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1. Introduction 

Cloud computing is a transformative technology enabling flexible, scalable access to 

computing resources, including applications, servers, storage, and networks, without initial 

investments. Known collectively as "XaaS," cloud services significantly enhance productivity, 

collaboration, accessibility, and security through internet-based delivery [1]. Service Level 

Agreements (SLAs) are essential in defining service expectations between cloud providers and 

users, ensuring accountability and trust through clear guarantees on availability, uptime, and 

downtime. SLAs are fundamental in enhancing Quality of Service (QoS) and building customer 

confidence in cloud environments [2][3]. Effective performance evaluation in cloud computing 

requires clearly defined objectives and metrics, such as Round-Trip Time (RTT) and response 

time, to address complex interactions within cloud infrastructure [4]. Cloud resource 

management involves brokers, SLA allocators, virtual machines (VMs), and physical machines 

(PMs). Brokers facilitate dynamic resource allocation, improving efficiency and quality of 

service by optimizing resource utilization and balancing workloads across geographically 

distributed data centers [5][6]. Fuzzy logic, a mathematical framework handling uncertainty 

through approximate reasoning, enhances decision-making in cloud computing. By simulating 

human cognitive processes, fuzzy logic provides flexible and precise classification, enabling 

effective handling of imprecise and ambiguous information [7][8]. This booklet introduces 

innovative fuzzy logic-based approaches for enhanced SLA management, VM allocation, and 

decision-making in cloud computing: 

• Estimating Cloud Computing RTT Using Fuzzy Logic: Offers precise network 

latency evaluation for Amazon cloud environments using fuzzy logic categorization of 

inter-region distances. 

• Selecting SLA Guarantees Based on QoS Availability: Develops intelligent fuzzy-

based models categorizing SLAs into nine levels (90%–99.999%) to better align 

provider offerings with user-specific needs. 

• Optimized Fuzzy Logic for Decision-Making: Introduces optimized fuzzy systems 

using flexible mathematical modeling to enhance precision, reduce costs, and improve 

scheduling and classification accuracy compared to traditional methods. 

• Efficient Broker-Driven Request Packet Size Approach: Employs fuzzy logic for 

dynamic VM allocation based on request sizes, significantly enhancing system 

performance and reducing costs, demonstrated through simulations on Google Cloud 

[9]. 

• Intelligent Validation Cloud Broker System (IVCBS): Implements a dynamic 

allocation algorithm based on trapezoidal fuzzy membership functions, tested across 

global AWS centers, achieving optimized response time, reduced costs, and enhanced 

energy efficiency. 

• Reliable and Cost-Effective Fuzzy-based Cloud Broker: Evaluates user-service 

compatibility, including mobile scenarios, through fuzzy logic to optimize cloud 

service selections using the Edge CloudSim simulator within Mobile Edge Computing 

(MEC) environments involving major providers like AWS, Google, and Azure [10]. 

2. Literature Review  

Estimating Round-Trip Time (RTT) in cloud environments is challenging due to dynamic 

infrastructure factors. Geographical distances between globally distributed data centers 

significantly elevate latency, impacting real-time applications and necessitating optimized 

routing strategies [11]. Additionally, network congestion in shared, multi-tenant environments 
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complicates RTT estimation by causing packet reordering, unnecessary retransmissions, and 

reduced TCP performance, emphasizing the importance of effective congestion management 

for stable network operations. RTT remains a vital metric for assessing network performance 

and Quality of Service (QoS) across diverse systems, including IoT and cellular networks, 

where it supports delay diagnosis and congestion control optimization [12]. Furthermore, RTT-

based assessments improve reliability and reduce environmental impacts, particularly within 

IoT settings [13]. Service Level Agreements (SLAs) are crucial for managing cloud computing 

resources effectively. Patel et al. [14] proposed a WSLA-based architecture for automating 

cloud SLA management, incorporating third-party security enhancements. Alhamad et al. [15] 

outlined key SLA criteria across different cloud models (IaaS, PaaS, SaaS), emphasizing 

performance factors such as boot time and response times. Qiu et al. [16] analyzed multiple 

SLAs, identifying gaps in customer data security, privacy, and insufficient clarity regarding 

availability commitments and penalties. Baset [17] further dissected SLAs from several 

providers to clarify availability obligations, while Godhrawala and Sridaran [18] leveraged 

machine learning techniques to enhance QoS management. Akbari-Moghanjoughi et al. [19] 

advocated comprehensive methodologies, and Saqib et al. [20] proposed adaptive machine 

learning-based traffic classification to sustain SLA compliance. Fuzzy logic has become 

instrumental for decision-making under uncertainty, offering flexibility and approximate 

reasoning. However, challenges persist, including the complexity of fuzzy rule formulation and 

computational inefficiencies. Building on foundational concepts introduced by Zadeh [21], 

recent studies integrated fuzzy logic with machine learning, aiming to improve diagnostic 

accuracy despite inherent subjective biases and complexity [22]. Adaptive fuzzy systems often 

experience stability issues, leading to inconsistent decision-making [23]. Traditional 

approaches like the Mamdani fuzzy inference model, although foundational, exhibit limited 

robustness under varying conditions. Hybrid methods combining fuzzy logic and genetic 

algorithms also face convergence and efficiency problems [24]. Consequently, there is an 

urgent need for optimized methodologies to enhance fuzzy logic's practical applicability and 

robustness [25]. Cloud computing's rapid adoption highlights significant challenges in 

performance evaluation and security management [26]. Recent studies explored various 

aspects, including SLA methodologies [2], roles and functions of cloud brokers, and algorithms 

like COTD for cost-effective service delivery. Researchers have emphasized security and 

compliance challenges in multi-cloud environments, advocating advanced encryption and 

identity management strategies [27]. Interoperability among different cloud services remains 

an ongoing challenge, necessitating frameworks for federated cloud integration and agent-

based resource management. Studies employing Cloud Analyst simulations examined load 

balancing algorithms and service broker policies to optimize QoS [28]. Advanced VM 

allocation strategies have increasingly focused on optimizing resource utilization and 

performance, addressing overlooked issues such as variable packet sizes. Innovations include 

integrating neural-fuzzy systems with Ant Colony Optimization (ACO) techniques [29], 

broker-driven VM allocation strategies [30], fuzzy logic controllers, and reinforcement 

learning schedulers. Machine learning-based VM migration, intelligent multi-agent systems , 

AI-driven resource management methods, and hybrid heuristic algorithms further enhance 

resource efficiency. These developments represent significant advancements, outlining 

promising future directions for resource management in cloud computing [31]. Cloud 

brokerage services have attracted extensive research attention, primarily focusing on QoS 

enhancement, broker profitability, or balancing provider and customer interests. Approaches 

such as game theory [32], reinforcement learning, weighted algorithms, ontology, AHP 

combined with TOPSIS, and fuzzy logic each offer distinct advantages but also face significant 

challenges, including prolonged negotiation, complex user interactions, and extended learning 

periods [33]. Addressing these limitations, this study integrates fuzzy logic and modified 
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TOPSIS to efficiently match users with appropriate service instances from major CSPs, 

simplifying complexity and enhancing the balance between user and provider interests. 

3. Cloud Computing 

Cloud computing has evolved into a central paradigm in modern computing, reshaping how 

individuals and organizations access and manage technological resources. Chapter 2 offers a 

comprehensive examination of cloud computing, detailing service models, deployment 

strategies, and core characteristics, providing a valuable lens through which to analyze its 

increasing relevance and transformative impact [34]. At the heart of cloud computing are its 

service models—Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software 

as a Service (SaaS)—each providing varying levels of abstraction and management 

responsibility between cloud service providers (CSPs) and consumers [35]. IaaS offers 

virtualized hardware resources such as compute instances, storage, and networking, enabling 

users to deploy and manage their operating systems and applications while avoiding the 

complexity of physical infrastructure maintenance. Prominent examples of IaaS include AWS 

EC2, Google Cloud Platform (GCP), and Microsoft Azure Virtual Machines, offering benefits 

such as elasticity, scalability, and pay-per-use cost structures [36]. PaaS abstracts away 

infrastructure management, offering platforms where developers can deploy, test, and manage 

applications without dealing with server or storage configurations. PaaS includes tools for 

coding, database management, middleware, and application hosting, streamlining the 

development process and accelerating time-to-market. Examples include Google App Engine, 

Heroku, and Azure App Service [37]. SaaS, in contrast, delivers complete applications over 

the internet, with CSPs managing all underlying infrastructure, updates, and maintenance. SaaS 

products—such as Dropbox, Slack, Zoom, and Google Workspace—offer users simplified 

access to powerful software solutions through subscription-based pricing, reducing costs and 

operational burdens [34]. Beyond service models, deployment strategies shape how cloud 

services are architected and delivered. The public cloud model provides services from third-

party vendors, shared among multiple tenants, offering cost efficiency and high scalability. 

However, it raises concerns around data privacy and security, requiring strong access controls 

and encryption mechanisms. In contrast, private clouds are dedicated to single organizations, 

offering greater control, security, and compliance but typically requiring higher investments 

and operational expertise [38]. Hybrid clouds combine public and private environments, 

allowing organizations to keep sensitive workloads in private infrastructure while leveraging 

public clouds for scalability and cost savings. This integration demands orchestration tools and 

APIs to ensure seamless operations [39]. Community clouds, meanwhile, serve specific groups 

of organizations sharing similar objectives, such as regulatory compliance or industry-specific 

requirements. They blend benefits of private clouds with cost savings achieved through shared 

resources, offering a middle ground between exclusivity and affordability [40]. Central to 

understanding cloud computing are its defining characteristics as outlined by the National 

Institute of Standards and Technology (NIST): on-demand self-service, broad network access, 

resource pooling, rapid elasticity, and measured service [39]. These properties enable users to 

dynamically provision computing resources, access services from diverse devices, and benefit 

from granular billing based on actual consumption, ensuring cost efficiency and operational 

agility. Overall, Chapter 2 highlights how cloud computing delivers a flexible and scalable 

architecture for modern IT services, empowering organizations to innovate while optimizing 

costs and resources. The layered service models and deployment options allow organizations 

to select solutions that balance security, compliance, performance, and financial 

considerations, positioning cloud computing as a pivotal enabler of digital transformation. 
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4. Adoption and Implementation of Cloud Platforms 

Chapter 3 provides a detailed exploration of the drivers, benefits, and complexities involved in 

adopting and implementing cloud platforms. Organizations are increasingly moving to cloud 

solutions driven by the need for agility, scalability, cost optimization, and technological 

innovation [41]. Major Cloud Service Providers (CSPs) like AWS, Google Cloud, and Azure 

offer structured adoption frameworks, including tools, templates, and readiness assessments to 

guide enterprises through migration and modernization efforts [42]. Key adoption drivers 

include enhancing business agility, enabling rapid deployment and scalability to support 

dynamic market conditions. Cloud services allow global infrastructure deployment within 

minutes, significantly shortening innovation cycles compared to traditional IT setups [41]. 

Business adaptability is further supported by flexible and scalable cloud resources, enabling 

organizations to adjust quickly to changing demands and leverage emerging technologies such 

as AI and analytics for strategic decision-making [43]. Ensuring business continuity is a vital 

consideration in cloud adoption. Cloud platforms incorporate redundancy and disaster recovery 

measures to maintain operations during disruptions. Local redundancy within a single data 

center protects against localized issues, while geographical redundancy disperses data across 

distant sites to safeguard against regional failures—features critical for disaster recovery and 

maintaining high availability. CSPs typically guarantee high uptime, such as 99.99% (≈52 

minutes of downtime annually), though certain industries, like healthcare, demand stricter 

standards approaching 99.999% availability. Cloud providers also ensure exceptional data 

durability through extensive replication, achieving up to eleven nines (99.99999999%) 

durability, minimizing data loss risks and preserving organizational trust [44]. Security is 

another fundamental pillar of cloud adoption, addressed through a shared responsibility model 

where CSPs secure infrastructure while customers manage access and data protection. 

Advanced encryption, dedicated security teams, and multi-level protections ensure robust 

defense against vulnerabilities, supporting compliance with regulatory standards [45]. 

Economically, cloud adoption transitions costs from significant upfront capital expenditures to 

flexible operational expenses through pay-as-you-go models, potentially reducing IT spending 

by over 50%. CSPs leverage economies of scale to lower service costs, enabling businesses to 

avoid overprovisioning and achieve more efficient resource use [46]. Virtualization underpins 

the scalability and efficiency of cloud platforms, allowing multiple Virtual Machines (VMs) to 

run on a single physical server, optimizing hardware utilization and reducing costs. 

Hypervisors, either Type 1 (bare metal) or Type 2 (hosted), facilitate VM creation and resource 

allocation, supporting efficient multi-tenant operations. Type 1 hypervisors, such as VMware 

ESXi and Hyper-V, are preferred for enterprise use due to their performance advantages, while 

Type 2 hypervisors like VirtualBox are suitable for smaller deployments [47]. Networking 

architecture in cloud environments is crucial for connecting distributed resources and ensuring 

performance. Data Center Networks (DCNs) use hierarchical architectures, incorporating 

access, aggregation, and core layers to manage internal traffic and connect to external 

networks. Meanwhile, Data Center Interconnect Networks (DCINs) bridge geographically 

separated data centers, supporting seamless service delivery, disaster recovery, and workload 

migration [48]. Innovations in optical networking enhance throughput but add management 

complexity. CSPs form a competitive ecosystem offering diverse services, including IaaS, 

PaaS, and SaaS [49]. AWS, Google Cloud, and Azure dominate the market, each providing 

extensive service portfolios tailored to various business needs, from compute resources to AI 

tools [50]. SLAs formalize service expectations, covering performance, availability, and 

security, ensuring accountability and legal protection for cloud consumers [51]. Overall, 

Chapter 3 underscores that successful cloud adoption requires strategic planning, technical 

readiness, and careful consideration of operational, security, and financial factors. Cloud 
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platforms offer transformative potential, but organizations must align technology adoption with 

business objectives and risk management to fully capitalize on cloud benefits [52]. 

5. RTT Estimation and Optimization in Cloud Computing 

This study focuses on the estimation and optimization of Round-Trip Time (RTT) in cloud 

computing, addressing critical challenges posed by the dynamic and geographically distributed 

nature of cloud infrastructures. RTT, a fundamental metric representing the time for a signal to 

travel from a source to a destination and back, directly influences latency and impacts the 

Quality of Service (QoS) for time-sensitive applications such as telemedicine, online gaming, 

and robot-assisted surgery. Traditional cloud infrastructures often struggle to meet stringent 

latency requirements for such applications, necessitating innovative approaches to RTT 

estimation and management [53]. Geographical distance significantly impacts RTT, as data 

transmission delays increase with physical separation between cloud data centers and end-users 

[11]. Private network backbones and direct peering have been shown to mitigate such latencies, 

improving performance across regions [54]. For example, analysis of the Tahoe Least-

Authority File System (Tahoe-LAFS) highlighted variations in performance between 

community network clouds and commercial platforms like Microsoft Azure, driven largely by 

differences in network homogeneity and routing efficiencies [55]. Studies further reveal that 

queue-based dynamic resource allocation outperforms spatial resource partitioning in reducing 

latency and improving performance, indicating the importance of intelligent resource 

management for low-latency operations [56]. Network congestion compounds RTT estimation 

challenges in multi-tenant environments. Congestion triggers packet reordering, causing 

Transmission Control Protocol (TCP) to interpret these events as packet loss, leading to 

spurious retransmissions and throttling of transmission rates [12]. The development of systems 

such as Bolt has emerged as a response to these issues, leveraging techniques like Sub-RTT 

Control (SRC), Proactive Ramp-Up (PRU), and Supply Matching (SM) to reduce latency and 

maximize network utilization, even at high line rates up to 400Gbps [57]. Addressing RTT 

estimation, this chapter introduces a fuzzy logic-based model integrating triangular 

membership functions to analyze inputs such as geographical distance and network congestion. 

By categorizing these variables into linguistic terms—e.g., small, medium, and long distances, 

and Light, Average, and Peak congestion—the model produces nuanced RTT predictions 

across nine output categories. Such an approach overcomes the binary limitations of traditional 

methods, offering flexibility and precision in cloud performance evaluation [58]. Empirical 

testing on AWS infrastructure demonstrated the superiority of fuzzy logic based RTT estimates 

compared to standard online measurement tools, yielding lower and more accurate RTT values 

[59]. Moreover, the fuzzy logic framework facilitates intelligent system behavior analysis and 

decision-making under uncertainty. Unlike conventional binary systems, fuzzy logic captures 

partial truth values, enabling adaptive responses to complex network conditions and supporting 

tasks like delay prediction and cloud resource allocation. This capability is vital for managing 

uncertainty in dynamic cloud environments and maintaining SLA compliance. Beyond RTT 

estimation, intelligent systems incorporating fuzzy logic are instrumental in optimizing cloud 

operations, enhancing reliability, and ensuring efficient workload management [60]. Studies 

highlight that fuzzy reasoning models excel in processing imprecise data, improving 

adaptability, and supporting predictive analytics, all crucial for real-time, scalable cloud 

services [61]. In summary, Chapter 4 underscores the critical role of advanced methodologies 

like fuzzy logic in RTT estimation and optimization within cloud computing. By effectively 

modeling variables such as geographical distance and congestion, the proposed approach 

advances cloud performance analysis and SLA management, ensuring improved user 

experiences and reliable service delivery in increasingly demanding digital ecosystems. 
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5.1 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic 

Accurately measuring Round-Trip Time (RTT) is critical for assessing network performance, 

especially in cloud computing contexts where latency significantly affects Quality of Service 

(QoS) and application responsiveness. Chapter 4 presents an experimental methodology for 

RTT analysis, combining traditional measurement techniques and advanced modeling 

approaches to enhance precision in cloud environments like AWS. Among the primary 

techniques utilized is the Ping Test, a widely accepted method for quickly evaluating network 

latency by sending packets from a user’s device to a remote server and measuring the response 

time. The RTT captured through ping reflects latency influenced by factors such as network 

congestion and the physical distance between nodes. A stable network is indicated by a 

consistent, horizontal trend in ping test results, while fluctuating RTT values can signal 

network congestion or instability. In this study, ping testing was crucial for verifying 

connectivity between senders and AWS endpoints, offering practical insights into real-world 

network performance [62]. Complementing ping tests, mathematical modeling techniques are 

employed to derive RTT more precisely. These models capture network transactions—

including client-server interactions via TCP and UDP—and analyze the timing of read and 

write operations. Precision appliances such as the Exinda device intercept and timestamp 

network packets with nanosecond accuracy, enabling fine-grained RTT calculation [63]. This 

approach segments RTT into server-side and client-side components, enhancing measurement 

granularity. As data accumulates, these models continuously refine RTT estimates by 

averaging observations, thereby improving accuracy over time [64]. Beyond measurement 

techniques, the study integrates geospatial analysis to understand how geographical distance 

influences RTT. Data was systematically extracted for 28 AWS regions worldwide, treating 

these as endpoints for RTT evaluation. Utilizing the AWS latency testing platform, researchers 

measured network latency from the sender’s location in Kut, Muhafazat Wasit, Iraq. 

Geographic coordinates were determined for all endpoints, and the Haversine formula was 

applied to calculate great-circle distances between the sender and AWS data centers. This 

geospatial approach quantifies how physical distance contributes to RTT, providing a precise 

assessment of latency across different continents and enabling detailed connectivity analyses 

[2]. Collectively, the integration of empirical ping tests, high-resolution network monitoring 

devices, and geospatial analysis provides a robust experimental framework for evaluating RTT 

in cloud environments. This methodology offers critical insights into latency patterns, enabling 

more accurate cloud service evaluations and enhancing resource allocation strategies for 

improving QoS. 

5.1.1 Fuzzy Logic Framework 

The proposed model employs several triangular membership functions. [65], formulated in 

Equation (5.1), to convert crisp values into fuzzy sets. The MATLAB Fuzzy Logic Designer 

tool was utilized to develop the model, as depicted in Figure 5.1, the model integrates two input 

parameters, distance, and network congestion. The model utilizes three triangular membership 

functions for each input parameter. 

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑑: 𝑙,𝑚, 𝑛) =

{
 
 

 
 

0, 𝑑 < 𝑙
𝑑−𝑙

𝑚−𝑙
 , 𝑙 ≤ 𝑑 ≤ 𝑚

𝑛−𝑑

𝑛−𝑚
 , 𝑚 < 𝑑 ≤ 𝑛

0 , 𝑑 > 𝑛

                  (5.1) 
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Figure 5.1. Proposed model design. 

i. Input Variables Definition 

• Distance: 

Small: [0, 862.94, 4516]; Medium: [2689, 8170, 11824]; Long: [9997, 15478, 

15478.65] 

Network Congestion was similarly divided into three fuzzy sets. Light, Average, and Peak 

reflecting latency characteristics were measured at different times of the day and under 

varying network load conditions. 

• Network Congestion: 

Light: [0, 3, 6]; Average: [3, 6, 8]; Peak: [7, 14, 23.59]. 

ii. Output Variables Definition 

The expected (RTT-Expectation) output is defined as follows: 

RTT1: [0, 0, 25]; RTT2: [10, 50, 75]; RTT3: [50, 100, 125]; RTT4: [100, 150, 175]; 

RTT5: [150, 175, 200]; RTT6: [175, 200, 250]; RTT7: [200, 250, 325]; RTT8: [250, 

325, 350]; RTT9: [325, 430, 500]. 

The output variable, Expected RTT, Table 5.1, was defined using nine triangular membership 

functions labeled RTT1 through RTT9, each corresponding to specific ranges of RTT delays 

identified in our measurements. 

Table 5.1 Expected RTT. 

          Distance 

 

Network 

congestion 

 

Small Medium Long 

RTT Expectation 

Light RTT1 RTT4 RTT7 

Average RTT2 RTT5 RTT8 

Peak RTT3 RTT6 RTT9 

5.1.2 Fuzzy Logic-Based RTT Estimation Model 

The study introduces a fuzzy logic-based model for estimating Round-Trip Time (RTT) in 

cloud networks, designed to manage uncertainties inherent in network latency. The model 

comprises four key components: fuzzification, inference engine, knowledge base, and 

defuzzification. Fuzzification converts crisp numerical inputs, like geographical distance (km) 

and network congestion (ms), into fuzzy sets using triangular membership functions, enabling 

nuanced handling of variability in network conditions. The inference engine applies nine “if-
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then” rules stored in the knowledge base, processing these fuzzy inputs to produce fuzzy 

outputs. These outputs are then converted back into precise numerical RTT estimates through 

the centroid defuzzification method (COG), ensuring realistic, weighted predictions aligned 

with actual network behaviors. This methodology delivers superior adaptability and precision 

over traditional deterministic techniques, effectively capturing the impacts of distance and 

congestion on RTT. Empirical testing demonstrates that RTT remains low at short distances 

and light congestion (e.g., RTT1 ≈ 25 ms). However, as distance or congestion increases, RTT 

rises progressively, reaching values like RTT9 ≈ 500 ms under long-distance and peak 

congestion conditions. The proposed fuzzy model provides critical benefits: it enables 

informed decisions regarding data center selection to minimize latency, anticipates congestion 

for proactive resource management, and supports adaptive routing and bandwidth allocation 

for optimized QoS and SLA compliance. Additionally, the model can act as an early warning 

system, detecting rising RTT as an indicator of potential network strain, prompting preventive 

actions such as rerouting traffic or upgrading infrastructure. This fuzzy logic approach ensures 

precise, real-time RTT predictions, empowering network operators to maintain service 

reliability and performance across dynamic cloud environments. 

5.1.3 Evaluation and Analysis of the Proposed Model for RTT Estimation 

The proposed RTT estimation model was validated through simulations reflecting real-world 

conditions between Kut, Iraq, and 28 AWS regions. Using ping tests and precise distance 

calculations, the model captured RTT variations across different congestion levels. Results 

showed low RTT during off-peak hours and gradual increases during business hours and peak 

usage. Unlike static RTT values from providers like AWS, the model provides dynamic, 

detailed estimations. RTT1–RTT3 represent optimal performance, while RTT9 signals severe 

degradation. This dynamic approach empowers users to choose regions with the best latency, 

enhancing network performance and service quality Table 5.2. 

Table 5.2 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT) 

Measurements. 

NO 

Computed 

Distance 

Between the 

Sender and 

Receiver(km) 

Amazon 

(RTT) 

(ms) 

During 

Daytime 

Estimated Latency Values in the Proposed RTT 

Classifications During Daytime Hours(ms) 

Light congestion Average 

congestion 

Peak 

congestion 

1 862.94 62 9 45 92 

2 1234.23 50 9 45 92 

3 3089.72 361 30 65 110 

4 3428.79 88 50 86 128 

5 3525.01 100 57 92 134 

6 3601.23 102 62 97 138 

7 3607.54 113 62 97 139 

8 4009.87 115 93 127 166 

9 4202.65 112 110 144 181 

10 4238.49 127 113 147 184 

11 4682.33 138 142 175 208 

12 5981.25 388 142 175 208 

13 6012.87 212 142 175 208 

14 6789.34 347 142 175 208 
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15 7056.22 339 142 175 208 

16 7289.64 369 142 175 208 

17 7435.78 414 142 175 208 

18 7832.90 426 142 142 208 

19 8053.21 374 142 142 208 

20 8923.45 181 142 142 208 

21 10023.67 172 143 143 210 

22 10289.47 198 155 155 232 

23 12345.89 279 258 258 418 

24 12678.56 242 258 258 418 

25 13756.90 390 258 258 418 

26 14321.76 427 258 258 418 

27 14989.34 266 258 258 418 

28 15478.65 300 258 258 418 

5.2 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS 

Cloud Services and SLA Optimization 

This research presents a fuzzy logic-based model for estimating RTT in AWS cloud services, 

integrating factors like geographical distance and network congestion for precise, adaptive 

predictions. Unlike static AWS tools, this model offers dynamic RTT assessments, 

empowering users to choose optimal cloud regions for SLA compliance and QoS, especially 

in latency-sensitive applications. Triangular membership functions categorize RTT into 

performance levels, capturing variability across network conditions. Comparative analysis 

shows superior accuracy over AWS’s static reporting. The approach enhances cloud service 

selection, network monitoring, and resource allocation, supporting reliable, real-time cloud 

operations and future research into broader performance metrics. 

6. Quality of Service (QoS) Availability Assessment for Optimal SLA Selection 

Cloud computing has fundamentally transformed IT infrastructure, enabling real-time, on-

demand access to computing resources like applications, servers, and networks without 

significant upfront investment. It provides scalability and flexibility through service models 

such as SaaS, PaaS, and IaaS, earning user trust for its cost efficiency and reliability [66]. 

However, widespread adoption has brought challenges, notably in ensuring data privacy, 

system security, and transparent guarantees of service performance defined in Service Level 

Agreements (SLAs) [67]. QoS metrics—including throughput, Round Trip Time (RTT), jitter, 

and packet loss—are crucial indicators of service availability, yet often remain obscured in 

complex SLA documents, complicating users’ ability to make informed decisions [68]. 

Establishing clear, measurable guarantees in cloud SLAs requires thorough assessment and 

transparent communication between providers and customers. This necessity aligns with the 

shared responsibility model, which delineates duties between cloud providers and users for 

securing and managing resources across IaaS, PaaS, and SaaS environments [69]. Traditional 

SLA selection mechanisms typically focus on formal, quantifiable service attributes but 

overlook users’ subjective preferences and qualitative considerations [70]. Many platforms 

restrict customers to pre-configured service packages, failing to clarify the guarantees behind 

each package. This gap has prompted research into methodologies that integrate users’ 

subjective opinions into SLA decisions, capturing factors like personal performance 

expectations or specific operational needs. In response, a fuzzy logic-based model has emerged 
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to classify SLAs into nine availability levels ranging from 90% to 99.999%, reflecting diverse 

user requirements and budgets. This model integrates both computing metrics (vCPU, RAM, 

storage) and networking metrics (BW, jitter, RTT, packet loss), enabling nuanced SLA 

evaluations tailored to individual applications—from basic office use to high-demand scenarios 

like gaming or scientific computing [71]. Existing literature has significantly explored SLA 

methodologies. Patel et al. [14] proposed a WSLA-based architecture with trusted third-party 

components to automate SLA management and enhance security. Alhamad et al. [15] outlined 

critical SLA design factors across IaaS, PaaS, and SaaS, emphasizing attributes like boot times 

and response times. Qiu et al. [16] analyzed 29 SLAs, identifying widespread gaps in customer 

protections, notably around data privacy, backup policies, and concrete penalty structures, 

despite general guarantees of availability. They underscored the need for clearer, enforceable 

SLAs to foster trust. Baset [17] provided a framework for dissecting SLAs into components 

for clearer provider comparisons, focusing on compute and storage services in IaaS and PaaS 

contexts. Similarly, Godhrawala and Sridaran [18] advanced SLA methodologies by 

integrating ML-based A priori algorithms into service-oriented architectures, connecting QoS 

metrics and improving resource optimization. Akbari-Moghanjoughi et al. [19] conducted 

comprehensive reviews on SLA deployment, emphasizing the necessity of linking Service 

Level Objectives (SLOs) to specific service domains for more meaningful guarantees. 

Meanwhile, Saqib et al. [20] proposed adaptive machine learning methods to classify network 

traffic dynamically, aiming to reduce SLA violations and optimize resource allocation, 

ultimately enhancing SLA integrity and cost-efficiency. Together, these studies and the newly 

proposed fuzzy logic model mark significant progress toward more transparent, user-centered 

SLA selection in cloud computing. They highlight the importance of both quantitative metrics 

and subjective user inputs in aligning service offerings with practical operational demands, 

ensuring reliability and user satisfaction in modern digital infrastructures. 

6.1 QoS Availability and SLA Assessment Framework in Cloud Computing 

The assessment of Quality of Service (QoS) availability is crucial for effective Service Level 

Agreement (SLA) management in cloud computing environments. This chapter introduces 

structured methodologies for calculating both computing and networking availability metrics, 

forming the basis for a fuzzy logic-driven SLA selection framework designed to align cloud 

services with user requirements and expectations. 

6.1.1 Calculation of QoS Computing Availability Metrics 

QoS computing availability is computed by aggregating the individual availability percentages 

for vCPU, RAM, and Storage using a weighted average, as follows: 

AComputing=(WvCPU×AvCPU) +(WRAM×ARAM) +(WStorage×AStorage)                      (6.1) 

• AvCPU, ARAM, AStorage is represent the individual availability percentages. 

• WvCPU, WRAM, WStorage is represent the relative weights assigned to these 

metrics. 

If explicit weights are not provided, equal weighting (1/3 each) is assumed, thus simplifying 

the formula to: 

AComputing=AvCPU+ARAM+AStorage/3                                     (6.2) 

6.1.2 Calculation of QoS Networking Availability Metrics 
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Similarly, QoS networking availability aggregates four network metrics: BW, Round 

Trip Time (RTT), Jitter, and Packet Loss. The weighted average aggregation formula 

is: 

ANetworking=(WBW×ABW) +(WRTT×ARTT)+(WJitter×AJitter)+(WPacketLoss×APacketLoss)  (6.3)   

• ABW, ARTT,AJitter, APacketLoss is represent individual network metric availabilities. 

• WBW, WRTT, WJitter, WPacketLoss is represent metric weights. 

If explicit weights are not provided, equal weighting (1/4 each) simplifies this equation to: 

                                         ANetworking=ABW+ARTT+AJitter+APacketLoss/4                                 (6.4) 

These equations provide a structured, transparent, and reproducible approach to calculating 

the fuzzy inputs clearly from the individual QoS metrics. 

6.2 Proposed SLA Assessment Framework 

Building on these metrics, a fuzzy logic-based framework is proposed for optimal SLA 

selection (see Figure 6.1). This system processes QoS availability metrics as input variables, 

integrating both technical performance indicators and user preferences into a unified decision 

model. The framework categorizes SLAs into tiers: 

• Normal SLA (90–92%) 

• Bronze SLA (93–95%) 

• Silver SLA (96–97%) 

• Gold SLA (98–99.999%) 

This tiered approach ensures a structured differentiation of service levels, enabling users to 

select SLAs tailored to their operational needs and budget constraints. Both computing and 

networking availability metrics are evaluated within a defined universe of discourse spanning 

90% to 100%. To achieve granularity, a non-linear sequence of availability values is generated 

using the formula: 

                             An=  90 + (n − 1) × (0.09999 − (n − 1) × 0.00001)                      (6.5) 

for n ranging from 1 to 101, progressively converging toward 99.999% availability. This 

mathematical precision ensures a nuanced classification of QoS levels for SLA optimization. 

 

Figure 6.1 Proposed SLA guarantee model. 
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6.2.1 Fuzzy Logic-Based Methodology for QoS Evaluation and SLA Classification 

The fuzzy logic-based methodology presented for Quality of Service (QoS) evaluation and 

SLA classification introduces a sophisticated framework that blends mathematical precision 

with domain expertise, enabling nuanced decision-making in cloud service management. 

6.2.1.1 Key Input Parameters and Fuzzification 

At the core of the proposed system is fuzzification, which translates crisp numerical inputs into 

fuzzy linguistic variables to handle uncertainty inherent in network performance assessments . 

The model utilizes two key input variables: 

• QoS-Computing Availability — covering vCPU, RAM, and storage availability, 

defined over a universe of discourse from 90% to 100% and modeled using triangular 

membership functions: 

o Light Availability: [90, 90, 95] 

o Middle Availability: [90, 95, 100] 

o High Availability: [95, 99.999, 100] 

• QoS-Networking Availability — representing metrics like bandwidth, RTT, jitter, 

and packet loss, also defined over 90% to 100% with similar triangular membership 

functions: 

o Low Availability: [90, 90, 95] 

o Average Availability: [90, 95, 100] 

o Top Availability: [95, 99.999, 100] 

This dual-input structure ensures the system captures both computational and networking 

performance factors for SLA assessment. 

6.2.1.2 Fuzzy Inference System and Defuzzification 

The model implements a Mamdani-type Fuzzy Inference System (FIS), utilizing a rule base 

that comprehensively links the two inputs through 3×3 = 9 inference rules in Table 6.1. The 

rules are structured in a matrix to determine SLA classification based on combinations of 

computing and networking availability. For example, high computing and top networking 

availability map to the Gold SLA tier, while lower combinations fall into Bronze or Normal 

SLAs. 

Table 6.1 Fuzzy rule base. 

    QoS- Computing 

 

 

 

QoS-Network  

Light Middle High 

(SLA) Guarantees 

Low Normal-SLA1 Bronze-SLA1 Silver-SLA1 

Average Normal-SLA2 Bronze-SLA2 Silver-SLA2 

Top Normal-SLA3 Bronze-SLA3 Gold-SLA 
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6.2.1.4 Validation Process 

Validation was rigorous, combining: 

• Expert reviews to refine rules and membership functions. 

• Simulation-based testing in MATLAB, exploring boundary conditions and ensuring 

stable system behavior across all inputs. 

• Benchmarking against published SLA policies from major CSPs, confirming practical 

alignment. 

Iterative adjustments were made based on simulation results and feedback, ensuring robustness 

and accuracy in the final system. This integrated methodology provides a precise, adaptive, 

and context-aware tool for SLA classification, enhancing decision-making and resource 

allocation in modern cloud environments. 

6.3 Experimental Evaluation  

The proposed fuzzy logic-based model for SLA classification was thoroughly tested in 

MATLAB to assess its effectiveness in evaluating cloud services based on Quality of Service 

(QoS) metrics. The model integrates key computing parameters—including vCPU, RAM, and 

storage—with networking metrics like bandwidth, delay, jitter, and packet loss, translating 

them into SLA classifications using a Mamdani-type fuzzy inference system. Inputs are 

fuzzified over a continuous domain from 90% to 100% using triangular membership functions, 

enabling nuanced analysis of availability conditions. The system categorizes services into SLA 

tiers—Normal, Bronze, Silver, and Gold—each further divided into sublevels (e.g., Normal-

SLA 1 to 3). As availability conditions improve, services are progressively assigned higher 

SLA levels, reflecting increased reliability and performance. This dynamic framework allows 

cloud users to match service choices to performance needs and budget constraints. Figure 6.1 

provides outputs demonstrating how the continuous fuzzy mapping function transitions 

through SLA levels as input metrics rise. The model’s experimental results confirm that it 

offers precise, adaptable SLA predictions, supporting informed decision-making for diverse 

cloud applications and ensuring alignment between user requirements and service guarantees. 

 

Figure 6.1 Results of the proposed model. 
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6.4 Summary of SLA Selection Model 

The proposed fuzzy logic-based SLA selection model offers a dynamic approach for aligning 

user preferences with optimal SLA classifications in real-time. Unlike static, provider-defined 

SLA frameworks, it accommodates uncertainties in computing and networking performance, 

providing flexibility and personalized service decisions. The model introduces a systematic 

method for calculating availability ratios, enabling Cloud Service Providers (CSPs) to deliver 

tiered offerings tailored to diverse user needs. A significant innovation is the model’s ability to 

generate continuous SLA mappings, moving beyond fixed definitions to reflect real-world 

variability in service performance. Experimental validation in MATLAB involved simulating 

over 100 paired computing and networking QoS inputs, producing granular availability scores 

(e.g., 90.333%, 95.999%, 99.999%) that map precisely to industry-standard SLA categories 

like Normal, Bronze, Silver, and Gold, as shown in Figure 6.1. These results align closely with 

published SLA commitments from providers such as AWS EC2, confirming the model’s 

practical relevance and classification accuracy. The dynamic mapping ensures that users 

receive SLA guidance matched to current network and computing conditions, supporting 

informed decision-making and compliance. Future work focuses on refining fuzzy logic 

models with optimization techniques, aiming to enhance SLA management and efficient cloud 

service allocation in complex, dynamic environments. 

7. Enhanced Decision-Making in Uncertain Domains 

This study presents an innovative mathematical methodology for enhancing decision-making 

in uncertain environments by introducing three specialized algorithms that mathematically 

define membership functions for fuzzy logic systems. Unlike traditional fuzzy approaches that 

rely on heuristic tuning or specialized software like MATLAB’s Fuzzy Toolbox, this chapter 

proposes precise analytical algorithms for computing membership degrees for triangular, 

trapezoidal, and Gaussian membership functions, thus increasing computational efficiency and 

independence from external tools. The novelty lies in replacing heuristic adjustments with 

structured mathematical optimization, enabling precise and dynamic classification of crisp 

input values into fuzzy sets, and improving accuracy and adaptability in practical applications. 

The chapter begins by reviewing challenges faced by fuzzy logic systems, including 

complexities in rule formulation and inefficiencies in computation. While fuzzy logic has been 

widely integrated into control systems, robotics, and AI to handle imprecision and ambiguity, 

traditional systems remain heavily dependent on subjective parameter tuning, software 

dependencies, and lack robust optimization techniques [72]. Previous efforts, such as 

combining fuzzy logic with machine learning or genetic algorithms, have attempted to 

overcome these challenges but often suffer from issues like convergence instability, 

complexity, and computational overhead [73][74]. To address these shortcomings, the 

proposed approach defines explicit mathematical methods for constructing membership 

functions, eliminating reliance on manual or software-driven parameter adjustments. These 

methods ensure faster, more precise classification of inputs, offering high adaptability for 

various AI applications without requiring specialized tool environments. The algorithms were 

implemented and tested in MATLAB on a dataset of 10,000 task-size entries, successfully 

categorizing them into small, medium, or large classes. Results demonstrated equivalence or 

superior precision compared to Mamdani fuzzy systems, validating the proposed approach’s 

efficiency and accuracy in practical scenarios. The chapter also emphasizes the broader 

implications of these mathematical methods for AI, particularly in environments where 

traditional fuzzy logic implementations are impractical due to software dependencies or 

computational limitations. By systematically computing membership degrees through 
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deterministic calculations rather than heuristic tuning, the methodology enables more scalable, 

efficient, and tool-independent decision-making processes. This development significantly 

advances the practical applicability of fuzzy logic, bridging theoretical advancements with real-

world implementation and providing a robust alternative to traditional fuzzy systems in 

complex, uncertain domains [75]. Overall, Chapter 6 contributes a groundbreaking method for 

optimizing fuzzy logic systems, offering a mathematically rigorous, efficient, and adaptable 

framework for decision-making across diverse AI and engineering applications. 

7.1 Background of Fuzzy Logic System 

The outlines the fundamental principles and architecture of fuzzy logic systems, emphasizing 

their capability to handle uncertainty and partial truths—a stark contrast to binary logic’s rigid 

true/false dichotomy. Unlike crisp sets where membership is strictly 0 or 1, fuzzy sets allow 

values between 0 and 1, enabling nuanced reasoning similar to human decision-making, often 

termed “computing with words” [76][77]. Figure 7.1 illustrates the typical architecture of a 

fuzzy logic system, comprising several core components. First, crisp input processing 

transforms precise inputs into either binary (crisp) values or fuzzy sets. Crisp sets use an 

indicator function assigning 1 for membership and 0 otherwise. Next, fuzzification converts 

crisp inputs into fuzzy sets using linguistic terms and membership functions, forming the basis 

for flexible reasoning [78]. The inference engine then applies a set of IF-THEN rules from a 

fuzzy rule base, matching fuzzified inputs to conditions and aggregating conclusions to 

produce fuzzy outputs [79]. Finally, defuzzification converts fuzzy outputs into actionable 

crisp values, ensuring practical application. The centroid method, as described in Equation 6.2, 

calculates a precise value by averaging outputs weighted by their membership degrees [80]. 

 

Figure 7.1 Architecture of a fuzzy logic system. 

Crucial to this entire process are membership functions, which determine how strongly an 

input belongs to a fuzzy set, providing a smooth mapping from inputs to truth values in [0,1] 

[81]. Three widely used functions include: 

• Triangular membership functions, defined by parameters {a, b, c}, forming a 

simple linear slope. 

• Trapezoidal membership functions, defined by {a, b, c, d}, allowing flat-topped 

regions for broader intervals of full membership [Equation 7.1]. 
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                                               𝜇𝐹(𝑥) =

{
 
 

 
 
0;   x ≤ a
x−a
b−a

  ;a< x <b

1; b ≤ x ≤ c
d−x
d−c

 ;   c< x <d

0; x ≥ d

                                                           (7.1)                         

• Gaussian membership functions, producing smooth bell-shaped curves for gradual 

transitions in membership, expressed mathematically by an exponential function 

centered around a mean value with a specified width [Equation 7.2]. 

                        𝜇𝐴(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)2

                                                              (7.2) 

These components collectively empower fuzzy logic systems to handle ambiguous, complex 

real-world problems across diverse applications, such as AI, control systems, and decision-

making environments. 

7.2 Methodology 

This study introduces a precise, mathematically grounded methodology for enhanced decision-

making in uncertain domains, replacing traditional heuristic fuzzy logic implementations with 

systematic calculations. The foundation of the approach remains the Mamdani fuzzy inference 

system (FIS), a Max-Min method that transforms linguistic rules into actionable outputs by 

evaluating the degrees of membership of crisp input values across multiple fuzzy sets [23]. 

This mechanism ensures a nuanced understanding of how each input contributes to decision-

making. 

The proposed methodology consists of three specialized algorithms designed to calculate 

membership functions analytically, improving precision and computational efficiency. 

• Algorithms 1 & 2 utilize geometric principles to define triangular and trapezoidal 

membership functions. Both rely on the mathematics of linear functions. For 

triangular and trapezoidal shapes, the method applies line equations such as the slope-

intercept form [Equation 7.3] to construct membership function boundaries. Absolute 

value functions [Equations 7.4] are employed to manage slope variations and 

symmetrical properties. 

                     y-y1=m(x-x1)                                                          (7.3) 

   

                         𝑓(𝑥) = {

𝑥, 𝑖𝑓  𝑥 > 0
0, 𝑖𝑓  𝑥 = 0
−𝑥, 𝑖𝑓 𝑥 < 0

                                                     (7.4) 

• Algorithm 3 focuses on Gaussian membership functions, grounded in probability 

theory. It uses the Gaussian probability density function (PDF) [Equation 6.11], 

parameterized by the mean (m) and standard deviation (σ). Variance calculations 

[Equation 7.5] ensure accurate modeling of uncertainty, making Gaussian functions 

suitable for representing smoothly varying memberships in fuzzy sets [82][83]. 
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                𝑓𝑋(𝑥)=
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2
)                                                   (7.5) 

Together, these algorithms systematically categorize input variables within a defined universe 

of discourse, transforming crisp values into fuzzy membership degrees with mathematical 

precision. The process significantly reduces reliance on external toolboxes (e.g., MATLAB’s 

fuzzy toolbox), thereby enhancing portability and computational speed. The second and third 

algorithms operate within the same input domain in the proposed system but differ in how they 

structure and apply conditions to define and classify the five membership functions used in this 

study. This methodology establishes a robust framework for determining membership degrees, 

directly enabling precise classification of inputs under uncertainty, and enhancing decision-

making processes across diverse AI and control applications.  

Algorithm 1: Input Partitioning and Membership Classification as similar work as 

Triangular MF 

//Membership degrees are calculated for each input value Vi with respect to membership 

functions defined over the universe of discourse. 

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of 

the membership functions—not the input data itself. 

• Input: V, a set of crisp input values for which the degree of membership will be 

calculated. 

//Parameters: Definitions of membership functions (PVs specifying boundaries, 

centers, or slopes for triangular MFs. 

n: The number of fuzzy partitions (i.e., number of membership functions) into which 

the universe of discourse is divided. 

• Output: 
A matrix of membership degrees μ(vi) for each vi across all defined membership 

functions. 

Procedure: 

1. Initialization: 

• Max(V)  max(Vi) // Calculate the maximum value of sets V in the universe 

discourse. 

2. Parameter Value Calculation: 

• PV1 (Max(V)/n)  // Determine the first parameter value. 

• PVn  n × PV1   // Compute the last parameter value. 

3. 3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1:if  Vi ≥0 and Vi ≤ PV1 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) 

//Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) // Determining the degree of element 

in the remaining MF domain. 

• Case 2: if  Vi ≥ PV1 and Vi ≤ PV2 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF1 and Subsequent 

it, as MF2. 

α (Vi−PV2) // Define the alpha variable. 
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MF2 (
−1

𝑃𝑉2−𝑃𝑉1
) × (|𝛼| + 1)  

// Compute the degree of element affiliated with both domains MF2 and previous 

it, as MF1. 

Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

• Case 3: if Vi ≥ 𝑃𝑉𝑛 − 1 and Vi ≤ PVn  

MFm((
1

𝑃𝑉𝑛−𝑃𝑉𝑛−1
) × (𝑉𝑖 − 𝑃𝑛 − 1); Output (MFm, Degree (Vi)) 

// Calculate Membership Function m. 

Output (MF1,MF2,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

4.End of Algorithm 1 

7.3 Experimental Results and Analysis 

This study presents the experimental validation of the proposed fuzzy logic methodology, using 

a large dataset of over 10,000 user tasks extracted from the Parallel Workloads Archive [1]. 

This dataset comprises job-level usage data from supercomputers, clusters, and grid systems, 

including diverse task sizes ranging from 0 to 67,170 bytes. These tasks, categorized as 

“small,” “medium,” and “big,” represent unstructured and varying user demands, providing a 

realistic basis for testing fuzzy classification approaches. The data were used in their raw 

format without preprocessing, ensuring authenticity for experimental analysis. MATLAB® 

(R2018b) was employed for computational modeling, leveraging its strong capabilities for 

mathematical analysis, data handling, and visualization. The first part of the experimental 

analysis focuses on applying the proposed triangular membership function, implemented 

through the first algorithm. This method determines the degree of membership of task sizes 

across the defined universe of discourse, effectively classifying inputs based on fuzzy logic 

principles. Results are visually presented in Figures 7.2, which demonstrate triangular 

membership functions. 

 

Figure 7.2 Classify all Triangular MF. 
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The second experimental segment utilizes the trapezoidal membership function, implemented 

through the second algorithm, to classify task sizes. This approach assigns membership values 

based on trapezoidal curves, enabling smooth transitions between classes while maintaining 

precise delineation of task categories. Figures 7.3 display the classification outcomes for 

combined trapezoidal functions. underscoring the proposed method’s ability to deliver precise, 

interpretable classifications while effectively modeling uncertainty. 

 

Figure 7.3 Classify all Trapezoidal MF. 

In the final experimental section, the Gaussian membership function is applied using the third 

algorithm. Recognized for its smooth, continuous curves, the Gaussian function offers high 

precision in membership degree assignment, crucial for nuanced classification of overlapping 

task sizes. Figures 7.4 Gaussian membership function classifications, this demonstrates how 

the proposed model integrates fuzzy inference with probabilistic modeling for more refined 

and consistent outcomes.  

 

 

 

 

 

 

Figure 7.4 Classify all Gaussian MF. 

Overall, these experimental evaluations confirm the robustness and adaptability of the 

proposed mathematical fuzzy logic framework. Compared to traditional Mamdani systems, the 

new algorithms provide systematic, mathematically grounded processes for classifying data 

under uncertainty, ensuring precise, flexible, and computationally efficient task classification 

suitable for cloud computing and other AI applications. 
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7.4 Validation-Based Comparative Analysis 

This study presents a validation study comparing the classical Mamdani fuzzy inference system 

(FIS) to the proposed mathematical model featuring newly developed algorithms for fuzzy 

classification. Unlike traditional Mamdani systems that rely on heuristic or manual tuning, the 

proposed model employs precise mathematical formulations for constructing triangular, 

trapezoidal, and Gaussian membership functions. These formulations—based on point-slope 

line equations, linear interpolation, and probabilistic Gaussian distributions—enable 

systematic input classification and accurate computation of membership degrees, improving 

computational efficiency and scalability while retaining the interpretability of fuzzy systems. 

A comparative analysis was performed using ten representative input samples from the 

universe of discourse, as well as a larger dataset of 10,000 inputs representing diverse task 

sizes. Results, presented in Tables 7.1 and 7.2, reveal that the proposed model consistently 

achieves greater precision and adaptability, especially in handling complex and uncertain 

inputs, compared to the Mamdani FIS. Moreover, the new approach reduces dependency on 

specialized simulation software, thus minimizing computational resources and storage 

requirements. This validation confirms that the proposed mathematical framework 

significantly advances fuzzy logic applications, offering robust, scalable, and efficient 

solutions for modern intelligent systems. 

Table 7.1 Results of the Proposed Method Applied to Selected Samples. 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499091856 0.001816287 0 
17129 0.489980646 0.020038708 0 
17361 0.4830728 0.033854399 0 
17579 0.476581807 0.046836385 0 
25978 0.226499926 0.547000149 0 
26931 0.198124163 0.603751675 0 
28842 0.141223761 0.717552479 0 
31475 0.062825666 0.874348668 0 
33565 0.000595504 0.998808992 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182 0.500818818 0 
21582 0.393479232 0.606520768 0 
23875 0.222792914 0.777207086 0 
25331 0.114411195 0.885588805 0 
26846 0.001637636 0.998362364 0 
46120 0 0.566919756 0.433080244 
45451 0 0.616718773 0.383281227 
44329 0 0.700238202 0.299761798 
42852 0 0.810183117 0.189816883 
40336 0 0.997469108 0.002530892 

Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.120934543 0.000213895 
1 0.999999998 0.120949757 0.000213949 
10090 0.826402652 0.355634634 0.002238294 
32026 0.146469985 0.995458374 0.098946015 
49791 0.009627715 0.611475933 0.567984183 
54045 0.004209592 0.456574063 0.724241188 
61138 0.000911417 0.241274197 0.934125619 
64852 0.000379417 0.160259114 0.989987311 
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Table 7.2 Results of the Traditional Method Applied to Selected Samples. 

7.5 Summary 

This chapter presented and validated a new mathematical framework for precise fuzzy 

classification, introducing three algorithms for computing triangular, trapezoidal, and Gaussian 

membership functions. Unlike traditional Mamdani systems, the model offers systematic input 

partitioning and efficient membership degree computation, enhancing accuracy, computational 

speed, and robustness while preserving interpretability. Extensive testing with over 10,000 

samples confirmed the model’s superior performance in classifying tasks into small, medium, 

or big categories. The approach is well-suited for diverse AI applications, such as QoS 

management, and lays groundwork for future research in high-precision, scalable decision-

making systems, including integration into IVCBS environments. 

65069 0.000359903 0.156223736 0.991766863 
67170 0.000213895 0.120934543 1 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499076941,400667 0.001846117,1986660315 0 
17129 0.489965459,74273464 0.020069080,51453073 0 
17361 0.483057408,28966176 0.033885183,420676514 0 
17579 0.476566222,01048116 0.046867555,979037634 0 
25978 0.226476893,75893282 0.547046212,4821344 0 
26931 0.198100285,8504 0.603799428,2991901 0 
28842 0.141198189,61410197 0.717603620,7717961 0 
31475 0.062797760,83849452 0.87440447,83230109 0 
33565 0.000565745,5931395903 0.998868508,8137208 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182,07533124 0.500818817,9246688 0 
This table extends and complements the information presented in Table 6.2. 

21582 0.393479231,7999107 0.606520768,2000894 0 
23875 0.222792913,50305197 0.777207086,496948 0 
25331 0.114411195,47417002 0.885588804,52583 0 
26846 0.001637635,849337502 0.998362364,1506625 0 
46120 0 0.783443757,9096255 0.216556242,0903744

4 
45451 0 0.808345120,2263083 0.19165487,97736916

7 
44329 0 0.850107943,1251396 0.149892056,8748604

3 
42852 0 0.905084493,4117472 0.094915506,5882528 
40336 0 0.998734459,9121566 0.001265540,0878433

707 
Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.122 0.0002 
1 1 0.122 0.0002 
10090 0.8418 0.7201 0.0053 
32026 0.2931 0.996 0.1097 
49791 0.0304 0.5364 0.7211 
54045 0.0124 0.2917 0.8431 
61138 0.0028 0.1097 0.9959 
64852 0.0011 0.0566 0.9881 
65069 0.0010 0.0532 0.9926 
67170 0.0002 0.1218 1 
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8. Intelligent Validation Cloud Broker System 

This study presents advancements in Service Level Agreement (SLA) selection through the 

Intelligent Validation Cloud Broker System (IVCBS), which integrates mathematical modeling 

with cloud resource management. The proposed system employs mathematical formulations 

akin to trapezoidal membership functions, using linear equations to define membership degrees 

for input variables such as VM attributes and user request sizes. This approach enhances 

resource classification accuracy, optimizes response time, and lowers VM costs and data center 

processing times. Simulations confirm that IVCBS, especially with the “Optimize Response 

Time” policy, surpasses traditional methods in metrics like response time, VM costs, and 

energy efficiency, enabling more cost-effective cloud resource allocation [80][81]. Cloud 

computing’s scalability and flexibility hinge on service models like IaaS, PaaS, and SaaS [82]. 

Yet, its dynamic nature demands sophisticated SLA management to address resource conflicts 

and fluctuating user demands [83]. Traditional brokers often fall short in trust, efficiency, and 

dynamic service matching [84]. Prior research has explored fuzzy logic for resource allocation, 

leveraging methods like Fuzzy-RLVMrB and PRSF to enhance load balancing and reduce 

energy use [85]. Simulation tools like CloudSim and Cloud Analyst enable comprehensive 

modeling of such strategies [86]. The IVCBS refines resource allocation by converting 

continuous fuzzy membership values into binary decisions for real-time operations. Inputs 

exceeding a defined threshold receive a score of one, ensuring validated allocation only for the 

most suitable resources. This two-stage system combines fuzzy classification with crisp 

decision-making, improving operational efficiency. Testing across six AWS regions with one 

million users and diverse EC2 instances confirmed IVCBS’s superior performance in global 

cloud environments [87][88]. The chapter also situates IVCBS amid research exploring 

brokers’ roles in SLA negotiation, cloud security, multi-cloud interoperability, and load 

balancing [27][89]. IVCBS stands out as an adaptive, mathematically grounded solution, 

addressing gaps in traditional SLA selection while supporting scalable and efficient cloud 

service management. 

8.1 the Proposed System 

This study introduces the proposed Intelligent Validation Cloud Broker System (IVCBS), an 

advanced framework aimed at improving intelligent service identification, resource allocation, 

and SLA optimization in cloud computing. The system validates only those resources or user 

requests that achieve a uniform membership score of 1, ensuring precision and reliability in 

decision-making, as demonstrated by the classification and matching algorithms. This 

approach optimizes cloud resource management and promotes high service efficiency. 

Classification Algorithm 

 

Inputs: Parameter Value (PV)set= {PV1, PV2,,,PV11} 

Output=Classification with order Parameter Values. 

//Compute the level for each input parameters. 

1.For each input value (V) from input parameter value set 

2.IF (V >=PV1 and V <=PV2) 

3.MF1   (((-1/PV1-PV2)) *((V-PV2))) +1) 

//MF: Membership Functions 

4.Output  (Poor, MF1) 

5.Output  ((Fair, Good, V. Good, Excellent),0) 

6.End 
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7.IF(V>PV2 and V<=PV3) 

8.MF1  1 

9.Output (Poor, MF1) 

10.Output ((Fair, Good, V. Good, Excellent),0)  

11.End  

12.IF (V>PV3 and V<=PV4) 

13.MF1 (((-1/(PV4-PV3)) *((V-PV3))) +1) 

14.Output (Poor, MF1) 

15.Output ((Good, V. Good, Excellent),0) 

16.MF2 (((-1/PV3-PV4)) *((V-PV4))) +1) 

17.Output (Fair, MF2) 

18.End 

19.IF(V>PV4 and V<=PV5) 

20.MF21 

21.Output (Fair, MF2) 

22.Output ((Poor, Good, V. Good, Excellent),0) 

23.End 

24.IF(V>PV5 and V<=PV6) 

25.MF2 (((-1/(PV6-PV5)) *((V-PV5))) +1) 

26.Outputç(Fair, MF2) 

27.Output ((Poor, V. Good, Excellent),0) 

28.MF3 (((-1/PV5-PV6)) *((V-PV6))) +1) 

29.Output (Good, MF3) 

30.Output ((Poor, V. Good, Excellent),0) 

31.End 

32.IF (V>PV6 and V<=PV7) 

33.MF31 

34.Output(Good, MF3) 

35.Output ((Poor, Fair, V.Good, Excellent),0) 

36.End 

37.IF (V>PV7 and V <=PV8) 

38.MF3 (((-1/(PV8-PV7)) *((V-PV7))) +1) 

39.Output (Good, MF3) 

40.Output (Poor, Fair, Excellent),0) 

41.MF4 (((-1/(PV7-PV8)) *((V-PV8))) +1) 

42.Output (V. Good, MF4) 

43.Output(Poor, Fair, Excellent,0) 

44.End  

45. IF (V>PV8 and V<=PV9) 

46. MF41 

47.Output(V. Good, MF4) 

48.Output ((Poor, Fair, Good, Excellent),0) 

49.End 

50.IF (V>PV9 and V<=PV10) 

51.MF4 (((-1/(PV10-PV9)) *((V-PV9))) +1) 

52.Output (V. Good, MF4) 

53.Output ((Poor, Fair, Good),0) 

54.MF5 (((-1/(PV9-PV10)) *((V-PV10))) +1) 

55.Output (Excellent, MF5) 

56.Output ((Poor, Fair, Good),0) 
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57.End 

58.IF (V>PV10 and V<=PV11) 

59.MF51 

60.Output (Excellent, MF5) 

61.Output (Poor, Fair, Good, V.Good),0) 

62.End 

63.End  

 

 

Matching Algorithm 

 

1.IF Output (Poor, PV1) 

2.Assign: User base Request (App1)   M6g.medium 

3.End 

4.IF Output (Poor, PV2) 

5.Assign: User base request (App2)   M6g.large 

6.End 

7.IF Output (Poor, PV3) 

8.Assign: User base request (App3)   M6g.XLarge 

9.End 

10.IF Output (Fair, PV4) 

11.Assign: User base request (App4)   M5.2XLarge 

12.End 

13.IF Output (Fair, PV5) 

14.Assign: User base request (App5)   M5.4XLarge 

15.End 

16. IF Output (Good, PV6) 

17.Assign: User base request (App6)   M6gd.8XLarge 

18.End 

19.IF Output (Good, PV7) 

20.Assign: User base request (App7)   M6gd.12XLarge 

21.End 
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22.IF Output (V. Good, PV8) 

23.Assign: User base request (App8)  M6g.metal 

24.End 

25.IF Output (V. Good, PV9) 

26.Assign: User base request (App9)  M5d.metal 

27.End 

28.IF Output (Excellent, PV10) 

29.Assign: User base request (App10)  M6i.metal 

30.End 

31.IF Output (Excellent, PV11) 

32.Assign: User base request (App11)  M6a.metal 

33.End 

 

This study focuses on AWS General Purpose EC2 instances, deployed across 31 global data 

centers in six regions, as shown in Figure 8.1. AWS provides 212 EC2 instance types 

categorized into 11 groups, offering a balanced mix of compute, memory, and networking 

resources to support diverse workloads, including web servers and repositories [90]. Cost data 

and technical specifications are compiled in various tables, such as Table 8.1, which details 

AWS general-purpose EC2 instances, and Table 8.2, which presents user request sizes, 

establishing a solid empirical foundation for simulation and analysis. At the core of the IVCBS 

is a mathematical model based on trapezoidal membership functions. Instead of relying on 

heuristic tuning, this model employs linear and absolute-value equations to emulate trapezoidal 

curves, allowing precise computation of membership scores (either 0 or 1) for inputs like VM 

attributes (vCPU, RAM, storage, bandwidth) and user request sizes [76][91]. Inputs classified 

as “Poor,” “Fair,” “Good,” “Very Good,” or “Excellent” guide decisions on resource allocation, 

with only those scoring 1 being validated for deployment. This rigorous classification ensures 

alignment with user-specific SLA requirements while improving system efficiency. The 

system implements this model in MATLAB, where algorithms systematically assign 

membership degrees to inputs, ensuring consistent decision-making across VM resources and 

user request sizes. This approach demonstrates how the mathematical functions mirror the 

behavior of trapezoidal membership structures in determining and classifying membership 

degrees. 
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Figure 8.1 Intelligent Validation Cloud Broker System Framework. 

Table 8.1 AWS-General purpose instance features. 

AWS-General-Purpose series Attributes and specs 
EC2- Series VCPU RAM 

GB 
Storage 
GB 

Bandwidth 
Gbps 

VCPU-clock 
speed 
GHz 

M6g.medium 1 4 1 2 2  
M6g.Large 2 8 2 4 2  
M6g.Xlarge 4 16 4 8 2.4  
M5.2XLarge 8 32 8 10 2.5  
M5.4XLarge 16 64 12 12 2.5  
M6gd.8XLarge 32 128 16 14 2.5  
M6gd.12XLarge 48 192 24 16 2.7  
M6g.metal 64 256 32 18 2.7  
M5d.metal 96 384 48 24 3.4  
M6i.metal 128 512 64 30 3.4  
M6a.metal 192 768 88 40 3.4  

Table 8.2 Cloud users and sizes of their requests. 

Cloud users User request 
Scenario 
number 

 

Total 

number of 

users 

SaaS Size 

1 1000,000 App1 3 MB 

2 1000,000 App2 5 MB 

3 1000,000 App3 10 MB 

4 1000,000 App4 35 MB 

5 1000,000 App5 70 MB 

6 1000,000 App6 105 MB 

7 1000,000 App7 140 MB 

8 1000,000 App8 750 MB 

9 1000,000 App9 1500 MB 

10 1000,000 App10 2250 MB 

11 1000,000 App11 3000 MB 
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To manage workloads, the proposed system deploys the Round-Robin (RR) algorithm. RR 

ensures fair distribution of user requests across VM clusters by cycling through servers 

sequentially, with each receiving an equal time quantum [92][93]. This ensures balanced 

utilization and mitigates bottlenecks during high-demand periods. For resource allocation 

strategies, IVCBS integrates two service broker policies (SBPs): (1) optimizing response time 

and (2) dynamic reconfiguration based on load [94][95]. The first policy continuously evaluates 

data center performance, routing user requests to the center with the lowest response time, 

thereby ensuring minimal latency [96][86]. The second policy dynamically adjusts VM 

deployments based on real-time load assessments. It redistributes workloads across data centers 

if performance dips below thresholds, ensuring balanced resource usage and cost efficiency 

[97][98]. The IVCBS leverages the CloudAnalyst tool for simulation, extending the 

capabilities of CloudSim. CloudAnalyst facilitates modeling of geographically distributed 

systems under varied workloads, producing detailed outputs in tables and charts to analyze 

response times, costs, and data center processing metrics [99]. This proposed framework builds 

upon existing research on intelligent decision-making and broker-based systems. It offers 

significant advancements over traditional methods by eliminating heuristic dependency, 

enhancing computational efficiency, and ensuring high-precision SLA alignment. As a result, 

the IVCBS contributes substantially to improving cloud resource allocation, user satisfaction, 

and operational efficiency in complex cloud environments.  

8.2 Experimentation and Analysis 

 Details the experimental evaluation of the proposed Intelligent Validation Cloud Broker 

System (IVCBS) using Cloud-Analyst to simulate the “Optimize Response Time” policy. The 

experiment processed 1,000,000 user requests distributed across ten user bases and 31 AWS 

data centers in six global regions, each configured with a single VM based on 11 EC2 

specifications. Network delays were standardized using AWS latency data. User workloads 

varied from 10,000 off-peak to 100,000 peak users per base, determining metrics such as data 

size per request and instruction length. Round-robin load balancing was employed within data 

centers to manage VM workloads. Each of the 31 data centers was tested across 11 scenarios 

reflecting AWS General Purpose EC2 instances. The proposed IVCBS was benchmarked 

against traditional random allocation methods, which indiscriminately assign VM resources 

without considering request characteristics. Both systems were tested under two policies: 

optimizing response times and dynamic load reconfiguration. Results indicated that the 

IVCBS’s strategic allocation approach outperforms traditional methods, offering improved 

resource efficiency and responsiveness while maintaining consistent EC2 specifications. 

8.3 Results and Comparative Analysis 

This study presents a thorough evaluation of the Intelligent Validation Cloud Broker System 

(IVCBS) under two service broker policies—Optimized Response Time and Dynamic 

Reconfiguration with Load Balancing (LB)—implemented via the CloudAnalyst simulator. 

The IVCBS intelligently routes user requests from ten user bases (UBs) to 31 AWS data centers 

globally, adjusting resource allocation to match workload demands using EC2 instance types, 

such as EC2-M6a.metal for high-volume tasks. Simulations revealed that the Optimized 

Response Time Policy consistently outperforms Dynamic Reconfiguration in metrics such as 

Average Overall Response Time, Average Data Center Processing Time, and Total VM Cost, 

though Data Center Request Servicing Times were comparable or slightly higher under 

optimized routing, indicating a nuanced performance trade-off. Results, illustrated in Tables 

8.3 and 8.4, underscore the optimized policy’s ability to lower response times by globally 
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distributing requests rather than confining them to geographically close data centers, as in the 

Dynamic Reconfiguration approach. The optimized strategy also improves energy efficiency, 

as longer servicing times in dynamic reconfiguration can lead to higher energy consumption 

due to inefficient processor and memory utilization and greater cooling demands. In contrast, 

traditional methods lack the intelligent classification mechanisms of IVCBS.  

Table 8.3 Implementing IVCBS with optimize response time policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM Cost 

($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2475,8 2373,38 83,29 $298,59 

M6g.Large 3853,10 3740,25 167,24 497,65 

M6g.Xlarge 14325,08 10798,69 334,48 1255,96 

M5.2XLarge 140667,03 137632,98 853,50 3483,46 

M5.4XLarge 1010570,86 1031103,10 1707,06 6963,47 

M6gd.8XLarge 2151917,72 1947568,70 3140,37 9966,88 

M6gd.12XLarge 3684599,83 3335444,58 4709,26 13114,84 

M6g.metal 38334990,80 38234416,58 5351,62 25236,98 

M5d.metal 79337433,27 79315311,43 12090,55 14482,63 

M6i.metal 93529270,35 93372293,67 13730,36 6863,40 

M6a.metal 94549552,26 94331238,90 17150,67 3320,20 

Table 8.4 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 6353,58 6324,05 166,32 $298,59 

M6g.Large 55390,42 55364 667,5 497,65 

M6g.Xlarge 275390,88 270714,32 2666,54 1255,83 

M5.2XLarge 2556092 2556270,05 8502,06 3483,45 

M5.4XLarge 3252254,20 3255057,05 20401,48 6234,76 

M6gd.8XLarge 3915809,21 3921022,05 43758,17 8915,92 

M6gd.12XLarge 3573677,62 3584236,77 74944,34 11618,91 

M6g.metal 37016372,94 37016688,54 95138,79 25828,65 

M5d.metal 81818244,66 81883142,21 273382,89 14705,94 

     

M6i.metal 93919067,50 93689019,40 379237,75 6796,75 

M6a.metal 96334126,87 96128434,12 607000,72 3341,66 

They distribute user requests randomly across 31 data centers without considering VM 

specifications or workload sizes, leading to inefficiencies such as assigning high-cost EC2-

M6a.metal instances to handle small tasks that could be processed more efficiently by EC2-

M6g.medium machines. Consequently, traditional approaches showed higher average response 
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times and VM costs than IVCBS, despite sometimes achieving lower total data transfer costs, 

as detailed in Tables 8.5 and 8.6. Visual comparisons confirm the superiority of IVCBS, 

particularly in managing data center request servicing times and enhancing energy efficiency. 

Table 8. 5 Implementing traditional with optimize response time policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2648,32 2544,20 5039,17 298,59 

M6g.Large 3979,79 3866,43 5039,17 497,65 

M6g.Xlarge 16565,20 16507,91 5039,17 995,31 

M5.2XLarge 200877,44 206148,60 5039,17 3483,25 

M5.4XLarge 1012024,16 1045751,95 5039,17 6965,51 

M6gd.8XLarge 2784038,22 2523254,74 5039,17 9907,33 

M6gd.12XLarge 4246474,38 3977103,11 5039,17 13054,04 

M6g.metal 44420610,74 43609256,19 5039,17 17375,69 

M5d.metal 80927473,71 80639117,03 5039,17 7093,73 

M6i.metal 95412416,34 95769447,44 5039,17 3711,87 

M6a.metal 97606171,17 98736234,17 5039,17 1686,10 

Table 8.6 Implementing traditional with Dynamic reconfiguration policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2950,74 2918.84 137867,12 298,59 

M6g.Large 4501,42 4481,36 137962,28 497,65 

M6g.Xlarge 49465,79 49405,39 137677,42 995,31 

M5.2XLarge 1275803,03 1276385,26 137762,59 3483,52 

M5.4XLarge 3599233,17 3600108,32 137634,08 6234,08 

M6gd.8XLarge 5282197,57 5322005,63 137742,44 8914,56 

M6gd.12XLarge 7432190,15 7473084,39 137624,85 11566,42 

M6g.metal 48005803,13 47769425,91 136059,33 14250,25 

M5d.metal 84937790,73 85306107,68 134039,80 5810,42 

M6i.metal 93010845,72 93028448,77 131046,97 3042,69 

M6a.metal 91124687,42 90537061,27 124762,54 1462,37 

Moreover, IVCBS’s integration of mathematical modeling with trapezoidal membership 

functions enables precise matching between VM capabilities and user request sizes. This 

contrasts sharply with the unstructured resource allocation of traditional methods, making 

IVCBS more adaptable and efficient for large-scale cloud environments. These findings 

demonstrate that IVCBS can meet growing cloud service demands by optimizing resource use, 
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reducing operational costs, and delivering superior performance across various scenarios, 

solidifying its potential for future cloud computing advancements. 

8.4 Summary 

This research advances cloud computing by optimizing VM allocation based on user request 

sizes, minimizing processing times, costs, and improving global response times. A novel 

simulation was developed, ensuring workloads align with SLA standards and VM capacities, 

preventing resource over- or underutilization. Introducing IVCBS, the study enhances data 

center selection by factoring in VM attributes, job size, and network conditions, outperforming 

traditional routing methods. Simulations using Cloud Analyst showed significant 

improvements, suggesting that integrating throttled load balancing could further boost 

efficiency. This refined approach ensures scalable, cost-effective, and responsive cloud 

services, laying groundwork for future research on workload classification and performance 

optimization. 

9. A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual Machine 

Allocation 

introduces a broker-driven framework that integrates fuzzy logic to optimize virtual machine 

(VM) allocation in cloud environments, advancing resource management practices. Unlike 

traditional allocation methods that distribute VMs randomly without considering user request 

sizes, this new approach dynamically assigns VMs based on the size of incoming request 

packets and CPU utilization, aligning resources with actual workloads for higher efficiency 

and cost-effectiveness [100][101]. Cloud services’ rapid growth has increased the need for 

sophisticated VM allocation strategies capable of handling heterogeneous and dynamic 

workloads. Traditional methods typically emphasize physical parameters such as CPU, 

memory, and storage but often neglect request packet sizes, leading to inefficiencies and 

bottlenecks [102][102]. Recent research underscores the necessity of adaptive, intelligent 

allocation mechanisms that consider real-time workload characteristics [103][104]. In this 

context, the proposed system deploys a centralized broker that analyzes network traffic and 

redirects requests to appropriately sized VMs using fuzzy logic. This approach enhances VM 

utilization, reduces latency, and improves overall system responsiveness [105]. The fuzzy logic 

system manages imprecise inputs, enabling precise decision-making under uncertainty [53]. 

Tools like Cloud Analyst facilitate the simulation and evaluation of such broker-driven 

allocation strategies, offering valuable insights into their practical performance 

[106][107][108]. This research contributes to addressing the limitations of conventional VM 

allocation by focusing on dynamic optimization guided by request packet size and workload 

classification. It represents a significant step toward delivering high-quality cloud services 

while maintaining efficient resource utilization. Despite progress, challenges persist in 

optimizing VM allocation. Traditional strategies rarely accommodate the fluctuating sizes of 

request packets, an omission that significantly impacts network performance [109]. In contrast, 

broker-driven methods dynamically allocate VMs based on packet sizes, enabling real-time 

optimization and reduced latency. For instance, broker-based models proposed by [29] leverage 

multi-criteria decision-making to maximize profits and customer satisfaction while minimizing 

energy consumption in data centers. Further, traditional traffic engineering lacks flexibility for 

modern cloud demands. Studies like [110] propose fuzzy controllers (Mamdani and Sugeno) 

to improve VM allocation by accounting for uncertainty, validated through simulation tools 

like Cloud Analyst [111]. These tools support the modeling of various allocation strategies, 

helping evaluate their energy consumption and resource management effectiveness. Advanced 
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methods incorporating AI are also emerging. Deep reinforcement learning (DRL) systems like 

DeepBS improve VM scheduling under uncertainty by learning from previous allocation 

outcomes, demonstrating significant cost optimizations [112]. Research in mobile terminal 

cloud computing migration emphasizes efficient data access and minimal latency, leveraging 

machine learning for dynamic resource allocation [113]. Similarly, IMARM uses a multi-agent 

reinforcement learning framework to dynamically allocate resources, achieving superior 

energy efficiency and fault tolerance [114]. Moreover, the field is expanding into cloud robotics 

and multi-agent systems, exploring challenges such as data transmission delays and 

heterogeneous energy consumption [30]. AI-driven resource management, including predictive 

analytics and genetic algorithms, is increasingly employed for intelligent workload 

management and predictive maintenance [115]. Energy efficiency remains a core concern, with 

hybrid heuristic algorithms showing significant reductions in resource consumption [116]. 

Overall, the proposed broker-driven, fuzzy logic-based VM allocation method offers 

significant potential for enhancing cloud performance, aligning with trends toward intelligent, 

adaptive resource management. It stands as a robust solution to contemporary challenges in 

VM allocation, bridging gaps left by traditional strategies and contributing to the ongoing 

evolution of efficient, scalable cloud computing. 

9.1 the proposed system 

The proposed methodology for optimizing virtual machine (VM) allocation in cloud computing 

leverages a broker-driven approach enhanced by fuzzy logic, enabling dynamic resource 

distribution based on the size of incoming request packets. This technique is intended to 

improve VM efficiency, reduce latency, and boost overall system performance. It integrates 

several key components: broker architecture, fuzzy logic modeling, Cloud Analyst simulation, 

and defined evaluation metrics. Table 9.1 provides workload sizes alongside specifications for 

Google Cloud’s T2D standard machine types, using pricing data from the Google Compute 

Engine. The system capitalizes on real-time data to smartly allocate VMs, demonstrating 

adaptability in adjusting resources in response to network and workload changes. 

Table 9.1 workload size machine series specifications. 

Workload Size Machine type 

Series 

VCPU RAM 

(GB) 

Storage 

(GB) 

BW 

(GBPS) 

Price per 

hour ($) 

Small (<1 GB) t2d-Standard-1 1 4 2 2 0.054427 

Medium (1-10 GB) t2d-Standard-2 2 8 10 4 0.108854 

Large (10-100 GB) t2d-Standard-4 4 16 16 8 0.217708 

Very Large (>100 

GB) 

t2d-Standard-8 8 32 32 10 0.435416 

Massive (Big Data 

Processing) 

t2d-Standard-

16 

16 64 100 14 0.870832 

 The broker architecture integrates traffic monitoring, data analysis, and intelligent traffic 

routing. It continuously observes packet sizes and related metrics, analyzes this data in real 

time to identify patterns, and directs traffic to appropriate VMs to ensure optimal resource 

allocation [117]. To address uncertainty and variability in cloud environments, the broker 

incorporates fuzzy logic [118]. The fuzzy logic model relies on two primary inputs—workload 

request packet size and CPU utilization—and produces one output that categorizes VM types. 

For example, packet sizes range from Small (0–5 MB) to Massive (150–250 MB), while CPU 
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utilization spans from Poor (10–40%) to Excellent (85–100%). The output then classifies VMs 

from Simple to High-Performance levels [119]. These fuzzy rules drive optimal VM allocation, 

with Table 9.2 illustrating the proposed system and Table 9.3 depicting the traditional 

approach. The methodology is simulated and evaluated using Cloud Analyst, which enables 

detailed modeling of cloud scenarios and testing of VM allocation strategies [120]. Cloud 

Analyst’s environment modeling includes configuring data centers with individual VMs and 

simulating workloads across five different scenarios. 

Table 9.2 Proposed Allocate VM according to request size. 

Request 

Packet 

Size  

User Bases 
  

VM Load 

balance 

Algorithm 

Broker 

policy 
Price per 

hour ($) 

(<1 GB) [UB1 -UB10] t2d-Standard-

1 
Throttling 

algorithm. 
Optimize 

response 

time. 

0.054427 

(1-10 GB) [UB1 -UB10] t2d-Standard-

2 
Throttling 

algorithm. 
Optimize 

response 

time. 

0.108854 

(10-100 

GB) 
[UB1 -UB10] t2d-Standard-

4 
Throttling 

algorithm. 
Optimize 

response 

time. 

0.217708 

(>100<150 

GB) 
[UB1 -UB10] t2d-Standard-

8 
Throttling 

algorithm. 
Optimize 

response 

time. 

0.435416 

(>150 GB) [UB1 -UB10] t2d-Standard-

16 
Throttling 

algorithm. 
Optimize 

response 

time. 

0.870832 

Table 9.3 Traditional Allocate VM according to request size. 

Scenario 

number 
User Bases 
  

Request Packet 
Size (GB) 

Machine type 

Series 

1 [UB1 UB10] [0.5 200] t2d-Standard-1 

2 [UB1 UB10] [0.5 200] t2d-Standard-1 

3 [UB1 UB10] [0.5 200] t2d-Standard-4 

4 [UB1 UB10] [0.5 200] t2d-Standard-8 

5 [UB1 UB10] [0.5 200] t2d-Standard-16 
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Throttling algorithms further ensure resource fairness and avoid system overloads by regulating 

CPU, bandwidth, and memory usage [121]. Additionally, a broker policy focused on response 

time management dynamically allocates resources to minimize latency, ensuring critical tasks 

are prioritized and enhancing system efficiency and user satisfaction [122]. The broker’s logic, 

including traffic monitoring and fuzzy logic-based decision-making, is implemented within 

Cloud Analyst to dynamically adjust VM allocation based on real-time operational data. This 

integrated broker-driven, fuzzy logic-based methodology marks a significant step forward in 

intelligent cloud resource management, addressing traditional limitations by ensuring precise, 

adaptive VM allocation tailored to dynamic workloads and diverse operational conditions. 

9.2 Simulation and Evaluation of Results 

This study presents a thorough simulation-based evaluation of the proposed Intelligent 

Validation Cloud Broker System (IVCBS), carried out using the Cloud Analyst tool [123]. The 

experiments involved five scenarios, each deploying ten distinct user bases as previously 

described. Scenarios escalated in workload size, starting from 500 million bytes processed on 

t2d-Standard-1, and scaling up to 200 billion bytes on t2d-Standard-16. The same workload 

configurations and user base behaviors were replicated in simulations for both the proposed 

and traditional methods to enable a direct performance comparison. However, the traditional 

approach differed significantly in how it distributed and processed workloads, each simulation 

tested varying request packet sizes and VM resource requirements to examine the robustness 

and adaptability of the broker-driven method. The experiments modeled realistic cloud 

environments, incorporating the fluctuating nature of workloads to evaluate system 

responsiveness under dynamic conditions. The proposed broker-driven system uniquely 

integrates fuzzy logic, using workload packet size and CPU utilization as input parameters to 

classify VMs into five workload intensity levels. Performance metrics collected included 

overall response time, data center processing time, request serving time, total VM costs, and 

data transfer costs. Comparative analysis between the traditional method (Table 9.4) and the 

proposed method (Table 9.5) revealed significant improvements. The broker-driven approach 

achieved up to a 68% reduction in response time and approximately 20% reductions in 

processing and serving times. Moreover, it substantially lowered costs, especially in VM 

provisioning and data transfers. A key innovation of this research is incorporating packet size 

classification into VM allocation—an aspect often overlooked in traditional strategies that 

focus primarily on resource scalability without accounting for workload heterogeneity. By 

factoring in packet size alongside real-time CPU utilization, the proposed approach enables 

more precise and intelligent resource allocation. Fuzzy logic contributes critical adaptability, 

allowing the system to handle uncertainty and align resource allocation with dynamic workload 

patterns more effectively than static methods. 

Table 9.4 Summary of the results of the traditional method. 

Scenario  Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving 

times 

Avg(ms) 

Total data 

transfer cost 

($) 

1 571309,86 58,06 58,06 33959999,08 

2 548272,30 59,31 59,31 30557098,39 

3 565510,88 60,39 60,386 33791313,17 

4 558790,62 58,03 58,026 33726768,49 
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5 574401,10 59,35 59,348 32435417,18 

Table 9.5 Summary of the results of the proposed Method. 

Scenario 

Number 

Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving times 

Avg(ms) 

Total data 

transfer 

cost 

($) 

1 333748,21 56,41 56,141 4186420,44 

2 278151,12 49,88 49,875 6354904,17 

3 183111 44,30 44,297 9916305,54 

4 0 39,32 39,323 4909515,38 

5 0 40,26 40,264 4531860,35 

9.3 Summary 

Details a comprehensive simulation and evaluation of the proposed broker driven VM 

allocation method, executed using the Cloud Analyst tool. Five scenarios tested varying 

workload sizes, scaling from 500 million to 200 billion bytes, matched to different Google t2d-

Standard VM types, ensuring alignment between request size and resource capacity. While the 

traditional VM allocation method used identical parameters for user bases and peak hours, it 

diverged fundamentally in how workloads were distributed and managed, lacking the adaptive 

intelligence of the proposed approach (as shown in Table 9.2). The simulations assessed 

robustness and adaptability under realistic, dynamic cloud workloads, comparing the new fuzzy 

logic-based method against traditional strategies. The broker-driven system utilized fuzzy 

logic, incorporating workload packet size and CPU utilization as inputs to classify and allocate 

VMs across five workload intensity levels. Key performance metrics were analyzed, including 

overall response time, data center processing time, serving time, total VM costs, and data 

transfer expenses. The broker-driven approach achieved significant gains: reducing response 

times by up to 68%, cutting processing and serving times by about 20%, and lowering costs, 

particularly in data transfer and VM provisioning, as highlighted in Tables 9.4 and 9.5. The 

novelty of this research lies in integrating fuzzy logic with packet size classification—a 

dimension typically neglected in conventional VM allocation, which focuses mainly on 

scalability without considering packet heterogeneity. By factoring in packet size and real-time 

CPU load, the proposed model delivers finer, intelligent resource allocation. Fuzzy logic 

enables the system to manage uncertainty and dynamically align resources with varying 

demands, outperforming rigid rule-based methods. This proactive, precise allocation helps 

prevent bottlenecks, enhances energy efficiency, and improves system responsiveness. 

Practically, the methodology offers scalable, cost-effective, and energy-aware cloud resource 

management. It ensures equitable VM distribution, optimizes operational costs, and 

significantly improves service reliability and performance in heterogeneous, high-demand 

cloud environments, advancing intelligent cloud infrastructure design. 

10. Reliable and Cost-Effective Fuzzy-based Cloud Broker 

This study proposes a reliable and cost-effective cloud broker architecture leveraging fuzzy 

logic to enhance decision-making in cloud environments, addressing the growing complexity 

faced by users selecting suitable cloud services among numerous Cloud Service Providers 

(CSPs) [124]. The broker functions as an intelligent intermediary, balancing user needs with 

CSP interests, while analyzing user mobility scenarios—including stationary and mobile 
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users—and evaluating the effects of service migration on performance and costs. This dynamic 

management approach improves service reliability, resource efficiency, and cost-effectiveness 

compared to traditional methods [125]. Cloud brokerage has become critical for efficiently 

provisioning resources and managing the complexity of modern distributed systems such as 

URLLC, eMBB, and mMTC applications promised by 5G and beyond networks [126][127]. 

Existing cloud brokers adopt various strategies—customer-centric, profit-centric, or balanced 

approaches—yet face challenges in scalability, decision speed, and usability. Techniques used 

include game theory [32], reinforcement learning, weighted algorithms, ontology-based 

methods, and multi-criteria decision-making approaches such as AHP combined with TOPSIS 

[128]. However, these methods often struggle with increased complexity, high computational 

costs, or the burden of requiring precise user input definitions, which can deter nonprofessional 

users [33]. Fuzzy logic-based brokers have demonstrated significant potential. However, they 

encounter challenges when managing many input parameters, resulting in an exponential 

increase in rule sets and complexity for the inference engine. Data collection can also become 

problematic due to privacy concerns and CSPs’ reluctance to disclose sensitive parameters 

[129]. The proposed study mitigates these limitations by integrating fuzzy logic with a 

modified TOPSIS technique, focusing on two practical, easily measurable parameters per fuzzy 

system. This design significantly reduces inference complexity, enabling scalable, real-time 

decision-making in heterogeneous cloud environments. The methodology was tested across 

multiple data centers of major providers (AWS, Google Cloud, Azure), evaluating different 

VM types, and effectively ranked services and users to optimize resource matching and ensure 

both user satisfaction and CSP operational efficiency. 

10.1 System Design 

The proposed fuzzy-based cloud broker system is designed to simplify cloud service selection 

for both novice and expert users, addressing usability issues prevalent in commercial brokers 

[130]. The system architecture (Figure 10.1) centers around three key phases: service 

discovery, ranking, and matching. Service Discovery enables users to specify requirements 

such as service type, budget, and quality. The broker then identifies relevant cloud service 

instances from major CSPs like AWS, Google Cloud, and Azure, distributed globally across 

the USA, Europe, and Southeast Asia. Ranking employs two fuzzy logic systems: one ranks 

VMs based on CPU availability and cost, and the other ranks users considering budget and task 

size. VM rankings use trapezoidal and triangular membership functions (Figures 10.2), 

processed via an IF-THEN inference engine with rules such as: IF VM CPU is Low AND Cost 

is Low THEN Rank = Silver. User rankings rely on fuzzy sets for budget and task length 

(Figures 10.3), also defuzzified via the centroid-of-gravity (COG) method. This approach 

reduces complexity compared to traditional methods while ensuring accurate classifications 

[131]. Matching then pairs users to VMs based on ranks: Gold users match Gold VMs for high 

performance, Silver for balanced service, and Bronze for economical options. This structured 

matching ensures optimal compatibility, balanced load distribution, and user satisfaction, 

streamlining decision-making for real-time allocations. 
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Figure 10.1 Proposed System Architecture. 

 

Figure 10.2 VM’s ranking membership function. 

 

Figure 10.3 User rank membership function. 

To validate the design, simulations were executed using Edge CloudSim under the Mobile 

Edge Computing (MEC) paradigm, chosen for its sensitivity to delays [132]. The simulation 

models realistic network conditions using WLAN and WAN delays, with data centers 

connected via WAN or MAN networks. Various VM types were tested—including general-

purpose and compute-optimized instances (Table 10.1)—and four delay-sensitive services 

were evaluated (Table 10.2). User workloads were modeled by task length in millions of 

instructions, allowing the broker to allocate resources dynamically and optimize Quality of 

Service (QoS). This architecture demonstrates a scalable, intelligent framework for cloud 

brokerage, effectively bridging user requirements and CSP offerings while managing 

uncertainty through fuzzy logic. The proposed scenario employs Edge CloudSim [133] to 

implement a fuzzy-based cloud broker within the MEC paradigm, targeting the latency 
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sensitivity of edge services. The simulation integrates diverse data centers from AWS, Google 

Cloud, and Azure, distributed across the USA, Western Europe, and Southeast Asia, 

interconnected via WAN and MAN networks. Various VM types—general-purpose, compute-

optimized, memory-optimized, and accelerator-optimized—are selected based on official CSP 

specifications. Users’ service selections depend on budgets and task sizes, influencing VM 

allocation. Four delay-intolerant services are modeled, considering traffic characteristics and 

delay sensitivity. Network delays are simulated using empirical data from WLAN and WAN 

measurements. 

Table 10.1 Official Application Specifications from the Three Cloud Providers' Websites. 

Name CSP Type Number of 

vcpu 

Memory 

T2A GC General 

purpose 

2 4 

E2 GC Cost 

optimized 

2 1 

M1 GC Memory 

optimized 

40 961 

C2 GC Compute 

optimized 

4 6 

A2 GC Accelerator 

optimized 

12 85 

t2. small AWS General 

purpose 

1 2 

i4i.large AWS Storage 

optimized 

2 16 

r7a.medium AWS Memory 

optimized 

1 8 

r7a.large AWS Memory 

optimized 

2 16 

c7a.medium AWS Compute 

optimized 

1 2 

c7a.large AWS Compute 

optimized 

2 4 

p3.2xlarge AWS Accelerator 

optimized 

8 61 

hpc7g.4xlarge AWS HPC 

optimized 

16 128 

B2ls v2 AZURE General 

purpose 

2 4 

F2s v2 AZURE Compute 

optimized 

2 4 

E2as v5 AZURE Memory 

optimized 

2 16 

L8as v3 AZURE Storage 

optimized 

8 64 

NC6 AZURE GPU 

optimized 

6 56 
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H8 AZURE High 

performance 

compute 

8 56 

 

Table 10.2 Types and Specifications of Delay-Intolerant Services in the Simulation Setup. 

Type 

 

Average of 

upload data 

 

Average of 

download data 

 

Task Length Delay 

sensitivity 

 

Health App 1500 25 9000 0.7 

Augmented 

Reality 

20 1250 3000 0.9 

Heavy 

Computing 

2500 200 45000 0.1 

Infotainment 25 1000 15000 0.3 

10.2 Results Analysis and Discussion 

This study evaluates the proposed fuzzy-based broker system against two alternatives: a 

random service selection approach and a least-loaded (LL) broker that allocates users to the 

VM with the highest available processing power. The comparison focuses on service delay and 

user costs across three key scenarios. In the first scenario (stationary users under reserved VM 

policies), the fuzzy broker consistently outperformed both LL and random approaches, 

achieving lower average service delays and more stable performance as user numbers grew. 

LL performed poorly since users remained tied to the same VM throughout the simulation, 

negating the benefits of load balancing. Cost analysis revealed that the fuzzy system kept user 

expenses constant while the LL and random methods drove costs higher as user numbers 

increased due to imbalanced allocation to expensive VMs. This stability is crucial for 

maintaining SLA compliance and user satisfaction. Figures 10.4 and 10.5 present the results of 

the scenario. 

 

Figure 10.4 Average service delay for immobile users. 
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Figure 10.5 The average of monthly client payment. 

The second scenario simulated nomadic users under a reserved instance policy, where users 

remained linked to the same data center despite relocating geographically. All approaches 

suffered from increased delays due to rising communication distances, but the fuzzy broker 

showed lower delay variance than LL and random selection, an important advantage for SLA 

adherence, though it could not significantly reduce absolute delay times under this fixed-

association constraint. Figures 10.6 present the results of the scenario. 

 

Figure 10.6 Average service delay for mobile users. 

The third scenario introduced cross-cloud service migration under a pay-as-you-go (PAYG) 

policy. Here, the fuzzy broker and LL method achieved similar service delays, yet the fuzzy 

system offered more consistent service quality while maintaining predictable costs for users 

regardless of growing demand. This advantage underscores the fuzzy broker’s capacity to 

manage dynamic user mobility and resource shifts while respecting cost constraints and SLA 

requirements. Figures 10.7 and 10.8 present the results of the scenario. 

 

Figure 10.7 Avg service delay with mobile users and service migration. 
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Figure 10.8 Average monthly payment in case of service migration. 

Practical evaluation in this study confirmed that the fuzzy-based broker is feasible for real-

world deployment but faces computational challenges as user numbers scale. Unlike random 

and LL methods, fuzzy logic requires intensive processing for large user bases. To mitigate 

this, strategies like user clustering, flow-based ranking, and user profiling can be applied. For 

example, users running identical applications, such as video gamers or enterprise teams, could 

be grouped and collectively ranked, reducing computation. Additionally, high-priority services 

(e.g., health applications) can be pre-assigned to high-rank classes (Gold) to streamline 

decision-making. Overall, the fuzzy-based broker demonstrates superior performance, cost 

efficiency, and SLA stability compared to conventional methods, positioning it as a promising 

solution for future intelligent, dynamic cloud resource allocation. 

10.3 Summary 

This study presents a novel fuzzy logic-based cloud broker designed to balance the needs of 

clients and cloud service providers (CSPs). The proposed system has been evaluated across 

diverse scenarios, demonstrating its feasibility and effectiveness. For future work, the authors 

plan to enhance the broker by integrating additional decision parameters, including application 

delay sensitivity and client mobility profiles, recognizing that network delays significantly 

impact mobile users, particularly where service migration is not supported. To address this, 

new mechanisms will be developed to minimize mobility-related performance issues. As 

discussed in earlier chapters, employing a third-party broker is crucial in modern cloud 

environments. A cloud broker acts as an intermediary between customers and CSPs, facilitating 

efficient, cost-effective service provision, resource management, and load balancing across 

multiple clouds or instances within the same cloud. Cloud broking is a rapidly expanding field, 

driven by widespread cloud adoption and the increasing complexity of multi-cloud and hybrid 

environments. Cloud Service Brokers (CSBs) are essential for optimizing costs, managing 

resources, and integrating advanced technologies like AI, big data, and IoT. Future trends in 

cloud broking are expected to emphasize deeper AI integration, improved security, growth into 

new markets, and greater automation, highlighting its potential as a dynamic sector for 

innovation and development. 

11. Theses 

Cloud computing underpins modern IT, offering scalable resources via SLAs that define 

performance guarantees. However, challenges remain, including compliance issues, vendor 

lock-in, variable QoS, and high energy consumption from expanding data centers. 

Geographical dispersion increases RTT variability and complicates latency management, while 
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CSPs often lack precise network performance metrics. Ensuring reliable, efficient cloud 

services requires intelligent management, advanced resource allocation, and predictive 

modeling. Addressing these gaps, this doctoral research contributes three innovative systems 

leveraging fuzzy logic and decision-making models, enhancing SLA optimization, resource 

management, and sustainability in cloud computing to meet evolving IT demands. 

Thesis I: Intelligent SLA Guarantee Model for Cloud Computing 

I have developed an Intelligent SLA Guarantee Model for Cloud Computing, employing 

fuzzy logic for the estimation of (RTT) and the classification of (SLAs). This model transforms 

complex technical measurements into linguistically interpretable terms, enabling clearer SLA 

assessments and more user-friendly decision-making processes. The results of this research 

have been published in the following conference proceedings: 

• Sekhi, I. (2023). Estimating Cloud Computing Round-Trip Time (RTT) Using Fuzzy 

Logic for Inter-Region Distances. International Journal on Cybernetics & Informatics 

(IJCI), 12(12), 95. 

• Sekhi, I. (2023). Selecting the SLA Guarantee by Evaluating the QoS Availability. 

Multidiszciplináris Tudományok: A Miskolci Egyetem Közleménye, 13(4), 80–102. 

https://doi.org/10.35925/j.multi.2023.4.8 

Thesis II: Intelligent Validation Cloud Broker System (IVCBS) 

I have created the (IVCBS), a fuzzy logic-based framework designed to optimize (VM) 

allocation and improve cloud computing efficiency. The system dynamically adjusts VM 

distribution based on the analysis of incoming request packet sizes, enhancing resource 

utilization, reducing latency, and maintaining consistent service quality. 

The outcomes of this research have been documented in the following journals: 

• Sekhi, I., & Nehéz, K. (2024). Intelligent SLA Selection Through the Validation Cloud 

Broker System. IEEE Access. DOI: 10.1109/ACCESS.2024.3439617 

• Sekhi, I. (Accepted). Efficient Broker-Driven Request Packet Size. International Journal 

on Informatics Visualization. 

Additionally, related foundational concepts and fuzzy logic optimization techniques were 

published in: 

• Sekhi, I., Kovács, S., & Nehéz, K. (2025). Enhancing Decision-Making in Uncertain 

Domains through Optimized Fuzzy Logic Systems. Periodica Polytechnica Electrical 

Engineering and Computer Science, 69(1), 63–78. https://doi.org/10.3311/PPee.38729 

Thesis III: Intelligent Cloud Brokerage System 

I have designed an Intelligent Cloud Brokerage System that combines fuzzy logic with the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to optimize cloud 

service selection and resource management across multiple (CSPs). This intelligent brokerage 

system serves as an intermediary, aligning user requirements with provider capabilities to 

improve service quality, cost efficiency, and operational performance. 

https://doi.org/10.35925/j.multi.2023.4.8
https://doi.org/10.3311/PPee.38729
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The findings related to this research are published in: 

• Sekhi, I. R., Abdah, H., & Nehéz, K. (2025). Reliable and Cost-Effective Fuzzy-Based 

Cloud Broker. International Journal of Networked and Distributed Computing, 13(1), 

1–9. https://doi.org/10.1007/s44227-024-00052-x 

These three theses collectively address critical challenges in cloud computing, contributing 

innovative solutions for enhancing performance, reducing latency, and improving the 

efficiency of resource management. The integration of fuzzy logic and advanced decision-

making techniques in my research provides new pathways for achieving scalable, reliable, and 

cost-effective cloud services. 

12. Future Research Direction 

• Future research should focus on integrating IoT, edge computing, and 5G to enhance 

cloud computing scalability and interoperability. Real-world testing is crucial to 

evaluate performance, adaptability, and SLA management. Incorporating ML and fuzzy 

logic can optimize SLA classification and QoS adjustments, improving efficiency and 

reliability. Additionally, adaptive traffic management should be explored to enhance 

QoS, resource allocation, and fault recovery. Further research on SLA prioritization 

will optimize cloud resource utilization and user satisfaction. These advancements will 

contribute to intelligent, adaptive, and efficient cloud brokerage systems, ensuring 

better service selection and resource optimization in dynamic cloud environments. 

• Enhance cross-cloud compatibility through standardized integration methods, ensuring 

seamless workload distribution across heterogeneous platforms for individual users and 

enterprises. This will also improve energy efficiency, reducing data centers' carbon 

footprint while maintaining high performance. Leveraging ML-driven workload 

distribution enables real-time optimization, dynamically adapting to service demands 

and enhancing resource efficiency. Addressing security and compliance challenges is 

crucial to mitigating vulnerabilities, improving data privacy, and maintaining 

regulatory standards in multi-cloud environments. Additionally, context-aware 

decision-making in cloud brokerage systems should incorporate application delay 

sensitivity and client mobility profiles. Developing adaptive mechanisms to adjust 

resource allocation dynamically will help mitigate network delay, ensuring seamless 

service quality, minimal latency, and optimal performance in mobile cloud 

environments. 
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