardware Description Languages. VHDL Verlog and High level synthesis. Open CL basics.

Norma											
NAME NUMBER No.	autumn	GEAHT013-Ba	Renewable Energy	4	2	1	BSc	Dr. Péter Bencs	peter.bencs@uni-miskolc.hu	Energy Engineering and Chemical M	of water decomposition. A basics of thermal radiation. Solar radiation theory of solar radiation, absolute black body, grey body radiation. The solar collector
Note Control Note-National State S	autumn	GEVGT003B-a	Unit Operation I.	4	2	2	BSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	hidrodynamical and mechanical unit operation heat transfer and its
No. Martine Name of Segmentation Martine No.	spring	GEVGTLCA-a	Life Cycle Assessment (LCA)	4	2	2	BSc; MSc	Dr. Zoltán Szamosi	zoltan.szamosi@uni-miskolc.hu	Energy Engineering and Chemical M	evaluation of technological processes. Product life cycle analysis. Life Cycle Thinking (LCT), Life Cycle Management (LCM), Holistic decision making, Environmental LCA (E-LCA), Life Cycle Costing (LCC), and Life Cycle
minministrationmi	both	GEIAK153B-a	Scheduling Models and Algorithms	4	2	2	BSc	Dr. Kulcsár Gyula	gyula.kulcsar@uni-miskolc.hu	Information Science	Introduction to scheduling. Classification of scheduling problems. Resource environments. Job characteristics and constraints. Objective functions. Single machine scheduling. Parallel machine scheduling. Flow shop, job shop, open shop, and general shop scheduling. Disjunctive graph model. Scheduling resources with limited availability in time. The red of simulation. Multi-objective optimization. Search metaheuristics. Resource-constrained project scheduling. Predictive, reactive, and proactive scheduling. Industrial scheduling case studies.
Link Calcitation Name S	spring	GEIAL015B-A	Programming of Graphics	5	2	2	BSc	Dr. Péter Mileff	peter.mileff@uni-miskolc.hu	Information Science	The aim of the course is to understand methods algorithms behind real computer graphics applied in modern computer graphics applied in most widely used 2D and 3D technologies (e.g. structure of the pipeline bounding box collision detection lighting and standows etc) are presented. This integrated knowledge helps students to create graphics oriented applications and computer games.
andmain effection	both	GEIAK132B-a	Introduction to Neural Network	5	3	1	BSc	Dr. Samad Dadvandipour	samad.dadvandipour@uni-miskolc.hu	Information Science	Work on artificial neural networks commonly referred to as neural networks has been motivated right from its inception by the recognition that the brain computes in entirely different vary from the conventional digital computer. The fundamentals of Artificial Neural Network (ANN) covers mainly the structural levels of organization in the brain models of a neuron neural networks viewed as directed graphs feedback network artificial intelligence and neural networks and historical problems. Furthermore learning process and perceptron as basic conciderations are the essential parts at study of neural networks.
10^{-10} No.	autumn	GEIALSOGM-a	Protection of Information Systems	4	2	2	MSc	Gyðrgy Wágner	gyorgy.wagner@uni-miskolc.hu	Information Science	steganography, cryptography, Kerckhoff; symmetric and asymmetric cryptography, problems of key share; solutions: Diffie-Hellman-Merkle, public key infrastructure; PGP, NTFS-EFS, digital signature and the Hash; the
Intell GGETTOD & IN CAD system 3 1 2 Bits Dr. Bits	both	GEGET065-Ba	Environmentally-friendly design	4	2	2	BSc	Dr. Ágnes Takács	agnes.takacs@uni-miskolc.hu	Machine and Product Design	Introduction to the DfE. Rules, strategies of the design for the environment. Learning the elements of environmentally frinedly design.
bath cistant bask ubstrations and souting and Linkings and Linkin	both	GEGET702-Ba	CAD systems	3	1	2	BSc	Dr. Bihari Zoltán	zoltan.bihari@uni-miskolc.hu	Machine and Product Design	Demonstrate the basic functionality of the Solid Edge 3D parametric design system while modelling different machine components. Simple shapes in the Part module. Creating a part drawing in the Draft module. Making assemblies in the Assembly module. Creating an exploded view. Design of different fasteners, design of toothed machine elements, design of bearing arrangements.
best GENERODIA- CAD design and simulations of Machines T 4 2 2 BEE 0r. Operating begins and simulations of Machines T (AD modeling begins and simulations of Machines T) (both	GEGET015-Ba	Lubrication and Sealing	4	2	2	BSc	Géza Németh	geza.nemeth@uni-miskolc.hu	Machine and Product Design	Lubrication, lubrication conditions, lubricants, lubricant characteristics, lubricant tests, lubrication of machine parts. Lubricators. Static and dynamic seals, sealing problems. Analysis of complex lubrication and sealing systems.
both GEMBBOHB & Mechanismic Systems 4 2 2 BSC Dr. Liable Roni, More Handling Machanismic Systems BIOD Native View Systems BIOD Nati	both	GESGT001B-a	CAD design and Simulation of Machine To	4	2	2	BSc	Dr. György Hegedűs, Kiss Dániel	hegedus.gyorgy@uni-miskolc.hu, kiss.daniel(Machine Tools and Mechatronics	Introduction to elements of machine tools (bearings spindles slides etc.). CAD modelling techniques of above mentioned elements. FEM modelling of complex assemblies (drives spindles lathes). FEM analysis of assembly modells including vibrational structural and therma influences.
berh EETT460-Ba Production systems 4 2 1 BSc Dr. György Kowcie Sum systems Amulation and consenses Comparison of the All Based production processes Comparison of the All Based production operation of the All Based production processes. Characteritianis and consenses Comparison of the All Based production operation of the All Based production operations. The all of consenses. Characteritianis and consenses. Characteritinis an	both	GEMRB004B-a	Mechatronic Systems	4	2	2	BSc	Dr. László Rónai, József Lénárt	laszlo.ronai@uni-miskolc.hu, lenart.jozsef@u	Machine Tools and Mechatronics	The structures and properties of mechatronics systems. Discussing the BIBO stability of LTI systems. Creating the state-space representation of systems. Laplace transformation to produce the transfer function of a system. Designing steps of the pole placement method. Introduction to PLC programming with the use of Reword tor KIY AC, Reword tor KIX software. Programming of simple, practical tasks to learn the Ladder diagram. Sequential Function Chart, Function Block diagram and Continuous Function Chart programming languages.
beth GEGTT 462-8a Efficiency improvement of manufacturing 3 2 1 BSc Dr. György Koväcs gyorgy-koväcs@uni-miskolc.hu Manufacturing Science production consespendent production and process production. Be-integrational production and process production. De-integrational production and process production. Be-integrational production process production. Be-integrational production process production. Be-integration production process production. Be-integrational process production. Be-integrational process production. Be-integrational production process production. Be-integrational process production. Be-integrational process production. Be-integrational production productinde productinde production productinde production production produ	both	GEGTT460-Ba	Production systems	4	2	1	BSc	Dr. György Kovács	gyorgy.kovacs@uni-miskolc.hu	Manufacturing Science	Global production tendencies. Changes in production philosophies and production processes. Characteristics and comparison of Push and Pull production concepts. Introduction of the Pull based production philosophies (JIT, Kanban, Laan). Characteristics and main activities of production systems and processes. General types and characteristics of intermittent and continuous production processes: project production, job-shop production, batch production, mass production and process production, reduble manufacturing systems. Basic principles and main phases of production processes' design. Types and applications of industrial robots. Essence of Computer Integrated Manufacturing (CIM). Case studies.
autumn GEMTT080M-a Polymer Processing 4 2 1 MSc Dr. Péter Kovács peter.kovacs@uni-miskolc.hu Materials Science and Technology misset new kr d plastic processing industry. They are disc material science and Technology autumn GEMTT080M-a Polymer Processing 4 2 1 MSc Dr. Péter Kovács peter.kovacs@uni-miskolc.hu Materials Science and Technology misset new kr d plastic processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technological variants of plastics processing industry. They are disc matchine at too folduitos. The technology industry of plastics processing industry. They are disc matchine at too folduitos. The technology industry of plastics processis plastics. The technology industry dintegrout industry of plastic	both	GEGTT 462-Ba	Efficiency improvement of manufacturing	3	2	1	BSc	Dr. György Kovács	gyorgy.kovacs@uni-miskolc.hu	Manufacturing Science	Aims, main activities and characteristics of production systems and processes. General types and characteristics of intermittent and continuous production, mass production and process production. Parformance measurement of production processes, most often used Key Performance indicators (RP). Main aims of the reficiency improvement of manufacturing processes. Analyzation methods of manufacturing processes. Efficiency improvement methods for processes: e.g. Lean, Facility Layout Design, Simulation, MTM (Methods-Time Measurement) methods. Case studies.
autumn GEMTT302M-a Fusion Welding 4 2 1 MSc Raghawendra P. S. Sisodia raghawendra.sisodia@uni-miskolc.hu Materials Science and Technology flow. Fuldification Solid state Transfer of heat and mass. Fundam series dramations. Short over view of fusion welds or grant series dramations. Short over view of fusion welds or grant series dramatics. Short over view of fusion welds or grant series dramatics. The science and Technology flow. Fuldification Solid state Transfer of heat and mass. Fundam series dramatics. Short over view of fusion welds or grant series. Series dramatics. Short over view of fusion welding and science dramatics. Short over view of fusion welding and science dramatics. The science and Technology flow. Fuldification. Solid state Transfer of heat and mass. Fundam series dramatics. Short over view of fusion welding and science dramatics. Short over view of fusion. Solid state Transfer of heat and mass. Fundam series dramatics. The science and Technology flow. Explore dramatics. Short over view of fusion welding and science dramatics. Short over view of fusion. Solid state Transfer of heat and the single dramatics. Short over view of fusion. Solid state Transfer of heat and transfer h	autumn	GEMTT080M-a	Polymer Processing	4	2	1	MSc	Dr. Péter Kovács	peter.kovacs@uni-miskolc.hu	Materials Science and Technology	Having mastered the basics of polymer processing, students are prepared to master computer-aided design of plastic forming tools, and can become involved in the work of plastic processing industry. They are discussing: The material properties of plastics, their special formability properties. A detailed discussion of the technological wrainst of plastics forming, taking into account the specific characteristics of plastics, affecting the basic designs of machine and tool solutions. The technology of injection molding will be analyzed in detail.
autumn GEMAK001B-a Operation Research 2 4 0 BSc Dr. Attila Körei attila körei@uni-miskolc.hu Mathematics problems stimplex method. Signment jits solution by the Hungarian method. Signment jits solution by the Hungarian method. Special integer programmi both GEMAK137-Ba Time series analysis and its applications 5 2 2 BSc Dr. Jözsef Túri jözsef.turi@uni-miskolc.hu Mathematics Different time series will be prosented during the course. We sh spring GEMAK038-a Complex functions 5 2 2 BSc Dr. Jözsef Túri jözsef.turi@uni-miskolc.hu Mathematics Different time series will be prosented during the course. We sh series we can use the modeling of many technical phenomena. During the course. spring GEMAK003B-a Complex functions 3 2 0 BSc Dr. Krisztián Hriczó krisztian.hriczo@uni-miskolc.hu Mathematics Complex algebra. Complex function. Elsenentaria da Cauril.upd (Gauret's langebra. Complex function. Complex algebra. Complex function. Complex algebra. Complex function. Generation and Gauret's advection. spring GEMAK003B-a Complex functions 3 2 0 BSc Dr. Krisztián Hriczó krisztian.hriczo@uni-miskol	autumn	GEMTT302M-a	Fusion Welding	4	2	1	MSc	Raghawendra P. S. Sisodia	raghawendra.sisodia@uni-miskolc.hu	Materials Science and Technology	Fundamentals of joining. Theoretical bases of welding. Energy sources. Heat flow. Fluid flow phenomena. Transfer of heat and mass. Fundamentals of weld solidification. Solid-state transformations. Short overwise of principal fusion welding processes: GTAW. SMAW, GMAW, SAW, FCAW and PAW. Advanced fusion welding processes: electron beam and laser beam welding. Application. Process planning.
both GEMAK137-Ba Time series analysis and its applications 5 2 2 2 BSc Dr. József Túri jozsef.turi@uni-miskolc.hu Mathematics series we can use to model (iferent phenomena, During the course of the modeling of many lefferent phenomena, During the course of the modeling of many lefferent phenomena. During the course of the modeling of many lefferent phenomena, During the course of the modeling of many lefferent phenomena with the help of the modeling of many lefferent phenomena with the help of the modeling of many lefferent phenomena with the help of the modeling of many lefferent phenomena with the help of the modeling of many lefferent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of many lefterent phenomena with the help of the modeling of the modeling of many lefterent phenomena with the help of the modeling of the modeling of many lefterent phenomena with the help of the modeling of the	autumn	GEMAK001B-a	Operation Research	2	4	0	BSc	Dr. Attila Körei	attila.korei@uni-miskolc.hu	Mathematics	Introduction to optimisation models. Graphical solution to simple LP problems. Simplex method. Duality and sensitivity analysis. Solving the transportation problem by the distribution method. Assignment problem and its solution by the Hungarian method. Special integer programming problems.
spring GEMAN003B-a Complex functions 3 2 0 BSc Dr. Krisztián Hriczó krisztian.hriczo@uni-miskolc.hu Mathematics Sudfases Limits and continuity of complex integration and Cauchy integral formula. Laurents series. The residue theorem unitateral Laplace transforms and its properties. Evaluations of integrations of Cauchy integral formula.	both	GEMAK137-Ba	Time series analysis and its applications	5	2	2	BSc	Dr. József Túri	jozsef.turi@uni-miskolc.hu	Mathematics	Different time series will be presented during the course. We show what time series we can use to model different phenomena. During the course, we solve the modeling of many technical phenomena with the help of time series.
	spring	GEMAN003B-a	Complex functions	3	2	0	BSc	Dr. Krisztián Hriczó	krisztian.hriczo@uni-miskolc.hu	Mathematics	Complex algebra. Complex function. Elementary complex functions Riemann surfaces. Limits and continuity of complex integration and Cauchys theorem. Cauchys integral formula. Laurents series. The residue theorem. The unilateral Laplace-transforms and its properties. Evaluations of inverse transforms. Applications.
strum CEMANDIBA Mythematic for Economic Analysis 1 d 2 2 BE or Béter Virma natar unra@unimickelc.hu Athematic Functiona devices and mints, the definite integral. Techniques	autumn	GEMAN101BA	Mathematics for Economic Analysis I.	4	2	2	BSc	Dr. Péter Varga	peter.varga@uni-miskolc.hu	Mathematics	Introduction to the basic concepts of calculus and their applications. Functions derivatives and limits, the definite integral. Techniques of integration applications of integration. Introduction to single variable

both	GEAGT002B-A	Descriptive Geometry	3	3	0	BSc	Óváriné Dr. habil. Balajti Zsuzsanna	zsuzsanna ovarine balajti@uni-miskolc.hu	Mathematics	Mongo's representation is the basis of true-to-scale engineering communication, Representation The introduction of Mongo's representation as the basis of true-to-scale engineering communication, Representation and reconstruction of the base elements of the space. The mutual position, hying, parallelism and intersection of the base elements of the space. Transforming the representation of an object on newly introduced projection planes to solve spatial construction tasks. Projection conditions of perpendicularly. Rotating a plane into a position parallel to the plane of projection to solve planar construction tasks. Determination of dimensions between the space elements. Representation of op/Metratis, and construction of a circle and a intersection of all these with a straight line and a plane. Aftre and central collineation relations between conscions sections. Intersections between the sphere, the cone and the cylinder. Helices and helicoid surfaces.
both	GEAGT106B-a	Geometric design	4	2	2	BSc	Óváriné Dr. habil. Balajti Zsuzsanna	zsuzsanna ovarine balajti@uni-miskolc.hu	Mathematics	The aim of this course is to introduce the principles of the clear mapping of the 3 dimension into the 2 dimension and the reconstruction of objects from the images through real engineering examples to show students how to apply the descriptive geometry in engineering design. The Monge representation of the point, line, plane and their incidences (intersections). Parallelism and perpendicularly. Special waves and rotation to particular position for metric problems. Intersection of pyramid and prism. Affin connection between the circle and its ellipse projection. Representation of the sphere surface normals and tangent planes. Intersection curves between the cylinders and cones. Helix and its evolvent surface with the spiral section in the perpendicular plane to the axis. Centroids, axoids.
autumn	GEMET014B-a	Finite Element Method	4	2	2	BSc	Dr. Balázs Tóth	balazs.toth@uni-miskolc.hu	Mechanics	Principle of the stationarity of the total potential energy. Principle of the local approximation. Treatment of 2D and 3D elastic problems with isoparametric elements (shape functions stiffness matrix load vectors). The construction and characteristics of the system of linear equations. The problems of modelling: substructure technique the treatment of prescribed displacements excentric links oblique support bilateral contact - fitting of machine elements- and elastic foundation. Isoparametric thick plate element. Error analysis . Theory of plasticity. Mises and Tresca-SLVenants yielding criteria postulates of Drucker and Prager Prantfh-causes equations and Levy-Misess theory. The formulation of the elastic-plastic constitutive matrix. Incremental displacements. The theory of plastic limit badrings (static and kinematic). Elastic plastic plates.
autumn	GEMET206M-a	Continuum Mechanics	3	3	0	MSc	Prof. Dr. György Szeidi	gyorgy.szeidl@uni-miskolc.hu	Mechanics	A short introduction to tensors. Kinematics of continua. State of velocity. Nonlinear theory of deformations (deformation gradients, strain tensors). State of velocity. (Velocity gradient, rate of deformation tensor, vorticity tensor, vorticity vector). Variation of tensor fields with time (material time derivatives, objective time derivatives). Linear theory of deformations. Fundamental laws of continuum mechanics in spatial and material descriptions. Stress tensors (Cauch, Piclek Kirchell I. and II.). Equation of continuity. Equations of motion. Moment of momentum. The fundamental principles of themodynamics. Special vector fields in continuum mechanics (various admissible tensor fields). Principle of virtual power. Principle of virtual vork. Constitutive equations: (thermolylated) viscolastic and elastic- plastic bodies. Fundamentals of linear delasticity. Energy theorem. Navier equation. Principles of minimum potential energy. Principle of elasticity. Equations of compatibility. Castglancis principle. Variational of glydrgy Statict: Continuum mechanics. Lecture notes. 2016. Provided free to the situdents in pdf format.
both	GEVEE533B-a	Energy production and storage systems	5	2	2	BSc	Dr. Radányi László Ádám	laszlo.adam.radanyi@uni-miskolc.hu	Physics and Electronic Engineering	This course is an introduction of the energy storage possibilities. This is included gas power plant systems too and the method and calculations of natural and biogas combusion and gas power plant systems, powerd by different gases. We will investigate the production of the energy by photovoltaic method.
both	GEFIT005M-a	Modern physics	3	2	0	MSc	Dr. Endre Kovács	endre.kovacs@uni-miskolc.hu	Physics and Electronic Engineering	Experimental basis of quantum physics, Blackbody radiation, photoelectric effect. Bohr's model. Lab demonstration. Wave-particle duality of particles. Wave functions and operators. The Schrödinger equation. The Heisenberg uncertainty principle. Quantum tunnelling, Quantum statistics. Structure of atoms and melocules. Nuclear physics, radioactive decay, Nuclear energy production. Fundamentals of solid state physics: Band theory of solids. Semiconductors, diodes, transistors. Superconductivity. Graphene and silicene.