
University of Miskolc

FACULTY OF MECHANICAL ENGINEERING AND

INFORMATICS

Adaptive Fuzzy Logic Models for Efficient Cloud Service Management and SLA

Optimization

PhD DISSERTATION

AUTHOR:

Ihab Razzaq Sekhi

MSc in Information Science

József Hatvany Doctoral School of

Information Science, Engineering and Technology

HEAD OF DOCTORAL SCHOOL

Prof. Dr. László Kovács

ACADEMIC SUPERVISORS

Prof. Dr. Szilvester Kovacs

Dr. Károly Nehéz

Miskolc

2025

I

Declaration of Authorship

The author hereby declares that this dissertation has not been submitted, either in the same or

in a different form, to this or to any other university for obtaining a PhD degree. The author

confirms that the submitted work is his own and the appropriate credit has been given where

reference has been addressed to the work of others.

Author's declaration

I, the undersigned, Ihab Razzaq Sekhi, affirm that I have independently prepared this doctoral

dissertation utilizing solely the sources provided. All content borrowed from external sources,

whether quoted verbatim or paraphrased, has been clearly cited with appropriate references.

March 22, 2025.

 Ihab Razzaq Sekhi

II

Acknowledgments

First and foremost, I express my sincere gratitude to Allah, the Almighty, for granting me

countless blessings, wisdom, and inspiration, enabling me to complete this dissertation.

I also extend my heartfelt thanks to the University of Miskolc, Faculty of Mechanical

Engineering and Informatics, for providing me with the opportunity to pursue a PhD in

information technology.

While this dissertation represents the culmination of my efforts, its success is also the result of

invaluable guidance and encouragement from many individuals. It would not have been

possible without the unwavering support of those around me and the dedication and hard work

invested over the past four years.

I am particularly grateful to my supervisors, Professor Szilveszter Kovacs and Dr. Károly

Nehéz, for their continued support, direction, and encouragement throughout this journey. This

dissertation would not have come to fruition without their expert guidance. I would also like to

thank everyone in the Computer Science Department for their contributions.

In addition, I am thankful to my department colleagues for their assistance and support,

especially in organizing events related to my doctoral studies.

Finally, I would like to express my profound gratitude to my family, particularly my parents

and siblings, whose unwavering support and encouragement have been instrumental in helping

me achieve this milestone.

Ihab Razzaq Sekhi

III

Table of Contents

Declaration of Authorship .. I

Author's declaration .. I

Acknowledgments ... II

Table of Contents ... III

List of Abbreviations ... VIII

List of Figures ... X

List of Tables ... XIII

Chapter 1 General Introduction ... 1

1.1 Problem statement .. 3

1.2 The objectives of the thesis .. 4

1.3 Dissertation Structure and Organization .. 5

Chapter 2 Cloud Computing ... 7

2.1 Cloud Computing Service Models and Offerings .. 7

2.2.1 Infrastructure as a Service (iaas) .. 7

2.1.2 Platform as a Service (paas) .. 7

2.1.3 Software as a Service (saas) .. 8

2.2 Cloud Deployment Models ... 8

2.2.1 public cloud .. 8

2.2.1.1 Technical Architecture .. 8

2.2.1.2 Operational Considerations .. 9

2.2.2 Private Cloud ... 9

2.2.2.1 Technical Architecture .. 9

2.2.2.2 Technical Operational Considerations .. 9

2.2.3 Hybrid Cloud ... 9

2.2.3.1 Technical Architecture .. 9

2.2.3.2 Operational Considerations .. 10

2.2.4 Community Cloud .. 10

2.2.4.1 Technical Architecture .. 10

2.2.4.2 Operational Considerations .. 10

2.3 Characteristics of Cloud Computing ... 10

Chapter 3 Adoption and Implementation of Cloud Platforms 12

3.1 Key Drivers for Cloud Platform Adoption .. 12

3.1.1 Enhancing Business Agility .. 12

3.1.2 Business Adaptability .. 12

3.1.3 Ensuring Business Continuity ... 12

3.1.3.1 Cloud Redundancy and Disaster Recovery ... 13

3.1.3.2 High Availability in Cloud Adoption... 13

3.1.3.3 Data Durability and Integrity.. 13

3.2 Security Considerations in Cloud Adoption ... 13

IV

3.3 Economic Implications of Cloud Computing ... 13

3.4 Virtualization in Cloud Infrastructure ... 13

3.4.1 Fundamentals of Hardware Virtualization .. 14

3.4.2 Hypervisor Technologies in Cloud Environments .. 14

3.4.2.1 Type 1 Hypervisors .. 14

3.4.2.2 Type 2 Hypervisors .. 14

3.5 Virtual Machines and Cloud Workloads .. 14

3.6 Network Architecture in Cloud Computing ... 15

3.6.1 Data Center Networks.. 15

3.6.2 Data Center Interconnect Network .. 15

3.7 Cloud Service Providers and Vendor Ecosystem ... 15

3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing 16

3.7.1.1 Infrastructure SLA .. 16

3.7.1.2 Application SLA .. 16

3.8 Amazon Web Services (AWS) .. 16

3.8.1 Core Services of AWS ... 16

3.8.1.1 Compute Services (Amazon EC2) ... 16

3.8.1.2 Storage Solutions (Amazon S3 & EBS) .. 17

3.8.1.3 Database Services.. 17

3.8.1.4 Networking Services (Amazon VPC) ... 17

3.8.1.5 Security and Compliance .. 17

3.8.2 AWS Pricing Models .. 17

3.8.3 AWS Global Infrastructure and Availability .. 18

3.9 Google Cloud Platform (GCP) .. 18

3.9.1 Comprehensive Cloud Services Portfolio ... 18

3.9.2 Performance and Scalability.. 18

3.9.3 Industry Adoption and Use Cases ... 19

3.9.4 Compute Engine Resources: Regions and Zones ... 19

3.9.5 GCP Pricing Models ... 19

3.10 Microsoft Azure: Enterprise Cloud Solutions ... 19

3.10.1 Compute Services in Azure ... 19

3.10.2 Azure Storage Solutions ... 20

3.10.3 Networking in Azure.. 20

3.10.4 Azure AI and Machine Learning .. 20

3.10.5 Security and Identity Management in Azure .. 20

3.10.6 Azure Global Geographies and Data Center Locations ... 21

3.10.7 Azure pricing models ... 21

Chapter 4 Triangular Membership Function-Based Estimation of Round-Trip

Time (RTT) for Optimal SLA Evaluation ... 22

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing 22

4.2 Challenges in Estimating RTT in Cloud Environments ... 24

4.2.1 Geographical Distance ... 24

4.2.2 Network Congestion ... 24

4.3 Transmission Performance Evaluation in Cloud Computing .. 25

4.4 Intelligent Systems and Network Service Prediction .. 25

V

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic

 .. 26

4.5.1 Experimental Testing Model Determination .. 26

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS

Regions ... 27

4.5.3 Fuzzy Logic Framework .. 27

4.5.3.1 Design System... 27

4.5.3.2 Description of the Proposed Model .. 29

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and

Discussion .. 30

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS

Cloud Services and SLA Optimization ... 31

Chapter 5 Quality of Service (qos) Availability Assessment for Optimal SLA

Selection ... 34

5.1 Evaluating qos metrics for determining SLA... 34

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis ... 36

5.3 Understanding Availability .. 37

5.3.1. Measurement Period ... 38

5.3.2 Accuracy in Service Provision... 38

5.3.3 Time-Based Accuracy in Availability ... 38

5.3.4 Exclusions in Availability Calculations .. 38

5.4 Availability in Computing and Networking Environment ... 39

5.4.1 Bandwidth Considerations .. 39

5.4.2 Network Latency and Delay .. 40

5.4.3 Network jitter.. 40

5.4.4 Packet Loss ... 41

5.6 Methodology for SLA Assessment and Optimization ... 42

5.6.1 Proposed Framework for SLA Selection ... 42

5.6.2 Fuzzy Logic-Based Methodology for qos Evaluation ... 44

5.6.2.1 Key Input Parameters .. 44

5.6.2.2 Implementation of FIS and Defuzzification for SLA Analysis........................ 45

5.6.2.3 Development and Validation of the Fuzzy Rule Base .. 46

5.7 Experimental Evaluation ... 47

5.8 Summary of the SLA selection Model ... 51

Chapter 6 Enhanced Decision-Making in Uncertain Domains 52

6.1 Overview of Decision-Making Challenges .. 53

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making 54

6.3 Background of Fuzzy Logic System ... 55

6.3.1 Core Principles of Fuzzy Logic Systems .. 55

6.3.1.1 Fuzzy System Basics ... 56

6.3.1.1.1 Crisp Input Processing .. 56

6.3.1.1.2 Fuzzification Process ... 56

6.3.1.1.3 Inference Engine ... 56

6.3.1.1.4 Fuzzy Rule Base ... 57

VI

6. 3.1.1.5 Defuzzification Process ... 57

6.3.2 Membership Functions and Their Significance ... 57

6.3.2.1 Triangular Membership Function ... 57

6.3.2.2 Trapezoidal Membership Function .. 58

6.3.2.3 Gaussian Membership Function .. 58

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains 58

6.4.1 Mathematical Formulation for Algorithms 1 and 2 .. 58

6.4.2 Mathematical Formulation for Algorithm 3 .. 59

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain

Domains ... 59

6.5 Experimental Results and Analysis ... 63

6.5.1 Determine the Degree of Membership as The Triangular Membership

Function ... 63

6.5.2 Determine the degree of membership as the trapezoidal membership function

 ... 64

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function

 ... 65

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed

Mathematical Model .. 66

6.6 Summary ... 68

Chapter 7 Intelligent Validation Cloud Broker System .. 70

7.1 Overview of SLA Selection and the IVCBS Framework ... 70

7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making

 .. 73

7.3 Proposed System .. 74

7.3.1 Extraction information Factors from AWS Cloud Environment 74

7.3.2 AWS General-Purpose Instance Types .. 74

7.3.3 Theoretical Framework and Methodology .. 75

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System

(IVCBS) ... 75

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation

Cloud Broker System (IVCBS) ... 77

7.3.3.3 Cloud Analyst Simulation Framework .. 81

7.3.3.4 Round Robin Algorithm .. 81

7.3.3.5 Service Brokering Strategies .. 81

7.4 Experimentation and analysis .. 82

7.4.1 Simulation the proposed system ... 82

7.4.2 Results and Comparative Analysis .. 85

7.4.2.1 Implementation of IVCBS with two Service Broker Policies 85

7.4.2.2 Traditional methods... 87

7.5 Summary ... 89

Chapter 8 A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing

Virtual Machine Allocation .. 91

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery 91

VII

8.2 Current Issues and Challenges .. 92

8.3 Broker-Driven Methodology in Cloud Computing .. 93

8.3.1 Design and Architecture of the Broker System .. 93

8.3.2 Implementation of Fuzzy Logic .. 94

8.3.3 Integration with Cloud Analyst Tool .. 95

8.3.3.1 Cloud Environment Modeling .. 95

8.3.3.2 Throttling Algorithm .. 95

8.3.3.3 Broker Policy for Response Time ... 95

8.4 Simulation and Evaluation of Results and Discussion ... 95

8.5 Summary ... 98

Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker 99

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic 99

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage 99

9.3 System Design .. 100

9.3.1 The broker’s Fuzzy-logic systems .. 102

9.3.1.1 VM ranking Fuzzy logic system... 102

9.3.1.2 User ranking Fuzzy logic system .. 104

9.4 Scenario Description .. 105

9.5 Results analysis.. 107

9.5.1 The effects of Client’s mobility .. 108

9.5.2 Effects of Service Migration on SLA Compliance .. 109

9.6 Real-World Implementation and Practical Implications ... 109

9.7 Summary .. 111

Chapter 10 Theses ... 112

Thesis I: Intelligent SLA Guarantee Model for Cloud Computing 112

Thesis II: Intelligent Validation Cloud Broker System (IVCBS) .. 112

Thesis III: Intelligent Cloud Brokerage System .. 113

10.1 Future Research Direction .. 113

Appendices ... 115

Appendix 1: Cloud Computing .. 115

Appendix 2: Adoption and Implementation of Cloud Platforms ... 115

Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation ... 118

Appendix 4: Quality of Service (qos) Availability Assessment for Optimal SLA Selection

.. 122

Appendix 5: Implementation details of the three proposed algorithms for the system .. 126

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in Uncertain

Domains ... 129

Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms 131

Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven

Approach .. 142

References .. 145

VIII

List of Abbreviations

XaaS Everything as a Service

SLA Service Level Agreement

QoS Quality of Service

RTT Round-Trip Time

VM Virtual Machine

RLBGD Rank-based Load Balancing in Geo-Distributed

FIS Fuzzy Inference System

CSP Cloud Service Provider

IVCBS Intelligent Validation Cloud Broker System

EC2 Elastic Compute Cloud

MEC Multi-Access Edge Computing

AWS Amazon Web Services

GCP Google Cloud Platform

AI Artificial Intelligence

SaaS Software as a Service

PaaS Platform as a Service

IaaS Infrastructure as a Service

NIST National Institute of Standards and Technology

API Application programming interface

VPN Virtual Private Network

CRM Customer Relationship Management

ERP Enterprise Resource Planning

IAM Identity and Access Management

WAN Wide area network

PDA Personal digital assistant

CAF Cloud Adoption Framework

DCN Data center network

SLO Service Level Objectives

EBS Elastic Block Store

RDS Relational Database Service

VPC Virtual Private Cloud

ACL Access Control Lists

AKS Azure Kubernetes Service

ML Machine Learning

BGP Border Gateway Protocol

QoE Quality of Experience

MTTF Mean-Time-To-Failure

MTTR Mean-Time-To-Recovery

BW Bandwidth

BTC bulk transfer capacity

UDP User Datagram Protocol

TCP Transmission Control Protocol

ms milliseconds

ISP Internet service provider

MF Membership Function

COG Center of Gravity

IX

CSU Cloud service users

PM Physical machines

PRSF Performance and Resource-Aware Virtual Machine Selection

using Fuzzy

COTD Cost Optimization based on Task Deadline

ESCE Equally Spread Current Execution

LB load balancing

RR Round Robin algorithm

SBP Service Broker Policy

X

List of Figures

Figure 4.1. Proposed model design. .. 28

Figure 4.2 Fuzzy Logic-Based RTT Estimation by Distance and Network Congestion. 30

Figure 5.1 Proposed SLA guarantee model. ... 43

Figure 5.2 Results of the proposed model. ... 48

Figure 6.1 Architecture of a fuzzy logic system. ... 56

Figure 6.2 Classify single Triangular MF. .. 64

Figure 6.3 Classify all Triangular MF. ... 64

Figure 6.4 Classify single Trapezoidal MF. ... 65

Figure 6.5 Classify all Trapezoidal MF. .. 65

Figure 6.6 Classify single Gaussian MF. ... 66

Figure 6.7 Classify all Gaussian MF. .. 66

Figure 7.1 Intelligent Validation Cloud Broker System Framework. 75

Figure 7.2 Fuzzy Partition Using Mathematical Model. .. 77

Figure 7.3 Cloud Analyst Model. ... 81

Figure 9.1 Proposed System Architecture. .. 101

Figure 9.2 The VM’s availability membership function. .. 103

Figure 9.3 The VM’s Cost membership function. .. 103

Figure 9.4 VM’s ranking membership function. .. 103

Figure 9.5 Task size membership function. .. 104

Figure 9.6 User budget membership function. .. 104

Figure 9.7 User rank membership function. ... 105

Figure 9.8 Average service delay for immobile users. .. 107

Figure 9.9 The average of monthly client payment. .. 108

Figure 9.10 Average service delay for mobile users. .. 109

Figure 9.11 Average service delay with mobile users and service migration. 110

Figure 9.12 Average monthly payment in case of service migration. 110

Appendix 1: 0.1 Figure 1. NIST Cloud Computing reference model. 115

Appendix 1: 0.2 Figure 2. The essential characteristics of cloud computing. 115

Appendix 2: 0.1 Figure 1. (a) Single application server. (b) Virtualized server. 116

Appendix 2: 0.2 Figure 2. Hardware server components. ... 116

Appendix 2: 0.3 Figure 3. Type1 hypervisor. ... 116

Appendix 2: 0.4 Figure 4. Type2 hypervisor. ... 116

XI

Appendix 2: 0.5 Figure 5. Data center network architecture. .. 116

Appendix 3: 0.1 Figure 1. RTT process. .. 118

Appendix 3: 0.2 Figure 2. Ping testing process. ... 119

Appendix 3: 0.3 Figure 3. AWS latency test. .. 119

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions. 119

Appendix 3: 0.5 Figure 4. Define first input (Distance).. 121

Appendix 3: 0.6 Figure 5. Define second input (Network-congestion). 121

Appendix 3: 0.7 Figure 6. Define Output (RTT-Expectation). .. 122

Appendix 3: 0.8 Figure 7. Rule base system. .. 122

Appendix 6: 0.1 Figure 1. Database Addresses.. 129

Appendix 6: 0.2 Figure 2. User task before classify. .. 129

Appendix 6: 0.3 Figure 3. Mamdani Triangular MF. .. 130

Appendix 6: 0.4 Figure 4. Mamdani Trapezoidal MF. ... 130

Appendix 6: 0.5 Figure 5. Mamdani Gaussian MF. ... 130

Appendix 7:0.7 Figure 1. VCPU Classification code. .. 137

Appendix 7:0.8 Figure 2. Apply the Trapezoidal proposed model of CPU levels. 138

Appendix 7:0.9 Figure 3. IVCBS-Response time by region (optimize response time

policy). ... 138

Appendix 7:1.0 Figure 4. IVCBS-Response time by region (reconfigure dynamically

policy). ... 139

Appendix 7:1.1 Figure 5. IVCBS DC- Request Servicing Time (optimize response time

policy). ... 139

Appendix 7:1.2 Figure 6. IVCBS DC- Request Servicing Time (dynamic reconfiguration

policy). ... 140

Appendix 7:1.3 Figure 7. Routing strategy by the dynamic reconfigurations policy. 140

Appendix 7:1.4 Figure 8. Routing strategy by the optimized response time policy. 140

Appendix 7:1.5 Figure 9. Traditional-Response time by region (optimize response time

policy). ... 140

Appendix 7:1.6 Figure 10. Traditional-Response time by region (reconfigure

dynamically policy). ... 141

Appendix 7:1.7 Figure 11. Traditional DC- Request Servicing Time (optimize response

time policy). ... 141

Appendix 7:1.8 Figure 12. Traditional DC- Request Servicing Time (dynamic

reconfiguration policy). .. 141

Appendix 8:0.1 Figure 1. Fuzzy rule base. ... 142

XII

Appendix 8:0.4 Figure 2. Simulation process. .. 144

Appendix 8:0.5 Figure 3. Surface Viewer for Fuzzy Model Output. 144

XIII

List of Tables

Table 4.1 Expected RTT. .. 29

Table 4.2 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT)

Measurements. .. 32

Table 5.2 QoS Network and Computing Metrics Availability. ... 43

Table 5.3 Fuzzy rule base. ... 45

Table 5.4 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees. 48

Table 6.1 Results of the Proposed Method Applied to Selected Samples............................... 67

Table 6.2 Results of the Traditional Method Applied to Selected Samples. 68

Table 7.1 AWS-General purpose instance features... 75

Table 7.2 Cloud users and sizes of their requests. .. 76

Table 7.3 Results of the Proposed Algorithm. ... 83

Table 7.4 Single-User Base Clusters. ... 84

Table 7.5 (11-User Base Instances). ... 85

Table 7.6 Implementing IVCBS with optimize response time policy. 87

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker

Policy. .. 87

Table 7. 8 Implementing traditional with optimize response time policy. 88

Table 7.9 Implementing traditional with Dynamic reconfiguration policy........................... 89

Table 8.1 workload size machine series specifications. .. 93

Table 8.2 Rules – Decision making. ... 94

Table 8.3 Basics of applying the traditional method. ... 96

Table 8.4 Summary of the results of the traditional method. ... 97

Table 8.5 Summary of the results of the proposed Method. ... 98

Table 9.1 VM ranking FLS. ... 103

Table 9.2 User ranking FLS. .. 104

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites.

 .. 105

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup.

 .. 106

Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA. 117

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA. 117

XIV

Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels.

 .. 122

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs..................................... 123

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime. ... 124

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs. 131

Appendix 7: 0.2 Table 2. AWS data centers and general costs. ... 131

Appendix 7: 0.3 Table 3. Delay matrix. ... 134

Appendix 7: 0.4 Table 4. Fundamental Data Center. ... 134

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class

specifications. ... 135

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods. 135

Appendix 8:0.2 Table 1. User base configuration. .. 142

Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center. 143

1

Chapter 1 General Introduction

Cloud computing is a transformative technology that provides seamless access to a wide range

of computing resources—including applications, servers, storage, and networks—without

requiring an upfront investment. This technology supports substantial scalability, allowing

users to pay only for the resources they utilize, which makes it highly adaptable to diverse

needs. Cloud services, collectively known as "XaaS", facilitate data-driven decision-making,

significantly enhancing productivity and customer service. Cloud computing effectively

bridges the gap between client expectations and service delivery by offering internet-based

services that improve collaboration, ease of access, and security [1]. (SLAs) are fundamental

in defining the relationship between service providers and users by establishing the terms of

service and quality expectations. SLAs also hold vendors accountable for non-compliance. As

cloud computing adoption continues to grow, the importance of SLAs has increased,

demanding robust guarantees for availability, uptime, and downtime. Effective SLAs go

beyond mere contractual obligations; they are crucial for fostering trust between providers and

clients, essential for sustainable success. Consequently, research has focused on developing

SLA methodologies that enhance Quality of Service (QoS) and build customer trust,

recognizing their significance in managing complex business relationships and shaping modern

business practices [2][3]. Evaluating performance in cloud environments is complex due to the

components involved, ranging from concrete elements like communication links to abstract

ones like packets and protocols. Researchers and engineers must design a comprehensive

performance evaluation plan to obtain meaningful results and answer critical questions. Such

a plan should clearly define the objectives for assessing the system's performance and identify

specific metrics to measure, such as RTT and response time, to provide actionable insights [4].

SLA-oriented resource allocation in cloud computing involves several key components:

brokers, SLA resource allocators, (VMs), and PM. Users interact with cloud management

systems through brokers, enabling dynamic resource allocation and concurrently operating

multiple applications on a single machine. Data centers, composed of numerous servers and

networks that function as transmission media for resources, form the backbone of cloud

infrastructure. Despite these advanced capabilities, resource availability and privacy remain

persistent concerns. Effective LB is crucial for enhancing service quality and optimizing

resource utilization. Service brokers select the most appropriate geo-distributed data centers

based on transmission delay, network delay, processing time, workload, and cost. The

Datacenters (RLBGD) method employs a weighted combination of these criteria for

optimization, ensuring efficient cloud resource management [5][6]. Fuzzy logic is a

mathematical framework that handles uncertainty and imprecision by enabling approximate

reasoning rather than fixed binary logic. Unlike traditional binary systems, where variables are

strictly defined as true or false, fuzzy logic allows variables to have truth values between 0 and

1. This approach is beneficial for modeling complex systems where binary logic falls short.

Based on fuzzy set theory, fuzzy computing simulates the human brain's nonlinear and

imprecise information processing capabilities. It is widely applied in fields like (FIS), often in

combination with other AI methods. This approach enables more precise and scientific

consumer preference designs by reducing ambiguity through the fuzzy comprehensive

evaluation method [7][8]. This thesis introduces several innovative approaches using fuzzy

2

logic-based systems and algorithms to enhance SLA management, VM allocation, and

decision-making in cloud computing environments. The study first presents the estimating

Cloud Computing RTT Using Fuzzy Logic for Inter-Region Distances, a novel approach for

estimating RTT in Amazon cloud environments. This method uses fuzzy logic to account for

inter-region distances, providing a nuanced understanding of network latency by categorizing

proximity and time and employing both ping tests and mathematical methods for accurate RTT

calculation. Additionally, the thesis explores Selecting the SLA Guarantee by Evaluating the

QoS Availability, which develops an intelligent SLA guarantee model using fuzzy theory. This

model calculates SLA values for CSPs by evaluating specific computing and networking

parameters and transforming data to manage ambiguity. The proposed fuzzy logic system

classifies SLAs into 9 levels (ranging from 90% to 99.999%) based on QoS availability metrics,

including computing (uptime and downtime) and networking (BW, jitter, RTT, and packet

loss). The primary objectives are to develop a versatile SLA model that diverges from typical

CSP offerings and improve SLA categorization’s precision, tailored to user-specific

requirements. The work Enhancing Decision-Making in Uncertain Domains through

Optimized Fuzzy Logic Systems proposes optimizing fuzzy logic systems by reducing fuzzy

rules and improving decision-making accuracy. The study introduces flexible mathematical

modeling to minimize time and cost while enhancing precision in fuzzy decision-making

processes for classification and scheduling. A comparative analysis shows the advantage of

this approach over traditional methods by employing three distinct membership functions

(Triangular, Trapezoidal, and Gaussian), enhancing flexibility and accuracy in determining

overlapping membership degrees. Another essential contribution is the Efficient Broker-Driven

Request Packet Size approach, which introduces a broker-driven model using fuzzy logic for

dynamic VM allocation based on request packet size. This method optimizes resource usage,

reduces latency, and improves system performance. Compared to traditional techniques,

simulations using data from Google Cloud Platform’s Europe West3 region demonstrated

significant improvements in response time, data center processing, request serving time, and

data transfer costs. Furthermore, the thesis presents the (IVCBS), which leverages an algorithm

for dynamic VM allocation and intelligent SLA selection. The proposed algorithm utilizes a

mathematical model that replicates the behavior of trapezoidal membership functions to

compute continuous membership degrees (ranging from 0 to 1) for various parameters, such as

VM attributes and user request sizes. These continuous values represent the degree to which

inputs belong to linguistic categories (e.g., Poor, Fair, Excellent). In a subsequent decision

stage, these membership degrees are transformed into binary scores (1 or 0) using predefined

thresholds to streamline real-time resource allocation processes. Thus, while final allocation

decisions are based on binary validation, the underlying fuzzy classification operates with

continuous values. Tested across 31 AWS data centers worldwide with 11 EC2 types, IVCBS

optimizes response time, improves processing efficiency, reduces VM and transfer costs, and

enhances power efficiency while maintaining high QoS in cloud environments. Various tools

and environments, including CloudAnalyst [9] and MATLAB, were utilized to conduct these

studies. Lastly, the study proposes the Reliable and Cost-Effective Fuzzy-based Cloud Broker

technique, which assists users in selecting suitable cloud service instances by evaluating user

needs and service characteristics. This technique analyzes various scenarios, including static

and mobile users, to assess the impact of user mobility on service quality and optimize cloud

3

service management. The work emphasizes the necessity of cloud brokerage services as

intermediaries, balancing user needs with service provider interests. The Edge CloudSim

simulator [10] implemented the proposed cloud broker on the (MEC) paradigm. This choice

was made because services running on the virtualized edge are more sensitive to delay, and the

broker's selection of the appropriate service instance significantly impacts such settings. In this

scenario, different data centers belonging to AWS, Google Cloud (GC), and Azure Cloud

Services (AZURE) were placed in different regions.

1.1 Problem statement

Cloud computing, a cornerstone of modern IT, offers scalable, flexible, and on-demand access

to computing resources through various service models governed by (SLAs), formal contracts

between a (CSP) and a customer that define the specific level of service the provider guarantees

to deliver. However, challenges such as compliance mechanisms by (CSPs), provider lock-in,

and the proliferation of CSPs create complexity for users. Inconsistencies in promised Quality

of Service (QoS) levels also complicate the decision-making process, leading to inefficiencies

and suboptimal outcomes. As cloud data centers scale, energy consumption becomes a critical

concern, making energy efficiency a vital aspect of cloud service management. Balancing

energy consumption with QoS metrics is crucial for delivering sustainable and efficient cloud

services that meet diverse user requirements [11][12]. By addressing these challenges, we can

pave the way for more efficient and reliable cloud services, a key goal of this research. This

will enhance the user experience and the overall performance of cloud computing. The

complexity of cloud computing is amplified by factors such as the physical distance between

data centers, which significantly impacts performance and RTT for data transmission. As IT

services increasingly migrate to cloud infrastructures, monitoring network performance

becomes essential for ensuring optimal service delivery. However, (CSPs) typically provide

only qualitative information on network performance, resulting in uncertainties and suboptimal

deployment decisions. To address these challenges, it is crucial to focus on cloud-to-user

latency and the network paths connecting data centers to globally distributed users.

Furthermore, managing distributed transactions in cloud environments involves balancing

reliability and consistency, particularly in the face of hardware failures, network outages, and

varying latencies. Analyzing these factors can lead to more informed strategies for cloud

service deployment and optimization [13][14]. Given the current state of cloud service

management, there is an urgent need for more intelligent and adaptive strategies. These

strategies should focus on managing Service SLA selection and resource allocation in cloud

environments. Their goal should be to optimize response times, reduce latency, and ensure

service reliability. A compelling resource management strategy can enable cloud providers to

lower energy consumption and minimize SLA violations within data centers, thus enhancing

overall service efficiency and sustainability. Moreover, such a strategy can incorporate

predictive models that anticipate future resource demands, prevent resource shortages, and

dynamically scale resources in response to changing workloads, ensuring optimal performance

and resource utilization [15][16]. Traditional approaches to managing cloud service

environments often rely on extensive rule-based systems that are computationally intensive and

lack the flexibility needed to adapt to these environments' diverse and dynamic nature [17].

4

Challenges such as data migration, resource allocation, and competition among providers can

significantly limit the capabilities of cloud computing environments. Similarly, in (AI),

decision-making in uncertain and ambiguous real-world scenarios presents substantial

complexities. Fuzzy logic systems have proven valuable tools in these contexts, offering a

means to approximate optimal decisions by effectively handling uncertainty and vagueness

[18]. While fuzzy logic is a valuable method for modelling computer knowledge, traditional

approaches have their limitations. These approaches rely extensively on significant rule sets to

determine the degree of membership for elements within a fuzzy set. This reliance results in

considerable computational overhead and limits the scalability of such systems, posing

challenges to their efficient implementation in complex environments [19]. Efficient allocation

of (VMs) is essential for optimizing resource utilization in cloud environments. However,

traditional VM allocation methods often face challenges in managing dynamic workloads,

leading to suboptimal performance and increased operational costs. Resource management,

particularly with a focus on CPU resource utilization, is a complex task that requires advanced

strategies to enhance efficiency and reduce overall costs [20]. As cloud computing

environments expand in scale and complexity, there is an increasing need for adaptive and

efficient resource allocation strategies capable of dynamically responding to varying demand

patterns in real time. Such a strategy must optimize resource utilization while maintaining low

latency and fast execution times for real-time applications and interactive services (AI) is

increasingly being leveraged to automatically manage and optimize cloud resources,

addressing challenges such as real-time performance requirements and energy efficiency

concerns. The effectiveness of these methods can be further enhanced by incorporating

advanced AI models and developing innovative solutions to address emerging challenges in

distributed and heterogeneous cloud environments [16]. To address the intertwined challenges

of optimizing cloud service delivery, there is a pressing need for innovative cloud brokerage

systems that utilize advanced techniques such as fuzzy logic and intelligent algorithms. These

systems can act as intermediaries between users and (CSPs), enabling more accurate and

efficient service selection by accounting for user requirements and different CSPs' diverse

characteristics. Additionally, to tackle environmental and operational concerns, future

generations of cloud computing must focus on becoming more energy-efficient and sustainable

while maintaining the delivery of high-quality services. This is a crucial direction for the future

of cloud computing [21]. In conclusion, cloud computing services' rapid growth and

complexity necessitate developing reliable, adaptive, and cost-effective cloud brokerage

solutions. These systems improve decision-making accuracy, optimize SLA selection, and

manage workload distribution, preventing data center overload and minimizing costs [22].

1.2 The objectives of the thesis

I. Estimating RTT in cloud computing environments using fuzzy logic to account for

inter-region distances, providing a nuanced understanding of network latency by

categorizing proximity and time, and employing two techniques a ping test and a

mathematical approach—for accurate RTT calculation.

II. To develop an intelligent fuzzy theory-based SLA guarantee model that calculates the

SLA guarantee value for each CSP by considering specific computing and networking

5

parameters, using fuzzy logic to handle and transform data to address ambiguity in

results.

III. This research aims to push the boundaries of cloud computing by improving the

precision and accuracy of fuzzy decision-making processes and non-probabilistic

models. I propose an innovative approach to flexible mathematical modeling that

minimizes time and cost while eliminating the need for extensive fuzzy rules. This

approach promises to revolutionize the efficiency of cloud computing environments.

IV. To develop the (IVCBS) using a fuzzy logic-based algorithm aligned with the

trapezoidal membership function to optimize (VM) allocation dynamically, enhance

response times, improve data center processing efficiency, reduce VM and data transfer

costs, and achieve power efficiency, thereby addressing scalability and performance

challenges while maintaining high Quality of Service (QoS) in cloud computing

environments.

V. Our research is dedicated to developing a broker-driven approach using a fuzzy logic

system for the dynamic optimization of (VM) allocation in cloud computing

environments. Based on request packet size, this approach promises to optimize

resource usage, reduce latency, enhance overall system performance, and improve

response times, data center processing times, request serving times, and data transfer

costs. This approach will significantly contribute to the efficient management of cloud

resources.

VI. To develop a fuzzy logic-based cloud brokerage technique to assist users in selecting

the most suitable cloud service instances by evaluating factors like user needs and

service characteristics. The study aims to enhance decision-making processes for cloud

service selection by analyzing multiple scenarios, including static and mobile users, to

assess the impact of user mobility on service quality and explore the effects of

implementing a brokerage service that supports service migration, optimizing cloud

service management in dynamic environments.

1.3 Dissertation Structure and Organization

The remaining structure of the dissertation is organized as follows:

• Chapter 2: Provides an in-depth understanding of cloud service models (IaaS, PaaS,

SaaS) and deployment models, discussing their importance for informed decision-

making regarding customization, control, and scalability. It also introduces the NIST

Cloud Computing Reference Architecture and essential characteristics of cloud

computing systems.

• Chapter 3: Explores the driving factors behind cloud adoption, emphasizing strategic,

operational, and financial aspects. It discusses (CAFs), core business benefits (agility,

adaptability, security), and financial advantages (cost savings, economies of scale).

Focuses on best practices for successful cloud adoption, including governance,

migration, and security. It highlights the benefits of cloud platforms, such as agility,

business continuity, and economic advantages, alongside the importance of security.

6

• Chapter 4: Discusses the estimation of RTT in cloud computing environments using

fuzzy logic, focusing on challenges like geographical distance, network congestion, and

routing policies, with a case study on AWS demonstrating improved RTT estimation.

• Chapter 5: Introduces a fuzzy logic-based SLA classification model, categorizing

SLAs into 9 levels based on key QoS metrics such as uptime, BW, jitter, and RTT,

offering a flexible, transparent, and user-friendly method for improved SLA selection.

• Chapter 6: Examines the optimization of fuzzy logic systems for decision-making in

uncertain environments, presenting a mathematical model using various membership

functions to categorize input data, with comparisons to traditional FIS demonstrating

improved performance.

• Chapter 7: Discusses the Intelligent SLA Selection through the Validation Cloud

Broker System (IVCBS), focusing on improving cloud computing efficiency through

optimization algorithms and simulations that show IVCBS outperforms traditional

methods in response time, processing, and cost reduction.

• Chapter 8: Explores a broker-driven approach to (VM) allocation, using fuzzy logic to

dynamically adjust resource distribution based on request packet sizes. The study

demonstrates improved performance and cost efficiency through Cloud Analyst

simulations.

• Chapter 9: Presents the design of a fuzzy logic-based cloud broker system that balances

CSP and customer interests by ranking service instances and users. It optimizes service

quality and cost through service migration and mobility considerations, with

simulations showing superior stability, service delay, and cost-effectiveness compared

to other methods.

• Chapter 10: presents a comprehensive conclusion of all contributions, outlining three

key theses under the section "New Scientific Results," which constitute the primary

objectives of this dissertation.

7

Chapter 2 Cloud Computing

Provides an overview of cloud computing service models, deployment types, and key

characteristics. It explains the differences between cloud serivec models, helping users choose

the right model for their specific needs. The chapter introduces the NIST Cloud Computing

Reference Architecture and examines public, private, community, and hybrid deployments,

discussing trade-offs in control, security, cost, and scalability. It also highlights the main

benefits of cloud computing, including on-demand self-service, broad network access, and

resource pooling.

2.1 Cloud Computing Service Models and Offerings

Choosing the right service model is a critical factor for the successful delivery of cloud-based

solutions. To make an informed choice, it is essential to understand each service model and the

division of responsibilities between the CSP and the cloud service consumer [23]. Cloud

service models include (SaaS), (PaaS), and (IaaS). SaaS operates on top of PaaS, which, in

turn, runs on IaaS. In recent years, the number of SaaS offerings has grown significantly,

making it challenging for consumers to select the best service among those with similar

functionalities [24]. Each cloud service model provides different levels of customization and

ownership, depending on the user's needs—ranging from raw computing power to fully

developed software solutions. The separation of responsibilities and customization options

between the models varies, offering flexibility to users based on their requirements . Appendix

1 (Figure 1) provides an overview of the NIST Cloud Computing Reference Architecture,

which identifies the key actors, their activities, and functions in cloud computing. This high-

level diagram is designed to help users understand the requirements, uses, characteristics, and

standards of cloud computing [25][26]. Three cloud service models offer abstraction levels to

simplify system building and deployment [25].

2.2.1 Infrastructure as a Service (IaaS)

IaaS provides virtualized computing resources over the internet, letting users manage servers,

storage, and networking without handling physical hardware. It enables rapid provisioning

through APIs or web consoles, offering flexibility and cost efficiency.

Key Offerings:

• Compute: VMs, containers, bare metal.

• Storage: Block, object, file.

• Networking: Virtual networks, load balancers, VPNs.

Benefits:

• Full infrastructure control.

• Scalable resources.

• Pay-as-you-go pricing.

Examples: AWS EC2, GCP, Azure VMs.

2.1.2 Platform as a Service (PaaS)

PaaS provides a cloud-based platform for developers to build, run, and manage applications

without handling underlying infrastructure. According to NIST, PaaS enables users to deploy

applications created with supported languages and tools while the provider manages the

8

underlying networks, servers, and storage. PaaS allows developers to focus on coding and app

management, thereby simplifying the development process and accelerating deployment.

PaaS Offerings:

• Development frameworks (e.g., Java, Python, Node.js).

• Application hosting.

• Database services (e.g., MySQL, NoSQL).

• Middleware for messaging and integration.

Benefits:

• Simplifies development.

• Integrated tools streamline workflows.

• Faster time-to-market.

Examples: Google App Engine, Heroku, Azure App Service.

2.1.3 Software as a Service (SaaS)

SaaS delivers ready-to-use software over the internet, accessible via web browsers. Users

handle only app settings, while providers manage infrastructure and updates.

Offerings:

• Business apps (e.g., CRM, collaboration).

• Industry-specific tools.

• Data analytics.

Benefits:

• No infrastructure management.

• Automatic updates.

• Subscription pricing.

Examples include Dropbox, Slack, Zoom, and Google Workspace.

2.2 Cloud Deployment Models

Cloud deployment models define how clouds are built, owned, and used, impacting security,

cost, and accessibility. NIST identifies four types: public, private, community, and hybrid

clouds. Each model varies in infrastructure location, control, and suitability for different

organizational needs, offering unique benefits and costs [27].

2.2.1 public cloud

A public cloud is a model of cloud computing where services, such as storage, computing

power, and applications, are provided by third-party vendors over the Internet. These services

are shared among multiple customers, but each user's data and applications remain isolated and

secure within their environment.

2.2.1.1 Technical Architecture

• Shared Resources: Virtualized infrastructure allows multiple tenants to share and

manage resources via web browsers.

• Elasticity: Resources scale instantly to handle fluctuating demand for computing,

storage, and BW.

• Network Accessibility: Infrastructure is accessible online through secure connections,

such as VPNs, reducing the need for on-premises management.

• API Access: RESTful APIs enable programmatic control, service integration, and

support assistive technologies.

9

• Self-Service: Users can provision and manage resources independently via web portals,

supporting unlimited scalability.

2.2.1.2 Operational Considerations

• Cost: Pay-per-use pricing helps organizations optimize costs by paying only for the

resources they use.

• Security: Users must secure data and apps with encryption, IAM, and compliance

practices supported by audits and monitoring.

• Performance: Distributed data centers reduce latency and boost performance by

placing services closer to users.

2.2.2 Private Cloud

A private cloud is dedicated to a single organization, offering greater control, security, and

customization compared to public clouds, where resources are shared.

2.2.2.1 Technical Architecture

• Single-Tenant Environment: Dedicated to one organization, ensuring control,

security, and customizable resources.

• Customization: Allows for tailored server, software, and security configurations to

meet specialized needs.

• Infrastructure: Can be on-premises or off-premises, using platforms like VMware,

OpenStack, or Hyper-V for resource management.

• Automation: Utilizes tools such as Kubernetes and OpenShift to automate

provisioning, scaling, and operations.

2.2.2.2 Technical Operational Considerations

• Control: Offers complete flexibility and control over security, performance, and

infrastructure, tailored to business needs.

• Security: Ensures strong protection in a dedicated environment through robust

protocols, firewalls, and encryption.

• Compliance: Meets regulatory and industry standards, which are crucial for sectors

such as finance, healthcare, and government.

• Cost: Higher upfront costs require careful management to achieve long-term cost

efficiency.

2.2.3 Hybrid Cloud

A hybrid cloud combines public and private clouds, enabling sensitive data to remain private

while utilizing public clouds for less critical workloads. The environments remain separate but

integrated, offering flexibility and tailored solutions through the addition of complexity.

2.2.3.1 Technical Architecture

• Integration: Connects public, private, and on-premises systems using orchestration

tools, APIs, and middleware for smooth data and workflow management.

10

• Workload Distribution: Enables the flexible allocation of workloads across

environments for enhanced efficiency, optimized resource utilization, and improved

business continuity.

• Cloud Bursting: Shifts excess demand from private to public clouds to scale resources

during peak usage.

• Network Management: Ensures secure, high-performance connectivity between

integrated systems, addressing security and compliance needs.

2.2.3.2 Operational Considerations

• Flexibility: Enables strategic workload placement across on-premises and cloud

environments, providing security and scalability tailored to business needs.

• Interoperability: Requires seamless data compatibility and tools such as Kubernetes

or Azure Arc for managing multiple environments.

• Data Security: Combines strong on-premises and cloud security with encryption,

governance, and access controls to protect data.

2.2.4 Community Cloud

A community cloud is shared by multiple organizations with common goals, offering more

privacy than public clouds. It functions like a private cloud, serving a group and allowing

shared resources and responsibilities while maintaining security and providing tailored

solutions to meet the group’s needs.

2.2.4.1 Technical Architecture

• Shared Infrastructure: Multiple organizations share resources, lowering costs and

meeting specific industry privacy and compliance needs.

• Collaboration: Enables joint projects and resource sharing while maintaining security

and regulatory standards with flexible hosting options.

• Customization: Allows tailored performance, security, and compliance to fit unique

business or regulatory requirements.

2.2.4.2 Operational Considerations

• Cost: Shared infrastructure reduces costs compared to private clouds, optimizing

resource utilization and expenditure.

• Governance: Requires joint governance frameworks to manage data privacy, security,

and policy compliance.

• Security: Requires robust security measures and coordinated policies to mitigate risks

such as misconfigurations or unauthorized access.

• Compliance: Ensures regulatory compliance across all members through monitoring

and unified data protection practices.

2.3 Characteristics of Cloud Computing

 Cloud computing systems possess several key characteristics that make them highly promising

for future IT applications and services. The (NIST) has identified five essential characteristics

of cloud computing systems [28], as illustrated in Appendix 1 (Figure 2). These characteristics

are outlined and described below [29]:

11

• On-Demand Self-Service: Users can automatically provision computing resources as

needed, eliminating the need for human intervention from the provider.

• Broad Network Access: Cloud services are accessible from diverse devices over the

network, including laptops, smartphones, and tablets.

• Resource Pooling: Providers share resources among multiple consumers in a multi-

tenant model, dynamically allocating resources with location independence.

• Rapid Elasticity: Resources scale up or down quickly to meet changing demands,

giving users flexibility and cost efficiency.

• Measured Service: Usage is monitored and metered, enabling transparency, cost

control, and optimized resource allocation for both providers and consumers.

12

Chapter 3 Adoption and Implementation of Cloud Platforms

Chapter 3 explores key reasons for adopting cloud platforms, including high availability, data

durability, virtualization, hardware and network architecture, and SLA management. It

emphasizes benefits such as agility, redundancy, and cost reduction and discusses leading

providers, including AWS, Google Cloud, and Azure. The chapter also examines the

economics of cloud adoption, as well as the roles of virtualization and networking in achieving

scalable and cost-effective operations.

3.1 Key Drivers for Cloud Platform Adoption

Organizations increasingly recognize the need for a strategic cloud adoption plan to effectively

leverage the advantages of a cloud data platform. Major CSPs offer comprehensive frameworks

to help businesses translate their strategic goals into actionable steps, ensuring a structured

approach to cloud adoption. Many (CAFs) provide a range of tools and resources, including

plan generators, trackers, templates, checklists, and readiness assessments. These tools cover

critical areas such as environment preparation, governance, migration, innovation,

management, organization, and security of the cloud platform, ensuring organizations follow

best practices throughout the adoption process. While the benefits of the cloud over on-premise

data centers are substantial, much of the focus has traditionally been on potential economic

gains. However, it is important to note that migrating to a public cloud provider does not always

guarantee cost savings. In fact, cost savings should not be the primary factor driving cloud

adoption. Instead, organizations should prioritize the cloud's ability to enable or enhance their

business objectives [30][31][32][33][34][35][27].

3.1.1 Enhancing Business Agility

Business agility refers to an organization’s ability to adapt to changes and capitalize on new

opportunities quickly. Cloud platforms support this agility by enabling rapid deployment and

scalability, unlike traditional IT setups that take weeks to configure. Public cloud services

enable the launch of global infrastructure in minutes, fostering innovation and responsiveness.

3.1.2 Business Adaptability

Cloud adoption boosts adaptability by providing flexible, scalable resources and high

performance. It enables businesses to adjust capacity, explore new strategies, and leverage

services such as AI and analytics to respond quickly to market shifts and customer demands.

3.1.3 Ensuring Business Continuity

Business continuity in the cloud ensures operations persist during disruptions through proactive

planning, disaster recovery, and resilient cloud services. When adopting public cloud

infrastructure, prioritizing business continuity safeguards critical functions against external

events.

13

3.1.3.1 Cloud Redundancy and Disaster Recovery

Cloud redundancy duplicates resources and data to keep services running during failures.

Traffic shifts to backup systems if the primary fails. Public cloud providers offer:

• Local Redundancy: Replicates resources within a single data center to protect against

local issues.

• Geographical Redundancy: Spreads data across distant data centers for protection

against regional outages, often at no extra cost.

Redundancy is vital for disaster recovery, preventing data loss and downtime, and ensuring

business continuity even during crises. Businesses should integrate redundancy into cloud

strategies and regularly review their continuity plans.

3.1.3.2 High Availability in Cloud Adoption

Redundancy in public clouds ensures reliable access to services by duplicating systems and

data across environments. Most providers offer 99.99% uptime (≈52 minutes of downtime

annually). However, industries that require near-continuous operations, such as healthcare,

often require 99.999% uptime, limiting downtime to under 5 minutes per year.

3.1.3.3 Data Durability and Integrity

Data durability ensures that information stays intact and uncorrupted over time. Public cloud

providers achieve this through extensive data replication across regions—for example,

duplicating data six times across three locations. Many guarantees 99.99999999% durability

(“eleven nines”), meaning data loss is extremely rare. High durability protects user experiences

and business operations, maintaining trust, reputation, and revenue.

3.2 Security Considerations in Cloud Adoption

Cloud security faces challenges from hidden software and hardware vulnerabilities. Public

clouds employ a shared responsibility model, dividing security tasks between the provider and

the customer. Providers offer strong security tools, dedicated teams, and multi-level encryption

to protect customer data and resources.

3.3 Economic Implications of Cloud Computing

Moving IT to the public cloud can cut costs by over 50%, shifting spending from upfront

hardware purchases to flexible, pay-as-you-go models. Cloud providers leverage economies of

scale and global reach to lower costs and improve efficiency, helping businesses avoid

overprovisioning and reduce operational expenses.

3.4 Virtualization in Cloud Infrastructure

Virtualization is key to modern cloud operations, shifting tasks from hardware to software. It

enables multiple (VMs) to run on a single physical server, as shown in Appendix 2 (Figure 1).

While traditional servers host few applications, virtualization allows one server to support

dozens or hundreds of VMs, reducing costs and hardware needs. Virtualization also

encompasses areas such as web applications and databases. For example, data virtualization

tools like Denodo enable users to access data from multiple sources as a single virtual database,

14

thereby simplifying data management and improving efficiency. Without virtualization, the

cloud’s scalability and cost-effectiveness would not be possible.

3.4.1 Fundamentals of Hardware Virtualization

Before exploring how virtualization is implemented, it is essential to understand the

fundamental components of a hardware server, Appendix 2 (Figure 2). Similar to workstations

or laptops, a hardware server consists of key elements such as central processing units (CPUs),

an operating system (OS), memory, and storage. These components provide the necessary

infrastructure on which applications can be installed to deliver services to users.

3.4.2 Hypervisor Technologies in Cloud Environments

Hypervisors enable server virtualization by creating and managing (VMs) and allocating

hardware resources, such as CPU and memory, to each VM. This ensures independent

operation for each VM, optimizing physical server use and reducing costs.

3.4.2.1 Type 1 Hypervisors

Type 1 hypervisors run directly on hardware without a host OS, earning the name “bare-metal”

hypervisors (see Appendix 2, Figure 3). They enable servers to host multiple, each running a

different operating system, making them ideal for large data centers due to their efficiency and

scalability. Examples include Microsoft Hyper-V, VMware ESXi, and Linux KVM.

3.4.2.2 Type 2 Hypervisors

Type 2 hypervisors run on top of a host operating system, such as Windows or Linux (see

Appendix 2, Figure 4). They create (VMs) with separate guest operating systems, which can

differ from the host—for example, running Linux on a Windows machine. However,

dependence on the host OS can add costs, cause performance delays, and require more

maintenance, making them less suitable for large enterprises. They are ideal for personal or

small-scale use. Examples include Oracle VirtualBox and Microsoft Virtual PC.

3.5 Virtual Machines and Cloud Workloads

 VM is software that simulates a physical computer, running its operating system (OS)

independently of the host machine. This enables multiple virtual environments on a single

physical server.

• Host Machine: Physical hardware and main OS.

• Guest Machine: VM with a separate guest OS.

Types of VMs:

• System VMs (Full Virtualization): Replace real machines, allowing multiple VMs to

coexist on one server via a hypervisor that isolates and manages them. Modern

hypervisors utilize virtualization-specific hardware to achieve improved performance.

• Process VMs: Run specific programs in a platform-independent environment, each

acting as a self-contained computer with dedicated OS and resources.

VMs maximize hardware efficiency by creating isolated environments for separate applications

and workloads.

15

3.6 Network Architecture in Cloud Computing

This approach focuses on the data centre network and data centre interconnect network, which

are crucial areas in cloud computing. The interconnect network connects multiple data centers

in private, public, or hybrid cloud environments, while the public Internet connects end users

to public cloud provider data centers [36][37][38][39][40].

3.6.1 Data Center Networks

 DCN connects all physical and virtual resources in a cloud data center, enabling efficient

communication and high performance. As shown in Appendix 2 (Figure 5), DCNs often use a

hierarchical architecture with three layers:

• Access Layer: Connects servers via end-of-row (EoR), top-of-rack (ToR), or integrated

switches.

• Aggregation Layer: Consolidates access switches, supporting multi-tier applications

and external connectivity.

• Core Layer: Provides high-speed Layer-3 switching for routing traffic between the

data center and external networks.

In geographically distributed data centers, Layer-3 peering routing is critical for fast recovery

from failures and preventing network loops. New optical technologies enhance throughput by

adjusting network topologies, but they also introduce complexity and management overhead.

A robust DCN is crucial for delivering scalable and reliable cloud services.

3.6.2 Data Center Interconnect Network

Data Center Interconnect Networks (DCIN) connect multiple data centers to deliver seamless

cloud services. While traditional VPNs provide secure connections, they lack the flexibility

required for modern needs, such as dynamic server migration and application mobility. DCINs

use Layer 2 extensions to support disaster avoidance, high availability, and workload

balancing, enabling cloud elasticity. Ongoing research aims to improve performance, load

balancing, and security in these networks.

3.7 Cloud Service Providers and Vendor Ecosystem

Cloud vendors sell cloud-related products like software, hardware, and services, offering SaaS,

PaaS, and IaaS solutions. Examples include Amazon, Microsoft, Google, IBM, and Oracle.

Cloud providers deliver services (mainly IaaS and PaaS) over the Internet, managing physical

infrastructure and offering on-demand resources. Major providers include AWS, Azure, and

GCP.

When choosing a provider or vendor, organizations should consider:

• Budget: Assess financial feasibility.

• Security: Check security and compliance features.

• Scalability: Ensure the solution can grow with business needs.

• Services and Tools: Evaluate required tools and platforms.

It is also important to recognize that the best provider for one organization may not be the

best for another, as different companies have varying needs and priorities. To learn more

about specific providers, organizations can explore documentation, whitepapers, and case

studies provided by vendors. Additionally, many cloud providers offer free trials, webinars,

and certification programs to help users make informed decisions [31][42][43].

16

3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing

In cloud computing, (SLAs) define expectations for performance, availability, and security and

protect customers by providing compensation in the event of service failures. They establish a

legal and formal framework between providers and consumers, ensuring mutual understanding

and reliable service delivery. SLAs can be specified using the Web Service-Level Agreement

(WSLA) language, originally for web services but applicable to hosting. WSLA includes

parameters, metrics, measurement directives, objectives, and penalties [44][45][46].

Key SLA characteristics:

• Attainability: Service levels must be realistically achievable.

• Meaningfulness: All terms must be relevant.

• Measurability: Service levels should be objectively measurable.

• Controllability: Providers must be able to control factors that impact the SLA.

• Understandability: Both parties must clearly understand SLA terms.

• Affordability: Agreements should be cost-effective.

• Mutual Acceptability: SLAs should result from negotiation between both parties.

There are two types of SLAs from the perspective of application hosting. These are described

in detail here.

3.7.1.1 Infrastructure SLA

An Infrastructure SLA holds the provider accountable for the availability of core infrastructure

like servers, power, and network connectivity. Meanwhile, enterprises manage their

applications on dedicated, isolated servers, ensuring privacy and security. Examples of service-

level guarantees appear in Appendix 2 (Table 1).

3.7.1.2 Application SLA

An Application SLA in a co-location model enables providers to allocate server resources

based on application needs dynamically. Providers ensure customers’ (SLOs) are met,

including specific performance metrics. An example is shown in Appendix 2 (Table 2).

3.8 Amazon Web Services (AWS)

Launched in 2006, AWS is one of the leading cloud platforms, offering a wide range of

services, including computing, storage, networking, databases,ML, analytics, IoT, and

enterprise solutions [47]. AWS helps organizations across industries enhance scalability,

efficiency, and innovation, maintaining a strong presence in the cloud market since its inception

[48].

3.8.1 Core Services of AWS

3.8.1.1 Compute Services (Amazon EC2)

 Amazon EC2 enables users to rent virtual servers, known as instances, to run applications.

EC2 offers flexible configurations, allowing users to customize the amount of computing

power, memory, and storage based on their specific workload needs. With just a credit card,

individuals or businesses can access a virtually limitless pool of computing resources, renting

17

VMs for an affordable hourly rate, making cloud computing accessible to a wide range of users

[49].

3.8.1.2 Storage Solutions (Amazon S3 & EBS)

Amazon S3 offers scalable, internet-based storage for large data volumes and diverse use cases.

Amazon EBS provides persistent, high-performance block storage for EC2 instances with low

latency. Both solutions efficiently support large-scale storage needs [50].

3.8.1.3 Database Services

AWS offers diverse managed database services [51]:

• Amazon RDS: Fully managed relational databases like MySQL, PostgreSQL, Oracle,

and SQL Server, automating backups, scaling, and patching.

• Amazon Aurora: High-performance, managed relational database compatible with

MySQL and PostgreSQL.

• Amazon DynamoDB: Fully managed NoSQL database for scalable, low-latency

applications.

• Amazon Redshift: Data warehousing service optimized for big data analytics and

complex queries.

These services offer flexible and scalable solutions for relational, NoSQL, and data

warehousing needs.

3.8.1.4 Networking Services (Amazon VPC)

Amazon (VPC) allows users to create secure, isolated cloud environments within AWS,

connecting cloud resources and on-premises systems [52]. Key components include:

• Network ACLs: Stateless controls managing inbound and outbound traffic at the

subnet level.

• Gateways: Connect VPCs to external networks.

• Route Tables: Define rules for directing network traffic.

• VPC Peering: Enables private communication between separate VPCs.

Together, these features ensure robust networking and security for AWS resources.

3.8.1.5 Security and Compliance

AWS emphasizes security through services like IAM for access management, KMS for

encryption, Secrets Manager for protecting sensitive data, and Shield for DDoS defense [53].

Operating under a shared responsibility model, AWS secures the infrastructure while

customers protect their data and access. These tools help organizations reduce risk and stay

compliant with industry regulations.

3.8.2 AWS Pricing Models

AWS offers flexible pricing, including pay-as-you-go, so businesses only pay for what they

use [54]. Key options include:

• On-Demand Instances: Pay-as-you-go pricing for resources like EC2, ideal for short-

term or unpredictable workloads.

• Spot Instances: Up to 90% off on-demand prices for flexible, fault-tolerant workloads

like big data or HPC.

18

• Savings Plans: Discounts are available for committing to consistent usage over 1 or 3

years, covering services such as EC2, Fargate, and Lambda.

• Geographic Selection: Deploy resources closer to users to reduce latency, comply with

data laws, and optimize costs. AWS regions vary in pricing, and tools like the Simple

Monthly Calculator help estimate costs.

• Third-Party Pricing: Ensure third-party service costs align with cost optimization

goals and scale based on actual outcomes rather than total spending.

3.8.3 AWS Global Infrastructure and Availability

AWS operates globally through regions—geographically separate locations containing

multiple isolated Availability Zones (AZs) for resilience and fault tolerance [55]. Each AZ has

independent power, networking, and facilities, improving reliability. Deploying resources

across regions reduces latency, enhances security, and supports compliance and disaster

recovery, ensuring high availability for applications.

3.9 Google Cloud Platform (GCP)

Launched with Google App Engine in 2008, (GCP) has expanded into a robust suite of services,

including Cloud Storage (2010), Compute Engine (2013), Cloud SQL (2014), and Kubernetes

Engine (2015) [56][57][58][59]. Drawing on Google’s experience with services like Search

and Gmail, GCP provides scalable, reliable solutions for a diverse range of industries. Notable

services, including BigQuery, Bigtable, Pub/Sub, and Dataflow, support advanced analytics

and innovation. GCP empowers businesses and developers with tools for data management,

AI, and scalable infrastructure.

3.9.1 Comprehensive Cloud Services Portfolio

• Compute Engine: IaaS service for creating customizable VMs scalable for web apps.

• Storage: Bigtable handles extensive, high-throughput data; Cloud Storage offers

secure, scalable object storage tailored to meet cost and performance needs.

• Data Analytics: BigQuery is a serverless data warehouse for fast analysis of massive

datasets.

• AI & ML: Tools like AI and ML Engine help build, train, and deploy models for

diverse business challenges.

• IoT & Networking: GCP supports scalable IoT deployments and offers robust

networking services like Dedicated Interconnect, Partner Interconnect, and Cloud VPN.

• Serverless Computing: Services like Cloud Functions and App Engine allow app

deployment without managing infrastructure, boosting speed and scalability.

3.9.2 Performance and Scalability

• Global Network: GCP uses a worldwide network of data centers to ensure low

latency, high availability, cost efficiency, and sustainable operations.

• Auto-Scaling: GCP’s Kubernetes Engine (GKE) auto-scales resources to match

workload demands, optimizing performance and handling traffic spikes effectively.

19

3.9.3 Industry Adoption and Use Cases

• Media & Entertainment: GCP offers a scalable infrastructure for content delivery,

reducing costs and enhancing audience engagement.

• Healthcare & Life Sciences: GCP supports genomics research, secure data storage, and

advanced analytics, driving innovation in biotech and healthcare.

• E-commerce & Retail: GCP enables digital transformation, improves analytics, and

enhances customer experiences in retail operations.

3.9.4 Compute Engine Resources: Regions and Zones

Google Cloud Compute Engine distributes resources globally across regions and zones [60]. A

region is a geographic area comprising at least three zones, each of which is an independent

data center. Zonal resources, such as VMs or disks, benefit from fault isolation within zones.

Deploying across regions ensures higher resilience. Regions connect zones via high-speed,

low-latency networks for fast communication. Resources are classified as global, regional, or

zonal, with regional resources shared across zones within the same region. Placement policies

help optimize VM proximity, reducing latency and improving reliability.

3.9.5 GCP Pricing Models

Google Cloud offers flexible pricing options [61]:

• Pay-as-you-go: On-demand pricing with no upfront costs, ideal for variable usage but

more expensive per hour.

• Long-term Reservations (Committed Use): Discounts of up to 70% are available for

committing to one- or three-year usage, making them suitable for consistent

workloads.

• Free Tier: Provides limited, ongoing free resources and $300 in credits for new users

to explore services.

When selecting a model, organizations should consider their budget, usage patterns, and

factors such as computing, storage, and network costs.

3.10 Microsoft Azure: Enterprise Cloud Solutions

Launched in 2008, Microsoft Azure is a rapidly growing cloud platform offering services

across AI, analytics, computing, IoT, security, storage, and more [62]. Its strong integration

with Microsoft products and flexible services makes it ideal for organizations of all sizes. Azure

serves 95% of Fortune 500 companies, offering customizable solutions easily integrated with

external systems.

3.10.1 Compute Services in Azure

• Azure Virtual Machines (VMs): Provide scalable, on-demand computing for diverse

workloads, supporting multiple OS types across 60+ regions with a 99.99% SLA and

robust security features [63].

20

• Azure App Service: A PaaS solution for building and scaling web apps and APIs in

various languages, offering seamless DevOps integration, high availability, and strong

security compliance [64].

• (AKS): Fully managed Kubernetes service for deploying and scaling containerized

apps, reducing operational overhead and supporting fast, secure app delivery. Variants

like K3s and K0s simplify Kubernetes for resource-limited environments [65].

3.10.2 Azure Storage Solutions

• Azure Blob Storage: Stores large unstructured data like text, images, and backups with

scalable capacity, multiple cost tiers, and security features like encryption and RBAC.

Supports block and page blobs [66].

• HPC Storage: Azure offers HPC-optimized VMs (H- and N-series) and storage

solutions, including Blob Storage, Azure Files, and Disk Storage, for high-performance

workloads, providing 99.999% availability and robust security [67].

• Azure Files: Delivers serverless, scalable file shares via SMB and NFS, supports

multiple OS environments, and integrates with various protocols like SOAP, REST,

and XML [68].

3.10.3 Networking in Azure

• Azure Virtual Network (VNet): Creates private, secure networks for deploying and

managing VMs and services in Azure [69].

• Azure Virtual WAN: Centralizes networking, security, and routing, connecting

branches, data centers, and Azure regions efficiently [69].

• Azure VPN Gateway: Provides secure, encrypted site-to-site communication between

Azure networks and on-premises environments [69].

3.10.4 Azure AI and Machine Learning

• Azure ML: Cloud service for advanced analytics and AI, offering secure, scalable

solutions across industries [70].

• Azure Cognitive Services: Suite of AI tools for NLP, speech, and vision, integrating

with IoT for insights in sectors like retail and healthcare [71].

• Azure Bot Services: Platform for building and deploying conversational AI bots, with

easy integration into messaging platforms and cognitive services [72].

3.10.5 Security and Identity Management in Azure

• Azure Active Directory: Cloud-based identity service offering authentication, Single

Sign-On, user management, and security protocols like SAML and OAuth. Includes

features like MFA and self-service password reset, with free basic functionality [73].

• Azure Security Center: Provides threat protection, security recommendations,

continuous monitoring, and compliance management for Azure and hybrid

environments. SSO enhances security but requires careful monitoring for potential

threats [73].

21

3.10.6 Azure Global Geographies and Data Center Locations

Azure geographies are designed to meet data residency and compliance requirements, ensuring

that critical data remains close to users [74]. Each geography contains one or more regions with

fault-tolerant, high-capacity networks. Many regions include availability zones—separate data

centers with independent power, cooling, and networking—connected by high-speed networks

with latency latency under 2 ms. Zones are spaced to minimize shared risks from outages or

weather events, thereby maintaining high availability and ensuring data synchronization. Data

center locations are chosen through rigorous risk assessments to ensure resilience and

reliability.

3.10.7 Azure pricing models

Azure uses a pay-as-you-go model, charging only for resources consumed, though this is pricier

than reserved options [75]. New customers receive 12 months of complimentary popular

services, 55 ongoing complimentary services, and a $200 credit for the first 30 days. After 12

months, standard rates apply, with some services remaining free of charge. Cost-saving options

include Reserved Instances (up to 72% savings) and Spot VMs (up to 90% off), which utilize

unused capacity. Pricing may change, so users should refer to Azure’s official pricing page for

the most up-to-date details.

22

Chapter 4 Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation

This chapter addresses the estimation and optimization of RTT in cloud computing

environments, with a specific focus on the impact of geographical distances and network

conditions. This chapter introduces a novel approach that integrates multiple triangular

membership functions for both input and output variables within a fuzzy logic framework to

enhance the accuracy of RTT estimation, addressing the limitations of traditional methods,

particularly in time-sensitive cloud applications. The proposed fuzzy logic-based model

incorporates key factors influencing RTT, including network congestion, which is evaluated in

terms of time (ms) and routing policies and analyzed based on distance (kilometers) and

geographic distances. By integrating these parameters, the model provides a more refined and

adaptable RTT prediction than conventional estimation techniques, ensuring greater precision

in cloud performance assessments. Furthermore, The chapter highlights the benefits of fuzzy

logic-based RTT estimation in evaluating and selecting the optimal network performance. By

explicitly modeling the impacts of geographical distance and network congestion, the proposed

approach enables customers to make informed decisions about service quality, taking into

account their proximity to data centers and their awareness of current network conditions. This

approach ensures greater accuracy in meeting Quality of Service (QoS) requirements and

maintaining compliance with (SLAs). A comparative analysis of RTT values across 28 AWS

regions is presented, demonstrating that the fuzzy logic-based system consistently yields more

precise and lower RTT estimates than traditional measurement methodologies available

through Websites standard online tools. These findings highlight the effectiveness of fuzzy

logic in estimating latency and improving SLA evaluation.

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing

Traditional cloud computing is primarily used for storing, analyzing, and processing large

volumes of data. However, it struggles to handle high latency issues in time-critical

applications, such as computer gaming, e-healthcare, telemedicine, and robot-assisted surgery.

Network latency, which causes delays in data transmission, is a critical factor for real-time

applications. Traditional cloud computing methods are often insufficient to meet the stringent

Quality of Service (QoS) requirements for devices operating in these environments. Challenges

in calculating and expectation the RTT further complicate efforts to minimize latency when

transmitting time-sensitive data in real-time [76]. RTT is a crucial determinant of latency in

cloud services. Efficient management of RTT can significantly enhance QoS by ensuring faster

data exchange and reducing response times. This optimization is essential for applications

dependent on real-time interactions, where latency can drastically affect user experience and

satisfaction. Ensuring low RTT is also essential for maintaining SLA compliance [77].

Scientists are evaluating cloud infrastructure for next-generation applications by analyzing the

impact of geographical distance on latency. Private network backbones and direct peering

agreements have been shown to significantly improve latency in cloud environments, reducing

the delays experienced by users across different regions [78]. One study assessed the

performance of the Tahoe Least-Authority File System (Tahoe-LAFS) by comparing its write

operations on community network clouds and the Azure commercial cloud platform. The

results revealed that read operations outperform write operations on Azure due to the platform’s

network homogeneity, highlighting the performance differences between community and

23

commercial clouds [79]. In the pursuit of optimizing resource management and reducing

communication costs, two approaches—queue-based dynamic resource allocation and spatial

resource partitioning—were evaluated for their impact on latency, throughput, fairness, and

latency fairness. The findings show that queue-based dynamic technology outperforms spatial

partitioning in terms of latency reduction and overall performance [80]. DCN are also evolving,

with line rates increasing to 200Gbps to support NVMe and distributed (ML) applications.

However, this advancement leaves room for imperfect control decisions. To address this, the

Bolt system was developed, founded on three core ideas: (i) Sub-RTT Control (SRC), which

reacts to congestion faster than traditional RTT control loop delays; (ii) Proactive Ramp-Up

(PRU), which anticipates future flow completions to quickly utilize released BW; and (iii)

Supply Matching (SM), which explicitly matches BW demand with supply to maximize

utilization. Bolt has been shown to reduce latency and improve flow completion times while

maintaining near line-rate utilization, even at 400Gbps [81]. Cloud applications often operate

exclusively on the servers provided by CSPs, accessible through a simple web browser or

similar client interface. For example, AWS offers widely used business applications that are

hosted on its servers and accessed online. AWS has demonstrated this by providing scalable

infrastructure to accommodate various enterprise needs, further illustrating the potential impact

of cloud computing [82]. Similar to how most people today opt to rent homes rather than build

them, the future of computing may see organizations favoring scalable and reliable cloud

providers instead of constructing their own IT infrastructures. This shift would significantly

reduce the risks and costs associated with launching new applications and services, as cloud

providers offer ready-made platforms for deployment [83]. The widespread enthusiasm for

cloud computing has led to a surge of discussions surrounding network availability, reliability,

and latency within cloud environments. Despite these discussions, there is a noticeable lack of

empirical measurement studies that validate these claims. Specifically, there is a gap in research

comparing networking performance metrics, such as RTT, with the actual RTT experienced by

web hosting services across different geographical regions. This gap highlights the need for

more comprehensive studies to better understand and address the challenges related to RTT

and latency in cloud computing [76]. As a result, our research endeavors to assess the

performance of networking services under varying load conditions to determine the validity of

the hype generated around cloud computing. We approach the assessment of network

availability from two broad perspectives: firstly, by computing network based RTT through

ping tests to evaluate connectivity, and secondly, by adopting a mathematical respective with

RTT approach to verify the scalability and performance claims made by CSPs [82]. To gain a

deeper understanding of these aspects, we employ a fuzzy logic system that utilizes two input

variables, each defined by three distinct triangular membership functions. The first input,

Geographical Distance, is categorized linguistically into three categories: Small, Medium, and

Long. The second input, Network Congestion, is represented by linguistic categories Light,

Average, and Peak. The output of this fuzzy logic system is the Expected RTT, defined through

nine distinct triangular membership functions labeled RTT1, RTT2, RTT3, RTT4, RTT5,

RTT6, RTT7, RTT8, and RTT9. This system enables the measurement of service performance

concerning the expected optimal RTT. The study is conducted within the AWS platform, where

performance is evaluated based on the interaction between the sender and receiver when

retrieving cloud services. RTT values are categorized into three distinct classes: small RTT

24

(RTT < 100 ms), medium RTT (100 ms < RTT < 200 ms), and large RTT (RTT > 250 ms).

Following this classification, a comparative analysis is performed between the expected RTT

values obtained using the triangular membership function in the fuzzy logic system and the

actual RTT values provided by AWS. The findings indicate that the fuzzy logic-based approach

for RTT estimation yields more accurate and predictable results than those promoted by AWS.

For further investigation, ping tests were employed to analyze variations while accounting for

inter-region distances and network latency. This method provides a practical solution to the

first challenge identified in this study: enhancing cloud service management and selection. By

integrating fuzzy logic-based SLA optimization, users can make informed decisions regarding

cloud service selection based on their geographic proximity to AWS regions, ultimately

improving service performance and efficiency. This contribution facilitates the analysis and

evaluation of additional Quality of Service (QoS) criteria in both computing and networking,

which will be examined in detail in the subsequent chapter. Furthermore, the fundamental

principles underlying the fuzzy logic technology employed in this study will be systematically

presented and discussed throughout this dissertation in a structured and sequential manner.

4.2 Challenges in Estimating RTT in Cloud Environments

Accurately estimating RTT in cloud environments presents a range of challenges due to the

complex, dynamic nature of modern cloud architectures.

4.2.1 Geographical Distance

Cloud data centers are distributed globally, and the physical distance between nodes, such as

between locations i and j, can introduce significant delays in data transmission. For example,

transcontinental communications between data centers in Europe and Asia often experience

higher RTT due to the long distances involved. The geographical separation between the sender

and receiver plays a crucial role in network performance, particularly in terms of latency. As

the distance increases, data transmission delays grow, which can have a substantial impact on

time-sensitive applications that require real-time data exchange. This underscores the

importance of optimizing routing and data transmission strategies to minimize the negative

effects of geographical distance on network performance [84].

4.2.2 Network Congestion

As cloud networks continue to expand, network congestion becomes a growing concern,

leading to variable delays in data transmission. In multi-tenant environments, where multiple

clients share network resources, this competition can result in unpredictable fluctuations in

RTT. A key issue often cited is the effect of out-of-order packet arrivals on the performance of

TCP (Transmission Control Protocol). These out-of-order arrivals are typically interpreted as

a sign of network congestion, causing the receiver to generate duplicate acknowledgements.

This, in turn, prompts the sender to react as if packets were lost, triggering spurious

retransmissions and unnecessary reductions in the sending rate. When it comes to flow control,

the combination of traffic from multiple servers can exceed the capacity available at the

destination server, further intensifying network congestion. This congestion can also spill over,

affecting traffic to neighboring servers and exacerbating overall network performance issues.

25

Therefore, the management of congestion and the optimization of traffic flow are crucial to

ensuring stable and efficient cloud network operations [85][86].

4.3 Transmission Performance Evaluation in Cloud Computing

The Internet serves as a foundational component of computational technologies, facilitating

extensive data generation that is stored on servers or within cloud infrastructures. The processes

of data migration and transfer are integral to maintaining system integrity, ensuring

consistency, and implementing essential security and load-balancing mechanisms. Among the

key metrics for assessing transmission performance in network communications is RTT, which

quantifies the duration required for a signal to travel from the source to the destination and

return. RTT is widely utilized to evaluate the efficiency and Quality of Service (QoS) across

diverse network environments, including cellular networks, Internet of Things (IoT) systems,

and traditional Internet-based frameworks [87]. RTT analysis is particularly significant in

network optimization, as it aids in diagnosing transmission delays and enhancing end-to-end

communication performance. Moreover, RTT plays a pivotal role in congestion control

protocols, such as TCP BBRv3, which is designed to optimize BW utilization and ensure

fairness in networks exhibiting variable RTT values. Within IoT environments, RTT is

assessed alongside other key performance indicators, including power consumption, to enhance

data transmission reliability. The integration of RTT-based optimizations enables CSPs to

maintain high levels of performance and reliability while simultaneously reducing their

environmental impact [88]. Cloud computing systems are subject to performance evaluations,

generally categorized into resource assessments and network infrastructure assessments.

Resource assessments focus on analyzing the computational performance of cloud

applications, particularly concerning the hardware and virtualized environments that support

these applications. Each CSP employs distinct criteria for measuring CPU utilization. For

instance, Google App Engine assesses resource consumption based on "Megacycles used,"

whereas Amazon EC2 evaluates performance in terms of deployment duration and instance

utilization. Conducting such assessments typically requires root-level access permissions,

limiting them to cloud providers or certified third-party evaluators [89].

4.4 Intelligent Systems and Network Service Prediction

Intelligent systems encompass a diverse range of computational techniques derived from (AI)

research, including fuzzy logic, neural networks, and genetic algorithms [90]. Among these

approaches, fuzzy logic provides a powerful framework for managing uncertainty and

imprecision, making it particularly effective for solving complex problems where traditional

binary logic falls short. By incorporating partial truth values, fuzzy logic facilitates human-like

decision-making in ambiguous situations, which is essential for applications such as control

systems, decision-making processes, and pattern recognition. Fuzzy logic plays a crucial role

in intelligent systems due to its capability to process uncertain, imprecise, and vague data.

Unlike conventional logic systems that rely on absolute true or false values, fuzzy logic allows

for degrees of truth, mimicking human reasoning and improving adaptability in dynamic

environments. A fundamental aspect of fuzzy logic is the fuzzy linguistic approach, which

utilizes linguistic variables to represent qualitative system attributes. This methodology is

26

particularly beneficial for ill-defined or highly complex scenarios, enhancing flexibility and

adaptability in intelligent problem-solving [91]. Additionally, fuzzy reasoning aids in system

behavior analysis, allowing for interpolation between input and output conditions, simplifying

complexity management, and supporting induction-based learning—a critical feature for

addressing intricate computational challenges. Ensuring balanced uncertainty is essential for

optimizing model performance in such systems, particularly in server management and task

distribution, which are fundamental to the efficient operation of service-based infrastructures.

In cloud computing and networking, fuzzy logic plays a key role in addressing complex

challenges such as network delay estimation, which is critical for accurately predicting task

completion times and optimizing cloud resource allocation [90][92][93]. Empirical studies and

simulations have demonstrated that fuzzy logic-based decision-making models operate

effectively in uncertain environments, offering high precision in estimating network delays

within cloud-based infrastructures. Given the complexity and dynamic nature of cloud

infrastructures, adopting flexible and adaptive methodologies is essential for effective

management. By providing a structured decision-making framework, fuzzy logic enables

systems to efficiently handle uncertainty, ultimately enhancing efficiency, reliability, and

resilience in cloud-based operations [94][95].

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic

4.5.1 Experimental Testing Model Determination

Several techniques are utilized to calculate RTT in network environments, each offering

varying levels of accuracy and application. One widely used method is the Ping Test, which

serves as a rapid and reliable tool for assessing network performance and connection quality.

This technique measures the latency in ms between a user's device and a specified remote

server. The RTT value is significantly influenced by the geographical distance to the server,

with greater distances typically resulting in higher RTT values. A stable network connection is

indicated by a consistently straight horizontal line on a ping test chart, whereas fluctuations in

RTT may signal network instability or congestion [96]. Another method for calculating RTT

involves mathematical modeling techniques implemented within network infrastructures. In

this context, network performance metrics are derived by measuring transactions, defined as

client requests followed by server replies, including TCP and UDP flows. Each read and write

transaction between client and server is timed, providing essential data for RTT calculation.

Typically, network appliances, such as Exinda device (1), are strategically placed between the

client and server to facilitate precise measurement. These devices timestamp each intercepted

packet with high-resolution nanosecond accuracy. Since the initial packet transmission from

the client is unknown, RTT is calculated by summing the server-side RTT (from appliance to

server and back) and the client-side RTT (from appliance to client and back). With increasing

packets traversing the Exinda appliance, RTT estimations become more accurate by

continuously averaging newly captured data. Consequently, RTT provides a reliable measure

of the time required for a minimal packet to travel through the network and receive

acknowledgment, improving progressively with ongoing data accumulation. [97][98]. The

methodology for calculating RTT, along with its visual representation and governing

(1) (https://docs.exinda.com/).

https://docs.exinda.com/

27

equations, is depicted in Appendix 3 (Figure 1), which provides a diagrammatic illustration of

the RTT computation process. In this study, the ping technique was employed to assess the

connectivity between the sender and receiver, enhancing the accuracy of the analysis and

enabling precise tracking of the connection process between network nodes within the AWS

computing environment. Appendix 3: 0.2 Figure 2. Ping testing process. A sample of the results

obtained from the ping testing process was presented to verify the integrity of the connection

and establish a reliable link between the user and the endpoint. This verification was performed

across all selected servers in this study to ensure network stability and performance.

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS

Regions

In this study, data was systematically extracted to include the names of 28 AWS regions where

data centers are located, along with relevant details necessary for conducting a comprehensive

communication and connection assessment. These regions were considered as Amazon’s

endpoints or receivers, facilitating the evaluation of network performance across different

geographical locations. To conduct this analysis, the AWS latency testing platform(2) was

utilized to measure network latency between the sender and AWS endpoints. Additionally, the

Haversine formula was applied to determine the latitude and longitude of each endpoint. The

Haversine formula, commonly used in navigation and geospatial analysis, calculates the great-

circle distance between two points on a sphere based on their geographic coordinates. This

approach enabled precise estimation of the physical distance between the sender and AWS data

centers. The sender's location was identified as Kut, Muhafazat Wasit, Iraq (IQ), with an IP

address of 37.236.213.12 and geographical coordinates of latitude 32.6024 and longitude

45.7521, The primary objective was to analyze and extract the precise distance between the

sender and all AWS regions across multiple continents, Appendix 3 (Figure 3, Table 1).This

geospatial analysis facilitated a better understanding of network performance, enabling a more

accurate evaluation of latency and connectivity between CSU and data centers worldwide.

4.5.3 Fuzzy Logic Framework

 4.5.3.1 Design System

The proposed model employs several triangular membership functions. [99], formulated in

Equation (4.1), to convert crisp values into fuzzy sets. The MATLAB Fuzzy Logic Designer

tool was utilized to develop the model, as depicted in Figure 4.1, the model integrates two input

parameters, as detailed in Appendix 3 (Figures 4 and 5). The model utilizes three triangular

membership functions for each input parameter.

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑑: 𝑙,𝑚, 𝑛) =

{

0, 𝑑 < 𝑙
𝑑−𝑙

𝑚−𝑙
 , 𝑙 ≤ 𝑑 ≤ 𝑚

𝑛−𝑑

𝑛−𝑚
 , 𝑚 < 𝑑 ≤ 𝑛

0 , 𝑑 > 𝑛

 (4.1)

where:

(2)(https://aws-latency-test.com/).

https://aws-latency-test.com/

28

• l is lower bound of the triangle (left endpoint).

• m is peak or center of the triangle (point of maximum membership value, equal to 1).

• n is upper bound of the triangle (right endpoint).

• d is input value being evaluated.

Figure 4.1. Proposed model design.

The fuzzy logic system developed in this study is grounded in a systematic design process for

defining both fuzzy sets and inference rules. The membership functions for the two input

variables. Geographical Distance and Network Congestion were established based on extensive

analysis of RTT measurement data collected across 28 AWS regions. Geographical Distance

was divided into three fuzzy sets. Small, Medium, and Long. Using triangular membership

functions. The breakpoints were determined from empirical distance ranges corresponding to

expected variations in RTT values.

1) Input Variables Definition

• Distance:

Small: [0, 862.94, 4516]; Medium: [2689, 8170, 11824]; Long: [9997, 15478,

15478.65]

Network Congestion was similarly divided into three fuzzy sets. Light, Average, and Peak

reflecting latency characteristics were measured at different times of the day and under

varying network load conditions.

• Network Congestion:

Light: [0, 3, 6]; Average: [3, 6, 8]; Peak: [7, 14, 23.59].

2) Output Variables Definition

The expected (RTT-Expectation) output is defined in Appendix (Figure 7) as follows:

RTT1: [0, 0, 25]; RTT2: [10, 50, 75]; RTT3: [50, 100, 125]; RTT4: [100, 150, 175];

RTT5: [150, 175, 200]; RTT6: [175, 200, 250]; RTT7: [200, 250, 325]; RTT8: [250,

325, 350]; RTT9: [325, 430, 500].

The output variable, Expected RTT, Table 4.1, was defined using nine triangular membership

functions labeled RTT1 through RTT9, each corresponding to specific ranges of RTT delays

identified in our measurements, Appendix 3 (Figure 6)., in accordance with fuzzy logic system

standards (3 × 3) rules, as depicted in Appendix 3 (Figure 7).

29

Table 4.1 Expected RTT.

 Distance

Network

congestion

Small Medium Long

RTT Expectation

Light RTT1 RTT4 RTT7

Average RTT2 RTT5 RTT8

Peak RTT3 RTT6 RTT9

4.5.3.2 Description of the Proposed Model

The fuzzy logic system designed for estimating RTT comprises four integral components:

fuzzification, inference engine, knowledge base, and defuzzification. The fuzzification process

transforms precise numerical inputs into fuzzy sets using linguistic variables, effectively

managing uncertainty and variability inherent in network conditions. The inference engine

utilizes a defined set of fuzzy rules to process these input fuzzy sets, generating output fuzzy

sets that determine RTT estimations. The knowledge base includes a rule base of conditional

(if-then) rules and a database of membership functions specifying fuzzy sets for various

network parameters. Finally, defuzzification converts fuzzy output values back into precise

numerical values, yielding practical RTT estimates suitable for network performance decisions

[100]. By leveraging these components, fuzzy logic offers an adaptive and intelligent approach

to RTT estimation, superior to traditional deterministic methods, especially in handling

unpredictable network fluctuations. The structured methodology ensures accurate

transformation of raw data into meaningful RTT predictions, enhancing evaluation precision

and network adaptability. In the fuzzification stage, crisp numerical inputs such as Distance

(measured in kilometers, indicating geographical separation between sender and receiver) and

Network Congestion (measured in ms, representing network traffic intensity and its impact on

latency) are translated into linguistic terms mapped onto fuzzy sets using triangular

membership functions. Following fuzzification, the system applies nine comprehensive if-then

fuzzy rules, enabling dynamic adaptation to varying network conditions. The fuzzy outputs

derived from the inference process are subsequently converted into precise numerical values

through defuzzification using the centroid defuzzification method, also known as the (COG)

method. This technique ensures realistic and weighted RTT estimates that accurately reflect

real-world network conditions, significantly enhancing reliability, precision, and

interpretability, thereby optimizing Quality of Service (QoS) and ensuring compliance with

(SLAs) in cloud computing and network management contexts. By explicitly modeling the

impacts of geographical distance and network congestion, our fuzzy logic approach provides

precise and realistic RTT predictions that reflect actual network conditions. This enables users

and network operators to make informed decisions regarding the selection of cloud services,

choosing data center regions closer to their location to minimize RTT and ensure stable

performance. Users can also anticipate periods of higher network congestion, helping them

avoid scheduling heavy transmissions during peak times. Moreover, RTT prediction serves as

an essential optimization tool by acting as an early warning system for potential congestion.

When the predicted RTT increases unexpectedly, indicating growing network congestion,

dynamic protocols such as TCP can adjust transmission rates proactively, reducing data flow

to prevent congestion collapse. Conversely, when predicted RTTs are low, the system allows

higher throughput, maximizing available BW and improving resource utilization. RTT

predictions also inform adaptive routing protocols, enabling the network to select paths with

lower expected delays and to avoid congested links. This contributes to efficient BW allocation

30

and load balancing, ensuring optimal network performance. Real-time RTT feedback supports

traffic shaping policies, allowing prioritization of latency-sensitive applications like VoIP and

video streaming, thus maintaining consistent QoS even under varying traffic conditions.

Additionally, sustained increases in RTT act as early indicators of deeper network issues,

allowing administrators to implement preemptive measures, such as upgrading links or adding

capacity, to prevent severe congestion. This proactive management ensures network stability

and enhances reliability. Figure 4.2 presents a surface viewer of the proposed fuzzy logic

system, illustrating the relationship between distance, network congestion, and the expected

RTT. The X-axis represents the geographical distance (in kilometers) between the service

consumer and the cloud data center, ranging from 0 km to approximately 15,478 km, thereby

covering local, regional, and global communication scenarios. The Y-axis corresponds to the

network congestion level, mapped linguistically as Light, Average, and Peak, and modeled over

a 24-hour time scale to reflect hourly fluctuations in network load. The Z-axis indicates the

expected RTT, measured in ms, and the estimated delay for a data packet to travel from the

user to the cloud and back. RTT values range from 0 ms to 500 ms, where higher values signify

network performance degradation. The surface behavior shows that the RTT remains minimal

at short distances and under light congestion conditions (e.g., RTT1: 25 ms). As the distance

increases or the network congestion becomes more intense, the RTT values rise accordingly,

aligning with intermediate fuzzy rule outputs such as RTT2 through RTT8. Under long-

distance communication and peak congestion scenarios, the model estimates the highest RTT

values (e.g., RTT9: 500 ms), which may indicate potential service delays or connection

timeouts. The system employs triangular membership functions for all inputs and outputs and

is governed by nine fuzzy rules defining how input combinations translate into RTT

classifications. For instance, a rule such as “If Distance is Long and Congestion is Peak, then

RTT is Very High (RTT9)” exemplifies the model’s logic structure. The inference engine

processes these rules to produce fuzzy output sets, which are then translated into precise RTT

estimates through defuzzification using the Centroid (Center of Gravity) method, resulting in

realistic and actionable RTT values that enhance network performance assessment and SLA

compliance.

Figure 4.2 Fuzzy Logic-Based RTT Estimation by Distance and Network Congestion.

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and

Discussion

The proposed model was rigorously tested to ensure its accuracy and adherence to established

standards. The primary objective of this evaluation was to validate the model's reliability in

31

estimating RTT by simulating real-world conditions. One of the critical aspects of this

assessment involved verifying communication between two points on a network, specifically

between a sender located in Kut, Iraq, and recipients across all AWS geographical regions.

This verification, conducted using the ping tool, ensured the integrity and responsiveness of

the network connection. Additionally, since RTT is influenced by factors such as geographical

distance, network congestion, and peak cloud service usage, the distance between the sender

and receiver was precisely calculated to account for its impact on RTT fluctuations. Following

the implementation of the proposed system, the model successfully extracted and estimated

RTT over 24 hours, capturing its variations across different congestion levels. The results

demonstrated that during low congestion periods—typically corresponding to off-peak hours

when cloud service and network traffic are minimal—the estimated RTT remained

significantly low. Conversely, during moderate congestion periods, which generally coincide

with regular business hours in companies and organizations, RTT values exhibited a gradual

increase. The model also effectively estimated RTT under peak congestion conditions,

representing the highest levels of cloud service utilization. Unlike conventional CSPs, such as

AWS, which often display a single, static RTT value, the proposed model offers a dynamic and

comprehensive RTT estimation. This approach enhances user confidence by providing a more

detailed representation of RTT fluctuations, allowing users to make more informed decisions

regarding their network performance. Table 4.2 presents details of the calculated distances

between the sender and each recipient region, the RTT values reported by AWS, and the

detailed RTT estimates generated by the proposed model. Furthermore, the results indicate that

RTT1 to RTT3 correspond to optimal network performance, characterized by minimal latency

and efficient data transmission. Conversely, RTT9 signifies severe network degradation, which

may result in connection termination due to excessive delays. Intermediate RTT values,

ranging from RTT4 to RTT8, reflect progressive performance deterioration, where users

experience increased latency, extended page load times, and diminished service quality. Each

estimated RTT result in the proposed system is labeled accordingly, allowing users to identify

the most suitable geographic region based on their network requirements.

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS

Cloud Services and SLA Optimization

This research This research introduces a novel fuzzy logic-based model designed to accurately

estimate RTT in AWS cloud environments. The primary objective is to improve the precision

of RTT predictions by integrating multiple network parameters, particularly geographical

distance, and network congestion, within a rule-based fuzzy inference framework. Compared

to traditional RTT calculation methods, the proposed model offers a more detailed, dynamic,

and adaptable assessment, thereby enhancing user decision-making when selecting (SLAs)

from cloud providers. Traditionally, AWS supports RTT measurements using diagnostic tools

such as ping and traceroute, which transmit Internet Control Message Protocol (ICMP) echo

requests to specified destinations and measure the elapsed. AWS documentation describes this

process as involving the execution of the ‘ping’ command, followed by the target IP address

or hostname, which results in the collection of individual RTT measurements. However, this

traditional mechanism has inherent limitations. RTT is highly variable, fluctuating due to

factors like network congestion, routing changes, server load, and geographical distance. As a

result, reporting a single RTT value for a region provides only a static snapshot rather than a

comprehensive view of latency dynamics. AWS likely simplifies RTT reporting to avoid

32

overwhelming users with excessive technical detail, abstracting the measurement methods—

whether ICMP ping, TCP handshakes, or application-layer metrics—to ensure consistency

across services. For the sake of user experience, AWS typically rounds or averages RTT values

to present information in a more accessible format, recognizing that many users are not network

engineers. While this approach is user-friendly, it can obscure important nuances, particularly

for users requiring granular diagnostic insights. Moreover, revealing detailed RTT paths or

node-level latency information could expose sensitive aspects of AWS’s internal infrastructure

or routing strategies, which are kept confidential for security and competitive reasons. In

contrast, the proposed approach developed in this study offers a dynamic and adaptive

assessment of RTT for each AWS data center region. It considers both the geographical

distance between users and data center locations, as well as variations in network conditions,

such as peak traffic periods and congestion levels. This method enables context-aware

predictions rather than static, single-value estimates, allowing users to anticipate service

performance and potential latency issues better. It is essential to recognize that RTT

measurements can vary significantly due to fluctuating network conditions and the inherent

limitations of diagnostic tools, which pose challenges for accurate RTT estimation. This study

highlights the crucial importance of accurate RTT prediction in ensuring optimal Quality of

Service (QoS) in cloud computing, particularly for latency-sensitive applications. The

proposed model categorizes RTT into various performance levels using triangular membership

functions, allowing detailed analysis of network efficiency. Furthermore, it accounts for RTT

variability across different congestion scenarios, distinguishing between optimal conditions,

moderate degradation, and severe latency problems that could lead to service disruptions. A

significant contribution of this research lies in the comparative evaluation between the

proposed fuzzy logic model and RTT values reported by AWS. While AWS typically provides

static RTT measurements, the proposed system dynamically estimates RTT variations

throughout different times of the day, delivering more realistic and context-sensitive insights

into network performance. This dynamic capability empowers users to make informed choices

when selecting cloud regions that align with their specific networking and computational

requirements. Additionally, this work addresses challenges related to the availability and

reliability of critical network metrics, such as RTT, which are essential for assessing the

performance of cloud-based services. Future sections of this thesis will explore additional

network performance indicators, including vCPU, RAM, Storage, downtime, jitter, packet loss,

and BW utilization, to achieve a 99.999% reliability target. The developed fuzzy logic based

RTT estimation model represents a robust, scalable, and intelligent tool for cloud service

selection, significantly enhancing network performance monitoring and resource allocation.

By leveraging fuzzy inference techniques, the model enables more accurate, adaptive, and real-

time RTT predictions, thereby improving reliability, operational efficiency, and SLA

compliance in contemporary cloud computing infrastructures.

Table 4.2 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT)

Measurements.

NO

Computed

Distance

Between the

Sender and

Receiver(km)

Amazon

(RTT)

(ms)

During

Daytime

Estimated Latency Values in the Proposed RTT

Classifications During Daytime Hours(ms)

Light congestion Average

congestion

Peak

congestion

1 862.94 62 9 45 92

33

2 1234.23 50 9 45 92

3 3089.72 361 30 65 110

4 3428.79 88 50 86 128

5 3525.01 100 57 92 134

6 3601.23 102 62 97 138

7 3607.54 113 62 97 139

8 4009.87 115 93 127 166

9 4202.65 112 110 144 181

10 4238.49 127 113 147 184

11 4682.33 138 142 175 208

12 5981.25 388 142 175 208

13 6012.87 212 142 175 208

14 6789.34 347 142 175 208

15 7056.22 339 142 175 208

16 7289.64 369 142 175 208

17 7435.78 414 142 175 208

18 7832.90 426 142 142 208

19 8053.21 374 142 142 208

20 8923.45 181 142 142 208

21 10023.67 172 143 143 210

22 10289.47 198 155 155 232

23 12345.89 279 258 258 418

24 12678.56 242 258 258 418

25 13756.90 390 258 258 418

26 14321.76 427 258 258 418

27 14989.34 266 258 258 418

28 15478.65 300 258 258 418

34

Chapter 5 Quality of Service (QoS) Availability Assessment for Optimal SLA Selection

This chapter presents a significant advancement in cloud computing service selection by

introducing a fuzzy logic-based classification model for evaluating Quality of Service (QoS)

levels. The proposed method enhances user decision-making by enabling the confident

selection of the most appropriate SLA, thereby improving the accuracy and reliability of cloud

service utilization. Building upon the RTT estimation framework discussed in the previous

chapter, this model expands the analysis to encompass a comprehensive set of quality-of-

service parameters. It systematically evaluates computing and networking metrics, including

virtual CPU (vCPU), RAM, storage, BW, delay, jitter, and packet loss. The model categorizes

SLAs into nine distinct service availability levels, ranging from 90% to 99.999%. It organizes

them into structured tiers, beginning with entry-level agreements such as Normal SLA and

Bronze SLA, culminating in the highest reliability classification under the Gold SLA. This

granular classification framework empowers users to align SLA selection with their specific

performance and reliability requirements. By leveraging fuzzy logic principles, the model

supports a more adaptive SLA selection process, dynamically aligning service guarantees with

real-world user demands and fluctuating network conditions. This approach enhances quality

of service by increasing the precision and reliability of SLA classification, particularly

benefiting users with high availability and performance needs. It also facilitates intelligent

cloud service provisioning by enabling responsive adjustments to variations in service quality.

Overall, the proposed model establishes a robust foundation for SLA optimization, contributing

to improved network efficiency, more effective resource management, and greater reliability

across modern cloud computing environments.

5.1 Evaluating QoS metrics for determining SLA

Cloud computing represents a transformative paradigm in networking, enabling seamless, real-

time access to a range of computing resources, including applications, servers, storage,

services, and networks, without the need for upfront infrastructure investment. This model

provides users significant scalability and flexibility, allowing them to pay only for the resources

they consume. As a result, cloud computing facilitates the convergence of global data and

service accessibility from any location at any time. Cloud infrastructure typically offers three

primary service models: (SaaS), (PaaS), and (IaaS). Service providers deliver these models

reliably and cost-effectively, earning user trust [101]. As cloud computing becomes

increasingly ubiquitous across desktop and mobile platforms, new challenges have emerged

for providers and users. The growing user base and rising storage demands have intensified

concerns surrounding data privacy and system security [102]. Although cloud providers offer

a broad array of services, a significant issue remains the lack of transparent guarantees

regarding availability, uptime, and downtime as specified in (SLAs) [103]. In addition, network

performance indicators—such as throughput RTT, jitter, and packet loss—are also critical to

overall service availability [104]. These technical parameters are essential for meeting user

expectations but are often presented in complex or unclear ways. Therefore, understanding the

SLA decision framework is essential for ensuring timely and cost-effective service delivery.

Users must ensure that cloud providers offer comprehensive guarantees regarding networking

QoS metrics (e.g., BW, RTT, jitter, and packet loss) and computing QoS metrics (e.g., uptime

and downtime). Before adopting cloud services, customers must conduct detailed assessments

and maintain clear communication with providers to establish reliable SLA terms. A

35

trustworthy relationship between provider and customer hinges on this clarity. Moreover,

defining guarantees in a cloud environment entail identifying key performance indicators such

as task execution speed and responsiveness. Cloud providers must demonstrate transparency

in their service offerings through detailed documentation, SLA disclosures, and performance

metrics. Significantly, validation of SLA commitments operates within the shared

responsibility model, wherein accountability is distributed between the cloud provider and the

customer [105]. The Shared Responsibility Model is a foundational framework for cloud

security and compliance. It delineates responsibilities for various components of the cloud

environment, including hardware, infrastructure, endpoints, data, configurations, operating

systems, network controls, and access management. This model clearly establishes the

boundary between cloud providers' obligations and those of the customers. Irrespective of the

chosen service model—be it IaaS, PaaS, or SaaS—the shared responsibility framework applies

universally [106]. However, the increasing complexity and variability of component-level

services present additional challenges in SLA selection. Existing selection methods are

generally limited to formal service attributes and fail to accommodate unquantifiable user

preferences or subjective opinions. Many web interfaces only allow customers to select pre-

configured service packages without explicitly articulating the guarantees these packages offer.

The key challenge lies in capturing and expressing consumer preferences, which often involve

abstract and non-measurable factors, and incorporating them into the decision-making process

for optimal service selection [107]. To address these limitations, this research proposes a

service selection mechanism that integrates users' subjective judgments into SLA decision-

making. By allowing users to express qualitative preferences—referred to as "human

opinions"—for each service requirement, the model ensures alignment between selected

services and individual user expectations. In SLA selection, a comprehensive understanding of

Quality of Service (QoS) is vital, as QoS parameters are closely linked to user needs and

application demands [108]. Accordingly, this study introduces a fuzzy logic-based QoS

classification model designed to support efficient and practical SLA selection. The model

systematically categorizes SLAs into nine distinct availability levels, ranging from 90% to

99%, reflecting the diverse needs of cloud users. This classification incorporates both

computing QoS metrics—such as vCPU, RAM, and storage—and networking QoS metrics,

including BW, jitter, RTT, and packet loss. By integrating these parameters, the model

facilitates a comprehensive evaluation of service quality, thereby enabling informed SLA

selection. The proposed model enhances user empowerment by enabling informed decisions

based on specific application requirements, budget constraints, and desired QoS guarantees.

For instance, users with minimal computing demands, such as those using basic office

applications, may select entry-level service tiers. Conversely, users engaged in activities like

virtual conferencing may require enhanced service levels, while high-performance users, such

as gamers or professionals working in video editing or scientific computation, may necessitate

premium gold-tier services. The motivation for this research arises from the observed lack of

clarity and interpretability in SLA representations provided by major cloud platforms. Leading

providers such as AWS and GCP present SLA terms that are often difficult for users to

interpret. For example, AWS specifies uptime guarantees ranging from 99.0% to 99.95%, while

GCP offers guarantees for single-instance services at or above 99.95% uptime. Given the range

of computing and networking services offered at varying price points, a transparent

36

classification model is needed to assist users in navigating service availability levels. The fuzzy

logic-based model presented in this study addresses this need by providing a systematic

classification of SLA options. By organizing SLAs into structured tiers—ranging from Normal

and Bronze to premium gold levels—the model improves clarity, enabling users to make

strategic choices that optimize cost-efficiency, performance, and reliability. Additionally, it

incorporates user-defined qualitative factors, making the SLA selection process more adaptive

and personalized. Ultimately, this model supports better resource allocation, enhances service

performance, and boosts confidence in decision-making within modern cloud computing

environments.

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis

Patel et al. [109] propose an architecture for managing cloud (SLAs) using the Web Service

Level Agreement (WSLA) specification, distinguishing their approach by presenting three core

WSLA services that facilitate cloud SLA automation. Their method also incorporates trusted

third parties to enhance security within the SLA process. Similarly, Alhamad et al. [110] outline

essential criteria for formulating SLAs across service models, including (IaaS), (PaaS), and

(SaaS). They emphasize specific factors for IaaS, such as boot time, scale-up/downtime, and

response time, as critical components of effective SLA design. Building on the work of

Alhamad and Baset, Qiu et al. [111] analyze 29 SLAs from various public cloud services,

including 17 IaaS SLAs, identifying commonly mentioned attributes and significant gaps that

impact the relationship between cloud providers and consumers. They note that many SLAs

lack specific provisions concerning customer data, including security, privacy, protection, and

backup policies, even as availability is consistently guaranteed. However, Qiu et al. also

highlight a lack of detailed commitments on availability and penalties, suggesting a need for

greater clarity and accountability in SLA agreements. As the demands of network applications

evolve, the focus has shifted to include factors such as media quality, interactivity, and

responsiveness, leading to a broader definition of (QoE). In telecommunications networks,

QoE considers user satisfaction, expectations, and enjoyment [112]. In a related study, Baset

[113] examines SLAs across five IaaS and PaaS providers, focusing on compute and storage

services. Baset’s framework dissects SLAs into various components, facilitating comparisons

between providers and aiding them in defining clear, comprehensive SLAs. In line with Baset’s

approach, this study focuses on availability and provides a detailed classification of provider

commitments to service availability. Expanding on SLA methodology, Godhrawala and

Sridaran [114] propose a service-oriented architecture (SOA) that leverages a ML-based

Apriori algorithm to connect quality of service (QoS) metrics, enhancing SLA strength and

simplifying resource management. This approach improves SLA definitions, facilitates QoS

management, reduces costs, and optimizes revenue. Akbari-Moghanjoughi et al. [115]

underscore the importance of SLAs in managing service demands within ICT networks. Their

survey reviews the current state of SLA establishment, deployment, and management, covering

core concepts, methodologies, and challenges. The study also emphasizes the need to go

beyond traditional networking by linking each Service Level Objective (SLO) to relevant

service domains, with the ultimate goal of developing a comprehensive methodology for

effective SLA definition, establishment, and deployment. Finally, Saqib et al. [116] address

the limitations of conventional traffic classification, advocating for adaptive solutions in

response to evolving traffic patterns. They introduce a framework to quantify SLA violations

and an economic model to assess profitability impacts. Their study suggests adaptive ML

37

techniques to sustain classification accuracy over time. It concludes that an adaptive traffic

classifier can mitigate penalties, optimize resources, and uphold SLA integrity, offering

network operators a robust approach to managing traffic dynamics.

5.3 Understanding Availability

When a failure lasts more than a few seconds, it can disrupt not only individual user requests

but also subsequent retries. If repeated attempts fail, the issue is considered a service outage,

impacting availability metrics. Prolonged disruptions may eventually lead users to abandon

access attempts, marking the service as unavailable. In complex systems, outages are classified

as either service impact outages or network element impact outages. Service impact outages

directly affect end-user access and are visibly disruptive. In contrast, network element impact

outages involve failures within a network component that could impact service depending on

redundancy and recovery time. High-availability systems must distinguish between these types

to effectively monitor downtime and ensure backup resources are in place. Suppose a second

failure occurs before resolving a network element outage. In that case, a prolonged service

impact outage may result, emphasizing the need for robust redundancy and quick recovery to

maintain consistent service availability [117][118]. The following criteria are commonly used

to classify and rank availability [117]. In practical scenarios, cloud availability calculation

necessitates consideration of additional elements, such as:

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒−𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
 (5.1)

Availability is a critical metric in cloud computing, quantified as a percentage representing the

ratio of system uptime to total operational time. Uptime denotes the total duration for which a

system or service is expected to remain operational, whereas Downtime refers to periods of

inoperability. By incorporating these variables into the standard availability formula,

availability can be expressed either as a ratio or as a percentage, providing a standardized

measure of service reliability. CSPs prioritize high availability to ensure continuous access to

applications and data, thereby minimizing service disruptions. (SLAs) define and guarantee a

specific percentage of uptime, reflecting the provider's commitment to service reliability.

Service outage, commonly referred to as downtime, is determined by subtracting the uptime

percentage from 100%, thereby quantifying the proportion of time during which the service

remains unavailable. The availability commitment represents the extent to which cloud

providers assure service availability, often serving as a key differentiator in cloud service

offerings. It is important to note that reliability is either conceptually like or a broader construct

encompassing service availability [119]. Among surveyed SLAs, providers generally express

their commitment in terms of availability rate [120]. Highly available systems, particularly

those used in telecommunications and critical cloud services, are expected to meet a minimum

of 99.999% availability, commonly referred to as the "five-nines" (5–9s) reliability standard.

Appendix 4 (Table 1) illustrates the maximum allowable downtime for various levels of

availability commitment across different operating intervals. For example, a system adhering

to the 5–9s standard permits only 5 minutes and 15 seconds of downtime over a full year of

continuous operation [121]. Such stringent availability requirements are fundamental in

ensuring uninterrupted service delivery, particularly in mission-critical cloud-based

infrastructures.

38

5.3.1. Measurement Period

The Measurement Period refers to the timeframe in which cloud providers calculate their

services' availability. There are two common forms: the billing month and the calendar month.

The commitment level of cloud providers can vary depending on the length of the measurement

period. Suppose the measurement period is set to one year. In that case, cloud providers can

perform inconsistently for a few months while maintaining stability for the rest, still fulfilling

the overall availability requirement. On the other hand, a measurement period of one month

necessitates that providers consistently maintain stable and available services every month

[122].

5.3.2 Accuracy in Service Provision

Accuracy in service provision is the extent to which cloud providers classify failed services as

unavailable, varying by component, such as VMs, hosts, or entire Availability Zones. Amazon

EC2, for example, considers an outage only if multiple Availability Zones lose connectivity,

while Aliyun Cloud treats any instance downtime as unavailable. To improve cloud system

dimensioning, analytical and simulation models at the IaaS level are employed. These models

account for the heterogeneous nature of cloud systems and physical server limitations. By using

analytical tools, they approximate real traffic and calculate request loss probability, offering a

reliable means to evaluate service availability and optimize resource allocation [120][123].

5.3.3 Time-Based Accuracy in Availability

The accuracy in Time provision, refers to the unit of downtime used in the measurement period.

Currently, three types of unit downtime are prevalent: 1 minute, 5 minutes, and half an hour.

The way downtime is handled varies among cloud providers. Sometimes, if the downtime does

not align perfectly with the time granularity, certain clouds may exclude those periods from

the total service downtime calculation. On the other hand, other providers would include such

periods in the calculation. For example, consider a cloud service experiencing a downtime of

7 minutes with a time granularity of 5 minutes. In this scenario, the eventual downtime is either

5 minutes or 10 minutes, depending on the specific policies adopted by the cloud provider. This

difference in handling time granularity becomes more pronounced when using more extended

periods, such as half an hour, and can significantly impact the availability calculation [120].

define availability as:

 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
 (5.2)

MTTF represents the mean-time-to-failure, and MTTR denotes the mean-time-to-recovery.

This measure is based on the duration when the system is either up or down, which holds

significance for users. Consequently, it is unsurprising that several cloud providers, such as

Microsoft's Office 365, employ this measure. Uptime corresponds to the time between failures,

while downtime refers to the time taken to recover from a failure [121].

5.3.4 Exclusions in Availability Calculations

Exclusions refer to scenarios not considered when determining whether cloud services are

available. Several events are not taken into account when calculating availability. In most

cases, occurrences of natural disasters, regularly scheduled maintenance, network outages that

39

occur beyond the demarcation point of the cloud provider, and internet attacks are excluded

from coverage under this policy. Because these occurrences are deemed extraordinary and

transient, they are not taken into account in the calculation of cloud service availability, as they

may not accurately reflect the typical service performance of the provider [124].

5.4 Availability in Computing and Networking Environment

In cloud computing, ensuring the availability of critical resources such as virtual CPUs

(vCPUs), RAM, and storage is essential for maintaining a reliable and efficient computing

environment. The availability of these resources is governed by multiple factors, including

performance, scalability, fault tolerance, SLA guarantees, elasticity, monitoring, and security.

Performance optimization is a crucial aspect of cloud computing, requiring resource

availability to be adaptable to workload fluctuations. Efficient allocation of vCPUs is necessary

to meet processing power demands, while RAM provisioning must be adequate to support

memory-intensive applications and large-scale datasets. Similarly, storage infrastructure,

particularly high-performance options such as solid-state drives (SSDs), must be capable of

seamlessly accommodating growing data volumes. These performance criteria directly impact

the expected availability of vCPU, RAM, and storage, establishing clear reliability benchmarks

for CSU. To enhance service resilience, cloud providers must implement availability strategies

that encompass network monitoring, fault tolerance, and proactive system management.

Network monitoring has evolved from basic connectivity checks to sophisticated analytical

techniques leveraging big data, ML, and (AI). These advanced approaches enable the

optimization of network traffic flow, improved efficiency, and enhanced security by predicting

and mitigating potential disruptions. (SLAs) serve as contractual frameworks that define

performance metrics and ensure compliance with predefined quality standards. Key SLA

parameters, including delay, jitter, packet loss, and BW, play a critical role in maintaining

optimal network performance. These metrics facilitate the identification of network

inefficiencies, enabling CSPs to address issues that may impact overall system productivity

and user experience. The assessment of core performance metrics provides valuable insights

into network efficiency and availability, allowing for continuous improvement and the

prevention of service degradation. By incorporating these availability and performance criteria,

cloud providers can offer resilient, high-performance services that meet user expectations for

reliability, scalability, and security in modern cloud computing infrastructures

[120][123][125].

5.4.1 Bandwidth Considerations

The (BW) of a channel refers to the amount of data that can be transmitted per unit time,

typically measured in bits per second. However, its interpretation varies depending on the

context and underlying parameters [126]. One common definition equates BW with a path's

capacity. For an end-to-end path composed of n sequential links indexed by i = 1,.., n, the path

capacity C* is determined by the link with the smallest transmission capacity:

 𝐶∗ =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
𝐶𝑖 (5.3)

Here, 𝐶𝑖 is the capacity of link i. The links where this minimum is attained—i.e., those

satisfying 𝐶𝑖 = 𝐶
∗ are referred to as the narrow links or bottlenecks of the path. There may be

40

multiple such links. Let iK denote the K-th index such that 𝐶𝑖𝑘=𝐶∗ . In this context, k indexes

the set of links that constitute the bottlenecks. Alternatively, BW may refer to available BW,

which is the unused portion of the link's capacity at a given time t. It complements the utilized

BW, expressed by the utilization factor: 𝑢𝑖
𝑡 ∈ [0,1] for each link. The instantaneous available

BW of the path is defined as:

 𝐴𝑡
∗ =

𝑚𝑖𝑛
𝑖 = 1, . . , 𝑛

[𝐶𝑖 . (1 − 𝑢𝑖
𝑡)] (5.4)

In this formulation, the link iK such that 𝐴𝑖𝐾= 𝐴𝑡
∗ is referred to as the tight link, representing

the current performance bottleneck under existing traffic conditions. To account for temporal

variation, the available BW is often averaged over a time interval [t, t + τ], yielding:

 𝐴∗(𝑡, 𝑡 + 𝜏) =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
[𝐶𝑖 . (1 − 𝑢𝑖(𝑡, 𝑡 + 𝜏))] (5.5)

Where 𝑢𝑖(𝑡, 𝑡 + 𝜏) is the average utilization of link i over the interval. This averaged metric

offers a more stable and meaningful reflection of path availability, particularly in dynamic or

congested network environments. The (BTC) refers to the upper limit of data transmission per

unit of time achievable by a congestion management method, such as TCP, when implemented

within a protocol. The statistic in question is influenced by various elements [127], including

the quantity of concurrent TCP sessions and conflicting traffic from the (UDP), among other

variables. In order to conduct measurements of body weight (BW), two approaches can be

employed: an active method or a passive approach. The efficacy of active techniques is

influenced by the choice of transport protocol, resulting in potential variations in the reported

parameters of measurements. For instance, the utilization of the packet train technique [127],

which employs UDP, enables precise determination of the path's capacity C*. Conversely,

estimations of the BTC can be obtained by measurements conducted with TCP traffic. Passive

techniques are dependent on the monitoring of BW utilization by applications or hosts, thereby

accounting for the number of transmitted bytes within a specific time frame. Absolute

thresholds are not that helpful, but when the client detects BW is low (< 100 Kbps) audio

quality can easily be impacted by other applications or network congestion.

5.4.2 Network Latency and Delay

Network delay, also known as latency, is a key metric for assessing network performance. It

measures the time required for a data packet to travel from its source to its destination and back,

a duration referred to as RTT and typically measured in (ms). High latency can cause significant

communication delays, impacting the performance of applications that rely on real-time

interaction, such as video conferencing and online gaming. Factors affecting network delay

include the distance between endpoints, network congestion, and the quality of network

equipment [128]. The delay can be calculated using the following equation:

 𝐷𝑒𝑙𝑎𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 (5.6)

5.4.3 Network jitter

Network jitter, defined as the variation in time delay between data packets as they traverse a

network, often leads to irregular arrival times that can cause lag, buffering, and reduced quality

in real-time applications such as video conferencing, online gaming, and calls. High jitter is

41

typically caused by varying traffic loads and frequent packet collisions (network congestion),

which can lower Quality of Service (QoS) levels. Contributing factors include network

congestion, where heavy traffic delays packets as they compete for BW; poor hardware

performance from outdated or malfunctioning equipment; and insufficient packet

prioritization, where important packets are not given precedence [129]. The Network jitter can

be calculated using the following equation:

 𝑗𝑖𝑡𝑡𝑒𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
 (5.7)

5.4.4 Packet Loss

Network packet loss, occurring when data packets fail to reach their destination, can lead to

slow internet speeds, buffering, and lag in applications like streaming, gaming, and video calls.

Causes include network congestion, hardware issues (faulty routers or cables), Wi-Fi

interference, software bugs, ISP issues, and bit errors due to hardware malfunctions or random

noise in wireless communications. Packet loss measurement for UDP traffic often uses

protocols like Q4S or IPPM, which track sequence numbers to gauge reliability. Solutions

include restarting routers and devices, checking connections, switching to wired setups,

reducing network load, updating firmware and drivers, minimizing router interference,

adjusting Quality of Service (QoS) settings, and contacting the ISP for unresolved issues [129].

The Network packet loss can be calculated using the following equation:

 𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =
𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡−𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡
 ∗ 100 (5.8)

5.5 QoS Availability

5.5.1 Calculation of QoS Computing Availability Metrics

QoS computing availability is computed by aggregating the individual availability percentages

for vCPU, RAM, and Storage using a weighted average, as follows:

AComputing=(WvCPU×AvCPU)+(WRAM×ARAM)+(WStorage×AStorage) (5.9)

• AvCPU, ARAM, AStorage is represent the individual availability percentages.

• WvCPU,WRAM, WStorage is represent the relative weights assigned to these metrics.

If explicit weights are not provided, equal weighting (1/3 each) is assumed, thus simplifying

the formula to:

AComputing=AvCPU+ARAM+AStorage/3 (5.10)

5.5.2 Calculation of QoS Networking Availability Metrics

Similarly, QoS networking availability aggregates four network metrics: BW, RTT,

Jitter, and Packet Loss. The weighted average aggregation formula is:

ANetworking=(WBW×ABW)+(WRTT×ARTT)+(WJitter×AJitter)+(WPacketLoss×APacketLoss) (5.11)

• ABW, ARTT,AJitter, APacketLoss is represent individual network metric availabilities.

• WBW, WRTT, WJitter, WPacketLoss is represent metric weights.

If explicit weights are not provided, equal weighting (1/4 each) simplifies this equation to:

42

 ANetworking=ABW+ARTT+AJitter+APacketLoss/4 (5.12)

These equations provide a structured, transparent, and reproducible approach to calculating

the fuzzy inputs clearly from the individual QoS metrics.

5.6 Methodology for SLA Assessment and Optimization

5.6.1 Proposed Framework for SLA Selection

A fuzzy logic-based service guarantee model is proposed to enhance the assurance of (SLAs)

within cloud computing environments (see Figure 5.1). The model employs Quality of Service

(QoS) availability metrics as input variables to the fuzzy logic system, effectively capturing

customer preferences, service requirements, and performance expectations. By systematically

classifying QoS availability, the model facilitates a precise and context-aware evaluation of

service reliability. The classification framework defines distinct SLA tiers based on availability

levels: Normal SLA (90%–92%), Bronze SLA (93%–95%), Silver SLA (96%–97%), and Gold

SLA (98%–99.999%). This categorization provides a clear and structured mechanism for SLA

differentiation. The model ensures input consistency by validating that both QoS-computing

and QoS-networking parameters are evaluated over the same domain, defined within the

universe of discourse spanning from 90% to 100%. Appendix 4 (Table 2) presents the detailed

definition of this domain, which serves as a reference for both input categories. The proposed

model integrates two sets of input variables into the fuzzy logic system: QoS-computing

parameters—including virtual CPU (vCPU), memory (RAM), and storage capacity—and QoS-

networking parameters, such as BW, delay, jitter, and packet loss. These inputs collectively

enable a comprehensive classification of cloud services. The methodology for estimating QoS

availability and its incorporation into the fuzzy inference process is further detailed in Table

5.2. To establish a granular and structured representation of QoS availability levels, a

systematic approach is adopted to define the progression of values within the universe of

discourse. This sequence begins with an initial increment of approximately 0.09999, with each

subsequent increment decreasing by 0.00001. The result is a smoothly increasing, non-linear

sequence that converges toward a high-precision endpoint at 99.999%. The mathematical

formulation governing this progression is defined in Equation (5.9):

 An= 90 + (n − 1) × (0.09999 − (n − 1) × 0.00001) (5.13)

• An is the nth availability level in the sequence.

• n is the index of the term ranging from 1 to 101 (for n=1, the first term A1 is 90).

The equation initiates the sequence with a maximum increment of 0.09999, which then

decreases linearly by 0.00001 per term. This formulation generates a precisely calibrated, non-

uniform stepwise scale, making it particularly suitable for applications such as service level

classification, where fine-grained availability tiers are necessary.

• Strengths of the Equation: When n=1:

 A1= 90 + 0. (0.09999 − 0. 0.00001) =90, which correctly sets the starting point.

• Controlled Increment: The term:

(0.09999 − (𝑛 − 1). 0.00001)
When n=101:

 A101= 90 + 100. (0.09999 − 100 . 0.00001)

43

 =90 + 100. (0.09999 − 0.001)

 =90 + 100 . 0.09899 = 99.999

Furthermore, to express the output fuzzy logic-based SLA availability, the model considers

uptime and corresponding downtime for a given period (e.g., daily, weekly, monthly, or

yearly), based on the input QoS availability to the fuzzy logic system. The general equations

for calculating uptime and downtime are formulated as follows:

 𝑈𝑝𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 (5.14)

 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × (1 − 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) (5.15)

Figure 5.1 Proposed SLA guarantee model.

The detailed results of these calculations are presented in Appendix 4 (Table 3), offering a

comprehensive analysis of service availability and performance assurance in cloud computing

environments. By integrating fuzzy logic principles, this model provides a structured, scalable,

and intelligent framework for SLA classification, ensuring an optimized and adaptive cloud

service selection process.

Table 5.2 QoS Network and Computing Metrics Availability.

QoS Network Metrics Availability

B
an

d

w
id

th

BW <500 Mbps [90% - 92%]

500 Mbps <= BW <1Gbps [93% - 95%]

1Gbps <= BW =<2.5Gbps [96% - 97%]

BW >2.5Gbps [98% - 99.999]

R
o
u
n
d

T
rip

T
im

e

(R
T

T
)

RTT > 500 ms [90% - 92%]

250< RTT<=500 ms [93% - 95%]

100 < RTT<=250 ms [96% - 97%]

1<RTT<=100 ms [98% - 99.999]

jitter

35<= Jitter <=45 ms [90% - 92%]

25< Jitter <=35 ms [93% - 95%]

15< Jitter <=25 ms [96% - 97%]

1< Jitter <=15 ms [98% - 99.999]

P
ack

e

t lo
ss

10 < Packet loss <=25 ms [90% - 92%]

5 < Packet loss <=10 ms [93% - 95%]

1 < Packet loss <=5 ms [96% - 97%]

44

0< Packet loss <=1 ms [98% - 99.999]

QoS Computing Metrics Availability

v
C

P
U

1< VCPU <=2 [90% - 92%]

2< VCPU <=16 [93% - 95%]

16< VCPU <=64 [96% - 97%]

64< VCPU <=192 [98% - 99.999]

R
A

M

4< RAM <=8 GB [90% - 92%]

8< RAM <=64 GB [93% - 95%]

64< RAM <=256 GB [96% - 97%]

256< VCPU <=768 GB

[98% - 99.999]

S
T

O
R

A
A

G
E

1< Storage <=2 GB [90% - 92%]

2< Storage <=12 GB [93% - 95%]

12< Storage <=32 GB [96% - 97%]

32< Storage <=88 GB [98% - 99.999]

5.6.2 Fuzzy Logic-Based Methodology for QoS Evaluation

5.6.2.1 Key Input Parameters

Fuzzification is a foundational process in fuzzy logic systems through which crisp numerical

inputs are converted into fuzzy sets characterized by linguistic variables, terms, and

corresponding membership functions [98]. This transformation enables the system to represent

imprecise or uncertain information, supporting more flexible, adaptive, and human-like

reasoning in decision-making contexts. The input parameters for the model were designed

using the Fuzzy Logic Designer, following the same methodological framework introduced in

Chapter 4. However, the division of the universe of discourse in this chapter has been modified

to suit the specific primitives and structural requirements of the model developed herein.

Through this approach, the model systematically converts crisp QoS input values into fuzzy

sets, allowing for the nuanced evaluation of computing and networking resource availability.

These fuzzy sets serve as the basis for inferring the final SLA classification, thus supporting

the accurate and optimized categorization of service levels. The first input to the fuzzy logic

system corresponds to QoS-computing availability. This input is defined over a universe of

discourse ranging from 90% to 100% and is represented using three triangular membership

functions, structured as follows:

• Light Availability: [90, 90, 95]

• Middle Availability: [90, 95, 100]

• High Availability: [95, 99.999, 100]

The second input to the fuzzy logic system is QoS-networking availability, which reflects the

availability of networking resources. Like the QoS-computing input, this parameter is defined

over a universe of discourse spanning from 90% to 100% and is represented using three

triangular membership functions, structured as follows:

• Low Availability: [90, 90, 95]

• Average Availability: [90, 95, 100]

45

• Top Availability: [95, 99.999, 100]

By integrating these membership functions, the fuzzy logic system systematically evaluates

availability conditions for both computing and networking resources. This structured approach

enhances the model's ability to classify SLAs, ensuring that cloud service consumers receive

accurate, reliable, and context-aware service guarantees tailored to their specific needs.

5.6.2.2 Implementation of FIS and Defuzzification for SLA Analysis

To achieve an accurate and adaptive SLA classification, the proposed model implements a

Mamdani FIS, utilizing three membership functions for the first input (QoS-computing) and

three membership functions for the second input (QoS-network). Given this structure, the

model requires 3 × 3 inference rules, ensuring a comprehensive decision-making process by

considering all possible input-output relationships.

i. Fuzzy Inference Rules

Fuzzy inference rules play a critical role in fuzzy logic systems, using IF...THEN conditions

to interpret input values and generate corresponding decisions. These rules effectively

handle uncertain or imprecise information, transforming crisp input values into fuzzified

outputs, which are then utilized for intelligent decision-making [98]. The model employs

the following fuzzy rule base in table 5.3:

Table 5.3 Fuzzy rule base.

 QoS- Computing

QoS-Network

Light Middle High

(SLA) Guarantees

Low Normal-SLA1 Bronze-SLA1 Silver-SLA1

Average Normal-SLA2 Bronze-SLA2 Silver-SLA2

Top Normal-SLA3 Bronze-SLA3 Gold-SLA

This rule base ensures that SLA classification is performed systematically, considering both

computing resource availability (vCPU, RAM, and Storage) and networking parameters

(BW, delay, jitter, and packet loss).

ii. System Outputs

Once the fuzzification and inference process is completed, the final step involves

defuzzification, which converts fuzzy outputs into precise (crisp) values. This

transformation is crucial for practical decision-making, as it provides a definitive SLA

classification. The proposed model utilizes the centroid method of defuzzification, a

widely adopted mathematical technique in fuzzy logic systems [130]. In the proposed

model, triangular membership functions are employed during the fuzzification phase to

map crisp inputs into fuzzy sets. After the inference process, the fuzzy output is

converted into a single crisp value via the centroid defuzzification method. This crisp

output, lying within the range of 90 to 100, is then mapped into SLA categories based

on defined availability thresholds, supporting precise SLA classification. The SLA

classification follows nine membership functions, as described below:

1) Normal-SLA1: [90, 90, 91]

46

2) Normal-SLA2: [90, 91, 92]

3) Normal-SLA3: [91, 92, 93]

4) Bronze-SLA1: [92, 93, 94]

5) Bronze-SLA2: [93, 94, 95]

6) Bronze-SLA3: [94, 95, 96]

7) Silver-SLA1: [95, 96, 97]

8) Silver-SLA2: [96, 97, 98]

9) Gold-SLA9: [97, 99.999, 100]

The model enables precise classification of QoS availability by implementing a fuzzy

logic system, ensuring that cloud service consumers receive context-aware and reliable

SLA commitments aligned with their specific computing and networking requirements.

5.6.2.3 Development and Validation of the Fuzzy Rule Base

The development of the fuzzy inference rules in the proposed SLA classification model was

conducted through a systematic and rigorous process designed to ensure both technical

correctness and practical relevance.

i. Rule Development Process

The fuzzy rule base was established by combining three primary sources of knowledge:

• Review of Existing Literature and Standards

A thorough examination of existing research, industry standards, and publicly available SLA

documentation from major CSPs (e.g., AWS, GCP) was performed. This review provided

essential insights into typical thresholds and relationships among various QoS metrics and their

mapping to different service levels. These references informed the selection of membership

function ranges and the structuring of the rule base.

• Domain Expert Knowledge

Input from domain experts specializing in cloud architecture, network engineering, and SLA

management was sought to translate practical operational realities into rule definitions. Experts

provided guidance on how different combinations of computing and networking availability

metrics should correlate with SLA tiers such as Normal, Bronze, Silver, and Gold. For example,

configurations combining high networking availability with only medium computing

availability were designated to mid-tier SLAs rather than premium tiers, reflecting practical

service constraints.

• Logical Consistency and Monotonicity

A key design principle in the rule formulation was maintaining logical consistency and

monotonicity. The rules were constructed to ensure that an increase in input availability metrics

would not result in a decrease in the classified SLA level. This principle preserves intuitive

system behavior and guarantees a smooth and logically coherent transition between service

levels as input conditions improve.

ii. Validation of the Fuzzy Rule Base

Validation of the fuzzy rule base was performed through multiple complementary approaches:

47

• Expert Review

The initial rule set was reviewed by domain experts who evaluated the rules for correctness,

completeness, and practical applicability. Feedback from these experts led to refinements that

ensured the rules accurately captured realistic service relationships and expectations in cloud

environments.

• Simulation-Based Testing

Extensive simulations were conducted in MATLAB to verify the behavior of the FIS across

the entire defined universe of discourse (90% to 100%). The simulations involved

systematically varying input parameters to confirm:

a) The logical consistency of the output as inputs changed.

b) Correct handling of boundary conditions.

c) Absence of contradictory or ambiguous rule interactions.

• Benchmarking Against Real-World SLA Policies

The output classifications from the fuzzy system were compared with published SLA

guarantees from major CSPs. This benchmarking ensured that the model’s thresholds and

classifications aligned closely with industry practices and expectations, further validating the

practical reliability of the developed rules.

The entire process was iterative in nature. Based on simulation outcomes and expert feedback,

several rounds of refinement were undertaken to adjust the rules until the desired level of

accuracy and robustness was achieved.

iii. Responsibility for Rule Development and Validation

The creation and validation of the fuzzy rule base were collaborative efforts. The rule

development and computational testing were conducted by the authors of this thesis. Domain

experts provided critical reviews and validation, ensuring that the fuzzy logic model’s rules

were technically sound and operationally meaningful. This integrated approach to rule

development and validation strengthens the credibility and practical applicability of the

proposed fuzzy logic-based SLA classification system. It ensures that the model is not only

theoretically sound but also well-suited for real-world deployment in cloud computing

environments.

5.7 Experimental Evaluation

The proposed model was extensively analyzed within the MATLAB environment to assess its

effectiveness in evaluating SLA classifications based on Quality of Service (QoS) parameters

for computing and networking resources. The model was designed to process customer

preferences by computing the availability ratio of virtualized computing resources—such as

vCPU, RAM, and storage—alongside network resources, including BW, delay, jitter, and

packet loss. By integrating these metrics into a Fuzzy Logic-based framework, the model

systematically classified services into multiple SLA categories to provide a granular and data-

driven approach to service selection. The Fuzzy Logic inference system extracted results

according to predefined conditions and criteria, which were established during the model

design phase. These results were systematically categorized into multiple SLA levels based on

their corresponding availability ratios. The classification hierarchy begins with the Normal

48

SLA tier, which includes Normal-SLA 1, Normal-SLA 2, and Normal-SLA 3; as availability

conditions improve based on input classifications and the selected fuzzy inference rules, the

model sequentially transitions into the Bronze SLA tier, which consists of, Bronze-SLA 1,

Bronze-SLA 2, Bronze-SLA 3, In each classification level, the availability percentage

progressively increases according to the pre-established input classification rules, ensuring a

systematic and logical increase in service quality. Following this, the model advances to the

Silver SLA tier, which further refines the service levels with improved availability metrics,

Silver-SLA 1, Silver-SLA 2; at the highest tier, the Gold SLA classification represents the most

optimal service category, characterized by the highest levels of availability and reliability,

suitable for mission-critical applications requiring minimal downtime. The classification

hierarchy, As illustrated in Figure 5.2, the model dynamically adjusts service availability ratios

in response to varying QoS computing and networking inputs. This structured classification

enables cloud consumers to identify and select the most suitable SLA level based on their

specific performance requirements and budgetary constraints. Additionally, Table 5.4 presents

a detailed explanation of the fuzzy input-output mappings and their corresponding SLA

guarantees, showcasing the effectiveness of the proposed system implementation.

Figure 5.2 Results of the proposed model.

Table 5.4 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees.

No

First input

(Computing)

Second input

(Networking)
Output SLA Guarantees

1 90 90 90.333 SLA-Normal1 (90%)

2 90.09999 90.09999 90.467 SLA-Normal1 (90%)

3 90.19998 90.19998 90.592 SLA-Normal1 (90%)

4 90.29997 90.29997 90.708 SLA-Normal1 (90%)

5 90.39996 90.39996 90.816 SLA-Normal1 (90%)

6 90.49995 90.49995 90.916 SLA-Normal1 (90%)

7 90.59994 90.59994 91.010 SLA-Normal1 (90%)

8 90.69993 90.69993 91.098 SLA-Normal1 (90%)

9 90.79992 90.79992 91.181 SLA-Normal1 (90%)

49

This table extends and complements the information presented in Table 5.4.

10 90.89991 90.89991 91.259 SLA-Normal1 (90%)

11 90.9999 90.9999 91.333 SLA-Normal2 (91%)

12 91.09989 91.09989 91.402 SLA-Normal2 (91%)

13 91.19988 91.19988 91.468 SLA-Normal2 (91%)

14 91.29987 91.29987 91.530 SLA-Normal2 (91%)

15 91.39986 91.39986 91.589 SLA-Normal2 (91%)

16 91.49985 91.49985 91.645 SLA-Normal2 (91%)

17 91.59984 91.59984 91.699 SLA-Normal2 (91%)

18 91.69983 91.69983 91.749 SLA-Normal2 (91%)

19 91.79982 91.79982 91.798 SLA-Normal2 (91%)

20 91.89981 91.89981 91.844 SLA-Normal2 (91%)

21 91.9998 91.9998 91.888 SLA-Normal3 (92%)

22 92.09979 92.09979 91.931 SLA-Normal3 (92%)

23 92.19978 92.19978 91.971 SLA-Normal3 (92%)

24 92.29977 92.29977 92.010 SLA-Normal3 (92%)

25 92.39976 92.39976 92.047 SLA-Normal3 (92%)

26 92.49975 92.49975 92.083 SLA-Normal3 (92%)

27 92.59974 92.59974 92.122 SLA-Normal3 (92%)

28 92.69973 92.69973 92.163 SLA-Normal3 (92%)

29 92.79972 92.79972 92.205 SLA-Normal3 (92%)

30 92.89971 92.89971 92.249 SLA-Normal3 (92%)

31 92.9997 92.9997 92.296 SLA-Bronze1 (93%)

32 93.09969 93.09969 92.344 SLA-Bronze1 (93%)

33 93.19968 93.19968 92.395 SLA-Bronze1 (93%)

34 93.29967 93.29967 92.448 SLA-Bronze1 (93%)

35 93.39966 93.39966 92.503 SLA-Bronze1 (93%)

36 93.49965 93.49965 92.562 SLA-Bronze1 (93%)

37 93.59964 93.59964 92.623 SLA-Bronze1 (93%)

38 93.69963 93.69963 92.688 SLA-Bronze1 (93%)

39 93.79962 93.79962 92.756 SLA-Bronze1 (93%)

40 93.89961 93.89961 92.828 SLA-Bronze1 (93%)

41 93.9996 93.9996 92.904 SLA-Bronze2 (94%)

42 94.09959 94.09959 92.984 SLA-Bronze2 (94%)

43 94.19958 94.19958 93.070 SLA-Bronze2 (94%)

44 94.29957 94.29957 93.161 SLA-Bronze2 (94%)

45 94.39956 94.39956 93.257 SLA-Bronze2 (94%)

46 94.49955 94.49955 93.360 SLA-Bronze2 (94%)

47 94.59954 94.59954 93.470 SLA-Bronze2 (94%)

48 94.69953 94.69953 93.588 SLA-Bronze2 (94%)

49 94.79952 94.79952 93.715 SLA-Bronze2 (94%)

50 94.89951 94.89951 93.851 SLA-Bronze2 (94%)

51 94.9995 94.9995 93.999 SLA-Bronze3 (95%)

52 95.09949 95.09949 94.172 SLA-Bronze3 (95%)

53 95.19948 95.19948 94.332 SLA-Bronze3 (95%)

54 95.29947 95.29947 94.481 SLA-Bronze3 (95%)

55 95.39946 95.39946 94.620 SLA-Bronze3 (95%)

56 95.49945 95.49945 94.749 SLA-Bronze3 (95%)

50

This table extends and complements the information presented in Table 5.4.

57 95.59944 95.59944 94.870 SLA-Bronze3 (95%)

58 95.69943 95.69943 94.983 SLA-Bronze3 (95%)

59 95.79942 95.79942 95.090 SLA-Bronze3 (95%)

60 95.89941 95.89941 95.190 SLA-Bronze3 (95%)

61 95.9994 95.9994 95.285 SLA-Silver1 (96%)

62 96.09939 96.09939 95.374 SLA-Silver1 (96%)

63 96.19938 96.19938 95.459 SLA-Silver1 (96%)

64 96.29937 96.29937 95.539 SLA-Silver1 (96%)

65 96.39936 96.39936 95.615 SLA-Silver1 (96%)

66 96.49935 96.49935 95.687 SLA-Silver1 (96%)

67 96.59934 96.59934 95.755 SLA-Silver1 (96%)

68 96.69933 96.69933 95.821 SLA-Silver1 (96%)

69 96.79932 96.79932 95.883 SLA-Silver1 (96%)

70 96.89931 96.89931 95.942 SLA-Silver1 (96%)

71 96.9993 96.9993 95.999 SLA-Silver2(97%)

72 97.09929 97.09929 96.054 SLA-Silver2(97%)

73 97.19928 97.19928 96.106 SLA-Silver2(97%)

74 97.29927 97.29927 96.155 SLA-Silver2(97%)

75 97.39926 97.39926 96.203 SLA-Silver2(97%)

76 97.49925 97.49925 96.249 SLA-Silver2(97%)

77 97.59924 97.59924 96.305 SLA-Silver2(97%)

78 97.69923 97.69923 96.364 SLA-Silver2(97%)

79 97.79922 97.79922 96.425 SLA-Silver2(97%)

80 97.89921 97.89921 96.488 SLA-Silver2(97%)

81 97.9992 97.9992 96.555 SLA-Gold (98%)

82 98.09919 98.09919 96.624 SLA-Gold (98%)

83 98.19918 98.19918 96.697 SLA-Gold (98%)

84 98.29917 98.29917 96.773 SLA-Gold (98%)

85 98.39916 98.39916 96.853 SLA-Gold (98%)

86 98.49915 98.49915 96.936 SLA-Gold (98%)

87 98.59914 98.59914 97.024 SLA-Gold (98%)

88 98.69913 98.69913 97.117 SLA-Gold (98%)

89 98.79912 98.79912 97.215 SLA-Gold (98%)

90 98.89911 98.89911 97.318 SLA-Gold (98%)

91 98.9991 98.9991 97.427 SLA-Gold (99%)

92 99.09909 99.09909 97.543 SLA-Gold (99%)

93 99.19908 99.19908 97.665 SLA-Gold (99%)

94 99.29907 99.29907 97.795 SLA-Gold (99%)

95 99.39906 99.39906 97.934 SLA-Gold (99%)

96 99.49905 99.49905 98.081 SLA-Gold (99%)

97 99.59904 99.59904 98.239 SLA-Gold (99%)

98 99.69903 99.69903 98.408 SLA-Gold (99%)

99 99.79902 99.79902 98.590 SLA-Gold (99%)

100 99.89901 99.89901 99.899 SLA-Gold (99%)

101 99.999 99.999 99.999 SLA-Gold (99.999)

51

The inputs for QoS availability—both for computing and networking—are inherently

continuous variables. However, Table 5.4 is not intended to serve as a discrete or static

"lookup" table. Instead, it presents a sampled output from the continuous fuzzy mapping

function that is defined and implemented via our Mamdani-type (FIS). As detailed in Section

5.5.2.1 of the manuscript, both QoS-Computing and QoS-Networking availabilities are

fuzzified using triangular membership functions over a continuous universe of discourse

ranging from 90% to 100%. These inputs are then processed using a fuzzy rule base (outlined

in Section 5.5.2.2) consisting of 9 inference rules. The output SLA classification is derived

through fuzzy reasoning and defuzzification (via the centroid method), producing a continuous

mapping function from input QoS metrics to a numerical SLA guarantee level. Table 5.4

merely illustrates a dense sampling from this function, incremented using a mathematically

defined non-linear progression (as explained in Equation 5.13), for demonstration and analysis

purposes. These values are generated from a MATLAB simulation and demonstrate how the

fuzzy model transitions through SLA categories (Normal, Bronze, Silver, and Gold) as input

availabilities gradually increase. Therefore, while Table 5.4 may appear tabular, it is a result of

a continuous fuzzy mapping, not a discrete mapping in the classical sense.

5.8 Summary of the SLA selection Model

One of the central contributions of the proposed model lies in its ability to align user

preferences with optimal SLA classifications in real-time dynamically. The system effectively

accommodates the inherent uncertainties in computing and networking performance by

applying fuzzy logic principles, enabling a more adaptive and responsive approach to SLA

selection. This intelligent mechanism surpasses traditional, static SLA models defined solely

by service providers, offering enhanced flexibility and personalization. Furthermore, the model

introduces a structured method for calculating and classifying availability ratios, equipping

(CSPs) with a systematic framework for delivering tiered service offerings tailored to

individual user requirements. Unlike conventional frameworks that depend on fixed SLA

definitions, the proposed approach enables dynamic SLA mapping, ensuring more responsive

and context-aware service delivery. The experimental analysis provides compelling evidence

of the model's practical relevance. A comprehensive simulation in MATLAB was conducted

using over 100 paired input values representing computing and networking QoS availability.

The FIS generated output SLA classifications that followed a consistent, continuous gradient

aligning with widely recognized SLA tiers such as SLA-Normal, Bronze, Silver, and Gold, as

detailed in Table 5.4. For instance, the model produced granular availability scores, including

90.333%, 91.333%, 92.296%, 95.999%, and 99.999%, each accurately mapped to the

corresponding SLA category. These classifications are consistent with publicly published SLA

policies by providers such as AWS EC2, which outline guarantees for availability levels such

as 99.5% and 99.99%. The output labels assigned by the fuzzy system (e.g., SLA-Bronze3 for

the availability of 95.999%) closely mirror the expected service levels defined by industry

standards. This correlation affirms the model's classification accuracy and real-world

applicability, positioning it as a robust decision-support tool for SLA compliance assessment

in cloud environments. Building on these results, our focus shifts to enhancing decision-making

accuracy, which is addressed further in this study's next contribution. This next step involves

refining fuzzy logic systems through optimization techniques to improve decision-making in

complex systems. We aim to develop adaptive fuzzy logic models for efficient cloud service

management and SLA optimization, tackling the challenges identified in this thesis.

52

Chapter 6 Enhanced Decision-Making in Uncertain Domains

Thia Chapter presents an advanced mathematical methodology designed to facilitate decision-

making in uncertain environments. The advanced mathematical methodology introduced in this

chapter consists of three original algorithms (Sections 6.4.1 to 6.4.3) that mathematically define

the computation of membership functions using geometric and probabilistic models. Unlike

conventional fuzzy logic approaches dependent on toolboxes and heuristic tuning, our method

formulates precise mathematical calculations for determining membership degrees, offering

enhanced precision, efficiency, and independence from specialized software tools. This chapter

introduces a mathematically streamlined methodology for defining and computing fuzzy

membership functions. Rather than relying on heuristic adjustments or external fuzzy

toolboxes, we propose optimized analytical algorithms that directly compute membership

degrees for triangular, trapezoidal, and Gaussian functions. Here, ‘optimization’ refers to the

efficient, precise calculation process derived from mathematical principles, reducing

complexity and dependency on manual tuning rather than numerical optimization in the

classical sense. The primary contribution of this chapter is the formulation of an optimized

strategy for the selection and implementation of fuzzy membership functions. Notably, the

novelty of this approach is explicitly situated in the methodological innovations rather than the

mere act of classifying input values. Specifically, the introduced mathematical model

incorporates systematic and optimized algorithms for efficiently computing membership

degrees. Unlike traditional fuzzy logic approaches that rely heavily on predefined, static

membership functions—such as standard triangular, trapezoidal, or Gaussian forms, typically

defined manually or through heuristic adjustments—the proposed methodology utilizes

structured mathematical optimization techniques. This enables the dynamic and precise

classification of crisp input values into corresponding fuzzy sets, thereby significantly

enhancing accuracy and computational efficiency. The distinctiveness of this model arises from

its structured mathematical optimization approach, systematically refining the process of

classifying crisp inputs into fuzzy sets. Doing so achieves greater precision and computational

efficiency than conventional methods reliant on heuristics or manual adjustments. This model

explicitly incorporates optimization algorithms to streamline and enhance the calculation of

membership degrees via three specialized algorithms, each analogous to traditional fuzzy logic

membership functions, namely triangular, trapezoidal, and Gaussian. A significant aspect of

the proposed approach lies in its independence from conventional fuzzy logic implementations

that frequently depend on specialized fuzzy logic software, such as MATLAB's Fuzzy Logic

Toolbox or other simulation frameworks. Traditional methods often rely on specific software

dependencies, plugins, or graphical tools to define membership functions and inference

mechanisms, which limits their adaptability and operational efficiency across various

computational contexts. In contrast, the proposed method introduces a simplified,

mathematically driven, and tool-independent model that does not necessitate external fuzzy

logic software or environment-specific configurations. The advantage of this independence is

evident in its broader applicability, simplified integration processes, and reduced

computational requirements. Due to its inherent simplicity, computational efficiency, and high

adaptability, the proposed method exhibits substantial potential across diverse AI applications,

eliminating the necessity for complex adaptive systems or specialized software environments.

This simplified mathematical framework ensures faster and more accurate classification of

input values, effectively reducing computational overhead and enhancing operational

performance in practical AI deployments.

53

6.1 Overview of Decision-Making Challenges

Fuzzy logic has become a cornerstone of intelligent control systems, seamlessly integrating

with advanced methodologies such as neural networks and genetic algorithms. It is widely

applied to interpret, analyze, and resolve the inherent ambiguities associated with complex

human-centric needs and challenges. Its unique ability to handle imprecise and uncertain data

through fuzzy sets and rules positions it as a powerful tool for decision-making in dynamic and

intricate systems. The core processes of fuzzy logic—fuzzification, inference (driven by IF-

THEN rules and an extensive knowledge base), and defuzzification—facilitate the conversion

of vague inputs into precise, actionable outputs, ensuring effective and reliable system

performance. This capability supports the suitability of robust control and decision-making

across various applications. Integrating fuzzy logic with adaptive systems enhances its

flexibility and optimization capabilities, making it indispensable in robotics, industrial

automation, and (AI) domains. These fields frequently encounter inaccuracies from sensor data

or other unpredictable inputs, whereas fuzzy logic systems demonstrate exceptional efficiency

and reliability. The Mamdani fuzzy logic system is widely favored among the many fuzzy logic

approaches for its straightforward structure and interpretability. In electric drive systems, fuzzy

logic has been employed to develop an adaptive proportional-integral (PI) speed controller for

vector control of induction motors (IM) [131]. This controller uses an Adaptive Neuro (ANFIS)

to optimize control gains, ensuring resilience against parametric variations. Validation through

MATLAB-Simulink simulations demonstrated its robust performance and suitability for

enhancing electric drive reliability. In agriculture, fuzzy logic has addressed environmental

uncertainty. For instance, a wheeled robot with a microcontroller was developed for

autonomous pesticide spraying, achieving high decision-making accuracy in weed

identification despite challenging environmental conditions [132]. Hydraulic systems have also

benefited from fuzzy logic. Researchers proposed a discrete-time switching controller strategy

for pumping stations, integrating fuzzy-PD or fuzzy-PID controllers with PI controllers. A

fuzzy supervisor facilitates controller switching, ensuring robustness, stability, and asymptotic

error correction [133]. In high-performance electric motor applications, integrating Model

Reference Adaptive Systems (MRAS) with fuzzy logic has significantly improved rotor speed

and resistance estimation in induction motors. The study "High-Performance Control of IM

using MRAS-Fuzzy Logic Observer" highlights this advanced control strategy's effectiveness

in high-demand environments [134]. Further advancements include a method for

simultaneously estimating rotor resistance and speed using two independent adaptive observers

alongside a streamlined algorithm for optimal controller gains [135]. The adaptability of fuzzy

logic extends to managing ambiguity and vagueness, which occur when boundaries and

alternatives are unclear. By employing fuzzy numbers and membership functions, fuzzy logic

offers a structured approach to handling uncertainty, surpassing traditional Boolean logic

[136][137]. This flexibility allows fuzzy logic systems to adapt to tasks such as navigation,

object handling, and decision-making in uncertain environments, enabling human-like control

in (AI) systems [138][139]. Classical information theory reduces uncertainty by increasing

information; however, fuzzy logic uses membership functions to quantify degrees of

association between inputs and sets within a universe discourse. These functions form the

backbone of fuzzy logic systems, linking input values to degrees of membership and enabling

approximate reasoning in complex scenarios [140][141][142]. Optimization algorithms

enhance fuzzy logic by refining membership functions and improving actuator precision and

control, especially in autonomous systems [143]. The development of fuzzy logic systems

54

hinges on constructing fuzzy partitions and defining the shape and number of membership

functions (MFs). These MFs are essential as they quantify the degree to which a specific input

belongs to a fuzzy set. Expert knowledge is pivotal in this process, guiding the selection and

parameterization of appropriate MFs. Optimizing these systems minimizes reliance on

subjective trial-and-error approaches, thereby enhancing the accuracy of input/output

mappings [144]. Membership functions are fundamental to representing the degree of

membership for each variable, serving as critical inputs for the inference rules that drive system

functionality [145]. Building upon the findings of our previous contribution, this study seeks

to enhance further the accuracy and robustness of the proposed classification approach. This

section provides a detailed exposition of the mathematical methodology, which centers on

applying three specialized classification algorithms. These algorithms operate analogously to

the membership functions used in the Mamdani fuzzy logic system. The core of this approach

is a novel mathematical model designed to systematically classify crisp input values into their

appropriate fuzzy sets, thereby enhancing the accuracy of membership degree computations.

Optimization techniques refine these computations through three distinct algorithms,

corresponding to triangular, trapezoidal, and Gaussian membership functions. The model was

implemented in MATLAB and evaluated using a dataset of 10000 user task size entries with

varying magnitudes. The primary objective was to assess the performance of the proposed

algorithms in categorizing task sizes into three predefined classes: Small, Medium, and Big. A

comparative analysis with the Mamdani fuzzy logic system demonstrated that the proposed

model produces classification results that are either equivalent to or slightly more precise than

those generated by Mamdani’s approach, particularly regarding numerical accuracy. These

findings validate the proposed method as a viable and competitive alternative to Mamdani’s

model for classification tasks. Additionally, the mathematical simplicity and independence of

the proposed model from simulation environments or third-party tools, such as dynamic-link

libraries (DLLs), software extensions, or external simulation frameworks, make it particularly

suitable for broader deployment in AI applications. This is especially advantageous in contexts

where tool-dependent environments are unavailable or impractical.

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making

Fuzzy logic systems have become influential in decision-making, particularly in uncertain

contexts. They offer flexibility and approximate reasoning; however, the literature points to

challenges such as the complexity of fuzzy rule formulations and computational inefficiencies.

These challenges underscore the need for further optimization to enhance the applicability and

effectiveness of fuzzy logic across various fields. In his seminal work on fuzzy sets, Zadeh

defined a fuzzy set as "a class of objects with a continuum of grades of membership," where a

membership function assigns each object a grade ranging from zero to one. This work extends

traditional notions such as inclusion, union, intersection, and complement to fuzzy sets,

establishing various properties within this context. Notably, Zadeh also proved a separation

theorem for convex fuzzy sets without requiring the sets to be disjoint [146]. Building on this

foundation, researchers expanded fuzzy set theory by exploring its theoretical underpinnings

and practical applications in managing uncertainty and imprecision across various domains

[147]. However, these approaches often overlook the computational inefficiencies that arise

when applying fuzzy logic in real-world decision-making scenarios. Recent advancements

have attempted to address these inefficiencies. For instance, researchers have proposed a novel

55

approach to healthcare decision-making that integrates fuzzy logic with ML [148]. This hybrid

model aims to improve diagnostic accuracy and resource utilization, particularly when dealing

with incomplete and uncertain data, thus addressing traditional inefficiencies. However, it has

faced criticism for relying on subjective inputs, which can introduce biases and affect the

consistency of outcomes [149]. Moreover, researchers have highlighted limitations in the

fuzzy linguistic approach, particularly regarding information loss during fusion processes.

They propose a 2-tuple model to enhance precision and extend aggregation operators [150],

although its complexity continues to pose challenges for practitioners, making implementation

cumbersome [151]. Further research has discussed adaptive fuzzy systems, which show

promise but frequently experience stability issues [152], leading to inconsistent decision-

making in dynamic environments [153]. The Mamdani fuzzy inference model, while

foundational, is often critiqued for its limited robustness under varying conditions [154].

Although recent studies have sought to enhance this model's applicability, challenges persist

in managing time-sensitive decisions effectively [155]. Additionally, the researchers provided

extensive insights into fuzzy systems but focused primarily on theoretical aspects [156], which

hinders practical application and adoption by industry practitioners [157]. Doong et al.

explored fuzzy risk assessment in engineering [158], yet their approach does not adequately

address the interactions among risk factors, potentially oversimplifying complex decision-

making contexts [159]. In the context of business applications, researchers reviewed fuzzy

decision-making [160], underscoring the pressing need for improved methodologies to handle

severe uncertainties, particularly when data is sparse or incomplete [161]. Lastly, the

integration of fuzzy logic with genetic algorithms has been explored [162]. However, this

approach often struggles with computational efficiency and convergence issues, complicating

its practical use in real-time decision-making scenarios [163]. In summary, the literature

underscores significant gaps in the application of fuzzy logic systems within uncertain

domains, highlighting the need for optimized methodologies to enhance robustness, efficiency,

and applicability in decision-making processes. This study aims to address these critical gaps

by focusing on accurately determining the degree of membership of input elements and their

association with the most appropriate membership functions. The proposed mathematical

model seeks to improve fuzzy logic systems' capacity to handle uncertainty and make accurate

decisions by refining the process of selecting the best membership function and aligning it with

closely related decisions.

6.3 Background of Fuzzy Logic System

6.3.1 Core Principles of Fuzzy Logic Systems

Fuzzy logic is a form of many-valued logic that deals with approximate rather than fixed and

exact reasoning. Unlike traditional binary logic, which operates with true or false values, fuzzy

logic allows for a range of values between 0 and 1, which makes it particularly useful for

handling the concept of partial truth. This approach is often referred to as "computing with

words" because it can model the way humans think and reason with imprecise information

[164] [165]. Figure 6.1 depicts the architecture of a fuzzy logic system.

56

Figure 6.1 Architecture of a fuzzy logic system.

6.3.1.1 Fuzzy System Basics

6.3.1.1.1 Crisp Input Processing

In fuzzy logic, a crisp set refers to a set in which each element has a membership value that is

strictly either 0 or 1, signifying complete exclusion or inclusion. This differs from fuzzy sets,

where membership values can vary continuously between 0 and 1, enabling partial

membership. In a crisp set, individuals are categorized into two distinct groups: members, who

belong unequivocally to the set, and non-members, who are definitively excluded. Crisp sets

adhere to classical binary logic, emphasizing a clear and absolute boundary for set membership.

The indicator function for a crisp set, A, where elements in the set are assigned a value of 1

and those outside the set are assigned a value of 0, can be expressed as:

𝜇𝐴(𝑥) ={
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

 (6.1)

6.3.1.1.2 Fuzzification Process

Fuzzification inference is a process that converts input data into fuzzy sets, which are

subsequently used to generate outputs based on a predefined set of rules, typically expressed

in the "IF…THEN" format. This process plays a vital role in FIS, facilitating the transformation

of uncertain or imprecise information into structured, actionable outcomes for decision-making

[166].

6.3.1.1.3 Inference Engine

An inference engine is a critical component of an expert system, employing logical rules to

derive information or make decisions based on a knowledge base. It maps fuzzified inputs

(obtained through the fuzzification process) to the rule base, generating fuzzified outputs for

the applicable rules. The fuzzy inference engine follows a structured process comprising

several key steps. Initially, it performs rule matching by identifying relevant rules from the

knowledge base and comparing the input data to the conditions specified in each rule. Once the

relevant rules are identified, the engine evaluates the degree of truth for each rule, determining

the extent to which the input satisfies the conditions. Subsequently, it aggregates the

57

conclusions derived from the matched rules by combining their outputs to generate a coherent

decision or conclusion. This process is iterative, with the engine continuously applying rules

and updating the knowledge base until a solution is achieved or no further rules apply. This

systematic approach enables the fuzzy inference engine to handle complex and dynamic

scenarios effectively. Inference engines are widely used in AI applications, including

diagnostic systems, recommendation systems, and other decision-making tasks [167].

6.3.1.1.4 Fuzzy Rule Base

A fuzzy rule base is a set of fuzzy rules that describe the relationship between input variables

and output results in a fuzzy logic system. These rules, often derived from linguistic

expressions, characterize the dynamic behaviour of the system. Each rule consists of an

antecedent (the "IF" part) and a consequent (the "THEN" part) based on the knowledge and

expertise of a domain expert. Fuzzy rules generally follow the format:

𝒊𝒇 → 𝒂𝒏𝒕𝒆𝒄𝒆𝒅𝒆𝒏𝒕(𝒔) 𝒕𝒉𝒆𝒏 𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕(𝒔)

Enabling the system to infer outputs under various input conditions. These rules are crucial for

managing uncertainty and imprecision in control algorithms within systems [168][169].

6. 3.1.1.5 Defuzzification Process

Defuzzification is the final step in a fuzzy system and is responsible for converting the fuzzy

output generated by the inference engine into a precise numerical value. This process translates

the fuzzy set produced during inference into a specific, actionable numerical value suitable for

decision-making or control applications. Standard defuzzification techniques, such as the

Centre of Gravity (COG) method illustrated in equation 6.2, derive a crisp result by calculating

a representative value from the combined fuzzy sets generated by multiple rules. This step

ensures the system's outputs are interpretable and practical for real-world implementation

[170].

𝑍 = ∑ (𝜇𝑖
𝑛
𝑖=1 𝛽𝑖)/∑ 𝜇𝑖

𝑛
𝑖=1 (6.2)

Z: The crisp output (defuzzified value); 𝜇𝑖 : The membership degree of the fuzzy set for the 𝑖-
th rule; 𝛽𝑖 : The representative value (often the centroid) of the output fuzzy set for the 𝑖-th

rule.; n: The total number of rules in the system.

6.3.2 Membership Functions and Their Significance

The membership function is a core concept in fuzzy logic. It quantifies the degree of belonging

of a given input to a fuzzy set. Mapping inputs to values from 0 to 1 provides a nuanced

representation of uncertainty and partial truth, enabling more flexible and accurate modelling

than traditional binary logic. The function adheres to specific constraints and has a range of [0,

1]. For every x ∈ X, μ _A(x) must be unique [171]. In this study, have selected three widely

used membership functions recognized as essential in fuzzy logic systems: triangular,

trapezoidal, and Gaussian.

6.3.2.1 Triangular Membership Function

Triangular membership function can be represented by the parameters {a, b, c}. As referenced

58

in the previous sections.

6.3.2.2 Trapezoidal Membership Function

Fuzzy trapezoidal MF is defined by the parameters {a, b, c, d} as in equation (6.3).

 𝜇𝐹(𝑥) =

{

0; x ≤ a
x−a
b−a

 ;a< x <b

1; b ≤ x ≤ c
d−x
d−c

 ; c< x <d

0; x ≥ d

 (6.3)

6.3.2.3 Gaussian Membership Function

A fuzzy Gaussian membership function uses the Gaussian distribution to measure membership

levels within a fuzzy set. It creates bell-shaped curves that manage uncertainty and vagueness.

The function provides a continuous range of membership values between 0 and 1. The general

formula for a fuzzy Gaussian membership function is:

 𝜇𝐴(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)2

 (6.4)

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains

The Mamdani fuzzy inference method, also known as the Max-Min method, is a widely used

technique for designing control systems based on linguistic rules derived from expert

knowledge. This method utilizes fuzzy set theory to establish mappings between input and

output variables, making it a powerful tool in various applications. Its implementation typically

follows a structured process in which fuzzy rules and membership functions are systematically

defined to determine the final output [153]. Within this framework, every value in the universe

of discourse is assigned a specific degree of membership across relevant fuzzy sets, regardless

of its simultaneous association with other sets. This characteristic enables the proposed method

to evaluate the degree to which any given value belongs to all pertinent membership functions

in the model. Such an approach facilitates a comprehensive assessment of how each value

influences the decision-making process within its operational context. The design of the system

is further supported by mathematical principles and equations presented in the following

sections.

6.4.1 Mathematical Formulation for Algorithms 1 and 2

The general equation for a straight line is expressed as in equation (6.5).

y=mx+c (6.5)

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used

equation form for a straight line in geometry. However, the straight-line equation can be

presented in various forms, including point-slope. The equation of a straight line with a slope

'm' that passes through a specific point (x1, y1) is derived using the point-slope form, which is

expressed as in equation (6.6).

 y-y1=m(x-x1) (6.6)

Where (x, y) denotes an arbitrary point on the line. The absolute value parent function is

59

represented as:

𝑓(𝑥) = |𝑥| (6.7)

It is defined as: 𝑓(𝑥) = {

𝑥, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 = 0
−𝑥, 𝑖𝑓 𝑥 < 0

 (6.8)

The stretching or compressing of the absolute value function 𝑦 = |𝑥| is defined by the

function 𝑦 = 𝛼|𝑥| where 𝛼 is a constant. The graph opens if 𝛼 > 0 and opens down when 𝛼 <

0. In a more general context, the equation for an absolute value function takes the form:

 𝑦 = 𝛼|𝑥 − ℎ| + 𝑘

(6.9)

 𝛼 =
𝑦2−𝑦1

𝑥2−𝑥1
 (6.10)

Here, ℎ signifies the horizontal translation, and 𝑘 represents the vertical translation [163].

6.4.2 Mathematical Formulation for Algorithm 3

The Gaussian random variable is the most utilized and highly significant when investigating

random variables. A Gaussian random variable is characterized by a probability density

function (PDF) that can be expressed in a general form.

 𝑓𝑋(𝑥)=
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2
) (6.11)

 𝜎 = √
∑(𝑥𝑖−𝑥)̿̿ ̿

2

𝑛−1
 (6.12)

The PDF of the Gaussian random variable has two parameters, 𝑚 and 𝜎, which have the

interpretation of the mean and standard deviation (𝜎), respectively. The parameter 𝜎2 is

referred to as the variance [172] [173].

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain

Domains

The proposed methodology introduces a rigorous mathematical framework for categorizing

inputs within a defined universe of discourse, facilitating precise and efficient determination

of membership function levels. This approach incorporates three distinct algorithms derived

from the mathematical formulations central to this study. The first algorithm enhances the

construction of precise triangular membership functions, while the second refines the formation

of trapezoidal membership functions. Additionally, the third algorithm optimizes the

generation of Gaussian membership functions. At its core, this method employs a robust

mathematical model that simplifies the computation of membership degrees, resulting in

significantly improved processing speed compared to traditional methods such as the Mamdani

fuzzy logic system. An inherent strength of this approach lies in its systematic classification of

input values based on specific membership functions. By effectively addressing issues of

ambiguity and uncertainty, the methodology ensures a more accurate determination of

membership degrees, thereby supporting enhanced decision-making outcomes. Appendix 5

provides detailed explanations and illustrative examples validating the effectiveness of these

algorithms.

60

Algorithm 1: Input Partitioning and Membership Classification as similar work as

Triangular MF

//Membership degrees are calculated for each input value Vi with respect to membership

functions defined over the universe of discourse.

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of

the membership functions—not the input data itself.

• Input: V, a set of crisp input values for which the degree of membership will be

calculated.

//Parameters: Definitions of membership functions (PVs specifying boundaries,

centers, or slopes for triangular MFs.

n: The number of fuzzy partitions (i.e., number of membership functions) into which

the universe of discourse is divided.

• Output:
A matrix of membership degrees μ(vi) for each vi across all defined membership

functions.

Procedure:

1. Initialization:

• Max(V)  max(Vi) // Calculate the maximum value of sets V in the universe

discourse.

2. Parameter Value Calculation:

• PV1 (Max(V)/n) // Determine the first parameter value.

• PVn  n × PV1 // Compute the last parameter value.

3. 3. Iterate Over Each Input Value Vi in the Set of Parameter Values:

for each Vi ∈ V:

• Case 1:if Vi ≥0 and Vi ≤ PV1

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi))

//Compute Membership Function 1.

Output (MF2, MF3,…,MFm−1, Degree(Vi)) // Determining the degree of element

in the remaining MF domain.

• Case 2: if Vi ≥ PV1 and Vi ≤ PV2

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi))

// Compute the degree of element affiliated with both domains MF1 and Subsequent

it, as MF2.

α (Vi−PV2) // Define the alpha variable.

MF2 (
−1

𝑃𝑉2−𝑃𝑉1
) × (|𝛼| + 1)

// Compute the degree of element affiliated with both domains MF2 and previous

it, as MF1.

Output (MF3, MF4,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining

membership functions.

• Case 3: if Vi ≥ 𝑃𝑉𝑛 − 1 and Vi ≤ PVn

MFm((
1

𝑃𝑉𝑛−𝑃𝑉𝑛−1
) × (𝑉𝑖 − 𝑃𝑛 − 1); Output (MFm, Degree (Vi))

// Calculate Membership Function m.

Output (MF1,MF2,…,MFm−1, Degree(Vi))

61

//Determining the element's degree of membership across the remaining

membership functions.

4.End of Algorithm 1

Algorithm 2: Input Partitioning and Membership Classification as similar work as

Trapezoidal MF

//Membership degrees are calculated for each input value Vi with respect to membership

functions defined over the universe of discourse.

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of

the membership functions—not the input data itself.

• Input: V, a set of crisp input values for which the degree of membership will be

calculated.

//Parameters: Definitions of membership functions (PVs specifying boundaries,

centers, or slopes for Trapezoidal MFs.

n: The number of fuzzy partitions (i.e., number of membership functions) into which

the universe of discourse is divided.

• Output:
A matrix of membership degrees μ(vi) for each vi across all defined membership

functions.

Procedure:

1. Initialization:

• Max (V)max (Vi) // Calculate the maximum value from the sets V.

2. Parameter Value Calculation:

• PV1(Max (V)/n) // Determine the first parameter value.

• PVn  n×PV1

// Compute the last parameter value.

3. Iterate Over Each Input Value Vi in the Set of Parameter Values:

for each Vi ∈ V:

• Case 1: if Vi ≥0 and Vi ≤ PV1

Degree (Vi) 1; Output  (MF1, Degree (Vi)) // Compute Membership Function

1.

Output (MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining membership

functions

• Case 2: if Vi ≥ PV1 and Vi ≤ PV2

MF1  (((
−𝑉𝑖

𝑃𝑉2
) – PV1

)) +1; Output  (MF1, Degree (Vi))

// Compute the degree of element affiliated with both domains MF1 and

Subsequent it, as MF2.

o α(Vi−PV2) // Define the alpha variable; MF2  (((
−1

𝑃𝑉2−𝑃𝑉1
)) × (abs(α))) +1

o Output  (MF2, Degree (Vi))

// Compute the degree of element affiliated with both domains MF2 and previous

it, as MF1.

o Output (MF3, MF4,…,MFm−1, Degree(Vi))

62

//Determining the element's degree of membership across the remaining

membership functions.

• Case 3: if Vi ≥PVn-1 and Vi ≤ PVn

o Degree (Vi) 1

o Output (MFm, Degree (Vi))

// Calculate Membership Function m.

o Output(MF1,MF2,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining

membership functions.

4)End of Algorithm 2

Algorithm 3: Input Partitioning and Membership Classification as similar work as

Gaussian MF

//Membership degrees are calculated for each input value Vi with respect to membership

functions defined over the universe of discourse.

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of

the membership functions—not the input data itself.

• Input: V, a set of crisp input values for which the degree of membership will be

calculated.

//Parameters: Definitions of membership functions (PVs specifying boundaries, centers, or

slopes for Gaussian MFs.

n: The number of fuzzy partitions (i.e., number of membership functions) into which the

universe of discourse is divided.

• Output:
A matrix of membership degrees μ(vi) for each vi across all defined membership

functions.

Procedure:

1. Initialization:

• Max (V)max (Vi) // Calculate the maximum value from the sets V.

• 𝜎16339 //Define standard deviation of the Gaussian MF.

2. Parameter Value Calculation:

PV10; PV2MAX(V)/2; PVn  MAX(V); MF1 centerPV1; MF2

CenterPV2; MFm CenterPVn

3. Iterate Over Each Input Value Vi in the Set of Parameter Values:

for each Vi ∈ V:

• Case 1: if Vi ≥0 and Vi ≤ PVn

MF1 EXP (-((Vi – PV1)
2) /(2* 𝜎 2)); Output  (MF1, Degree (Vi))

// Compute Membership Function 1.

Output (MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining

membership functions.

• Case 2: MF2EXP (-((Vi – PV2)
2) /(2* 𝜎 2))

Output  (MF2, Degree (Vi)) // Compute Membership Function 2.

Output (MF3, MF4,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining

membership functions

63

• Case 3: MFm EXP (-((Vi – PVm)
2) /(2. 𝜎 2))

Output  (MFm, Degree (Vi)) // Compute Membership Function m.

Output (MF1,MF2, MF3,…,MFm−1, Degree(Vi))

//Determining the element's degree of membership across the remaining

membership functions.

4.End of Algorithm 3

6.5 Experimental Results and Analysis

 Our proposed method has been applied to a dataset comprising over 10,000 user tasks of

varying sizes, which was extracted from the Parallel Workloads Archive. This archive is a

comprehensive repository that contains detailed logs of job-level usage data from large-scale

parallel supercomputers, clusters, and grids. The logs encompass crucial information about the

size of user tasks, which can vary significantly depending on the specific workload and system

specifications. Given that each user base requests the cloud environment to perform its tasks,

the data size is measured per request. For further specifics regarding user task sizes, you can

explore the raw workload logs and models available on the Parallel Workloads Archive website

at(3). In our work. These task sizes are generally random and unstructured, encompassing

"small," "medium," and big" The recorded data consists of task sizes measured in bytes,

ranging from a minimum of 0 to a maximum of 67170 bytes. This wide range reflects the

diverse nature of user activities. The data were obtained directly from the database in their

original form without preprocessing. Appendix 6 (Figure 1). depicts the database titles selected

for the work. The task column data, specifically identified and prepared for analytical purposes,

was systematically extracted from the database to serve as the foundation for the subsequent

experimentation, Appendix 6 (Figure 2), shows the tasks before classifying. Operations using

the MATLAB® (R2018b) software [174]. This program was selected due to its robust

computational capabilities, enabling precise mathematical analysis, data manipulation, and

visualization. The processing steps included data filtering and targeted analysis to derive

meaningful insights and ensure the integrity of the results.

6.5.1 Determine the Degree of Membership as The Triangular Membership Function

In this context, tasks are classified by size using the proposed method, as outlined in Section

4. To demonstrate this, determine the degree of membership through the triangular membership

function by applying the first algorithm to values within the universe discourse. The

implementation results are systematically illustrated to demonstrate the classification processes

based on fuzzy logic principles. Figure 6.2 presents a classified single triangular membership

function, showcasing the initial classification structure with a single membership function type

for clarity and precision.

(3)https://www.cs.huji.ac.il/labs/parallel/workload/.

https://www.cs.huji.ac.il/labs/parallel/workload/

64

Figure 6.2 Classify single Triangular MF.

Figure 6.3 extends this analysis by depicting the classification of all nested membership

functions, emphasizing the hierarchical arrangement and interactions between multiple

membership functions within the system. In contrast, Appendix 6 (Figure 2), demonstrates the

classification of the membership function achieved through the application of the Mamdani

fuzzy logic system, which integrates fuzzy rules and inference mechanisms to produce

comprehensive and interpretable classification results. These figures collectively highlight the

progressive refinement of membership function classification, illustrating the effectiveness of

fuzzy logic systems in managing uncertainty and delivering accurate outcomes.

Figure 6.3 Classify all Triangular MF.

6.5.2 Determine the degree of membership as the trapezoidal membership function

In this context, tasks are classified based on their size using the proposed method, as outlined

in Section 4. The classification process is achieved by determining the degree of membership

through the implementation of a trapezoidal membership function. This function is applied

using the second algorithm, which assigns membership values to data points within the defined

universe discourse, ensuring a systematic and accurate task classification. The results of this

implementation are illustrated in Figures 6.4 and 6.5. Figure 6.4 presents the classification of

a single trapezoidal membership function, while Figure 6.5 depicts the classification of all

trapezoidal membership functions, demonstrating the effectiveness of the second algorithm in

assigning precise membership values. In contrast, Appendix 6 (Figure 3), presents the

65

corresponding Mamdani system membership functions, showcasing the fuzzy inference

process and its integration into the classification framework. This detailed analysis highlights

the significance of the proposed method and algorithms in accurately determining membership

degrees, thereby enabling a precise and meaningful classification of tasks within the system.

Figure 6.4 Classify single Trapezoidal MF.

Figure 6.5 Classify all Trapezoidal MF.

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function

In this context, tasks are classified based on their size using the proposed method, as outlined

in Section 4. To demonstrate the effectiveness of this approach, the degree of membership is

determined using the Gaussian membership function by implementing the third algorithm on

values within the defined universe discourse. The Gaussian membership function, chosen for

its smooth and continuous nature, ensures precise membership value assignment, facilitating

accurate classification of task sizes. The results of this implementation are presented as follows:

Figure 6.6 illustrates the classification using a single Gaussian membership function, providing

a clear and focused representation of membership values for task sizes. Figure 6.7 expands on

this by presenting the classification of all Gaussian membership functions simultaneously,

showcasing the system's ability to handle multiple overlapping membership functions

effectively. In contrast, Appendix 6 (Figure 4), depicts the classification results using the

Mamdani fuzzy system membership functions, highlighting the integration of fuzzy inference

66

rules with membership functions to produce comprehensive, interpretable, and consistent

outcomes. These results collectively validate the robustness and flexibility of the proposed

method, demonstrating the precision of Gaussian membership functions and the effectiveness

in managing uncertainty and enhancing task size classification.

Figure 6.6 Classify single Gaussian MF.

Figure 6.7 Classify all Gaussian MF.

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed

Mathematical Model

This study introduces algorithms for systematically classifying input values into fuzzy sets

using mathematical methods analogous to standard fuzzy membership functions (triangular,

trapezoidal, and Gaussian). These algorithms are integrated within a robust mathematical

framework, providing an alternative to the heuristic or manually tuned fuzzy partitions

typically employed in Mamdani-based inference systems. The proposed model demonstrates a

novel application of standard fuzzy classification algorithms integrated within an optimized

mathematical framework, specifically triangular, trapezoidal, and Gaussian membership

functions. This innovative integration enhances fuzzy partitions' precision, computational

efficiency, and systematic adaptability compared to conventional heuristic-based methods.

The algorithms are capable of systematic input classification within the universe of discourse

and precise computation of membership degrees. These algorithms are grounded in robust

mathematical formulations: Triangular membership functions utilize point-slope line

equations, Trapezoidal functions employ linear interpolation techniques, and Gaussian

functions are based on probabilistic Gaussian distribution functions. Together, they replicate

67

and enhance the behavior of traditional membership functions while significantly reducing

computational overhead. The integration of these analytical methods offers substantial benefits.

The proposed algorithms maintain the interpretability of classical fuzzy logic systems while

enhancing scalability, computational efficiency, and precision—qualities critical for modern

intelligent applications. Moreover, the framework reduces dependency on simulation programs

and environments, minimizing the need for extensive storage space, processors, and office

software functions. To evaluate the effectiveness of the proposed model, a comparative

validation study was conducted using ten representative input samples strategically selected

from the universe of discourse. Each input underwent analysis to determine its membership

degrees across all relevant functions, with outputs outside the input range assigned zero

membership degrees. Results from the proposed mathematical model are detailed in Table 6.1,

juxtaposed with outcomes from the classical Mamdani approach in Table 6.2, facilitating direct

performance comparison. To further validate the robustness of the proposed method, a

comprehensive validation study was conducted using 10,000 input samples representing a wide

range of task sizes. The proposed framework exhibits superior adaptability and precision

compared to the classical Mamdani system, particularly in managing complex and uncertain

inputs. This thorough evaluation reaffirms the method's robustness, computational efficiency,

and improved accuracy, thereby significantly contributing to the advancement of intelligent

fuzzy classification systems.

Table 6.1 Results of the Proposed Method Applied to Selected Samples.

Samples of Degree of Triangular Membership Function
value small medium big
0 1 0 0
16823 0.499091856 0.001816287 0
17129 0.489980646 0.020038708 0
17361 0.4830728 0.033854399 0
17579 0.476581807 0.046836385 0
25978 0.226499926 0.547000149 0
26931 0.198124163 0.603751675 0
28842 0.141223761 0.717552479 0
31475 0.062825666 0.874348668 0
33565 0.000595504 0.998808992 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182 0.500818818 0
21582 0.393479232 0.606520768 0
23875 0.222792914 0.777207086 0
25331 0.114411195 0.885588805 0
26846 0.001637636 0.998362364 0
46120 0 0.566919756 0.433080244
45451 0 0.616718773 0.383281227
44329 0 0.700238202 0.299761798
42852 0 0.810183117 0.189816883
40336 0 0.997469108 0.002530892

Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.120934543 0.000213895
1 0.999999998 0.120949757 0.000213949
10090 0.826402652 0.355634634 0.002238294
32026 0.146469985 0.995458374 0.098946015
49791 0.009627715 0.611475933 0.567984183

68

Table 6.2 Results of the Traditional Method Applied to Selected Samples.

6.6 Summary

This chapter introduced and validated a novel mathematical framework designed to enhance

decision-making under uncertainty by providing precise fuzzy classification. The primary

contribution lies in systematically classifying input values into predefined fuzzy sets—

specifically, triangular, trapezoidal, and Gaussian membership functions—to significantly

enhance accuracy and computational efficiency in determining membership degrees. The

developed methodology integrates three optimized algorithms mathematically aligned with

traditional fuzzy logic membership functions. These algorithms facilitate systematic input

partitioning and precise computation of membership degrees, ensuring clear differentiation

54045 0.004209592 0.456574063 0.724241188
61138 0.000911417 0.241274197 0.934125619
64852 0.000379417 0.160259114 0.989987311
65069 0.000359903 0.156223736 0.991766863
67170 0.000213895 0.120934543 1

Samples of Degree of Triangular Membership Function
value small medium big
0 1 0 0
16823 0.499076941,400667 0.001846117,1986660315 0
17129 0.489965459,74273464 0.020069080,51453073 0
17361 0.483057408,28966176 0.033885183,420676514 0
17579 0.476566222,01048116 0.046867555,979037634 0
25978 0.226476893,75893282 0.547046212,4821344 0
26931 0.198100285,8504 0.603799428,2991901 0
28842 0.141198189,61410197 0.717603620,7717961 0
31475 0.062797760,83849452 0.87440447,83230109 0
33565 0.000565745,5931395903 0.998868508,8137208 0

Samples of Degree of Trapezoidal Membership Function

value small medium big

20162 0.499181182,07533124 0.500818817,9246688 0
This table extends and complements the information presented in Table 6.2.

21582 0.393479231,7999107 0.606520768,2000894 0
23875 0.222792913,50305197 0.777207086,496948 0
25331 0.114411195,47417002 0.885588804,52583 0
26846 0.001637635,849337502 0.998362364,1506625 0
46120 0 0.783443757,9096255 0.216556242,0903744

4
45451 0 0.808345120,2263083 0.19165487,97736916

7
44329 0 0.850107943,1251396 0.149892056,8748604

3
42852 0 0.905084493,4117472 0.094915506,5882528
40336 0 0.998734459,9121566 0.001265540,0878433

707
Samples of Degree of Gaussian Membership Function

value small medium big

0 1 0.122 0.0002
1 1 0.122 0.0002
10090 0.8418 0.7201 0.0053
32026 0.2931 0.996 0.1097
49791 0.0304 0.5364 0.7211
54045 0.0124 0.2917 0.8431
61138 0.0028 0.1097 0.9959
64852 0.0011 0.0566 0.9881
65069 0.0010 0.0532 0.9926
67170 0.0002 0.1218 1

69

among distinct membership levels (small, medium, and big). Compared to traditional Mamdani

FIS, our approach delivers more accurate, computationally efficient, and robust results while

preserving interpretability and simplicity crucial for broad practical adoption. Extensive

validation using over 10,000 user-task-size samples confirmed that the proposed algorithms

consistently match or surpass the performance of the traditional Mamdani method. Our model

efficiently manages distinct and overlapping fuzzy set classifications, underscoring improved

flexibility and precision.

The main contributions of this chapter include:

• A novel mathematical model enables precise input classification through triangular,

trapezoidal, and Gaussian membership functions.

• Algorithmic innovation through developing three original algorithms leveraging

rigorous mathematical formulations to optimize fuzzy classification.

• Enhanced computational efficiency, significantly reducing computational overhead

without compromising accuracy or interpretability.

• A robust comparative analysis demonstrates the proposed methodology's superior

flexibility and effectiveness against traditional Mamdani-based fuzzy logic

systems.

The demonstrated effectiveness of this methodology highlights its potential applicability across

diverse AI domains, notably in QoS categorization. Looking ahead, this chapter establishes a

foundational model beneficial for future research endeavors, especially in real-time decision-

making contexts requiring high precision and scalability, such as healthcare diagnostics,

financial forecasting, and cloud computing environments. Future work will expand this

methodology's application within the (IVCBS), directly addressing QoS scalability and

classification accuracy challenges and further validating the model’s suitability in practical,

real-world decision-making scenarios.

70

Chapter 7 Intelligent Validation Cloud Broker System

Chapter 7 contributes to the (IVCBS), which enhances SLA selection. In this work, the

classification algorithm uses mathematical formulations like trapezoidal membership functions

to assign fuzzy membership degrees to input values. These formulations mimic the shape and

behavior of trapezoidal membership functions by employing linear equations to define

ascending, plateau, and descending regions across the universe of discourse. Thus, the

classification of VM resources and user request sizes is performed using a method that

mathematically resembles trapezoidal membership functions, improves decision-making,

reduces data centre processing time, and lowers VM costs. Simulations show that IVCBS,

using the "Optimize Response Time" policy, outperforms traditional methods in response time,

VM cost, and energy efficiency. This system also reduces data transfer costs and enhances

power usage efficiency by improving data center request servicing times, offering a more

efficient and cost-effective approach to cloud resource management.

7.1 Overview of SLA Selection and the IVCBS Framework

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications,

and services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction. This cloud model promotes availability and is composed of five

essential characteristics, three service models, and four deployment models [170]. Cloud users

can access the key elements of the underlying architecture, such as Broad network access, which

allows services to be consumed from anywhere; on-demand self-service, which enables usage

when desired; resource pooling and virtualization, which combine infrastructure, platforms, and

applications; rapid elasticity, which allows for horizontal scalability with pooled resources; and

measured service charges based on consumption [171]. The services of cloud computing are

broadly divided into three categories: Infrastructure-as-a-Service (IaaS), which is the delivery of

huge computing resources, such as the capacity of processing, storage, and network., Platform-

as-a-Service (PaaS) supports a set of application program interfaces to cloud applications. Well-

known examples are AWS, Google App Engine, Microsoft’s Azure Services Platform,

which replace the applications running on PCs. There is no need to install and run the special

software on your computer if you use the SaaS [172]. The dynamic nature of cloud computing

necessitates efficient resource allocation, which can be challenging due to potential resource

shortages and conflicting interests between (CSPs) and (CSUs). SLA negotiations can mitigate

these issues, and the proposed broker-based mediation framework optimizes these negotiations

[173]. Cloud brokerage enhances service availability. Traditional brokers face limitations in

ensuring service trust and outcomes. An intelligent cloud broker overcomes these limitations by

validating and verifying service trust through factors like response time, sustainability, and

accuracy. It also incorporates customer feedback and maps services from a service collection

repository, outperforming traditional models in recommending services to cloud users [174].

Selecting the most suitable resources to meet diverse user demands is a significant research

challenge. Quality of Service (QoS) parameters play a crucial role in ranking these resources.

This study proposes using fuzzy logic to handle uncertainties in QoS attribute weights and pre-

classify resources, reducing computational costs [175]. Fuzzy logic-based optimization

algorithms present Fuzzy-RLVMrB and Fuzzy-MOVMrB, designed to balance horizontal and

71

vertical loads across (PMs) by managing processor, BW, and memory resources. Simulations

demonstrate that these algorithms excel in LB and energy efficiency compared to other methods

[176]. Performance and Resource-Aware VM Selection using Fuzzy in Cloud Environment

(PRSF) develops a VM selection policy to optimize CPU resource utilization and minimize

migration counts. Utilizing the Mamdani fuzzy controller, the PRSF policy enhances decision-

making for VM selection, leading to decreased energy consumption and reduced migration

events [177]. Furthermore, there are cloud simulators for creating and testing different cloud

applications. These simulators are based on parameters like programming languages, availability,

and SLA support. The analysis considers CloudSim to be the most effective and efficient

simulator [178]. Simultaneously, Cloud Analyst is a simulation tool extended from CloudSim.

LB is a major challenge in the cloud, where resources have to be directed to their respective

servers so that the whole system works efficiently by distributing the workload efficiently.

Compare the average response times of the six LB algorithms, like Round-Robin, by using a

cloud analyst tool to perform a thorough comparative study along with three service broker

policies, like optimizing response time, to find out which is the best [179]. Resource stalemates

can occur during resource allocation. The currently available algorithms, such as Min-Min and

Min-Max, have issues with overhead, hunger, and deadlock. A solution to some of these

problems has been proposed that decreases the amount of time required to respond while

simultaneously increasing the cloud's overall efficiency [180]. Building upon the methodologies

discussed in prior studies, which focus on enhancing decision-making accuracy, this research

advances solutions to the identified challenges within this thesis. The study introduces the IVCBS

aimed at optimizing the allocation of AWS-EC2 resources based on user demands. Key AWS-

EC2 specifications, such as VCPUs, RAM, storage, and BW, collectively influence VM costs,

power consumption, and processing times, impacting user confidence and decision-making in

selecting (SLAs) that align with budgetary and performance needs. The study addresses a

scenario involving one million customers entering a cloud environment, each presenting varying

demands, utilizing real-world data from diverse datasets, with a particular emphasis on 11 types

of AWS-General Purpose EC2 Instances. Employing MATLAB, an algorithm was developed to

classify and organize EC2 resources. Furthermore, user demand sizes were categorized using a

proposed mathematical model employing five membership functions: Poor, Fair, Good, Very

Good, and Excellent, structured like the Trapezoidal Membership Function. The proposed

mathematical framework calculates membership degrees for each input value—such as VM

attributes (e.g., vCPU count, RAM size, storage capacity, BW) and user request sizes—using

equations that emulate trapezoidal membership functions. These membership degrees, ranging

between 0 and 1, represent the degree to which each input belongs to fuzzy linguistic categories

such as Poor, Fair, Good, Very Good, or Excellent. This process enables precise and consistent

classification of both cloud resources and user workloads, supporting effective decision-

making in resource allocation. The IVCBS operates in two stages. In the first stage, it calculates

continuous membership degrees ranging from 0 to 1 for inputs such as VM attributes and user

request sizes. This computation relies on mathematical models that emulate the behavior of

trapezoidal membership functions, quantifying the degree to which each input belongs to

categories such as Poor, Fair, or Excellent. In the second stage, these continuous values are

converted into a binary membership score (either 1 or 0) based on a defined threshold,

simplifying real-time decision-making. Only inputs assigned a score of 1 are validated for

72

resource allocation. This method preserves the precision of fuzzy classification while

maintaining operational efficiency. This binary criterion ensures simplicity and operational

efficiency by eliminating the need to manage intermediate fuzzy values during resource

allocation. Specifically, if the computed fuzzy membership value exceeds the predefined

threshold, the decision to allocate the resource is validated (membership score = 1); otherwise,

the allocation is disregarded (membership score = 0). Thus, although continuous membership

values derived from trapezoidal membership functions effectively capture nuanced, fuzzy

categorizations of resources and user requests, the IVCBS strategically converts these continuous

values into binary membership scores for practical real-time cloud resource allocation.

Consequently, the system effectively integrates fuzzy logic principles for initial classification

and categorization with crisp decision-making, ensuring efficient, straightforward, and

transparent resource validation and allocation. However, the proposed algorithm categorizes

AWS EC2 cloud computing resources and user request sizes based on linguistic variables, where

a membership score of 1 denotes the highest relevance. This score serves as a validation criterion

through broker validation processes. For example, CPU resources falling within specified values

(vCPU: 1, 2, 4) are classified as 'Poor' according to the algorithm, driven by their membership

score 1, aligning firmly with the 'Poor' membership function. Similarly, user request sizes

categorized within ranges (3, 5, 10) MB also receive a membership score of 1, confirming their

classification within the 'Poor' category. This systematic approach extends across all data in the

'Poor' membership function domain, maintaining the same principle for the remaining four

membership functions, focusing exclusively on values assigned a score of 1. Subsequently, the

second algorithm, the matching algorithm, plays a pivotal role in the broker validation process

by verifying whether all system metrics attain a membership score of 1. VM-EC2 resources are

allocated to execute user requests when this condition is met. Conversely, if the score is 0, the

matching process is disregarded. This streamlined methodology ensures efficient allocation of

VM-EC2 resources based on validated criteria. The matching process validates all values derived

from the algorithm, ensuring that each classification scenario defined by the five membership

functions, whether for EC2 criteria or user request sizes, achieves a score of 1. Upon validation,

the broker initiates the allocation process, assigning an EC2 VM to execute user requests

effectively. Expanding the scope, the study distributes user requests across data centers in six

geographic regions (North America (R0), South America (R1), Europe (R2), Asia Pacific (R3),

Africa (R4), and Australia (R5)). It compares the performance of the traditional method with the

(IVCBS). Using Cloud Analyst tools, two distinct broker policies were evaluated: the Optimize

Response Time Policy, directing requests globally, and the Dynamic Reconfigure with Load

Service Broker Policy, routing requests within users' regions. Across 11 scenarios involving one

million users, simulations across 31 AWS data centers demonstrated the superiority of IVCBS,

particularly with the Optimize Response Time policy, over the Dynamic Reconfiguration with

Load policy. IVCBS consistently exhibited superior performance metrics, including overall

response time, processing efficiency, total VM cost, and Data Center Request Servicing Times,

highlighting its efficacy in enhancing cloud computing efficiency across diverse global

environments.

73

7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making

If Cloud computing delivers computing resources via a network as a service. With the fast

adoption of this emerging technology in practical scenarios, understanding how to assess its

performance and security challenges has grown increasingly significant. Nowadays, modelling

and simulation technology is a valuable and potent resource among cloud computing

researchers to tackle these issues [181]. Qazi et al. [2] examine SLA methodologies in cloud

computing, detailing their taxonomy, challenges in QoS management, evaluation metrics, and

design goals. It also highlights open research areas, guiding future development for enhanced

service delivery and CSP-CSU accountability. Chauhan et al. [182] emphasized the role of

cloud brokers within an interconnected cloud computing framework. Their study explored the

advantages and limitations of cloud brokers, focusing on aspects like pricing, optimization,

trust, and Quality of Service (QoS). Being a survey, the work provides in-depth discussions to

enhance the comprehension of cloud brokers in multi-cloud environments. Yao et al. Ahmad

et al. [183] introduce the (COTD) algorithm for cloud and fog services, aiming to reduce costs

by 35% without compromising response times. Tested with Cloud Analyst, COTD outperforms

existing routing strategies, offering efficient real-time decision-making for service providers.

[184] detailed the diverse roles played by cloud service brokers, including intermediation,

aggregation, arbitration, integration, and customization. Therefore, the process of delivering

services is a collaborative effort involving CSPs, cloud service brokers, and customers. Any

issues arising within any of these parties will undoubtedly impact the broker's performance.

Cinar et al. [185] aim to bolster security and compliance in multi-cloud environments by

leveraging sophisticated encryption and IAM strategies and legal insights. They underscore the

role of cloud service brokers in applying best practices to overcome challenges posed by

technology adoption and regulatory intricacies. Petcu [186] tackled the interoperability issue

among cloud services, highlighting the challenge posed by vendor lock-in and the necessity to

integrate different clouds to meet user needs. Despite the existence of hybrid clouds, linking

multiple cloud services is crucial for enhancing performance and user satisfaction. The authors

suggested a strategy to enable portability and interoperability across various cloud providers.

However, this proposal lacks a detailed practical method for addressing the interoperability

challenges among CSPs. Chafai et al. [187] This work proposes a performance evaluation

model for federated clouds using an open Jackson network, focusing on service diversity and

user demand to improve system design. Calheiros et al. [188] explored the constraints a solitary

cloud provider faces in service delivery. They noted that with the rising demand for services,

current methods fell short regarding SLA and Quality of Service (QoS). The authors introduced

an inter-cloud framework that leverages agents to address these issues. These agents publish,

discover, and deliver services to cloud users under agreed-upon SLAs. Nonetheless, the work

does not cover the decision-making strategies for purchasing and selling services. Al-E'mari

et al. [22] This article evaluates Cloud Service Broker policies for Cloud Datacenter selection,

highlighting their role in enhancing cloud computing efficiency and addressing challenges to

improve Quality-of-Service standards and decision-making. Ahmed I. El Karadawy et al. [189]

conducted a detailed examination of the cloud analyst simulator, focusing on different (LB)

algorithms and service broker policies. They specifically evaluated three unique LB

algorithms: (RR), throttled, and (ESCE). Sunny Nandwani et al. [190] examined various

74

service broker policies and (LB) algorithms. They compared these LB algorithms across

different service broker policies and conducted simulations using cloud analysts to evaluate the

performance of existing algorithms. This comparison was based on various metrics to assess

their effectiveness.

7.3 Proposed System

The proposed study centers on intelligently identifying cloud services through rigorous

validation. This process ensures uniform attainment of a value of 1 across all outcomes from

the classification algorithm, applicable to resource allocation and user request sizes, as

discussed earlier. By maintaining this consistent criterion, the study assures the reliability and

accuracy of the classification algorithm's outputs, thereby optimizing resource management

and enhancing service efficiency in cloud computing environments. This systematic and

uniform validation approach highlights its critical role in achieving precise identification of

high-quality cloud services. Figure 7.1 depicts the proposed system.

7.3.1 Extraction information Factors from AWS Cloud Environment

Within the AWS cloud environment, users have access to a variety of service instance types,

including General Purpose(4), Compute Optimized, Memory-Optimized, Accelerated

Computing, and Storage-Optimized, all falling under the broad category of 'XaaS'. This study

will concentrate on general-purpose EC2 instance types tailored to meet user requirements.

General-purpose EC2 instances are strategically deployed across 31 AWS data centers in six

geographic regions(5) , ensuring robust global infrastructure and service availability.

7.3.2 AWS General-Purpose Instance Types

 AWS boasts 212 types of EC2 general-purpose instances, meticulously designed to balance

computing, memory, and networking resources. These versatile instances excel at diverse

workloads, making them ideal for applications requiring equal resource distribution, such as web

servers and code repositories [191]. By sharing certain standardized features, these EC2 instances

are grouped into 11 categories based on similarities in their specifications. Tables 7.1 and

Appendix 7 (Table 1), highlight the adopted AWS-EC2 families' specifications. while Appendix

7 (Table 2), lists the actual on-demand cost of each EC2 device, as indicated on AWS's official

pricing page(6). Table 7.2 displays the number of customers entering the cloud for each scenario

and the sizes of their requests.

(4) (https://aws.amazon.com/ec2/instance-types/).

(5)(https://aws.amazon.com/about-aws/global-infrastructure/regions_az/).

(6) (https://aws.amazon.com/ec2/pricing/on-demand/).

https://aws.amazon.com/ec2/instance-types/),Compute
https://aws.amazon.com/ec2/pricing/on-demand/

75

Figure 7.1 Intelligent Validation Cloud Broker System Framework.

 Table 7.1 AWS-General purpose instance features.

AWS-General-Purpose series Attributes and specs
EC2- Series VCPU RAM

GB
Storage
GB

Bandwidth
Gbps

VCPU-clock
speed
GHz

M6g.medium 1 4 1 2 2
M6g.Large 2 8 2 4 2
M6g.Xlarge 4 16 4 8 2.4
M5.2XLarge 8 32 8 10 2.5
M5.4XLarge 16 64 12 12 2.5
M6gd.8XLarge 32 128 16 14 2.5
M6gd.12XLarge 48 192 24 16 2.7
M6g.metal 64 256 32 18 2.7
M5d.metal 96 384 48 24 3.4
M6i.metal 128 512 64 30 3.4
M6a.metal 192 768 88 40 3.4

7.3.3 Theoretical Framework and Methodology

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System

(IVCBS)

In cloud computing, "intelligence" signifies the deployment of sophisticated algorithms and

decision-making techniques that emulate human cognitive abilities like learning, reasoning, and

problem-solving [192]. In the (IVCBS), this intelligence is utilized through optimization

algorithms rooted in a mathematical model influenced by the trapezoidal membership function.

Implementing this model generates membership scores of 1 and 0 for the input values across all

proposed membership functions within the system's universe of discourse. This approach

significantly improves SLA selection and enhances overall system efficiency.

76

Table 7.2 Cloud users and sizes of their requests.

Cloud users User request
Scenario
number

Total

number of

users

SaaS Size

1 1000,000 App1 3 MB

2 1000,000 App2 5 MB

3 1000,000 App3 10 MB

4 1000,000 App4 35 MB

5 1000,000 App5 70 MB

6 1000,000 App6 105 MB

7 1000,000 App7 140 MB

8 1000,000 App8 750 MB

9 1000,000 App9 1500 MB

10 1000,000 App10 2250 MB

11 1000,000 App11 3000 MB

Our method provides adaptability and utility, making it a valuable tool for scientists and

researchers facing decision-making in ambiguous situations that require precise and

comprehensive insights. It facilitates the assessment of a value's impact on the environment in

connection with the decision-making process. Figure 7.2 demonstrates how the mathematical

approach closely reflects the characteristics of a trapezoidal membership function, particularly in

determining and generating degrees of membership or belonging. The equations and concepts

presented in this figure provide the foundation for the outcomes produced by the algorithms

detailed in Table 7.3. The behavior of the mathematical model as a membership function, which

classifies and assigns membership levels to input values within the proposed system, can be

effectively illustrated using equations that relate to point-slope lines and absolute values, as

discussed in Chapter Six.

y = mx + c (7.1)

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used

equation form for a straight line in geometry. However, the straight-line equation can be

presented in various forms, including point-slope.

The equation of a straight line with a slope 'm' that passes through a specific point (x1, y1) is

derived using the point-slope form, which is expressed as:

 y − y1 = m(x − x1) (7.2)

In this equation, (x, y) denotes an arbitrary point on the line [140][164]. The mathematical model

employed in the IVCBS is classifies and arranges (VM) resources (e.g., VCPU, RAM, Storage,

BW) and user request sizes. This model defines mathematical functions (Poor, Fair, Good, Very

Good, and Excellent) similar to the trapezoidal membership function. These functions are used

to classify and determine the membership degree for each input value within the discourse

universe, evaluating the suitability of EC2 selections that adapt to client SLA criteria. The

classification outcomes directly influence the decision-making process for validating the broker

mechanism. A result of (1) indicates an effective decision, while (0) suggests exclusion. This

section introduces a novel model to explore the intelligent features integrated into the (IVCBS).

77

It focuses on the intricate management of VCPU resources, using them as a key example. This

rigorous method is consistently applied to all VM-EC2 resources and user request sizes, ensuring

SLA-level classification uniformity and reliability. The MATLAB script demonstrates how this

approach reinforces the consistency of resource allocation within the system. Furthermore, to

illustrate the alignment of the mathematical model with the proposed membership functions, this

approach has been integrated into the discussion on initializing and visualizing the membership

function, as depicted in Appendix 7 (Figures 1 and 2).

Figure 7.2 Fuzzy Partition Using Mathematical Model.

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation Cloud

Broker System (IVCBS)

This section addresses the handling of ten user-base requests, employing the round-robin

algorithm to evenly distribute workloads across VM clusters. It introduces a set of equations that

form the mathematical basis for estimating the time required to process a given task. As

previously discussed, our framework utilizes 31 individual VMs linked to 31 data centers, spread

across six geographical areas and categorized based on 11 clustering factors. The rationale for

using a single VM from each AWS-supported data center is to harness suitable computing

resources that align with the demand of user requests. This strategy aims to achieve cost

efficiency, enhance processing speed, reduce energy consumption, and ensure the availability of

additional computing resources to handle other users' requests consistently. To operationalize

this concept, applied the CloudAnalyst tool under a designated SBP in two distinct scenarios

(optimizing response time and dynamically reconfiguring based on load).

 Eq. (7.3) is given by n as the number of sets for the load (L) or requests that need to be

scheduled to servers.

 𝐿 = {𝐿1 , 𝐿2 , 𝐿3 , … , 𝐿𝑛 } (7.3)

This equation is coherent in indexing because it uses sequential indices 1,2,3,…,n to denote

each element Li The indexing starts from 1 and progresses sequentially up to n.

78

Eq. (7.4) DC represents a set of data centers, with dc1,dc2,dc3,…,dck denoting each data center

indexed from 1 to k.

 DC = {dc1 , dc2 , dc3 , … . , dck} (7.4)

This equation is coherent as well. It uses indices 1,2,3,…,k to denote each data center dci.

Similar to Equation (7.3), the indexing starts from 1 and proceeds sequentially up to k,

maintaining a consistent and logical index structure.

The following equation (7.5) For each data center dci, there is a single VMi associated with it.

 dci = {VMi} (7.5)

This equation introduces i as the index for VMs within each data center dci. It is coherent

because it specifies that dci has exactly one VMi, ensuring clarity and specificity in indexing.

Eq. (7.6) 𝐷𝐶𝑠𝐿 represents the load of each VMi in the data centers.

 DCsL = {VM1 L , VM2L , VM3 L , … , VMk L} (7.6)

This equation uses i from 1 to k to denote each VMi and its associated load L. The indexing is

coherent as it sequentially lists VMiL for each VM within the data centers.

Eq. (7.7) This equation indicates that the load L of each VMi in the data centers 1,2,…,k is

approximately equal. It uses i from 1 to k to represent each VMi.

 VM1 L ≈ VM2 L ≈ VM3 L,… , VMk L (7.7)

Eq. (7.8) t0 calculates the time required to allocate all tasks L to each VMi, where τ0i, represents

the time τ0 required to execute each task Li.

 t0 = ∑ τ0𝑖
𝑛
𝑖=1 (7.8)

Where:

i: Represents the index for tasks, consistent with Equation (7.3) where Li denotes each task or

load.

Eq. (7.9) This equation defines VM as a set containing k VMs within a specific data center. It

describes how, when multiple VMs are available (denoted by k), all tasks can be evenly

distributed among them for execution. This equation clarifies the method of task distribution

across multiple VMs, highlighting the shared allocation approach in cloud computing

environments.

 VM = (VM1 , VM2 ,VM3 ,… , VMk ,) (7.9)

Eq. (7.10) shows that the total execution time T0 is the sum of the execution times Ti for each

task i executed on the total number of VMs n in the data center:

 T0 = ∑ T𝑖
𝑛
𝑖=1 (7.10)

This equation indicates that T0 represents the cumulative execution time across all tasks

executed on n VMs within the specific data center.

79

Classification Algorithm

Inputs: Parameter Value (PV)set= {PV1, PV2,,,PV11}

Output=Classification with order Parameter Values.

//Compute the level for each input parameters.

1.For each input value (V) from input parameter value set

2.IF (V >=PV1 and V <=PV2)

3.MF1  (((-1/PV1-PV2)) *((V-PV2))) +1)

//MF: Membership Functions

4.Output  (Poor, MF1)

5.Output  ((Fair, Good, V. Good, Excellent),0)

6.End

7.IF(V>PV2 and V<=PV3)

8.MF1  1

9.Output (Poor, MF1)

10.Output ((Fair, Good, V. Good, Excellent),0)

11.End

12.IF (V>PV3 and V<=PV4)

13.MF1 (((-1/(PV4-PV3)) *((V-PV3))) +1)

14.Output (Poor, MF1)

15.Output ((Good, V. Good, Excellent),0)

16.MF2 (((-1/PV3-PV4)) *((V-PV4))) +1)

17.Output (Fair, MF2)

18.End

19.IF(V>PV4 and V<=PV5)

20.MF21

21.Output (Fair, MF2)

22.Output ((Poor, Good, V. Good, Excellent),0)

23.End

24.IF(V>PV5 and V<=PV6)

25.MF2 (((-1/(PV6-PV5)) *((V-PV5))) +1)

26.Outputç(Fair, MF2)

27.Output ((Poor, V. Good, Excellent),0)

28.MF3 (((-1/PV5-PV6)) *((V-PV6))) +1)

29.Output (Good, MF3)

30.Output ((Poor, V. Good, Excellent),0)

31.End

32.IF (V>PV6 and V<=PV7)

33.MF31

34.Output(Good, MF3)

35.Output ((Poor, Fair, V.Good, Excellent),0)

36.End

37.IF (V>PV7 and V <=PV8)

38.MF3 (((-1/(PV8-PV7)) *((V-PV7))) +1)

39.Output (Good, MF3)

40.Output (Poor, Fair, Excellent),0)

41.MF4 (((-1/(PV7-PV8)) *((V-PV8))) +1)

42.Output (V. Good, MF4)

43.Output(Poor, Fair, Excellent,0)

44.End

80

45. IF (V>PV8 and V<=PV9)

46. MF41

47.Output(V. Good, MF4)

48.Output ((Poor, Fair, Good, Excellent),0)

49.End

50.IF (V>PV9 and V<=PV10)

51.MF4 (((-1/(PV10-PV9)) *((V-PV9))) +1)

52.Output (V. Good, MF4)

53.Output ((Poor, Fair, Good),0)

54.MF5 (((-1/(PV9-PV10)) *((V-PV10))) +1)

55.Output (Excellent, MF5)

56.Output ((Poor, Fair, Good),0)

57.End

58.IF (V>PV10 and V<=PV11)

59.MF51

60.Output (Excellent, MF5)

61.Output (Poor, Fair, Good, V.Good),0)

62.End

63.End

Matching Algorithm

1.IF Output (Poor, PV1)

2.Assign: User base Request (App1)  M6g.medium

3.End

4.IF Output (Poor, PV2)

5.Assign: User base request (App2)  M6g.large

6.End

7.IF Output (Poor, PV3)

8.Assign: User base request (App3)  M6g.XLarge

9.End

10.IF Output (Fair, PV4)

11.Assign: User base request (App4)  M5.2XLarge

12.End

13.IF Output (Fair, PV5)

14.Assign: User base request (App5)  M5.4XLarge

15.End

16. IF Output (Good, PV6)

17.Assign: User base request (App6)  M6gd.8XLarge

18.End

19.IF Output (Good, PV7)

20.Assign: User base request (App7)  M6gd.12XLarge

21.End

22.IF Output (V. Good, PV8)

23.Assign: User base request (App8)  M6g.metal

24.End

25.IF Output (V. Good, PV9)

26.Assign: User base request (App9)  M5d.metal

81

27.End

28.IF Output (Excellent, PV10)

29.Assign: User base request (App10)  M6i.metal

30.End

31.IF Output (Excellent, PV11)

32.Assign: User base request (App11)  M6a.metal

33.End

7.3.3.3 Cloud Analyst Simulation Framework

This framework extends the CloudSim simulator with new capabilities, allowing for the

analysis of performance and costs associated with large, geographically dispersed cloud

systems under extensive user workloads and various parameters. It offers a user-friendly

graphical interface and the ability to customize settings for any geographically distributed

system, including hardware configurations like storage, CPU, main memory, and BW. The

results of simulations are provided in charts and tables, detailing aspects such as cost, response

time, data center processing time, and data center load, among others [193]. Figure 7.3 depicts

the cloud analyst model.

Figure 7.3 Cloud Analyst Model.

7.3.3.4 Round Robin Algorithm

The RR algorithm, known for its simplicity, is popular among load-balancing mechanisms. It

evenly distributes the workload by cyclically rotating through each server in sequence. This

method effectively manages the queues within load-balancing systems by assigning turns to each

virtual server, ensuring a systematic distribution cycle. The process operates on a fixed time

allocation known as the time quantum, the designated duration for a process's execution within

the system or for processing queued data. This approach is notably equitable, as it does not

prioritize any process over others; each receives an equal time allotment, calculated as (1/n),

where n represents the number of processes in the queue. Thus, the wait time for any process is

limited to (n-1) times the quantum length, q, ensuring a fair and efficient distribution of

processing time [194] [195].

7.3.3.5 Service Brokering Strategies

The role of a service broker is essential for determining the appropriate data center to satisfy

customer needs and for orchestrating the data exchange between consumers and data centers

[196]. This intermediary position enhances the connection between customers and CSPs [197].

Through the (SBP), services are dynamically distributed between the cloud's infrastructure and

82

its service providers [198], effectively guiding the selection of data centers [196]. The

assignment of VMs to physical hardware in data centers, a process critical to the data center

broker known as VM deployment, underscores the importance of the SBP [199]. It is crucial

to grasp the operational context of the SBP, particularly how it mediates between specific data

centers and user demands. The SBP plays a pivotal role in identifying the most fitting data

center to meet service expectations based on customer requests [196]. Our analysis involved

adopting two foundational broker strategies and examining and contrasting their

effectiveness.[200]. The primary policy focuses on optimizing response time, where the service

broker evaluates essential attributes of data centers to gauge their performance [189]. This

approach ensures the quickest possible response times for end-users during queries [201]. In

this routing strategy, the efficiency of data centers is continuously monitored, with preference

given to directing traffic to the data center that offers the best response time, effectively

managing direct bottlenecks [202]. VMs are utilized to handle customer requests swiftly,

enhancing point-to-point communication [203]. This policy assumes uniform processing

requirements and execution times for all requests [204]. The secondary policy involves

dynamic reconfiguration based on load, where the service broker manages scalability for cloud

applications [189]. This involves the service broker dynamically reconfiguring and altering the

VMs within data centers to match demand [201]. A cloud analyst facilitates the redistribution

of loads across different data centers when the performance of the initial data center falls below

a certain threshold [178]. This method calculates retention times to achieve the longest cycle

time recorded, addressing both cost and performance expectations of users [204] and adjusting

the number of VMs as needed [205].

7.4 Experimentation and analysis

7.4.1 Simulation the proposed system

To test our proposed policy, deployed Cloud-Analyst with the optimize response time policy as

part of an intelligent cloud broker validation process. This involved handling 1,000,000 user

requests, allocated across ten user bases, and leveraging 31 individual AWS data centers spread

across six geographic regions. Each data center operated with a single VM, with configurations

based on 11 real-life EC2 attributes as previously described. This setup allowed us to benchmark

the performance against existing routing policies, notably the Reconfigure Dynamically with

Load broker policy. Before initiating the simulations, standardized the network delay metrics

from AWS latency monitoring(7), shown in Appendix 7 (Table 3), and set advanced data center

configurations for all tests, as detailed below. Table 7.4 displays data related to a Single User

Base, which becomes pertinent in Table 7.5 as our research encompasses 11 analogous

instances derived from this single-user base, varying according to the magnitude of user

requests, employed Peak Hours (GMT) to depict the timing of user activity on AWS-Cloud.

The number 60 is used to denote the number of requests per user within a one-hour simulation,

measured hourly (60.0). It's posited that the upper limit of users from each user base cluster

(7) (https://www.cloudping.co/grid).

https://www.cloudping.co/grid

83

during peak times is 100,000 average peak users, while the lower limit during off-peak periods

is 10,000 average users. This is established using the following mathematical formula:

Avg peak users =
Total User Count

10 UB
 (7.11)

 Avg Off − peak users =
Avg Peak users

10
 (7.12)

The data size per request (in bytes) and the instruction length per request (in bytes) were

determined by applying mathematical formulas No. 7.12 and No. 7.13, respectively. The

"Grouping factor in data centers" refers to the capacity of a single application server instance to

handle multiple requests concurrently. Similarly, the "User grouping factor in user bases" denotes

the maximum number of users accessing services from a single user base simultaneously.

Additionally, a round-robin load-balancing strategy is employed to manage the distribution of

workloads across VMs within a single data center.

 Data size per request =
Total UB request

Avg peak users
 (7.13)

Executable length =
Total UB request

10 UBs
 (7.14)

Appendix 7 (Table 4) displays the foundational configuration for each of the 31 data centres

featured in our research, which were deployed in 11 different scenarios adhering to the

specifications of AWS General Purpose EC2 instances, as indicated in Appendix 7 (Table 5).

The pricing is based on data transferred "in" to and "out" of Amazon EC2(8). In our study,

contrasted the proposed (IVCBS) with traditional random allocation methods within the

context of cloud resource management. Both approaches were evaluated under two distinct

policies: optimizing response times and dynamically reconfiguring loads based on demand.

Traditional methods of allocating (VM) resources typically distribute these resources to

customer requests indiscriminately, using a random approach that does not account for the

specific needs of the requests. Our study provides a comprehensive description of these

traditional allocation strategies in Appendix 7 (Table 6). It is critical to note that the

specifications of the EC2 instances utilized in these traditional methods are identical to those

employed in the (IVCBS) method, as detailed in previous tables and sections of our study. This

strategic allocation is further illustrated by the general distribution of EC2 across 31 data

centers, as depicted in our study, apply this distribution in 11 different scenarios, tailored

according to the number of user request sizes identified in this study.

Table 7.3 Results of the Proposed Algorithm.

1
1

1
0

9

8

7

6

5

4

3

2

1

No.

3
0
0
0
 M

B

2
2
5
0
 M

B

1
5
0
0
 M

B

7
5
0
 M

B

1
4
0
 M

B

1
0
5
 M

B

7
0
0
 M

B

3
5
0
 M

B

1
0
 M

B

5
 M

B

3
 M

B

User Base

Request Size

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

(8) https://aws.amazon.com/ec2/pricing/on-demand/.

https://aws.amazon.com/ec2/pricing/on-demand/

84

192 128 96 64 48 32 16 8 4 2 1 EC2 (VCPU)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

768 512 384 256 192 128 64 32 16 8 4 EC2 (RAM)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

88 64 48 32 24 16 12 8 4 2 1 EC2 (Storage)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

40 30 24 18 16 14 12 10 8 4 2 EC2(BW)

0 0 0 0 0 0 0 0 1 1 1 Poor

0 0 0 0 0 0 1 1 0 0 0 Fair

0 0 0 0 1 1 0 0 0 0 0 Good

0 0 1 1 0 0 0 0 0 0 0 V.Good

1 1 0 0 0 0 0 0 0 0 0 Excellent

M
6
a.

m
et

al

M
6
i.

m
et

al

M
5
d
.m

et
al

M
6
g
.m

et
al

M
6
g
d
.1

2
x
la

rg
e

M
6
g
d
.8

x
la

rg

M
5
.4

x
la

rg
e

M
5
.2

x
la

rg
e

M
6
g
.x

la
rg

e

M
6
g
.l

ar
g
e

 M
6
g
.m

ed
iu

m

Assignment

Table 7.4 Single-User Base Clusters.

Single-

User

Base

Clusters

Geographic

Regions

Requests

per user

per Hour

Peak

Hours

(GMT)

Avg

peak

users

Avg

Off-

peak

users Start End

UB1 R0 60 12 15 100000 10000

UB2 R1 60 14 17 100000 10000

 UB3 R2 60 19 22 100000 10000

UB4 R3 60 0 3 100000 10000

UB5 R4 60 20 23 100000 10000

UB6 R5 60 8 11 100000 10000

UB7 R0 60 12 15 100000 10000

UB8 R1 60 14 17 100000 10000

UB9 R2 60 19 22 100000 10000

UB10 R3 60 0 3 100000 10000

85

Table 7.5 (11-User Base Instances).

11-User Base Instances

D
at

a
si

ze
 p

er

re
q
u
es

t
(B

y
te

)

U
se

r

g
ro

u
p
in

g

fa
ct

o
r

in

U
se

r
b
as

es

R
eq

u
es

t

G
ro

u
p
in

g

fa
ct

o
r

in
 d

at
a

ce
n
te

rs

E
x
ec

u
ta

b
le

In
st

ru
ct

io
n

le
n
g
th

 p
er

re
q
u
es

t
(b

y
te

)

E
C

2

in
st

an
ce

s

C
o
u
n
t

o
f

U
se

r

B
as

e

C
lu

st
er

s

M6g.medium 10- UBs 30 100000 100000 300000

M6g.large 10- Ubs 50 100000 100000 500000

M6g.xlarge 10- Ubs 100 100000 100000 1000000

M5.2xlarge 10- Ubs 350 100000 100000 3500000

M5.4xlarge 10- Ubs 700 100000 100000 7000000

M6gd.8xlarg 10- Ubs 1050 100000 100000 10500000

M6gd.12xlarge 10- Ubs 1400 100000 100000 14000000

M6g.metal 10- Ubs 7500 100000 100000 75000000

M5d.metal 10- Ubs 15000 100000 100000 150000000

M6i.metal 10- Ubs 22500 100000 100000 225000000

M6a.metal 10- Ubs 30000 100000 100000 300000000

7.4.2 Results and Comparative Analysis

7.4.2.1 Implementation of IVCBS with two Service Broker Policies

In the proposed methodology, IVCBS utilizes either the Optimized Response Time SBP or the

Dynamic Reconfiguration with LB approach, both supported by the Cloud Analyst simulator.

IVCBS employs these policies to route user requests from User Bases (UBs) to AWS 31 data

centers worldwide. This router ensures that each data center adheres to predefined parameters

tailored to the request volumes of each UB user group, by IVCBS, as detailed in Appendix 7,

Table 5. Specifically, resources such as EC2-M6a.metal are optimized for handling high-volume

user requests effectively. For instance, the allocation of VM-Cost is optimized to effectively

address user requirements, with resources like EC2-M6a.metal specifically designated for

handling high-volume user requests. Our analysis reveals that the Optimized Response Time

Policy yields better outcomes than the Dynamic Reconfiguration with Load Policy in several key

performance metrics: Average Overall Response Time, Average Data Center Processing Time,

and Total VM Cost. This suggests that the optimized policy more efficiently handles these

aspects of cloud service management. However, the scenario shifts when examining Data Center

Request Servicing Times, where the optimized policy either matches or slightly exceeds the times

achieved by the dynamic reconfiguration policy. This indicates a nuanced trade-off between the

two approaches in handling specific service demands. To provide a clear comparison, Table 7.6

showcases the results of implementing the IVCBS method with the Optimized Response Time

Service Broker Policy, while Table 7.7 details the outcomes when applying the Dynamic

Reconfiguration with Load Service Broker Policy. The experiments were carried out across 31

Amazon data centers spanning 6 geographic regions. To capture data accurately during both peak

and off-peak periods, 11 scenarios were implemented across 11 EC2 levels based on hourly

86

intervals. Appendix 7 (Figure 3), Presents the results of the IVCBS response time by region

under the Optimize Response Time policy. The study explores the implementation of IVCBS

with two distinct Service Broker Policies: The Optimized Response Time SBP and the Dynamic

Reconfiguration with LB approach. It assesses regional average response times for ten user bases,

emphasizing the effectiveness of IVCBS's Optimized Response Time Policy. This policy ensures

even distribution of user requests across AWS data centers globally, irrespective of geographic

proximity, consistently achieving reduced response times compared to the Dynamic

Reconfiguration Policy. Appendix 7 (Figure 4) details the outcomes of the Dynamic

Reconfiguration Policy, which directs user requests to data centers located in the same

geographic region as the users, aiming to minimize latency under the IVCBS framework. Despite

the intuitive logic behind this approach, response times were generally higher than those achieved

by the Optimized Response Time Policy, highlighting a key area where the latter excels. The

Average Data Center Request Servicing Time significantly influences energy consumption

within cloud computing environments. Extended servicing times often reflect inefficient

utilization of computing resources like processors and memory, which in turn can increase the

energy load of operations. This inefficiency not only affects the Power Usage Effectiveness

(PUE) of data centers but also demands more extensive cooling solutions, a major contributor to

energy consumption in these facilities. Additionally, the need to scale up resources to reduce

servicing times can lead to over-provisioning, further elevating overall energy usage. Enhancing

the efficiency of request servicing times not only promotes more responsive cloud services but

also helps in cutting down energy costs, thus supporting the broader goal of making cloud

computing more energy-efficient and eco-friendly [206] [207]. Our observations indicate that

the (IVCBS), when implemented with an optimized response time policy, significantly

outperforms the dynamic reconfiguration policy. This superiority is clearly demonstrated

through the comparative analysis presented in Appendix 7 (Figures 5 and 6). These results

illustrate the superior performance of the optimized response time policy in managing the

Average Data Center Request Servicing Time, thereby enhancing energy efficiency. Earlier

findings indicated that systems employing IVCBS with a dynamically reconfigured load-

balancing broker policy, as shown in Appendix 7 (Figure 7), exhibit different performance

characteristics compared to those using IVCBS optimized specifically for response times.

Appendix 7 (Figure 8) presents the routing strategy implemented under the optimized response

time policy. This performance variance primarily arises from the dynamics introduced by the

reconfiguration process itself. The dynamic reconfiguration strategy routes user requests to data

centers within the same geographic area as the users, often leading to increased processing delays.

This occurs as requests queue up, awaiting available VMs for reconfiguration. Additionally, in

some regions, having only one data center acts as a bottleneck, exacerbating delays during peak

demand periods. In contrast, the optimized response time policy excels by delivering superior

RTT and more efficient processing. Moreover, our analysis is grounded in Amazon's real-world

distribution of data center locations globally, utilizing eight (VMs) in North America, one in

South America, eight in Europe, ten in the Asia Pacific and Australia, and four in Africa and the

Middle East. This strategic distribution facilitates the IVCBS's ability to redirect user requests

to data centers with appropriate VMs, optimized both for the characteristics of the user requests

and for reduced processing times, energy consumption, and costs. For example, small user

87

requests, defined in our study as 3 MB, are routed to VMs like the M6g.medium, while larger

requests of 3 GB are directed to more robust machines like the M6a.metal.

Table 7.6 Implementing IVCBS with optimize response time policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total

VM Cost

($)

Total

Data

Transfer

Cost ($)

M6g.medium 2475,8 2373,38 83,29 $298,59

M6g.Large 3853,10 3740,25 167,24 497,65

M6g.Xlarge 14325,08 10798,69 334,48 1255,96

M5.2XLarge 140667,03 137632,98 853,50 3483,46

M5.4XLarge 1010570,86 1031103,10 1707,06 6963,47

M6gd.8XLarge 2151917,72 1947568,70 3140,37 9966,88

M6gd.12XLarge 3684599,83 3335444,58 4709,26 13114,84

M6g.metal 38334990,80 38234416,58 5351,62 25236,98

M5d.metal 79337433,27 79315311,43 12090,55 14482,63

M6i.metal 93529270,35 93372293,67 13730,36 6863,40

M6a.metal 94549552,26 94331238,90 17150,67 3320,20

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 6353,58 6324,05 166,32 $298,59

M6g.Large 55390,42 55364 667,5 497,65

M6g.Xlarge 275390,88 270714,32 2666,54 1255,83

M5.2XLarge 2556092 2556270,05 8502,06 3483,45

M5.4XLarge 3252254,20 3255057,05 20401,48 6234,76

M6gd.8XLarge 3915809,21 3921022,05 43758,17 8915,92

M6gd.12XLarge 3573677,62 3584236,77 74944,34 11618,91

M6g.metal 37016372,94 37016688,54 95138,79 25828,65

M5d.metal 81818244,66 81883142,21 273382,89 14705,94

M6i.metal 93919067,50 93689019,40 379237,75 6796,75

M6a.metal 96334126,87 96128434,12 607000,72 3341,66

7.4.2.2 Traditional methods

This approach starkly contrasts with the intelligent methodology implemented by IVCBS. In both

the Optimize Response Time - SBP and the Dynamic Reconfiguration with Load Balancing, user

requests of varying sizes are randomly distributed across the 31 data centers without

consideration for the specific type and specifications of the EC2 VMs. There is no structured

allocation across all DC-VMs. DC-VMs process requests with diverse parameters that lack

88

uniformity and fail to align with the request volumes of each user group (UBs), as detailed in

Appendix 7, Table 6. For instance, the high VM cost is expensive for users whose task

requirements are minor, thus failing to meet their basic needs adequately. Additionally, resources

like EC2-M6a.metal are allocated to execute small user requests that EC2-M6g.medium could

more efficiently handle. The setup and configuration of DCs for both methodologies are

facilitated by the CloudAnalyst simulation environment, outlined in Appendix 7 (Table 4). This

environment allows for configuring AWS-31 DC metrics, which differ between the proposed

and traditional methods. These metrics include VM cost, vCPUs count, storage, RAM, and BW.

There are 11 scenarios in both methods, similar in setup but differing in the numerical

configuration of metrics for each EC2 instance. Employing the optimized response time policy

resulted in a higher average overall response time, average data center processing time, and total

VM cost than our proposed IVCBS method. However, it was observed that the Total Data

Transfer Cost was either less than or equal to that of the proposed IVCBS method. These findings

are detailed in Table 7.8. When evaluating the results from applying the dynamic reconfiguration

policy with traditional methods, as detailed in Table 7.9, it is noted that the overall response time

is broader than that achieved by the proposed IVCBS method in specific EC2 allocations

(M5.4xlarge, m6gd.8xlarge, m6gd.12xlarge, m6g. metal, and m5d. metal). However, in all

scenarios concerning the Total Data Transfer Cost, the traditional methods demonstrate lower

costs than the IVCBS approach. Additionally, Appendix 7 (Figure 9) displays the regional

average response times for the 10 user bases, showcasing the performance of the traditional

Optimized Response Time Policy. Meanwhile, Appendix 7 (Figure 10) visualizes the regional

average response times under the dynamic reconfiguration with load policy. Both figures

highlight that these traditional methods were less effective than the results of the proposed

IVCBS method. Furthermore, Appendix 7 (Figure 12) illustrates the outcomes when the

traditional method incorporates the Dynamic Reconfiguration Policy. By comparing these

findings with those from the proposed IVCBS method, it is evident that the IVCBS generally

provides better Data Center Request Servicing Times. This improvement significantly impacts

energy efficiency in the computing environment, showcasing the advantages of the proposed

method over conventional strategies. This enhances the IVCBS's effectiveness, demonstrating its

potential to accommodate future growth in cloud systems while ensuring efficient and cost-

effective user request processing within the cloud computing environment. Simultaneously,

Appendix 7 (Figure 11) displays the average Data Center Request Servicing Time results across

the 31 data centers in our study, applied in 11 different scenarios using the traditional Optimized

Response Time Policy.

 Table 7. 8 Implementing traditional with optimize response time policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total

VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 2648,32 2544,20 5039,17 298,59

M6g.Large 3979,79 3866,43 5039,17 497,65

M6g.Xlarge 16565,20 16507,91 5039,17 995,31

89

M5.2XLarge 200877,44 206148,60 5039,17 3483,25

M5.4XLarge 1012024,16 1045751,95 5039,17 6965,51

M6gd.8XLarge 2784038,22 2523254,74 5039,17 9907,33

M6gd.12XLarge 4246474,38 3977103,11 5039,17 13054,04

M6g.metal 44420610,74 43609256,19 5039,17 17375,69

M5d.metal 80927473,71 80639117,03 5039,17 7093,73

M6i.metal 95412416,34 95769447,44 5039,17 3711,87

M6a.metal 97606171,17 98736234,17 5039,17 1686,10

Table 7.9 Implementing traditional with Dynamic reconfiguration policy.

AWS-EC2

Overall

Response

Time (ms)

Data Center

Processing

(ms)

Total VM

Cost ($)

Total

Data

Transfer

Cost ($)

M6g.medium 2950,74 2918.84 137867,12 298,59

M6g.Large 4501,42 4481,36 137962,28 497,65

M6g.Xlarge 49465,79 49405,39 137677,42 995,31

M5.2XLarge 1275803,03 1276385,26 137762,59 3483,52

M5.4XLarge 3599233,17 3600108,32 137634,08 6234,08

M6gd.8XLarge 5282197,57 5322005,63 137742,44 8914,56

M6gd.12XLarge 7432190,15 7473084,39 137624,85 11566,42

M6g.metal 48005803,13 47769425,91 136059,33 14250,25

M5d.metal 84937790,73 85306107,68 134039,80 5810,42

M6i.metal 93010845,72 93028448,77 131046,97 3042,69

M6a.metal 91124687,42 90537061,27 124762,54 1462,37

7.5 Summary

This research delves into crucial cloud computing aspects such as optimizing resource use during

peak and off-peak periods, minimizing data processing and transfer times and costs and reducing

the average response time from different geographical regions. A novel simulation was

developed to improve cloud computing's response times by adjusting (VM) attributes to match

user request sizes and evenly distributing workloads as per SLA standards. This approach

considers the current and future workloads and the available resources on each AWS-EC2

instance, aiming to distribute user request across VM uniformly to ensure balanced system

utilization and avoid over- or underutilization. A significant part of the study introduces the

(IVCBS). Which enhances the proximity routing policy for data center selection by considering

both VM attributes and the size of user requests. This modification allows for more efficient

handling of variable request sizes, optimizing network delay, VM, and data transfer costs, and

selecting data centers with minimal delay while considering real-time BW, EC2 attribute

diversity, and expected processing times. This refined approach improves upon traditional

performance-optimized routing policies by including job size in its considerations, thereby

achieving better response and processing times. The (IVCBS), evaluated using the Cloud Analyst

90

simulator, demonstrated notable improvements compared to existing policies. The adoption of a

throttled LB policy could further enhance the system's effectiveness, highlighting its potential to

support future growth in cloud systems while ensuring the efficient and cost-effective processing

of user requests within the cloud computing environment. This approach can be expanded upon

in the next contribution of this thesis. Specifically, incorporating job size and classifying the

workload into performance-optimized routing policies lead to significant improvements in both

response and processing times in cloud systems. This addition provides a critical layer of

optimization that directly impacts key performance metrics, including response and processing

times, which are integral to cloud system efficiency. Furthermore, the introduction of the throttled

LB policy serves as a natural extension of the proposed approach, facilitating more efficient

workload management and distribution, particularly during peak demand periods.

91

Chapter 8 A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual

Machine Allocation

Chapter 8 introduces a broker-driven approach integrating fuzzy logic to optimize (VM)

allocation in cloud environments. This method dynamically adjusts VM distribution based on

incoming request packet sizes and CPU utilization. It utilizes Google's General-purpose

machine family for Compute Engine - T2D standard machine types, configured with

specifications including VCPU, RAM (GB), Storage (GB), BW (GBPS), and Price per hour

($), as applied in this study. Employing fuzzy logic, this system intelligently assigns VMs to

user requests within the user base, ensuring alignment with appropriate sizes and cost

considerations for the allocated VMs. In contrast, the traditional method relies on random VM

allocation, disregarding user request sizes and assigning available VMs arbitrarily to execute

tasks.

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery

In the realm of cloud computing, the efficient allocation of (VMs) is paramount for optimizing

resource utilization and ensuring high performance. The rapid proliferation of cloud services

has necessitated sophisticated strategies to manage the dynamic and heterogeneous nature of

cloud workloads. Traditional methods, which often prioritize metrics such as CPU, memory,

and storage capacities, frequently overlook the varying sizes of request packets. This oversight

can lead to suboptimal resource usage and potential performance bottlenecks, thereby

hindering the overall efficiency and responsiveness of cloud services [208][209]. The

complexity of cloud environments requires innovative approaches to VM allocation that can

adapt to fluctuating workloads and diverse user demands. Recent advancements in cloud

resource management have emphasized the need for intelligent and adaptive systems capable

of making real-time decisions based on workload characteristics [210][211]. In this field, one

promising direction is dynamically optimizing resource distribution by analyzing the size and

nature of incoming request packets [212][213], approach leverages a centralized broker to

monitor, analyze, and direct network traffic to the appropriate VMs based on the size of the

request packets. This method not only enhances VM efficiency but also reduces latency and

improves overall system performance. By incorporating a fuzzy logic system that uses

imprecise inputs to make informed decisions, the broker can dynamically adjust VM allocation

better to match the real-time demands of the cloud environment [214][76]. The Cloud Analyst

tool provides a robust platform for implementing and simulating broker driven VM allocation

strategies. It allows for detailed modeling and analysis of cloud computing environments,

facilitating the evaluation of various allocation methods under different scenarios. The Cloud

Analyst tool integrates fuzzy logic [215], [216], and [217]. As discussed in the previous

contribution, propose a novel approach to (VM) allocation that optimizes resource utilization,

reduces latency, and enhances overall system performance. This research aims to advance the

field of cloud resource management by addressing the limitations inherent in traditional VM

allocation strategies. By focusing on the dynamic optimization of VM allocation based on

request packet size and workload classification, the proposed broker-driven approach seeks to

provide high-quality cloud services while ensuring efficient resource use.

92

8.2 Current Issues and Challenges

Research on advanced VM allocation strategies aims to optimize resource utilization and

performance in cloud computing, addressing the limitations of traditional strategies that often

overlook the impact of varying request packet sizes. Sangaiah, Arun Kumar, et al. (2023)

propose an intelligent dynamic resource allocation method that integrates TSK neural-fuzzy

systems with ACO techniques to reduce energy consumption in cloud networks. This method,

which uses real-time data, significantly enhances efficiency and performance in VM migration

[218]. However, existing methods often fail to consider the varying sizes of request packets,

which can significantly impact network performance. In contrast, broker-driven approaches

enhance network performance by dynamically allocating (VMs) based on request packet sizes.

This allows for real-time optimization of resource distribution and reduces latency, effectively

addressing the limitations of traditional methods.[219] proposes a broker-based mechanism to

connect CSPs with customers, analyzing task tendencies and assigning resources. This model

uses multi-criteria decision-making to maximize profits, ensure customer satisfaction, and

reduce energy consumption in cloud data centers. [220] highlights the increasing demand for

cloud services, which necessitates a flexible and dynamic design for data center deployment.

Traditional traffic engineering approaches are inadequate for efficiently utilizing IT and

network resources. The study suggests two fuzzy logic controllers for efficient VM allocation.

These controllers are based on the Mamdani and Sugeno inference processes. Preliminary

simulation tests validate the effectiveness of the proposed approach. The Cloud Analyst tool

simulates cloud computing environments, evaluates VM allocation strategies, and simulates

broker-driven approaches. It is used in a study [221], which discusses the widespread adoption

of cloud computing for web applications. The study uses virtualization concepts and resource

allocation policies to manage resources in a cloud computing environment. They use a GUI

tool called Cloud Analyst to simulate the cloud environment, focusing on energy consumption

minimization and class diagram design. Furthermore, integrating advanced algorithms with

broker-driven approaches has shown significant promise for optimizing VM allocation. [222]

proposes DeepBS, a DRL-based scheduler, to address the inherent uncertainties in cloud broker

VM scheduling due to on-demand IaaS VMs. Their study demonstrates that DeepBS improves

cost optimization by learning from experience and enhancing scheduling strategies in

unpredictable environments, showcasing its potential in dynamic cloud computing. Several

recent studies have further expanded on these concepts. For instance, [223] emphasizes the

significance of mobile terminal cloud computing migration technology in addressing evolving

computer and cloud computing demands. They highlight the necessity for efficient data access,

storage, and minimal time delays. They also introduce ML-based VM migration optimization

and dynamic resource allocation as key research directions in cloud computing. Similarly,

[224] introduces a resource allocation model called IMARM, which uses an intelligent multi-

agent system and reinforcement learning. Combining multi-agent characteristics and Q-

learning, IMARM dynamically allocates resources based on changing consumer demands and

optimizes VM placement. Experimental results indicate that IMARM outperforms other

algorithms in energy consumption, fault tolerance, load balancing, and execution time.[225]

reviews resource allocation and service provisioning in multi-agent cloud robotics. They

provide a taxonomy of resource allocation strategies, covering resource pooling, computation

93

offloading, and task scheduling. The work discusses challenges such as heterogeneous energy

consumption rates and data transmission delays and suggests future research directions to

advance the field. The authors emphasize addressing research gaps and mitigating data

transmission delays for efficient service provisioning. [226] notes that cloud computing has

revolutionized resource management, but challenges remain due to scalability, heterogeneity,

and dynamic environments. (AI) technology has emerged as a solution to improve efficiency.

This work reviews AI techniques for resource management, including ML, reinforcement

learning, predictive analytics, natural language processing, and genetic algorithms. It discusses

AI-based strategies for efficient resource management, including automated resource

provisioning, intelligent workload planning, predictive maintenance, and energy-efficient

management. The work also discusses evaluation metrics, performance analysis techniques,

ethical considerations, and future directions for AI integration. VM allocation research has also

focused on energy efficiency. [227] explores energy-efficient resource allocation using a

hybrid heuristic algorithm, showing substantial improvements in energy consumption.

Finally,[228] reviews the state-of-the-art and research challenges in cloud computing,

providing a comprehensive overview of current trends and future directions in VM allocation

and resource management.

8.3 Broker-Driven Methodology in Cloud Computing

The proposed methodology for optimizing (VM) allocation in cloud computing environments

leverages a broker-driven approach, enhanced with a fuzzy logic system, to dynamically

optimize resource distribution based on the size of incoming request packets. This method is

designed to improve VM efficiency, reduce latency, and enhance overall system performance.

The following sections detail the key components of the methodology: broker design, fuzzy

logic system, integration with the Cloud Analyst tool, and evaluation metrics. Table 8.1, shows

the Workload Sizes alongside the specifications for the Google Cloud Platform's t2d-standard

machine type, using data from the Google Cloud Compute Engine Pricing. The system

leverages real-time data for smart VM allocation, demonstrating its adaptability by adjusting

resource distribution in response to changes in network conditions and workload demands.

Table 8.1 workload size machine series specifications.

Workload Size Machine type

Series

VCPU RAM

(GB)

Storage

(GB)

BW

(GBPS)

Price per

hour ($)

Small (<1 GB) t2d-Standard-1 1 4 2 2 0.054427

Medium (1-10 GB) t2d-Standard-2 2 8 10 4 0.108854

Large (10-100 GB) t2d-Standard-4 4 16 16 8 0.217708

Very Large (>100

GB)

t2d-Standard-8 8 32 32 10 0.435416

Massive (Big Data

Processing)

t2d-Standard-

16

16 64 100 14 0.870832

8.3.1 Design and Architecture of the Broker System

Design and Architecture of the Broker System, Integrating Traffic Monitoring, Data Analysis,

and Traffic Routing. The proposed methodology utilizes the Optimized Response Time SBP

94

with a LB approach, facilitated by the Cloud Analyst simulator. The broker acts as a mediator

that monitors and analyzes incoming request packets. Its primary functions include:

● Traffic Monitoring: continuously monitoring network traffic to collect data on packet

sizes and associated metrics.

● Data Analysis: analyzing the collected data in real-time to identify patterns and trends in

request packet sizes.

● Traffic Routing: directing traffic to the appropriate VMs based on the analysis, ensuring

optimal resource allocation [229][230].

The broker features advanced data analytics to manage the varied and dynamic cloud

workloads effectively.

8.3.2 Implementation of Fuzzy Logic

The Fuzzy Logic system is integrated into the broker to handle the uncertainty and variability

inherent in cloud environments [76][231]. The model's input parameters were crafted using the

Fuzzy Logic Designer, adhering to the methodological framework introduced in Chapter 4.

However, for this chapter, adjustments were made to the division of the universe of discourse

to align with the specific primitives and structural prerequisites of the developed model. This

chapter focuses on utilizing two primary inputs and single outputs, categorized as VM

categories. Five defined triangular membership functions characterize each input.

First input (Workload- Request Packet Size)

Represented by the size of incoming request packets.

Small: [0 0.9 5]; Medium: [1 10 50]; Large: [10 100 150]; V.Large: [100 150 200];

Massive: [150 200 250]

i. Second input (CPU Utilization)

Current utilization levels of the available VMs.

Poor: [10 30 40]; Fair: [30 50 60]; High: [50 70 80]; V.High: [70 85 90]; Excellent: [85

100 100]

ii. Output (T2D standard machine types-Levels)

Simple: [0 0.1 0.2]; Moderate: [0.2 0.3 0.4]; Good: [0.4 0.5 0.6]; V.Good: [0.6 0.7 0.8]

High-Performance: [0.8 1 1]

These functions allow the system to evaluate the inputs and produce a set of fuzzy rules,

illustrated in Appendix 8 (Figure 1), that determine the optimal VM allocation strategy. The

outputs of the Fuzzy Logic system include VM classes, which categorize VMs based on their

suitability for handling the current workload and CPU utilization levels [232]. Table 8.2.

Illustrated the fuzzy logic output – Decision making.

Table 8.2 Rules – Decision making.

CPU

Utilization

Poor Fair High V.High Excellent

Request

Packet

Size

Output (T2D standard machine types-Levels)

Small Simple Simple Simple Moderate Moderate

95

Moderate Moderate Simple Moderate Moderate Good

Large Moderate Moderate Good Good V. Good

V.Large Good Good V. Good V. Good H.Perf.

Massive V.Good V.Good H.Perf. H.Perf. H.Perf.

8.3.3 Integration with Cloud Analyst Tool

The Cloud Analyst tool is employed to simulate and evaluate the proposed broker-driven

approach. This tool provides a robust platform for modelling cloud computing environments

and testing various VM allocation strategies [233]. The integration process involves:

8.3.3.1 Cloud Environment Modeling

Configuring a simulated cloud environment in Cloud Analyst involves setting up data centers

with single VMs and associated user bases. This setup is tested across five scenarios, each

employing the proposed broker technique to assess performance and efficiency. The process is

illustrated in Appendix 8 (Tables 1 and 2).

8.3.3.2 Throttling Algorithm

In cloud computing, throttling plays a pivotal role in managing system loads and sustaining

service quality while also keeping operational costs in check. This process is vital for scaling

computing resources efficiently. Through the application of diverse algorithms, throttling

ensures that cloud services remain scalable, dependable, and fair. Specifically, it regulates the

allocation of critical computing resources such as CPU, BW, and memory. This control helps

prevent any single user or application from monopolizing resources, thereby avoiding system

overloads and ensuring equitable performance across all users [234].

8.3.3.3 Broker Policy for Response Time

In cloud environments typically involves strategically managing resource allocation to

minimize latency. This policy ensures that the broker prioritizes tasks or requests that are

critical for performance, dynamically adjusting resource distribution based on real-time

demands. Doing so effectively reduces waiting times for resource-intensive operations,

ensuring that all processes are executed as swiftly as possible, thus enhancing overall system

efficiency and user satisfaction [200].

● Implementing Broker Logic: embedding the broker’s traffic monitoring, analysis, and

direction functionalities into the Cloud Analyst simulation.

● Incorporating Fuzzy Logic: integrating the Fuzzy Logic system with the broker within

Cloud Analyst to dynamically adjust VM allocation based on real-time data.

8.4 Simulation and Evaluation of Results and Discussion

The proposed methodology was rigorously evaluated through extensive simulations conducted

using the Cloud Analyst tool [235]. In the proposed methodology, five distinct scenarios were

executed. Each scenario involved deploying ten distinct user bases, consistent with the

configuration described previously in this study. In the initial scenario, the user's request was

within this amount. (500,000,000) Bytes were processed using t2d-Standard-1. Moving to the

96

second scenario, requests within this amount of a workload of 1,000,000,000 bytes were

allocated to t2d-Standard-2. The third scenario handled requests within the workload of

10,000,000,000 bytes assigned to t2d-Standard-4. Subsequently, requests amounting to

150,000,000,000 bytes in the fourth scenario were managed using t2d-Standard-8. Finally, in

the fifth scenario, where requests amounted to 200,000,000,000 bytes, t2d-Standard-16 was

allocated for execution. Similar parameters were utilized when implementing the traditional

method scenarios, as in the proposed method concerning user base logins to the computing

environment, defined by Peak hours Start-End and Avg. Peak Users On-Off. However, the

traditional approach diverges from the proposed method in how it distributes and processes

user requests and workloads, as detailed in Table 8.3.

Table 8.3 Basics of applying the traditional method.

Scenario

number

User

Bases

Request Packet

Size (Byte)

Machine

type

Series

Price per

hour($)

Load

balance

Algorithm

Broker

policy

1
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

1

0.054427
Throttling

algorithm.

Optimize

response

time.

2
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

1

0.108854
Throttling

algorithm.

Optimize

response

time.

3
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

4

0.217708
Throttling

algorithm.

Optimize

response

time.

4
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

8

0.435416
Throttling

algorithm.

Optimize

response

time.

5
[UB1

UB10]

[500,000,000

200,000,000,000]

t2d-

Standard-

16

0.870832
Throttling

algorithm.

Optimize

response

time.

A variety of workload scenarios were implemented, each featuring distinct request packet sizes

and VM resource demands. These simulations were designed to assess the robustness,

adaptability, and practical viability of the broker-driven approach, particularly in comparison

to traditional VM allocation strategies. The experimental setup modeled a realistic cloud

environment where the dynamic nature of cloud workloads was replicated to test how

effectively the system responds under varying operating conditions. The broker-driven system

incorporates a fuzzy logic mechanism that utilizes workload packet size and CPU utilization

as key input parameters to dynamically allocate (VMs) based on their classification across five

levels of workload intensity. Appendix 8 (Figure 2) visually demonstrates the simulation

execution process, while Appendix 8 (Figure 3) illustrates the decision outcomes produced by

the fuzzy logic system. Quantitative performance metrics were collected, including overall

response time, data center processing time, request serving time, total VM costs, and total data

transfer costs. The comparison between the traditional VM allocation approach (summarized

in Table 8.4) and the proposed method (detailed in Table 8.5) clearly demonstrates significant

97

improvements across all critical metrics. Specifically, the proposed broker-driven system

reduced response time by up to 68%, decreased processing and serving times by an average of

20% and achieved substantial reductions in cost—most notably in data transfer and VM

provisioning. The novelty of this research lies in the introduction of a broker-driven VM

allocation model that uniquely integrates fuzzy logic with packet size classification—an aspect

widely neglected in conventional allocation approaches. Traditional methods largely

emphasize Resource scalability capabilities, yet they often fail to account for the heterogeneity

and variability of incoming packet sizes, which are essential determinants of workload

behavior. By incorporating packet size as a classification factor alongside real-time CPU

utilization, the proposed approach ensures a more granular and intelligent allocation of cloud

resources. Moreover, the integration of fuzzy logic contributes significant adaptability to the

decision-making process. The fuzzy inference engine enables the system to handle uncertainty

and imprecision, aligning resource allocation with dynamic demand patterns more effectively

than static rule-based methods. This enables the system not only to allocate resources optimally

but also to proactively prevent bottlenecks and reduce energy consumption through more

efficient VM utilization. The methodological innovation also includes a well-defined

classification scheme that translates request sizes and CPU usage into actionable VM

categories. This classification is mapped through triangular membership functions that support

interpretability and computational efficiency—key features for scalable cloud infrastructure.

The proposed approach has substantial practical implications. By dynamically aligning VM

allocations with workload characteristics, cloud providers can achieve better energy efficiency,

improve system responsiveness, and reduce operational costs. The ability to manage workloads

based on packet size and CPU load allows for a more equitable and efficient distribution of

cloud resources, enhancing the performance and reliability of services across heterogeneous

and high-demand environments. This study contributes to the advancement of intelligent cloud

resource management by offering a scalable, cost-effective, and energy-aware alternative to

traditional VM allocation. The results validate the theoretical principles underpinning this

model and position it as a promising solution for next-generation cloud systems where

adaptability and performance optimization are paramount.

Table 8.4 Summary of the results of the traditional method.

Scenario Overall

response

time

Avg(ms)

Datacenter

processing

time

Avg(ms)

Datacenter

request

serving

times

Avg(ms)

Total data

transfer cost

($)

1 571309,86 58,06 58,06 33959999,08

2 548272,30 59,31 59,31 30557098,39

3 565510,88 60,39 60,386 33791313,17

4 558790,62 58,03 58,026 33726768,49

5 574401,10 59,35 59,348 32435417,18

98

Table 8.5 Summary of the results of the proposed Method.

Scenario

Number

Overall

response

time

Avg(ms)

Datacenter

processing

time

Avg(ms)

Datacenter

request

serving times

Avg(ms)

Total data

transfer

cost

($)

1 333748,21 56,41 56,141 4186420,44

2 278151,12 49,88 49,875 6354904,17

3 183111 44,30 44,297 9916305,54

4 0 39,32 39,323 4909515,38

5 0 40,26 40,264 4531860,35

8.5 Summary

This chapter introduced and validated a broker-driven approach enhanced by fuzzy logic for

intelligent (VM) allocation in cloud computing. While the simulation results confirmed

significant improvements in response times, resource utilization, and cost efficiency compared

to traditional methods, the broader implications of this work extend beyond the numerical

gains. The proposed methodology demonstrates how integrating fuzzy logic with packet size

classification enables cloud systems to respond dynamically to heterogeneous workloads,

addressing a critical gap in conventional resource allocation strategies. This adaptability is

essential for future cloud environments that must support diverse and evolving service demands

while maintaining energy efficiency and cost-effectiveness. Looking ahead, this research opens

avenues for developing cloud brokerage systems capable of real-time service selection based

on user requirements, network dynamics, and workload characteristics. Future contributions

will focus on extending this approach to scenarios involving user mobility, service migration,

and the complex interplay between performance and cost in dynamic cloud ecosystems. These

developments aim to transform cloud resource management into a more intelligent, context-

aware process, aligning technical innovation with practical deployment needs.

99

Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker

Due to the rapid increase in CSPs, users find it challenging to select a cloud service that suits

their needs and budget. Thus, having an intermediate entity between the two in cloud broking

services is more crucial than ever. Chapter 9 Proposes a cloud broker that uses fuzzy logic to

rank service instances and users, aiming to balance user needs and service provider interests.

It investigates the impact of user mobility on service quality by analyzing scenarios involving

stationary and mobile users. The study also examines the impact of service migration on

performance and cost, highlighting the benefits of dynamic resource management. The

proposed broker ensures reliable service delivery with stable performance and cost-efficient

resource usage, outperforming traditional methods in mobility and service migration scenarios.

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic

Remote processing has become increasingly popular in recent years with the rise of cloud

computing [236], MEC [237], and fog computing platforms [238]. These paradigms are

considered the main enablers for Ultra-Reliable Low Latency Communications (URLLC),

Enhanced Mobile Broadband (eMBB), and Massive Machine-Type Communications (mMTC)

services [239] that are promised for beyond 5G networks. These kinds of services are more

strict in Key Performance Indicators (KPIs), which can only be achieved by overcoming the

limitations of users’ equipment resources and exploiting the unlimited cloud resources via

remote processing. Notwithstanding the indisputable advantages of these platforms, they also

pose novel challenges for (CSPs) and their customers. For example, the user who needs a

certain service will have difficulty choosing from the abundance of alternatives offered by the

(CSPs). On the other hand, CSP may also have difficulty promoting their services and

efficiently allocating their resources to accommodate more users. Therefore, mentioned in the

previous chapters, focusing on representing a third party is usually recommended in the form

of a cloud broker, which is an entity that acts as middleware between potential customers and

CSP. The presence of such an entity can help not only offer efficient and affordable services

for users but also help with resource management and LB cross-cloud or between different

instances of the service in the same cloud. Driven by the importance of having a broking service

that takes into account the customers' needs and the CSP's interests, present this study with

several contributions in mind.

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage

Cloud brokerage services have been widely discussed in academia, where numerous studies

have been conducted in search of the optimal broker. Focus-wise, some studies were customer-

centric, where the interest of the clients was considered the priority in terms of focusing on

improving the Quality of Service (QoS) provided for the users. Examples of these studies are

[240–244]. Other approaches were more focused on the broker profit [245–247]. This profit

can mainly be acquired by wisely managing the cloud’s resources or by exploiting the

difference in prices between on-demand and reserved service instances [247]. Some studies,

however, tried to find a balance between the broker’s and user’s interests [248, 249]. The

brokerage problem is viewed in some research studies as a resource provisioning and

management problem, which can be summed up as deciding which resources should be set

100

aside for the user and then distributing the load among the resources that the service provider

has available [250]. Thus, numerous studies focused on LB and efficient resource allocation

such as [251–254], Methodology-wise, many techniques were employed for the brokerage

service, such as game theory [255], reinforcement learning [256, 222], weighted algorithm

[257, 258], ontology [259], Analytic Hierarchy Process (AHP) in combination with Technique

for Order Preference by Similarity to Ideal Solution (TOPSIS) [260] and fuzzy logic [261–

263]. The main issue in game theory approaches is that the negotiating process becomes

lengthy when the number of SLA parameters rises [264]. Similarly, the primary disadvantage

of reinforcement learning approaches is their lengthy execution time to reach a stable model,

which leads to a long learning phase in which the broker is not functioning. On the other hand,

weighted algorithms need predefined weights and criteria to select the service efficiently.

Setting a fixed value for these weights for all users may be unsatisfactory for some users.

Meanwhile, defining values that correspond to each user takes a lot of effort and time. In AHP

combined with TOPSIS approaches, the broker employs a multi-criteria decision-making

technique to choose a suitable cloud provider after evaluating each provider’s quality and

ranking each one according to the customer’s needs. Therefore, these approaches can be

confusing for nonprofessional users since they are forced to specifically define their priorities

and preferences. [250, 264]. Employing fuzzy logic systems can yield good results. However,

two problems will surface when many input parameters are taken into account. The first issue

is when the number of customers grows and online service selection is required, collecting this

data can become more challenging if not impossible. Additionally, some service providers

might be reluctant to divulge some parameters since doing so could reveal security flaws and

compromise the service provider’s integrity. The second problem is that as the number of rules

increases dramatically with the increase of input parameters, setting up the inference engine

will become more difficult and time-consuming. These problems can be identified in studies

such as the fuzzy-based brokers proposed in [261–263]. In our approach, combine two different

techniques for our cloud brokerage system. They are fuzzy logic and a modified version of

TOPSIS. In the study, various data centers from AWS, Google Cloud (GC), and Azure Cloud

Services (AZURE) are distributed across different geographical regions. These (CSPs) offer a

range of VM types, including general-purpose, compute-optimized, memory-optimized, and

accelerator-optimized instances. Our approach uses fuzzy logic to classify and rank the service

instance and the user, trying to satisfy users’ and service providers’ interests and needs.

Moreover, we only consider two easily acquired parameters for each fuzzy system, reducing

the rules required in the engine and making the broker incorporation in the cloud environment

more feasible. We associate the user with an appropriate service instance based on this ranking.

Further details on our proposed brokerage system design are elaborated in the subsequent

section.

9.3 System Design

The proposed system considers the user requirements as well as the service specifications

offered by different cloud providers. The proposed system architecture is illustrated in Figure

9.1, made an effort to build the system so that both novice and expert users could utilize the

101

broker with ease since the user interface is thought to be one of the most common problems

with commercial brokers [265].

Figure 9.1 Proposed System Architecture.

i. Clarification and Detailed Explanation of the Matching Process:

In the proposed fuzzy-based cloud brokerage system, the "Matching" phase constitutes

a critical step in the overall service allocation process. The matching procedure occurs

after two crucial prior stages, which are clearly described:

1. Service Discovery: Users specify their service requirements (type, budget, desired

quality), and the broker identifies relevant cloud service instances from available

(CSPs).

2. Ranking (Classification):

• A fuzzy logic system is employed to independently classify (VMs) and users into

distinct ranks: Gold, Silver, and Bronze.

• VM ranking considers CPU availability and cost; user ranking considers task size

and budget constraints.

Once these classifications are established, the "Matching" process explicitly associates users

with suitable VM service instances according to their respective ranks (Gold, Silver, Bronze).

This step ensures alignment between user expectations and VM capabilities.

ii. Detailed Explanation and Steps of the Matching Phase:

The matching operation specifically follows these structured steps:

Step 1: Rank-Based Matching: The system pairs users and VM instances according to

their corresponding ranks:

o Gold-ranked users are matched to Gold-ranked VM instances to ensure high-

quality service and resource availability.

o Silver-ranked users are matched to Silver-ranked VM instances, providing a

balanced trade-off between performance and affordability.

o Bronze-ranked users are matched to Bronze-ranked VM instances, satisfying

basic service requirements economically.

Step 2: Final Allocation: Once the matching pairs are established, the broker

executes resource allocation, ensuring optimal performance, service quality, and

cost-effectiveness for users and efficient resource utilization for providers.

102

iii. Reasoning for the Matching Process: The rank-based matching approach achieves

several key objectives:

o Optimal Compatibility: It ensures users receive appropriate resource types

matching their service quality and budget constraints.

o Balanced Load Distribution: Aligning user demands and VM capabilities helps

maintain balanced resource utilization.

o Enhanced User Satisfaction: The systematic matching ensures user needs are

accurately met, enhancing overall satisfaction.

o Efficiency in Decision Making: Utilizing predefined rankings simplifies the

decision-making process, enabling efficient real-time service allocation.

9.3.1 The broker’s Fuzzy-logic systems

In the proposed cloud broker, we used two fuzzy logic systems. One is designated to rank the

service, and the other is to rank the users. These two systems are detailed in the following

subsections.

9.3.1.1 VM ranking Fuzzy logic system

The Fuzzy Logic System (FLS) system used for VM ranking is illustrated in phase 2 in Figure

9.1. The input parameters for this system are the percentage of available Central Processing

Unit (CPU) on the VM, and the cost of the VM. These parameters go into the fuzzification

phase to be mapped into the linguistic values (low, medium, and high) according to the

membership functions illustrated in Figure 9.2 and Figure 9.3, used trapezoidal and triangular

fuzzy membership functions to map the crisp input variables into multivalued logic. After the

fuzzification phase, these resulting linguistic values will go through the inference engine. To

assess the fuzzy output variable indicating the VM ranking, the engine uses simple IF-THEN

rules with a condition and conclusion. For instance:

IF VM′s available CPU capacity is (Low)AND the VM cost per month is (Low) Then the VM

has a (Silver) ranking.

The VM will be classified as Gold, Silver, or Bronze according to its specification, Figure 9.4,

illustrate the VM’s ranking membership function. This rank is subjective and a typical user’s

assessment served as the basis for this classification. The set of fuzzy rules used in the inference

engine is depicted in Table 9.1. The resulting ranking is then converted to a crisp value using

the COG technique.

103

Figure 9.2 The VM’s availability membership function.

Figure 9.3 The VM’s Cost membership function.

Table 9.1 VM ranking FLS.

 Available CPU

Cost per month

Low Medium High

Service classification

Low Silver Gold Gold

Medium Bronze Gold Gold

High Bronze Silver Silver

Figure 9.4 VM’s ranking membership function.

104

9.3.1.2 User ranking Fuzzy logic system

These parameters include the client's budget and the task length, measured in the number of

instructions required. These fuzzy logic inputs are translated into Low, Medium, and High

linguistic values. Triangular and trapezoidal membership functions were employed to convert

the user budget and task length into fuzzy sets, depicted in Figure 9.5 and Figure 9.6,

respectively. Based on their requirements and financial constraints, the user type will be

classified as Gold, Silver, or Bronze.This rating is based on our estimation of what the service

provider would assign to that user. To compute the user ranking, which is the output parameter,

an IF-Then inference engine is used, with a set of rules summarized in Table 9.2. In the

defuzzification stage, the linguistic value representing the user’s rank and derived from the

inference engine is then mapped into a crisp value using the COG method for defuzzification.

The membership function used for the user rank is depicted in figure 9.7.

Figure 9.5 Task size membership function.

Table 9.2 User ranking FLS.

 Task size

Cost per month

Low Medium High

Service classification

Low Silver Bronze Bronze

Medium Gold Silver Bronze

High Gold Gold Gold

Figure 9.6 User budget membership function.

105

Figure 9.7 User rank membership function.

9.4 Scenario Description

Used Edge CloudSim [266–269]. Simulator to implement the proposed cloud broker on (MEC)

paradigm, made this choice as the services running on the virtualized edge are more sensitive

to delay and the broker selection of the appropriate service instance will have a more significant

impact in this kind of setting. In the scenario, have different data centers belonging to AWS,

Google Cloud (GC), and Azure Cloud Services (AZURE) and placed in different regions,

namely: United State of America (USA), western Europe and Southeast Asia and the data

centers located in different regions are connected via (WAN) and the datacenters located in the

same region are connected by MAN network. Giant CSP have different types of VM, such as

general purpose, compute-optimized, memory-optimized, and accelerator-optimized instances.

Thus, tried to make the scenario more realistic by choosing one or more instances from these

different types. The chosen instances are detailed in Table 9.3. All the values in this table are

taken from the official websites of the three cloud providers. Four types of delay-intolerant

services are used in the simulation setup, with them specifications in terms of the generated

traffic characteristics mentioned in Table 9.4. The delay sensitivity is a value between 0 to 1

where the value 1 indicates the application with the highest delay sensitivity. Each user requests

a specific type of service identifying his budget and his needs will be determined by his traffic

profile and more specifically his average tasks’ length measured in millions of instructions

(MI). This value is usually estimated based on the application he requested. Based on these

parameters, the cloud broker will identify the most appropriate service instance in the region

where the user is currently located. The user communicates with the datacenter where the

service is placed via a wireless local area network. This network is modeled as M/M/1 Queue.

EdgeCloudSim includes realistic network measurements. For modeling WLAN delay, it

examines the performance of an 802.11-family access point, while WAN delays are calculated

using measurements from a fiber internet connection in Istanbul. The results of the empirical

network delay analysis are detailed in [266].

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites.

Name CSP Type Number of

vcpu

Memory

T2A GC General

purpose

2 4

106

E2 GC Cost

optimized

2 1

M1 GC Memory

optimized

40 961

C2 GC Compute

optimized

4 6

A2 GC Accelerator

optimized

12 85

t2. small AWS General

purpose

1 2

i4i.large AWS Storage

optimized

2 16

r7a.medium AWS Memory

optimized

1 8

r7a.large AWS Memory

optimized

2 16

c7a.medium AWS Compute

optimized

1 2

c7a.large AWS Compute

optimized

2 4

p3.2xlarge AWS Accelerator

optimized

8 61

hpc7g.4xlarge AWS HPC

optimized

16 128

B2ls v2 AZURE General

purpose

2 4

F2s v2 AZURE Compute

optimized

2 4

E2as v5 AZURE Memory

optimized

2 16

L8as v3 AZURE Storage

optimized

8 64

NC6 AZURE GPU

optimized

6 56

H8 AZURE High

performance

compute

8 56

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup.

Type

Average of

upload data

Average of

download data

Task Length Delay

sensitivity

Health App 1500 25 9000 0.7

Augmented

Reality

20 1250 3000 0.9

Heavy

Computing

2500 200 45000 0.1

Infotainment 25 1000 15000 0.3

107

9.5 Results analysis

Compare the proposed system with two different approaches. They are, a random approach

where the user randomly chooses the service instance, and the second approach is when the

broker chooses the service instance with the highest capability in terms of processing power

available to associate the user with, compare these approaches focusing on two main metrics

which are the service delay experienced by the users and the cost the user needs to pay per

month, make this comparison in four distinct scenarios. They are:

• First scenario: the users are motionless. Upon selecting a service instance from a

certain CSP, the user establishes and maintains the association until the simulation time

expires. This represents the policy of reserved VM.

• Second scenario: the users are mobile and move around following a nomadic mobility,

spending a specific duration on one site before moving on to the next. In this scenario,

the service instance stays in the original data center with which it was associated and is

not migrated. The payment policy here is also a reserved instance policy.

• The third scenario involves clients moving around following a nomadic mobility model.

In this scenario, test a cross-cloud migration, where the broker seamlessly migrates the

service across multiple cloud providers ensuring the satisfaction of SLA requirements

defined by the user. The payment policy in this scenario is pay-as-you-go policy

(PAYG). Where the user rents resources on-demand and only pays for his usage.

For the first scenario, compare the proposed approach with two approaches. They are the Least

Loaded (LL), in which the VM that is least loaded and within the budget of the user is chosen

as a service instance. The second algorithm is a random selection, where the service instance

is chosen randomly. The simulation is performed for five runs and the average results for

service delay and the client’s budget savings are illustrated in figures Figure 9.8, and Figure

9.9. As shown in these figures, by employing our fuzzy logic approach, were able to achieve

better results regarding the average service delay. The increase in the delay in accordance to

the increase of the number of clients is normal due to the limited number of service instances

in the scenario.

Figure 9.8 Average service delay for immobile users.

108

Figure 9.9 The average of monthly client payment.

However, noted that our approach exhibits a more stable performance than both random and

least-loaded approaches, where the variation in the delay is unnoticeable compared to the other

two. This is a very important aspect from the service provider’s perspective as he is obligated

to respect certain QoS limits defined in the SLA. Thus, employing our approach can guarantee

more stable performance and prevent the violation of the SLA terms. The main reason why the

LL approach failed to perform well is because service migration and dynamic task offloading

are not supported in this scenario. Since each user is maintaining the association with the same

service instance for the whole time, the effectiveness of choosing the least loaded instance is

diminished. When comparing the proposed approach with the other two approaches regarding

the average cost each customer has to pay, noticed LL and random approaches forced the clients

to pay more as the number of clients increased. This is basically due to their imbalanced

policies where the cost was not considered, and more users were associated with more

expensive service instances. On the other hand, our approach surpassed both approaches and

the customer were still able to get the service with the same quality while maintaining the same

payment.

9.5.1 The effects of Client’s mobility

In the second scenario, we tested the three approaches on mobile clients. The clients follow a

nomadic mobility model, mimicking a normal person’s daily routine, where he goes to certain

points of interest such as the workplace, university, or home, spends some time there, and then

moves to other places. In this scenario, once the user is associated with a service instance, he

maintains his association regardless of his current location. This scenario reflects the

operational policy of certain cloud brokers that do not support service migration, meaning that

once a user is associated with a particular service instance in a specific data center, the

connection remains fixed regardless of the user’s subsequent movements. As a result, the

service continues to be delivered from the original data center even if the user relocates to

another geographical region, potentially increasing communication delays and impacting

overall service quality. The results are illustrated in Fig. 10. All three approaches were

significantly affected by the client’s mobility as shown in Fig. 10. This is mainly because the

communication delay started to play a significant part in the overall delay as none of the three

approaches was able to mitigate the impact of the user’s getting further away from the service

109

instance. Our approach was not able to get notably better results in terms of the average service

delay. However, it was able to maintain a certain stability in the performance, with less delay

variation than both random and LL approaches. This is quite important for preventing SLA

breaches.

Figure 9.10 Average service delay for mobile users.

9.5.2 Effects of Service Migration on SLA Compliance

In the third scenario, examined the implementation of the three brokerage approaches on

mobile users with the support of service migration. As the service instance associated with the

user is changing in accordance with the user’s location, considered a pay-as-you-go pricing

policy in each location, where the minimum reservation time is one hour. The resulting average

service delay experienced by the clients as well as the average cost per user are illustrated in

Figure 9.11 and Figure 9.12. Our approach and LL selection-based broker gave a very close

performance in terms of service delay experienced by clients. The main advantage of our

approach was in having the clients maintain the same quality of service while paying the same

amount regardless of the number of users demanding the same service.

9.6 Real-World Implementation and Practical Implications

Estimate that our model can be integrated into the cloud computing environment easily. Using

fuzzy logic for ranking can facilitate the use of this broker for unprofessional users.

Nevertheless, several issues can arise. First, observed a significant amount of computation

when the number of users increased. This resulted in a longer simulation time than other

approaches such as the random and the LL service selection. When used in practice, this may

have an impact on scalability. However, when sufficient resources are allotted for the broker

to carry out fuzzy-logic-based ranking, significant computation time can be avoided.

110

Figure 9.11 Average service delay with mobile users and service migration.

Figure 9.12 Average monthly payment in case of service migration.

To mitigate the computational requirements of the proposed system, we have developed several

strategies aimed at improving efficiency. Users can be clustered and ranked as a single cluster

to assist cut down on the amount of processing required for ranking. One of our model’s

primary input parameters for ranking a user is the average task size of the application he

utilizes. When multiple people use the same application, both group-based and flow-based

ranking are possible. For example, a group of video gamers at the same location or a group of

employees in a firm using the same application can be ranked as a cluster using the aggregated

flow specifications. Subsequently, a single service instance can be assigned to this group

instead of allocating an instance for each user. Computation can also be minimized by

employing user profiling and assigning a fixed rank for some clients based on the sensitivity

of their services. For instance, users of health applications can be assigned the highest rank

(Gold) due to the sensitivity and importance of the data transmitted.

111

9.7 Summary

In this contribution, introduce a novel fuzzy logic-based broker that considers both the interests

of the client and the service provider, analyze various scenarios, demonstrating the feasibility

of our approach. For future work, aim to enhance the design of the proposed broker by

incorporating additional parameters into the decision-making process, such as the delay

sensitivity of applications and the client's mobility profile. Our observations revealed that

network delay plays a significant role, especially in the absence of service migration support

for mobile users. To address this, plan to implement a new mechanism within the broker to

mitigate the impact of mobility on service quality. As discussed in previous chapters, utilizing

a third-party intermediary, typically in the form of a cloud broker, is widely recommended. A

cloud broker acts as middleware between potential customers and (CSPs). The inclusion of

such an entity facilitates the provision of efficient and cost-effective services for users while

also assisting with resource management and LB across multiple clouds or between instances

within the same cloud. Cloud broking is a rapidly growing field driven by the increasing

adoption of cloud computing. The cloud services broking (CSB) market is expected to continue

its expansion in the coming years. CSBs are instrumental in managing multi-cloud and hybrid

cloud environments, optimizing cloud expenditures, and integrating advanced technologies

such as (AI), big data, and the Internet of Things (IoT). Future advancements in cloud broking

are expected to focus on deeper AI integration, enhanced security measures, expansion into

emerging markets, and greater automation. This positions cloud broking as a dynamic and

promising area of growth and innovation in the future.

112

Chapter 10 Theses

Cloud computing has become a cornerstone of contemporary IT infrastructure, delivering

scalable and flexible access to computing resources through (SLAs) that define performance

guarantees. Despite its advantages, several challenges persist. Compliance issues, vendor lock-

in, and variability in Quality of Service (QoS) hinder efficient decision-making and operational

management. Moreover, the rapid expansion of cloud data centers has escalated concerns about

energy consumption, emphasizing the need for sustainable and energy-efficient management

strategies. Geographical distances between data centers contribute to fluctuations in RTT and

service reliability, compounded by the fact that (CSPs) often provide predominantly qualitative

rather than quantitative network performance data. Efficient management of cloud-to-user

latency and network optimization is, therefore, critical for ensuring global service reliability.

Furthermore, distributed transaction management continues to face the ongoing challenge of

maintaining both reliability and consistency in the face of hardware failures, network

disruptions, and variable latency. To address these challenges, intelligent and adaptive cloud

service management techniques are essential. Advanced resource allocation, SLA

optimization, and predictive modeling play crucial roles in enhancing performance, reducing

latency, and ensuring scalable, cost-effective, and sustainable cloud services aligned with

evolving IT demands. In this context, my doctoral research has contributed three significant

systems and methodologies that advance the field of cloud computing through innovative

applications of fuzzy logic and decision-making models:

Thesis I: Intelligent SLA Guarantee Model for Cloud Computing

I have developed an Intelligent SLA Guarantee Model for Cloud Computing, employing

fuzzy logic for the estimation of RTT and the classification of (SLAs). This model

transforms complex technical measurements into linguistically interpretable terms, enabling

clearer SLA assessments and more user-friendly decision-making processes.

The results of this research have been published in the following conference proceedings:

• Sekhi, I. (2023). Estimating Cloud Computing RTT Using Fuzzy Logic for Inter-

Region Distances. International Journal on Cybernetics & Informatics (IJCI), 12(12),

95.

• Sekhi, I. (2023). Selecting the SLA Guarantee by Evaluating the QoS Availability.

Multidiszciplináris Tudományok: A Miskolci Egyetem Közleménye, 13(4), 80–102.

https://doi.org/10.35925/j.multi.2023.4.8

Thesis II: Intelligent Validation Cloud Broker System (IVCBS)

I have created the (IVCBS), a fuzzy logic-based framework designed to optimize (VM)

allocation and improve cloud computing efficiency. The system dynamically adjusts VM

distribution based on the analysis of incoming request packet sizes, enhancing resource

utilization, reducing latency, and maintaining consistent service quality.

The outcomes of this research have been documented in the following journals:

• Sekhi, I., & Nehéz, K. (2024). Intelligent SLA Selection Through the Validation Cloud

Broker System. IEEE Access. DOI: 10.1109/ACCESS.2024.3439617

https://doi.org/10.35925/j.multi.2023.4.8

113

• Sekhi, I. (Accepted). Efficient Broker-Driven Request Packet Size. International Journal

on Informatics Visualization.

Additionally, related foundational concepts and fuzzy logic optimization techniques were

published in:

• Sekhi, I., Kovács, S., & Nehéz, K. (2025). Enhancing Decision-Making in Uncertain

Domains through Optimized Fuzzy Logic Systems. Periodica Polytechnica Electrical

Engineering and Computer Science, 69(1), 63–78. https://doi.org/10.3311/PPee.38729

Thesis III: Intelligent Cloud Brokerage System

I have designed an Intelligent Cloud Brokerage System that combines fuzzy logic with the

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to optimize cloud

service selection and resource management across multiple (CSPs). This intelligent brokerage

system serves as an intermediary, aligning user requirements with provider capabilities to

improve service quality, cost efficiency, and operational performance.

The findings related to this research are published in:

• Sekhi, I. R., Abdah, H., & Nehéz, K. (2025). Reliable and Cost-Effective Fuzzy-Based

Cloud Broker. International Journal of Networked and Distributed Computing, 13(1),

1–9. https://doi.org/10.1007/s44227-024-00052-x

These three theses collectively address critical challenges in cloud computing, contributing

innovative solutions for enhancing performance, reducing latency, and improving the

efficiency of resource management. The integration of fuzzy logic and advanced decision-

making techniques in my research provides new pathways for achieving scalable, reliable, and

cost-effective cloud services.

10.1 Future Research Direction

• Future research should focus on integrating IoT, edge computing, and 5G to enhance

cloud computing scalability and interoperability. Real-world testing is crucial to

evaluate performance, adaptability, and SLA management. Incorporating ML and fuzzy

logic can optimize SLA classification and QoS adjustments, improving efficiency and

reliability. Additionally, adaptive traffic management should be explored to enhance

QoS, resource allocation, and fault recovery. Further research on SLA prioritization

will optimize cloud resource utilization and user satisfaction. These advancements will

contribute to intelligent, adaptive, and efficient cloud brokerage systems, ensuring

better service selection and resource optimization in dynamic cloud environments.

• Enhance cross-cloud compatibility through standardized integration methods, ensuring

seamless workload distribution across heterogeneous platforms for individual users and

enterprises. This will also improve energy efficiency, reducing data centers' carbon

footprint while maintaining high performance. Leveraging ML-driven workload

distribution enables real-time optimization, dynamically adapting to service demands

and enhancing resource efficiency. Addressing security and compliance challenges is

crucial to mitigating vulnerabilities, improving data privacy, and maintaining

https://doi.org/10.3311/PPee.38729
https://doi.org/10.1007/s44227-024-00052-x

114

regulatory standards in multi-cloud environments. Additionally, context-aware

decision-making in cloud brokerage systems should incorporate application delay

sensitivity and client mobility profiles. Developing adaptive mechanisms to adjust

resource allocation dynamically will help mitigate network delay, ensuring seamless

service quality, minimal latency, and optimal performance in mobile cloud

environments.

115

Appendices

Appendix 1: Cloud Computing

Appendix 1: 0.1 Figure 1. NIST Cloud Computing reference model.

Appendix 1: 0.2 Figure 2. The essential characteristics of cloud computing.

Appendix 2: Adoption and Implementation of Cloud Platforms

116

Appendix 2: 0.1 Figure 1. (a) Single application server. (b) Virtualized server.

Appendix 2: 0.2 Figure 2. Hardware server components.

Appendix 2: 0.3 Figure 3. Type1 hypervisor.

Appendix 2: 0.4 Figure 4. Type2 hypervisor.

Appendix 2: 0.5 Figure 5. Data center network architecture.

117

Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA.

Hardware availability month 99% uptime in a calendar month

Power availability 99.99% of the time in a calendar month

Data center network

availability
99.99% of the time in a calendar month

Backbone network

availability
99.999% of the time in a calendar month

Service credit for

unavailability

Refund of service credit prorated on

downtime period

Outage notification

guarantee

Notification of customer within 1 hr. of

complete downtime

Internet latency

guarantee

When latency is measured at 5-min

intervals to an upstream

provider, the average doesn’t exceed 60

msec

Packet loss guarantee Shall not exceed 1% in a calendar month

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA.

Service-level

parameter metric

• Web site response time (e.g., max of 3.5 sec

per user request)

• Latency of web server (WS) (e.g., max of

0.2 sec per request)

• Latency of DB (e.g., max of 0.5 sec per

query)

Function • Average latency of WS= (latency of web

server 1+latency of web server 2) /2

• Web site response time= Average latency of

web server+ latency of database

Measurement

directive

• DB latency available via

http://mgmtserver/em/latency

• WS latency available via

http://mgmtserver/ws/instanceno/latency

Service-level

objective

Service Assurance

Penalty • web site latency, 1 sec when concurrent

connection, 1000 Penalty.

• 1000 USD for every minute while the SLO

was breached

118

Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time

(RTT) for Optimal SLA Evaluation

Appendix 3: 0.1 Figure 1. RTT process.

The RTT calculation, The ensuing diagram and equations provide a visual representation of

how the round-trip time is computed

Server RTT:

• RTTs1 = t2 - t1

• RTTs2 = t5 - t4

Client RTT:

• RTTc1 = t3 - t2

• RTTc2 = t7 - t6

Average Server RTT = (RTTs1 + RTTs2)/2

Average Client RTT = (RTTc1 + RTTc2)/2

Average Total RTT = avRTTs + avRTTc

119

Appendix 3: 0.2 Figure 2. Ping testing process.

Appendix 3: 0.3 Figure 3. AWS latency test.

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions.

No
Region

name

Distance

(KM)
Latitude

Longitude Endpoint

1 Bahrain 862.94 26.0667 50.5577 ec2.me-south-1.amazonaws.com

2
UAE –

Dubai

1234.23 25.276987 55.296249 ec2.me-central-1.amazonaws.com

3 Mumbai 3089.72 19.0760 72.8777 ec2.ap-south-1.amazonaws.com

4 Milan 3428.79 45.4642 9.1900 ec2.eu-south-1.amazonaws.com

http://aws.amazon.com/
http://aws.amazon.com/

120

This table extends and complements the information presented in Appendix 3: 0.4

Table 1.

5 Zurich 3525.01 47.3769 8.5417 ec2.eu-central-2.amazonaws.com

6 Frankfurt 3601.23 50.1109 8.6821 ec2.eu-central-1.amazonaws.com

7 Paris 3607.54 48.8566 2.3522 ec2.eu-west-3.amazonaws.com

8 London 4009.87 51.5074 -0.1278 ec2.eu-west-2.amazonaws.com

9 Spain 4202.65 41.6488 -0.8891 ec2.eu-south-2.amazonaws.com

10 Ireland 4238.49 53.3331 -6.2489 ec2.eu-west-1.amazonaws.com

11 Stockholm 4682.33 59.3293 18.0686 ec2.eu-north-1.amazonaws.com

12
Hong

Kong

5981.25 22.3193 114.1694 ec2.ap-east-1.amazonaws.com

13 Hyderabad 6012.87 17.3850 78.4867 ec2.ap-south-2.amazonaws.com

14 Osaka 6789.34 34.6937 135.5023 ec2.ap-northeast-

3.amazonaws.com

15 Seoul 7056.22 37.5665 126.9780 ec2.ap-northeast-

2.amazonaws.com

16 Singapore 7289.64 1.3521 103.8198 ec2.ap-southeast-

1.amazonaws.com

17 Tokyo 7435.78 35.6895 139.6917 ec2.ap-northeast-

1.amazonaws.com

18 Jakarta 7832.90 -6.2088 106.8456 ec2.ap-southeast-

3.amazonaws.com

19
Kuala

Lumpur

8053.21 3.1390 101.6869 ec2.ap-southeast-

4.amazonaws.com

20

Canada

Central –

Ottawa

8923.45 45.4215 -75.6972 ec2.ca-central-1.amazonaws.com

21
N.

Virginia

10023.67 38.0336 -78.5080 ec2.us-east-1.amazonaws.com

22 Ohio 10289.47 39.9612 -82.9988 ec2.us-east-2.amazonaws.com

23
N.

California

12345.89 37.7749 -122.4194 ec2.us-west-1.amazonaws.com

24 Oregon 12678.56 45.5234 -122.6762 ec2.us-west-2.amazonaws.com

25 Melbourne 13756.90 -37.8136 144.9631 ec2.ap-southeast-

4.amazonaws.com

26 Sydney 14321.76 -33.8688 151.2093 ec2.ap-southeast-

2.amazonaws.com

121

27
Cape

Town

14989.34 -33.9249 18.4241 ec2.af-south-1.amazonaws.com

28 São Paulo 15478.65 -23.5505 -46.6333 ec2.sa-east-1.amazonaws.com

❖ Haversine Formula

The formula to compute the distance d between two points (lat1, lon1) and (lat2, lon2) is:

𝑑 = 2𝑅. arcsin (√𝑠𝑖𝑛2 (
Δφ

2
) + cos(φ1) . cos(φ2) . 𝑠𝑖𝑛2 (

Δλ

2
))

Where:

• d = distance between the two points (in kilometers or miles).

• R = Earth's radius (mean radius = 6371 km or 3958.8 miles).

• φ1, φ2 = latitudes of the two points in radians.

• λ1, λ2 = longitudes of the two points in radians.

• Δφ =φ2−φ1 (difference in latitudes).

• Δλ =λ2−λ1 (difference in longitudes).

Appendix 3: 0.5 Figure 4. Define first input (Distance).

Appendix 3: 0.6 Figure 5. Define second input (Network-congestion).

122

Appendix 3: 0.7 Figure 6. Define Output (RTT-Expectation).

Appendix 3: 0.8 Figure 7. Rule base system.

Appendix 4: Quality of Service (QoS) Availability Assessment for Optimal SLA

Selection

Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels.

Years of

continuous

operations

1 2 3

Availability Maximum allowable downtime

99.0000% (2–

9s)

3 d 15 h 36 min

0 s

7 d 7 h 12 min 0

s

10 d 22 h 48 min

0 s

99.9000% (3–

9s)
8 h 45 min 15 s 17 h 31 min 12 s

1 d 2 h 16 min 48

s

99.9900% (4–

9s)
52 min 34 s 1 h 45 min 7 s 2 h 37 min 41 s

123

99.9990% (5–

9s)
5 min 15 s 10 min 31 s

15 min 46 s

99.9999% (6–

9s)
32 s 1 min 3 s 1 min 3 s 1 min 35 s

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs.

The universe of discourse for both (Computing and networking) inputs

90 93.39966 96.79932

90.09999 93.49965 96.89931

90.19998 93.59964 96.9993

90.29997 93.69963 97.09929

90.39996
93.79962

97.19928

90.49995
93.89961

97.29927

90.59994 93.9996 97.39926

90.69993
94.09959

97.49925

90.79992 94.19958 97.59924

90.89991 94.29957 97.69923

90.9999 94.39956 97.79922

91.09989 94.49955 97.89921

91.19988 94.59954 97.9992

91.29987 94.69953 98.09919

91.39986
94.79952

98.19918

91.49985 94.89951 98.29917

91.59984 94.9995 98.39916

91.69983 95.09949 98.49915

91.79982 95.19948 98.59914

124

This table extends and complements the information presented in

Appendix 4: 0.2 Table 2.

91.89981 95.29947 98.69913

91.9998 95.39946 98.79912

92.09979 95.49945 98.89911

92.19978 95.59944 98.9991

92.29977 95.69943 99.09909

92.39976 95.79942 99.19908

92.49975 95.89941 99.29907

92.59974 95.9994 99.39906

92.69973 96.09939 99.49905

92.79972 96.19938 99.59904

92.89971 96.29937 99.69903

92.9997 96.39936 99.79902

93.09969 96.49935 99.89901

93.19968 96.59934

99.999 93.29967

96.69933

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime.

U
p
ti

m
e%

D
ay

U
p
ti

m
e

D
ay

D
o
w

n
ti

m
e

W
ee

k

U
p
ti

m
e

W
ee

k

D
o
w

n
ti

m
e

M
o
n
th

U
p
ti

m
e

M
o
n
th

D
o
w

n
ti

m
e

Y
ea

r

U
p
ti

m
e

Y
ea

r

D
o
w

n
ti

m
e

9
0
 %

2
1
:3

6
:0

0

2
:2

4
:0

0

1
5
1
:1

2
:0

0

1
6
:4

8
:0

0

6
4
8
:0

0
:0

0

7
2
:0

0
:0

0

7
8
8
4
:0

0
:0

0

8
7
6
:0

0
:0

0

9
1

%

2
2

:0
4
:4

7

1
:5

5
:1

2

1
5

4
:3

3
:3

4

1
3

:2
6
:2

5

6
6

2
:2

3
:5

4

5
7

:3
6
:0

5

8
0
5

9
:1

0
:5

6

7
0

0
:4

9
:0

3

125

9
2
%

2
2
:1

9
:1

1

1
:4

0
:4

8

1
5
6
:1

4
:2

2

1
1
:4

5
:3

7

6
6
9
:3

5
:5

2

5
0
:2

4
:0

7

8
1
4
6
:4

6
:2

5

6
1
3
:1

3
:3

4

9
3
%

2
2
:3

3
:3

5

1
:2

6
:2

4

1
5
7
:5

5
:0

9

1
0
:0

4
:5

0

6
7
6
:4

7
:4

9

4
3
:1

2
:1

0

8
2
3
4
:2

1
:5

3

5
2
5
:3

8
:0

6

9
4
%

2
2
:4

7
:5

9

1
:1

2
:0

0

1
5
9
:3

5
:5

6

8
:2

4
:0

3

6
8
3
:5

9
:4

7

3
6
:0

0
:1

2

8
3
2
1
:5

7
:2

2

4
3
8
:0

2
:3

7

9
5
%

2
3
:0

2
:2

3

0
:5

7
:3

6

1
6
1
:1

6
:4

4

6
:4

3
:1

5

6
9
1
:1

1
:4

4

2
8
:4

8
:1

5

8
4
0
9
:3

2
:5

0

3
5
0
:2

7
:0

9

9
6

%

2
3
:1

6
:4

7

0
:4

3
:1

2

1
6
2
:5

7
:3

1

5
:0

2
:2

8

6
9
8
:2

3
:4

1

2
1
:3

6
:1

8

8
4
9
7
:0

8
:1

9

2
6
2
:5

1
:4

0

9
7
%

2
3
:3

1
:1

1

0
:2

8
:4

8

1
6
4
:3

8
:1

9

3
:2

1
:4

0

7
0
5
:3

5
:3

9

1
4
:2

4
:2

0

8
5
8
4
:4

3
:4

7

1
7
5
:1

6
:1

2

9
8
%

2
3
:4

5
:3

5

0
:1

4
:2

4

1
6
6
:1

9
:0

6

1
:4

0
:5

3

7
1
2
:4

7
:3

6

7
:1

2
:2

3

8
6
7
2
:1

9
:1

6

8
7
:4

0
:4

3

9
9
.9

9
9

2
3
:5

9
:5

9

0
:0

0
:0

0

1
6
7
:5

9
:5

3

0
:0

0
:0

6

7
1
9
:5

9
:3

4

0
:0

0
:2

5

8
7
5
9
:5

4
:4

4

0
:0

5
:1

5

• EX: In equation form for 90% uptime in a single day:

Uptime in seconds:

 Uptime=Total Time per day × Uptime percentage; Where:

Total Time per day = 86,400 seconds (for 24 hours),

 Uptime percentage = 0.90 for 90%.

Downtime in second:

126

 Downtime=Total Time per day × (1- Uptime percentage); Where:

 Downtime percentage=1 - 0.90

 Downtime= 0.10

Then In equation form for 90% Uptime in a single day:

 Uptime = 86,400 × 0.90 =77,760 seconds

 Downtime = 86,400 × (1-0.90)

 Downtime = 8,640 seconds

To convert seconds into hours, minutes, and seconds:

▪ Uptime:77,760 seconds =21 hours,36 minutes.

▪ Downtime:8,640 seconds = 2 hours,2 minutes.

These equations provide a clear way to calculate uptime and downtime for any

percentage of uptime over any given period (e.g., a day, week, month, or year).

Appendix 5: Implementation details of the three proposed algorithms for the system

Appendix 5:0.1 Detailed Analysis of the First Algorithm

▪ Maximum value: 67,170

▪ Point1 = Maximum value / 4

▪ Point2 = 2 * Point1

▪ Point3 = 3 * Point1

▪ Point4 = 4 * Point1

▪ 𝜇small: [0 0 point2]

▪ 𝜇medium: [point1 point2 point3]

▪ 𝜇big: [point2 point4 point4]

▪ When 0 ≤ value ≤point1

Consider input value is 165

Calculate Small Membership function:

𝜇small (165) =(- value/point2)+1

𝜇small (165) =(-165/33585)+1

𝜇small (165) = -0.00491+1

𝜇small (165) = 0.995087092

" 𝜇medium (165) " remains 0 since the input value falls within the 0 to Point1 range.

" 𝜇big (165) " remains 0 since the input value falls within the 0 to Point1 range.

• When point1 ≤ value ≤point2 then:

127

Consider input value is 20892

Calculate Small Membership function:

𝜇small (20892) = (- value/point2)+1

𝜇small (20892) = - 0.6218+1

𝜇small (20892) = 0.377936579

Calculate α

α= value – point2

α=20892 – 33585

α= - 12693

Calculate medium Membership function:

𝜇medium (20892) = (-1/point2 - point1). | α |+1

𝜇medium (20892) = (-1/33585– 16792.5). |12693|+1

𝜇medium(20892)= (-1/16792.5) . 12693+1

𝜇medium(20892)= - 0.7560+1

𝜇medium(20892)=0.244126842

" 𝜇big(20892)" remains 0 since the input value falls within the Point1 to Point2 range.

Appendix 5:0.2 Detailed Analysis of the Second Algorithm

• Maximum value: 67,170

• Point1 = Maximum value / 5

• Point2 = 2 * Point1

• Point3 = 3 * Point1

• Point4 = 4 * Point1

• Point5 =5 * point1

• 𝜇small: [0 0 point1 point2]

• 𝜇medium: [point1 point2 point3 point4]

• 𝜇big: [point3 point4 point4 point5]

• When 0 ≤ value ≤point1 then:

𝜇small (value) = 1

" 𝜇medium (value) " remains 0 since the input value falls within the 0 to Point1 range.

" 𝜇big(value) " remains 0 since the input value falls within the 0 to Point1 range.

• When point1 ≤ value ≤point2

Consider input value is 17132

Calculate Small Membership function degree:

𝜇small (value) = (- value/point2)+1

128

𝜇small (17132) = (- 17132/33585)+1

𝜇small (17132) = - 0.6376+1

𝜇small (17132) = 0.362364151

Calculate α:

α= value – point2

α=17132 – 26868

α= - 9736

Calculate medium Membership function degree:

𝜇medium (17132) = (-1/point2 - point1). | α |+1

𝜇medium (17132) = (-1/26868 – 13434). |- 9736 |+1

𝜇medium (17132) = (-1/13434). 9736+1

𝜇medium (17132) = -0.7248+1

𝜇medium (17132) =0.275271699

" 𝜇big (17132)" remains 0 since the input value falls within the Point1 to Point2 range.

Appendix 5:0.3 Detailed Analysis of the Third Algorithm

• Maximum value: 67,170

• Point1=0

• Point2=Maximum value/2

• Point4=Maximum value

• Standard Deviation 𝜎 =16339

• Small center= csmall=point1

• 𝜇small: [𝜎 𝑝𝑜𝑖𝑛𝑡1]

• Medium center= cmedium=point2

𝜇medium: [𝜎 𝑝𝑜𝑖𝑛𝑡2]

• Big center= cbig=point4

𝜇big: [𝜎 𝑝𝑜𝑖𝑛𝑡4]

Consider input value is 11381

• Calculate Small membership function degree

𝜇small (11381) =Exp (-(11381-0)2/2. (16339)2)

Calculate the squared difference:

(11381-0)2=129564361

Compute 2. 𝜎2=2. (16339)2

=533906642

Divide and apply the exponent:

𝜇small (11381) =Exp (-129564361/533906642)

129

𝜇small (11381) =Exp (-0.2426)

𝜇small(11381) =0.784590058

• Calculate Medium membership function degree

𝜇medium (11381) =Exp (-(11381-33585)2/2.(16339)2)

Calculate the squared difference:

(11381-33585)2=494383296

Divide and apply the exponent:

𝜇medium (11381) =Exp (-494383296/533906642)

 𝜇medium =Exp(-0.9263)

 𝜇medium = 0.397173449

• Calculate Big membership function degree

𝜇big (11381) =Exp (-(11381-67170)2/2. (16339)2)

Calculate the squared difference:

(11381-67170)2=3104115681

Divide and apply the exponent:

𝜇big (11381) =Exp (-3104115681/533906642)

𝜇big (11381) =Exp (-5.8146)

𝜇big (11381) = 0.002940142

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in

Uncertain Domains

Appendix 6: 0.1 Figure 1. Database Addresses.

Appendix 6: 0.2 Figure 2. User task before classify.

130

Appendix 6: 0.3 Figure 3. Mamdani Triangular MF.

Appendix 6: 0.4 Figure 4. Mamdani Trapezoidal MF.

Appendix 6: 0.5 Figure 5. Mamdani Gaussian MF.

131

Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs.

EC2-

families

AWS-General-Purpose Instance -features

Resource

efficiency

Instance

Storage

Enhance Security

M6g AWS

Nitro

system

EBS or Nonvolatile

Memory express (NVMe)

based solid-state drive

(SSD) storage

NVMe SSDs

256-bit DRAM

encryption

M5

AWS

Nitro

system

EBS or NVMe SSDs XTS-AES-256 Cipher

M6i

AWS

Nitro

system

EBS or NVMe SSDs Total Memory

Encryption (TME)

M6a

AWS

Nitro

system

 (EBS) AMD Transparent

Single key Memory

Encryption (TSME)

Appendix 7: 0.2 Table 2. AWS data centers and general costs.

6-Geographical

(31-Regions)

EC2-General purpose cost

M
6
g
.m

ed
u
im

M
6
g
.l

ar
g
e

M
6
g
.x

la
rg

e

M
5
.2

x
la

rg
e

M
5
.4

x
la

rg
e

M
6
g
d
.8

x
la

rg
e

M
6
g
d
.1

2
x
la

rg
e

M
6
g
.m

et
al

M
5
d
.m

et
al

M
6
i.

m
et

al

M
6
a.

m
et

al

R0-N. Virgina

$
0
.0

3
8
5

$
0
.0

7
7

$
0
.1

5
4

$
0
.3

8
4

$
0
.7

6
8

$
1
.4

4
6
4

$
2
.1

6
9
6

$
2
.4

6
4

$
5
.4

2
4

$
6
.1

4
4

$
8
.2

9
4
4

R0- Ohio

$
0

.0
3
8
5

$
0

.0
7
7

$
0

.1
5
4

$
0

.3
8
4

$
0

.7
6
8

$
1

.4
4
6
4

$
2

.1
6
9
6

$
2

.4
6
4

$
5

.4
2
4

$
6

.1
4
4

$
8

.2
9
4
4

R0- N.

California

$
0
.0

4
4
8

$
0
.0

8
9
6

$
0
.1

7
9
2

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

9
6

$
2
.5

4
4

$
2
.8

6
7
2

$
6
.3

8
4

$
7
.1

6
8

$
9
.6

7
6
8

R0- Oregon

$
0
.0

3
8
5

$
0
.0

7
7

$
0
.1

5
4

$
0
.3

8
4

$
0
.7

6
8

$
1
.4

4
6
4

$
2
.1

6
9
6

$
2
.4

6
4

$
5
.4

2
4

$
6
.1

4
4

$
8
.2

9
4
4

R0- Canada

Central

$
0
.0

4
2
8

$
0
.0

8
5
6

$
0
.1

7
1
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

3
9
2

$
6
.0

4
8

$
6
.8

4
8

$
9
.2

4
4
8

132

This table extends and complements the information presented in

Appendix 7: 0.2 Table 2.

R0- Canada

west (Calgary)

$
0
.0

4
2
8

$
0
.0

8
5
6

$
0
.1

7
1
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

3
9
2

$
6
.0

4
8

$
6
.8

4
8

$
8
.3

9
2
2

R0- AWS

GovCloud (US-

East)

$
0
.0

4
8
4

$
0
.0

9
6
8

$
0
.1

9
3
6

$
0
.4

8
4

$
0
.9

6
8

$
1
.7

1
6
8

$
2
.5

6
4
4

$
3
.0

9
7
6

$
6
.8

6
4

$
7
.7

4
4

$
9
.1

4
2
8

R0- AWS

GovCloud (US-

West)

$
0
.0

4
8
4

$
0
.0

9
6
8

$
0
.1

9
3
6

$
0
.4

8
4

$
0
.9

6
8

$
1
.7

1
6
8

$
2
.5

6
4
4

$
3
.0

9
7
6

$
6
.8

6
4

$
7
.7

4
4

$
9
.3

6
4
8

R1- São Paulo

$
0
.0

6
1

2

 $
0
.1

2
2

4

 $
0
.2

4
4

8

 $
0
.6

1
2

 $
1
.2

2
4

 $
2
.3

0
4

 $
3
.4

5
6

 $
3
.9

1
6

8

 $
8
.6

4

 $
9
.7

9
2

 $
1
3
.2

1
9
2

R2- Frankfurt

$
0
.0

4
6

$
0
.0

9
2

$
0
.1

8
4

$
0
.4

6

$
0
.9

2

$
1
.7

4
4

$
2
.6

1
6

$
2
.9

4
4

$
6
.5

2
8

$
7
.3

6

$
9
.9

3
6

R2- Ireland

$
0
.0

4
3

$
0
.0

8
6

$
0
.1

7
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

5
2

$
6
.0

4
8

$
6
.8

4
8

$
9
.2

4
4
8

R2- London

$
0
.0

4
4
4

$
0
.0

8
8
8

$
0
.1

7
7
6

$
0
.4

4
4

$
0
.8

8
8

$
1
.6

7
6
8

$
2
.5

1
5
2

$
2
.8

4
1
6

$
6
.2

8
8

$
7
.1

0
4

$
9
.5

9
0
4

R2- Milan

$
0
.0

4
4
8

$
0
.0

8
9
6

$
0
.1

7
9
2

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

8
9
6

$
2
.5

3
4
4

$
2
.8

6
7
2

$
6
.3

3
6

$
7
.1

6
8

$
9
.6

7
6
8

R2- Paris

$
0
.0

4
5

$
0
.0

9

$
0
.1

8

$
0
.4

4
8

$
0
.8

9
6

$
1
.6

8
9
6

$
2
.5

3
4
4

$
2
.8

8

$
6
.3

3
6

$
7
.1

6
8

$
9
.6

7
6
8

R2- Spain

$
0
.0

4
3

$
0
.0

8
6

$
0
.1

7
2

$
0
.4

2
8

$
0
.8

5
6

$
1
.6

1
2
8

$
2
.4

1
9
2

$
2
.7

5
2

$
6
.0

4
8

$
7
.1

7
2

$
9
.6

8
6
5

R2- Stockholm

$
0
.0

4
1

$
0
.0

8
2

$
0
.1

6
4

$
0
.4

0
8

$
0
.8

1
6

$
1
.5

3
6

$
2
.3

0
4

$
2
.6

2
4

$
5
.7

6

$
6
.5

2
8

$
9
.5

9
8
0

133

This table extends and complements the information presented in

Appendix 7: 0.2 Table 2.

R2- Zurich

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.2

0
2
4

$
0
.5

0
6

$
1
.0

1
2

$
1
.9

1
8
4

$
2
.8

7
7
6

$
3
.2

3
8
4

$
7
.1

8
1

$
8
.0

9
6

$
9
.6

8
7
8

R3- Hong Kong

$
0
.0

5
3

$
0
.1

0
6

$
0
.2

1
2

$
0
.5

2
8

$
1
.0

5
6

$
1
.9

8
4

$
2
.9

7
6

$
3
.3

9
2

$
7
.4

4

$
8
.4

4
8

$
9
.7

1
3
6

R3- Hyderabad

$
0
.0

2
5
3

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.4

0
4

$
0
.8

0
8

$
0
.9

6
6
4

$
1
.4

4
9
6

$
1
.6

1
9
2

$
5
.8

5
6

$
6
.4

6
4

$
5
.3

3
2
8

R3-Jakarta

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

0
8

$
2
.7

1
2

$
3
.0

7
2

$
6
.7

6
8

$
7
.6

8

$
5
.3

3
2

8

R3- Melbourne

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

2
4

$
2
.7

3
6

$
3
.0

7
2

$
6
.8

1
6

$
7
.6

8

$
1
0
.3

6
8

R3- Mumbai

$
0
.0

2
5
3

$
0
.0

5
0
6

$
0
.1

0
1
2

$
0
.4

0
4

$
0
.8

0
8

$
0
.9

6
6
4

$
1
.4

4
9
6

$
1
.6

1
9
2

$
5
.8

5
6

$
6
.4

6
4

$
5
.3

3
2
8

R3- Osaka

$
0
.0

4
9
6

$
0
.0

9
9
2

$
0
.1

9
8
4

$
0
.4

9
6

$
0
.9

9
2

$
1
.8

6
8
8

$
2
.8

0
3
2

$
3
.1

7
4
4

$
7
.0

0
8

$
7
.9

3
6

$
1
0
.7

1
3
6

R3- Seoul

$
0
.0

4
7

$
0
.0

9
4

$
0
.1

8
8

$
0
.4

7
2

$
0
.9

4
4

$
1
.7

7
9
2

$
2
.6

6
8
8

$
3
.0

0
8

$
6
.6

7
2

$
7
.5

5
2

$
1
0
.8

9
4
4

R3- Singapore

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

0
8

$
2
.7

1
2

$
3
.0

7
2

$
6
.7

6
8

$
7
.6

8

$
1
0
.3

6
8

R3- Sydney

$
0
.0

4
8

$
0
.0

9
6

$
0
.1

9
2

$
0
.4

8

$
0
.9

6

$
1
.8

2
4

$
2
.7

3
6

$
3
.0

7
2

$
6
.8

1
6

$
7
.6

8

$
1
0
.3

6
8

R3- Tokyo

$
0
.0

4
9
5

$
0
.0

9
9

$
0
.1

9
8

$
0
.4

9
6

$
0
.9

9
2

$
1
.8

7
2

$
2
.8

0
8

$
3
.1

6
8

$
7
.0

0
8

$
7
.9

3
6

$
1
0
.7

1
3
6

134

R4- Cape town

$
0
.0

5
0
8

$
0
.1

0
1
6

$
0
.2

0
3
2

$
0
.5

0
8

$
1
.0

1
6

$
1
.9

2

$
2
.8

8

$
3
.2

5
1
2

$
7
.2

0

$
8
.1

2
8

$
9
.5

1
3

R4- Bahrain

$
0
.0

4
7

$
0
.0

9
4

$
0
.1

8
8

$
0
.4

7
1

$
0
.9

4
2

$
1
.7

7
4
1

$
2
.6

6
1
1

$
3
.0

0
8

$
6
.6

5
3

$
8
.4

4
8

$
9
.5

1
0

R4- Israel

$
0
.0

4
5
2

$
0
.0

9
0
3

$
0
.1

8
0
6

$
0
.4

4
9

$
0
.8

9
9

$
1
.6

9
3
4

$
2
.5

4
0
2

$
2
.8

8
9
6

$
6
.3

5

$
7
.1

9
0
4

$
8
.2

5
1
2

R4- UAE

$
0
.0

4
7
3

$
0
.0

9
4
6

$
0
.1

8
9
2

$
0
.4

7
1

$
0
.9

4
2

$
1
.7

7
2
8

$
2
.6

5
9
2

$
3
.0

2
7
2

$
6
.6

5
3

$
7
.5

3
2
8

$
8
.4

1
1
7

Appendix 7: 0.3 Table 3. Delay matrix.

Geographic-

Regions

R0 R1 R2 R3 R4 R5

R0 3,27

 ms

117,23

ms

94,24

ms

190,95

ms

227,74

ms

199,16

ms

R1 117,23

ms

2,63

ms

205,77

ms

299,86

ms

341,07

ms

312,32

ms

R2 94,24

ms

205,77

ms

4,99

ms

128,66

ms

155,91

ms

248,86

ms

R3 190,95

ms

299,86

ms

128,66

ms

3,51

ms

270,64

ms

153,24

ms

R4 227,74

ms

341,07

ms

155,91

ms

270,64

ms

8,1 ms 415

ms

R5 199,16

ms

312,32

ms

248,86

ms

153,24

ms

415

ms

4,42

ms

Appendix 7: 0.4 Table 4. Fundamental Data Center.

31-AWS

(DC-

single

instance)

Geographic

Regions
Arch OS VMM

Data

transfer

cost

Physical

HW-

units

DC1 R0-N.virgina X86 Linux Xen 0,02 1

DC2 R0- Ohio X86 Linux Xen 0,02 1

DC3 R0-N.California X86 Linux Xen 0,02 1

DC4 R0- Oregon X86 Linux Xen 0,02 1

DC5 R0- Canada Central X86 Linux Xen 0,02 1

DC6 R0-Canada west(Calgary) X86 Linux Xen 0,02 1

DC7 R0-AWS GovCloud(US-

East)

X86 Linux Xen 0,02 1

DC8 R0-AWS GovCloud(US-

West)

X86 Linux Xen 0,02 1

DC9 R1- São Paulo X86 Linux Xen 0,02 1

135

DC10 R2- Frankfurt X86 Linux Xen 0,02 1

DC11 R2- Ireland X86 Linux Xen 0,02 1

DC12 R2- London X86 Linux Xen 0,02 1

DC13 R2- Milan X86 Linux Xen 0,02 1

DC14 R2- Paris X86 Linux Xen 0,02 1

DC15 R2- Spain X86 Linux Xen 0,02 1

DC16 R2- Stockholm X86 Linux Xen 0,02 1

DC17 R2- Zurich X86 Linux Xen 0,02 1

DC18 R3- Hong Kong X86 Linux Xen 0,02 1

DC19 R3- Hyderabad X86 Linux Xen 0,02 1

DC20 R3-Jakarta X86 Linux Xen 0,02 1

DC21 R3- Melbourne X86 Linux Xen 0,02 1

DC22 R3- Mumbai X86 Linux Xen 0,02 1

DC23 R3- Osaka X86 Linux Xen 0,02 1

DC24 R3- Seoul X86 Linux Xen 0,02 1

DC25 R3- Singapore X86 Linux Xen 0,02 1

DC26 R3- Sydney X86 Linux Xen 0,02 1

DC27 R3- Tokyo X86 Linux Xen 0,02 1

DC28 R4- Cape town X86 Linux Xen 0,02 1

DC29 R4- Bahrain X86 Linux Xen 0,02 1

DC30 R4- Israel X86 Linux Xen 0,02 1

DC31 R4- UAE X86 Linux Xen 0,02 1

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class specifications.

11-AWS-EC2

Instances

Data Centers Utilized for Execution within

the EC2 Class Specification

of

DCs

of

VM

VM policy

M6g.medium 31 1 Time-Shared

M6g.large 31 1 Time-Shared

M6g.xlarge 31 1 Time-Shared

M5.2xlarge 31 1 Time-Shared

M5.4xlarge 31 1 Time-Shared

M6gd.8xlarg 31 1 Time-Shared

M6gd.12xlarge 31 1 Time-Shared

M6g.metal 31 1 Time-Shared

M5d.metal 31 1 Time-Shared

M6i.metal 31 1 Time-Shared

M6a.metal 31 1 Time-Shared

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods.

31-AWS

(DC-

single

instance)

Geographic

Regions

EC2 Cost ($) Physical

HW-units

DC1 R0-N.virgina M6g.medium 0.0385 1

DC2 R0- Ohio M6g.xlarge 0.154 1

136

DC3 R0-N.California M5.4xlarge 0.896 1

DC4 R0- Oregon M6gd.12xlarge 2.1696 1

DC5 R0- Canada Central M5d.metal 6.048 1

DC6 R0-Canada west(Calgary) M6a.metal 8.3922 1

DC7 R0-AWS GovCloud(US-

East)

M6g.large 0.0968 1

DC8 R0-AWS GovCloud(US-

West)

M5.2xlarge 0.484 1

DC9 R1- São Paulo M6gd.8xlarg 2.304 1

DC10 R2- Frankfurt M6g.metal 2.944 1

DC11 R2- Ireland M6i.metal 6.848 1

DC12 R2- London M6g.medium 0.0444 1

DC13 R2- Milan M6g.xlarge 0.1792 1

DC14 R2- Paris M5.4xlarge 0.896 1

DC15 R2- Spain M6gd.12xlarge 2.4192 1

DC16 R2- Stockholm M5d.metal 5.76 1

DC17 R2- Zurich M6a.metal 9.6878 1

DC18 R3- Hong Kong M6g.large 0.106 1

DC19 R3- Hyderabad M5.2xlarge 0.404 1

DC20 R3-Jakarta M6gd.8xlarg 1.808 1

DC21 R3- Melbourne M6g.metal 3.072 1

DC22 R3- Mumbai M6i.metal 6.464 1

DC23 R3- Osaka M6g.medium 0.0496 1

DC24 R3- Seoul M6g.xlarge 0.188 1

DC25 R3- Singapore M5.4xlarge 0.96 1

DC26 R3- Sydney M6gd.12xlarge 2.736 1

DC27 R3- Tokyo M5d.metal 7.008 1

DC28 R4- Cape town M6a.metal 9.513 1

DC29 R4- Bahrain M6g.large 0.094 1

DC30 R4- Israel M5.2xlarge 0.449 1

DC31 R4- UAE M6gd.8xlarg 1.7728 1

This MATLAB code serves as a foundational tool for analyzing and improving cloud

resource allocation, playing a crucial role in system enhancement, have demonstrated that

similar to previous examples, the following steps outline the configuration of the trapezoidal

membership function. This continuation ensures a comprehensive understanding of our

approach.

• Data Import and Initialization

This section initializes the FIS to explore the intelligent features built into the (IVCBS),

looked into the complex sorting of VCPU sources, using them as a key example. This strict

method is used the same way for all VM resources and user requests,. This makes sure that

the SLA-level classification is correct and reliable. Moreover, to demonstrate the alignment

of our mathematical model with the trapezoidal membership function, referenced this

approach in the discussion on initializing and depicting the membership function. This

MATLAB code is crucial, serving as a foundational tool for the analysis and enhancement of

cloud resource allocation.

137

Appendix 7:0.7 Figure 1. VCPU Classification code.

clear; close all; CLC; warning off fis = newfis('Classification'); d = xlsread('VCPU.xlsx');

Input-Value = d(:,1); MAX = max(Input-Value);

(fis) and reads input data from an Excel file ('VCPU.xlsx'), extracting the 'Input-Value' column
and determining the maximum value for normalization.

• Defining Membership Functions

pV1 = 1; pV2 = 2; pV3 = 4; pV4 = 8; pV5 = 16 ;

pV6 = 32; pV7 = 48; pV8 = 64; pV9 = 96; pV10 = 128; pV11 = 192 ;

fis = addvar(fis, 'input', 'VCPU', [0 MAX]) ;

fis = addmf(fis, 'input', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ;

fis = addmf(fis, 'input', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ;

fis = addmf(fis, 'input', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ;

fis = addmf(fis, 'input', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ;

fis = addmf(fis, 'input', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]) ;

fis = addvar(fis, 'output', 'VCPU Level', [0 MAX]);

fis = addmf(fis, 'output', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ;

fis = addmf(fis, 'output', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ;

fis = addmf(fis, 'output', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ;

fis = addmf(fis, 'output', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ;

fis = addmf(fis, 'output', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]);

Membership functions (MFs) for the input and output variables are defined using trapezoidal

membership functions (trapmf). These functions categorize the VCPU values into linguistic

variables: Poor, Fair, Good, Very Good, and Excellent.

• Visualization

figure

plotmf(fis, 'input', 1);

This visualizes the trapezoidal membership functions. Finally, the specific MATLAB software

and libraries, along with the parameters and functions examined in the Intelligent Cloud Broker

Validation System, were represented. After the broker finalizes the classification of user

138

requests and SLA resources using the classification algorithm, it then performs precise

matching of the validation results, ensuring that all outcomes equate to 1. This is accomplished

through a specialized matching algorithm. This section delves into both algorithms, showcasing

their crucial role in guaranteeing intelligent SLA selection for executing corresponding user

requests. The following context in this section illustrates both algorithms.

Appendix 7:0.8 Figure 2. Apply the Trapezoidal proposed model of CPU levels.

Appendix 7:0.9 Figure 3. IVCBS-Response time by region (optimize response time

policy).

139

Appendix 7:1.0 Figure 4. IVCBS-Response time by region (reconfigure dynamically

policy).

Appendix 7:1.1 Figure 5. IVCBS DC- Request Servicing Time (optimize response time

policy).

140

Appendix 7:1.2 Figure 6. IVCBS DC- Request Servicing Time (dynamic reconfiguration

policy).

Appendix 7:1.3 Figure 7. Routing strategy by the dynamic reconfigurations policy.

Appendix 7:1.4 Figure 8. Routing strategy by the optimized response time policy.

Appendix 7:1.5 Figure 9. Traditional-Response time by region (optimize response time

policy).

141

Appendix 7:1.6 Figure 10. Traditional-Response time by region (reconfigure

dynamically policy).

Appendix 7:1.7 Figure 11. Traditional DC- Request Servicing Time (optimize response

time policy).

Appendix 7:1.8 Figure 12. Traditional DC- Request Servicing Time (dynamic

reconfiguration policy).

142

Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven

Approach

Appendix 8:0.1 Figure 1. Fuzzy rule base.

Appendix 8:0.2 Table 1. User base configuration.

User Bases Geographic-

Regions

Requests-

per users

per Hour

Peak Hours

(GMT)

Avg

peak

users

Avg

Off-

peak

users

Start End

UB1 :1000 R0: North

America

60 12 15 800 100

UB2 :1000 R1: South

America

60 14 17 1000 100

UB3 :1000 R2: Europe 60 19 22 1000 100

UB4 :1000 R3: Asia 60 0 3 700 100

UB5 :1000 R4: Africa and

middle east

60 20 23 900 100

UB6 :1000 R5: Africa 60 8 11 1000 100

UB7:1000 R0: North

America

60 6 9 1000 100

UB8:1000 R1: South

America

60 12 15 500 100

UB9 :1000 R2: Europe 60 18 21 750 100

UB10 :1000 R3: Asia 60 7 9 1000 100

143

Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center.

R
eq

u
es

t

P
ac

k
et

S
iz

e
(B

y
te

)

U
se

r
fa

ct
o
r

in
 U

B
S

R
eq

u
es

t

fa
ct

o
r

in

D
C

E
x
ec

u
ta

b
le

re
q
u
es

t

(b
y
te

)

L
o
ad

b
al

an
ce

A
lg

o
ri

th
m

B
ro

k
er

p
o
li

cy

5
0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

ti
m

e.

1
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

 t
im

e.

1
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e

re
sp

o
n
se

 t
im

e.

1
5
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e
re

sp
o
n
se

ti
m

e.

2
0
0
,0

0
0
,0

0
0
,0

0
0

1
0
0
0

1
0
0
0

1
0
0
0
,0

0
0

T
h
ro

tt
li

n
g

al
g
o
ri

th
m

.

O
p
ti

m
iz

e
re

sp
o
n
se

ti
m

e.

144

Appendix 8:0.4 Figure 2. Simulation process.

Appendix 8:0.5 Figure 3. Surface Viewer for Fuzzy Model Output.

145

References

[1] Aravinth, S. S., Krishnan, A. S. R., Ranganathan, R., Sasikala, M., Kumar, M. S., & Thiyagarajan,
R. (2024). Cloud Computing—Everything as a Cloud Service in Industry 4.0. In Digital
Transformation: Industry 4.0 to Society 5.0 (pp. 103-121). Singapore: Springer Nature Singapore.

[2] Qazi, F., Kwak, D., Khan, F. G., Ali, F., & Khan, S. U. (2024). Service Level Agreement in cloud
computing: Taxonomy, prospects, and challenges. Internet of Things, 101126.

[3] Sissodia, R., Rauthan, M. S., & Barthwal, V. (2024). Service Level Agreements (SLAs) and Their
Role in Establishing Trust. In Analyzing and Mitigating Security Risks in Cloud Computing (pp.
182-193). IGI Global.

[4] Fernandes, S. (2017). Performance evaluation for network services, systems and protocols (pp. 1-
175). Heidelberg: Springer.

[5] Bose, R., Sengupta, S., & Roy, S. (2023). Interpreting SLA and related nomenclature in terms of
Cloud Computing: a layered approach to understanding service level agreements in the context of
cloud computing. Lambert Academic Publishing.

[6] Shan, L., Sun, L., & Rezaeipanah, A. (2024). Towards a novel service broker policy for choosing
the appropriate data center in cloud environments. Computer Communications, 107939.

[7] Mendel, J., & Wu, D. (2010). Perceptual computing: aiding people in making subjective judgments.
John Wiley & Sons.

[8] Tallón-Ballesteros, A. J., & Beltrán-Barba, R. (Eds.). (2023). Fuzzy Systems and Data Mining IX:
Proceedings of FSDM 2023 (Vol. 378). IOS Press.

[9] Wickremasinghe, B., Calheiros, R. N., & Buyya, R. (2010, April). Cloudanalyst: A cloudsim-based
visual modeller for analysing cloud computing environments and applications. In 2010 24th IEEE
international conference on advanced information networking and applications (pp. 446-452). IEEE.

[10] Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: An environment for performance evaluation
of edge computing systems. Transactions on Emerging Telecommunications Technologies 29(11),
3493 (2018).

[11] Rampérez, V., Soriano, J., Lizcano, D., Aljawarneh, S., & Lara, J. A. (2022). From SLA to vendor‐
neutral metrics: An intelligent knowledge‐based approach for multi‐cloud SLA‐based
broker. International Journal of Intelligent Systems, 37(12), 10533-10575.

[12] Malla, P. A., & Sheikh, S. (2023). Analysis of QoS aware energy‐efficient resource provisioning
techniques in cloud computing. International Journal of Communication Systems, 36(1), e5359.

[13] Palumbo, F., Aceto, G., Botta, A., Ciuonzo, D., Persico, V., & Pescapé, A. (2021). Characterization
and analysis of cloud-to-user latency: The case of Azure and AWS. Computer Networks, 184,
107693.

[14] Choudhary, R., & Sharma, P. (2023). Data Transmission Reliability in Distributed Cloud
Environments: Challenges and Solutions. Future Generation Computer Systems, 147, 300-315.

[15] Zhang, C., Wang, Y., Lv, Y., Wu, H., & Guo, H. (2019). An Energy and SLA‐Aware Resource
Management Strategy in Cloud Data Centers. Scientific Programming, 2019(1), 3204346.

[16] Navandar, R. K. (2024). Enhancing Cloud Computing Environments with AI-Driven Resource
Allocation Models. Advances in Nonlinear Variational Inequalities, 27(3), 541-557.

[17] Rakib, A., & Uddin, I. (2019). An efficient rule-based distributed reasoning framework for
resource-bounded systems. Mobile Networks and Applications, 24(1), 82-99.

[18] Faiz, M., & Daniel, A. K. (2024). A multi-criteria cloud selection model based on fuzzy logic
technique for QoS. International Journal of System Assurance Engineering and Management, 15(2),
687-704.

[19] Reyes-García, C. A., & Torres-Garcia, A. A. (2022). Fuzzy logic and fuzzy systems. In Biosignal
Processing and Classification Using Computational Learning and Intelligence (pp. 153-176).
Academic Press.

[20] Kaur, H., & Gargrish, S. (2024). DRAP-CPU: a novel VM migration approach through a dynamic
prioritized resource allocation strategy. Microsystem Technologies, 1-12.

[21] Buyya, R., Ilager, S., & Arroba, P. (2024). Energy‐efficiency and sustainability in new generation
cloud computing: A vision and directions for integrated management of data centre resources and
workloads. Software: Practice and Experience, 54(1), 24-38.

[22] Al-E'mari, S., Sanjalawe, Y., Al-Daraiseh, A., Taha, M. B., & Aladaileh, M. (2024). Cloud
Datacenter Selection Using Service Broker Policies: A Survey. CMES-Computer Modeling in
Engineering & Sciences, 139(1).

146

[23] Kavis, M. (2014). Architecting the cloud: design decisions for cloud computing service models
(SaaS, PaaS, and IaaS). John Wiley & Sons, Inc., Hoboken, New Jersey.

[24] Ikram, M. A., & Hussain, F. K. (2018). Software as a service (saas) service selection based on
measuring the shortest distance to the consumer’s preferences. In Advances in Internet, Data & Web
Technologies: The 6th International Conference on Emerging Internet, Data & Web Technologies
(EIDWT-2018) (pp. 403-415). Springer International Publishing.

[25] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., & Leaf, D. (2011). NIST cloud
computing reference architecture. NIST special publication, 500(2011), 1-28.

[26] Wang, L., Ranjan, R., Chen, J., & Benatallah, B. (Eds.). (2011). Cloud computing: methodology,
systems, and applications. CRC press.

[27] Rountree, D., & Castrillo, I. (2013). The basics of cloud computing: Understanding the
fundamentals of cloud computing in theory and practice. Newnes.

[28] Cloud, H. (2011). The nist definition of cloud computing. National institute of science and
technology, special publication, 800(2011), 145.

[29] Chandrasekaran, K. (2014). Essentials of cloud computing. CrC Press.
[30] Kingsley, M. S. (2023). Cloud Technologies and Services: Theoretical Concepts and Practical

Applications. Springer Nature.
[31] L'Esteve, R. C. (2023). The cloud leader's handbook: strategically innovate, transform, and scale

organizations.
[32] Wagdy, M., Babulak, E., & Al-Dabass, D. (2021). Network function virtualization over cloud-

cloud computing as business continuity solution. Intechopen, Published: July 14th.
[33] Hiran, K. K., Doshi, R., Fagbola, T., & Mahrishi, M. (2019). Cloud computing: master the

concepts, architecture and applications with real-world examples and case studies. Bpb Publications.
[34] Amankwah, R., Asianoa, R., & Birago, B. Virtualization and Cloud Computing. International

Journal of Computer Applications, 975, 8887.
[35] Kocaleva, M., Zlatanovska, B., Karamazova Gelova, E., & Zlatev, Z. (2024). Cloud computing and

virtualization: can cloud computing exist separately from virtualization?.
[36] Furht, B., & Escalante, A. (2010). Handbook of cloud computing (Vol. 3). New York: springer.
[37] Zerwas, J., Györgyi, C., Blenk, A., Schmid, S., & Avin, C. (2023). Duo: A high-throughput

reconfigurable datacenter network using local routing and control. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(1), 1-25.

[38] Haddadou, K., & Pujolle, G. (2024). Cloud et Edge Networking. ISTE Group.
[39] Dutt, D. G. (2019). Cloud native data center networking: architecture, protocols, and tools. O'Reilly

Media.
[40] Dab, B., Fajjari, I., Belabed, D., & Aitsaadi, N. (2021). Architectures of Data Center Networks:

Overview. Management of Data Center Networks, 1-27.
[41] Alkhatib, A., Shaheen, A., & Albustanji, R. N. (2024). A Comparative Analysis of Cloud

Computing Services: AWS, Azure, and GCP. International Journal of Computing and Digital
Systems, 16(1), 1-23.

[42] Borra, P. (2024). Comparison and Analysis of Leading Cloud Service Providers (AWS, Azure and
GCP). International Journal of Advanced Research in Engineering and Technology (IJARET), 15(3).

[43] Buyya, R., Broberg, J., & Goscinski, A. M. (Eds.). (2010). Cloud computing: Principles and
paradigms. John Wiley & Sons.

[44] Nicolazzo, S., Nocera, A., & Pedrycz, W. (2024). Service Level Agreements and Security SLA: A
Comprehensive Survey. arXiv preprint arXiv:2405.00009.

[45] Ludwig, H. (2003, December). Web services QoS: external SLAs and internal policies or: how do
we deliver what we promise?. In Fourth International Conference on Web Information Systems
Engineering Workshops, 2003. Proceedings. (pp. 115-120). IEEE.

[46] D. Chaudhary and B. Kumar, “Cost optimized Hybrid Genetic-Gravitational Search Algorithm for
load scheduling in Cloud Computing,” Appl. Soft Compute. J., vol. 83, 2019.

[47] S. Mathew and J. Varia, “Overview of amazon web services,” Amazon Whitepapers, vol. 105, no.1,
p. 22, 2014.

[48] Ben-Yehuda, O. A., Ben-Yehuda, M., Schuster, A., & Tsafrir, D. The Rise of RaaS: The Resource-
as-a-Service Cloud In the RaaS cloud, virtual machines trade in fine-grain resources on the fly.

[49] Mishra, P. (2023). Advanced AWS Services. In Cloud Computing with AWS: Everything You
Need to Know to be an AWS Cloud Practitioner (pp. 247-277). Berkeley, CA: Apress.

[50] Kadaskar, H. R., & Kamthe, V. R. (2024). An overview of AWS. International Journal of Scientific
Research in Modern Science and Technology, 3(7), 22-30.

147

[51] Patibandla, K. R. (2024). Design and Create VPC in AWS. Journal of Artificial Intelligence
General science (JAIGS) ISSN: 3006-4023, 1(1), 273-282.

[52] Talluri, S., & Makani, S. T. (2023). Managing Identity and Access Management (IAM) in Amazon
Web Services (AWS). Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-159. DOI:
doi. org/10.47363/JAICC/2023 (2), 147, 2-5.

[53] Amazon Web Services. (2024, June 27). AWS Well-Architected Framework: Cost Optimization
Pillar. https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html.

[54] Amazon Web Services. (2024). AWS account management: Reference guide.
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html.

[55] Hunter, T., & Porter, S. (2018). Google Cloud Platform for developers: build highly scalable cloud
solutions with the power of Google Cloud Platform. Packt Publishing Ltd.

[56] Borra, P. (2024). A Survey of Google Cloud Platform (GCP): Features, Services, and
Applications. International Journal of Advanced Research in Science, Communication and
Technology (IJARSCT), 4(3), 191-199.

[57] Haq, M. N. U. (2023). CLOUD SERVICE PROVIDERS AND THE ECOSYSTEM (Doctoral
dissertation, School of Science and Technology, Glocal University).

[58] Deshpande, A., Kumar, M., & Chaudhari, V. (2020). Hands-On Artificial Intelligence on Google
Cloud Platform: Build Intelligent Applications Powered by TensorFlow, Cloud AutoML, BigQuery,
and Dialogflow. Packt Publishing Ltd.

[59] Google Cloud. (2024). Compute Engine: Documentation, guides - Regions and zones.
https://cloud.google.com/compute/docs/regions-zones.

[60] BlueXP by NetApp. (2021). Google Cloud pricing: The complete guide.
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-pricing-the-complete-guide.

[61] Andersson, J. C. (2023). Learning Microsoft Azure. " O'Reilly Media, Inc.".
[62] Boneder, S. (2023). Evaluation and comparison of the security offerings of the big three cloud

service providers Amazon Web Services, Microsoft Azure and Google Cloud Platform (Doctoral
dissertation, Technische Hochschule Ingolstadt).

[63] Falck, O., & Wass, L. (2024). Azure App Service Plan Optimization: Cloud Resource optimization.
[64] Ascensão, P., Neto, L. F., Velasquez, K., & Abreu, D. P. (2024, June). Assessing Kubernetes

Distributions: A Comparative Study. In 2024 IEEE 22nd Mediterranean Electrotechnical Conference
(MELECON) (pp. 832-837). IEEE.

[65] Soueidi, C. (2015). Microsoft Azure Storage Essentials. Packt Publishing Ltd.
[66] Ramesh, R. S. (2024). Scalable Systems and Software Architectures for High-Performance

Computing on cloud platforms. arXiv preprint arXiv:2408.10281.
[67] Mäenpää, J. (2009, April). Cloud computing with the Azure platform. In TKK T-110.5190 Seminar

on Internet Working.
[68] Borra, P. (2024). Microsoft Azure Networking: Empowering Cloud Connectivity and

Security. International Journal of Advanced Research in Science, Communication and Technology
(IJARSCT) Volume, 4.

[69] Borra, P. (2024). Advancing Data Science and AI with Azure Machine Learning: A Comprehensive
Review. International Journal of Research Publication and Reviews, 5(6), 1825-1831.

[70] Borra, P. (2024). Impact and Innovations of Azure IoT: Current Applications, Services, and Future
Directions. International Journal of Recent Technology and Engineering (IJRTE) ISSN, 2277-3878.

[71] Sabharwal, N., Barua, S., Anand, N., & Aggarwal, P. (2019). Developing Cognitive Bots Using
the IBM Watson Engine: Practical, Hands-on Guide to Developing Complex Cognitive Bots Using
the IBM Watson Platform. Apress.

[72] Vehniä, V. J. (2020). Implementing Azure Active Directory Integration with an Existing Cloud
Service.

[73] Microsoft. (2024, March 20). Azure geographies: Availability zones overview.
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview?tabs=azure-cli.

[74] Microsoft. (2024). Microsoft Azure official site: Pricing. https://azure.microsoft.com/en-
us/pricing.

[75] Shukla, S., Hassan, M. F., Tran, D. C., Akbar, R., Paputungan, I. V., & Khan, M. K. (2023).
Improving latency in Internet-of-Things and cloud computing for real-time data transmission: a
systematic literature review (SLR). Cluster Computing, 1-24.

[76] Marinescu, D. C. (2022). Cloud computing: theory and practice. Morgan Kaufmann.

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://cloud.google.com/compute/docs/regions-zones
https://bluexp.netapp.com/blog/gcp-cvo-blg-google-cloud-pricing-the-complete-guide
https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview?tabs=azure-cli
https://azure.microsoft.com/en-us/pricing
https://azure.microsoft.com/en-us/pricing

148

[77] Dang, T. K., Mohan, N., Corneo, L., Zavodovski, A., Ott, J., & Kangasharju, J. (2021, November).
Cloudy with a chance of short RTTs: analyzing cloud connectivity in the internet. In Proceedings of
the 21st ACM Internet Measurement Conference (pp. 62-79).

[78] Selimi, M., Freitag, F., Cerdà‐Alabern, L., & Veiga, L. (2016). Performance evaluation of a
distributed storage service in community network clouds. Concurrency and Computation: Practice
and Experience, 28(11), 3131-3148.

[79] Yadav, R. K., Chattopadhyay, S., Jaidka, P., & Upadhyay, P. (2024, March). Performance Analysis
of Cloud-Assisted Resource Allocation Algorithms in 6G Networks. In 2024 2nd International
Conference on Disruptive Technologies (ICDT) (pp. 1038-1043). IEEE.

[80] Arslan, S., Li, Y., Kumar, G., & Dukkipati, N. (2023). Bolt:{Sub-RTT} Congestion Control for
{Ultra-Low} Latency. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23) (pp. 219-236).

[81] Buyya, R., Yeo, C. S., & Venugopal, S. (2008, September). Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities. In 2008 10th IEEE
international conference on high performance computing and communications (pp. 5-13). Ieee.

[82] Padmanabhan, V. N., & Subramanian, L. (2001, August). An investigation of geographic mapping
techniques for Internet hosts. In Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications (pp. 173-185).

[83] Rak, J. Resilient Routing in Communication Networks: A Systems Perspective. Springer Nature.
[84] Haitjema, M. A. (2013). Delivering Consistent Network Performance in Multi-tenant Data Centers.

Washington University in St. Louis.
[85] McCabe, J. D. (2010). Network analysis, architecture, and design. Elsevier.
[86] Bathini, R., & Vurukonda, N. (2024). A survey to build framework for optimize and secure

migration and transmission of cloud data. Bulletin of Electrical Engineering and Informatics, 13(2),
812-820.

[87] Mark, J., & Bommu, R. (2024). Tackling Environmental Concerns: Mitigating the Carbon
Footprint of Data Transmission in Cloud Computing. Unique Endeavor in Business & Social
Sciences, 3(1), 99-112.

[88] Jin, H., Ibrahim, S., Bell, T., Gao, W., Huang, D., & Wu, S. (2010). Cloud types and
services. Handbook of cloud computing, 335-355.

[89] Hopgood, A. A. (2021). Intelligent systems for engineers and scientists: a practical guide to
artificial intelligence. CRC press.

[90] Le Thi, H. A., Le, H. M., Dinh, T. P., & Nguyen, N. T. (2015). Advanced computational methods
for knowledge engineering. Cham: Springer International Publishing.

[91] Chandrasekaran, E., Anandan, R., Suseendran, G., Balamurugan, S., & Hachimi, H. (2021). Fuzzy
Intelligent Systems: Methodologies, Techniques, and Applications. Scrivener Publishing.
https://www.scrivenerpublishing.com. https://doi.org/10.1002/9781119763437

[92] Shehu, A., & Maraj, A. (2012). Fuzzy logic approach for QoS routing analysis. Fuzzy Logic-
Algorithms, Techniques and Implementations, 149-172.

[93] Nithya, S., Maithili, K., Kumar, T. S., Nethani, S., Sharath, M. N., Gupta, K. G., & Bhuvaneswari,
G. (2024). A fuzzy logic and cross-layered optimization for effective congestion control in wireless
sensor networks to improve efficiency and performance. In MATEC Web of Conferences (Vol. 392,
p. 01145). EDP Sciences.

[94] Huang, H., Wang, Y., Cai, Y., & Wang, H. (2024). A novel approach for energy consumption
management in cloud centers based on adaptive fuzzy neural systems. Cluster Computing, 1-24.

[95] Goel, u., wittie, m. P., claffy, k. C., & le, a. (2015). Survey of end-to-end mobile network
measurement testbeds, tools, and services. Ieee communications surveys & tutorials, 18(1), 105-123.

[96] Mirkovic, d., armitage, g., & branch, p. (2018). A survey of round-trip time prediction systems.
Ieee communications surveys & tutorials, 20(3), 1758-1776.

[97] GeeksforGeeks. (2023, April 13). What is RTT (Round-Trip Time)? GeeksforGeeks.
https://www.geeksforgeeks.org/what-is-rttround-trip-time.

[98] Klir, g. J., & yuan, b. (1996). Fuzzy sets and fuzzy logic: theory and applications. Possibility theory
versus probab. Theory, 32(2), 207-208.https://doi.10.5860/choice.33-2786.

[99] Pedrycz, w. (1994). Why triangular membership functions? Fuzzy sets and systems, 64(1), 21-30.
Https://doi.org/10.1016/0165-0114(94)90003-5

[100] Baliyan, N., & Kumar, S. (2013, October). Quality assessment of software as a service on cloud
using fuzzy logic. In 2013 IEEE International Conference on Cloud Computing in Emerging Markets
(CCEM) (pp. 1-6). IEEE. https://doi: 10.1109/CCEM.2013.6684439

https://www.scrivenerpublishing.com/
https://doi.org/10.1002/9781119763437
https://www.geeksforgeeks.org/what-is-rttround-trip-time.
https://doi.org/10.1016/0165-0114(94)90003-5
https://doi.org/10.1109/CCEM.2013.6684439

149

[101] Alhamad, M., Dillon, T., & Chang, E. (2011). A trust-evaluation metric for cloud
applications. International Journal of Machine Learning and Computing, 1(4), 416. https://doi:
10.7763/IJMLC. 2011.V1.62

[102] Xiaoyong, Y., Ying, L., Tong, J., Tiancheng, L., & Zhonghai, W. (2015, July). An analysis on
availability commitment and penalty in cloud sla. In 2015 IEEE 39th Annual Computer Software
and Applications Conference (Vol. 2, pp. 914-919). IEEE. https://doi:10.1109/COMPSAC.2015.39

[103] Kihuya, W. B., Otieno, C., & Rimiru, R. Analysis of Computer Network Quality of Experience
Using Fuzzy Logic Model: A Survey. https://doi:10.9790/1813-0804028596

[104] Al Moteri, M. A. (2017). Decision Support for Shared Responsibility of Cloud Security Metrics.
[105] Abery, B., Bonner, M., Fossum, P., Koch, T., Montie, J., Nordness, K., ... & Vandercook, T.

(1998). The Shared Responsibility Framework of Social Interaction for Collective Investment:
Introducing a Model To Enhance School Improvement.

[106] Qiqing, F., Xiaoming, P., Qinghua, L., & Yahui, H. (2009, May). A global qos optimizing web
services selection algorithm based on moaco for dynamic web service composition. In 2009
International forum on information technology and applications (Vol. 1, pp. 37-42). IEEE.
https://doi: 10.1109/IFITA.2009.91

[107] Tran, V. X., & Tsuji, H. (2008, October). QoS based ranking for web services: Fuzzy approaches.
In 2008 4th international conference on next generation web services practices (pp. 77-82). IEEE.
https://doi: 10.1109/NWeSP.2008.41

[108] Patel, P., Ranabahu, A. H., & Sheth, A. P. (2009). Service level agreement in cloud computing.
[109] Alhamad, M., Dillon, T., & Chang, E. (2010, April). Conceptual SLA framework for cloud

computing. In 4th IEEE international conference on digital ecosystems and technologies (pp. 606-
610). IEEE. https://doi:10.1109/DEST.2010.5610586

[110] Qiu, M. M., Zhou, Y., & Wang, C. (2013, June). Systematic analysis of public cloud service level
agreements and related business values. In 2013 IEEE International Conference on Services
Computing (pp. 729-736). IEEE. https://doi: 10.1109/SCC.2013.24

[111] Brunnström, K., Beker, S. A., De Moor, K., Dooms, A., Egger, S., Garcia, M. N., ... & Zgank, A.
(2013). Qualinet white paper on definitions of quality of experience.

[112] Baset, S. A. (2012). Cloud SLAs: present and future. ACM SIGOPS Operating Systems
Review, 46(2), 57-66. https://doi.org/10.1145/2331576.2331586

[113] Godhrawala, H., & Sridaran, R. (2023). Apriori Algorithm Based Approach for Improving QoS
and SLA Guarantee in IaaS Clouds Using Pattern-Based Service-Oriented Architecture. SN
Computer Science, 4(5), 700.

[114] Akbari-Moghanjoughi, A., Amazonas, J. R. D. A., Santos-Boada, G., & Solé-Pareta, J. (2023).
Service level agreements for communication networks: A survey. arXiv preprint arXiv:2309.07272.

[115] Saqib, M., Elbiaze, H., & Glitho, R. (2024). Adaptive In-Network Traffic Classifier: Bridging the
Gap for Improved QoS by Minimizing Misclassification. IEEE Open Journal of the Communications
Society.

[116] Bauer, E., & Adams, R. (2012). Reliability and availability of cloud computing. John Wiley &
Sons.

[117] Maciel, P. R. M. (2023). Performance, reliability, and availability evaluation of computational
systems, volume I: performance and background. Chapman and Hall/CRC.

[118] Nabi, M., Toeroe, M., & Khendek, F. (2016). Availability in the cloud: State of the art. Journal of
Network and Computer Applications, 60, 54-67. https://doi.org/10.1016/j.jnca.2015.11.014

[119] Toeroe, M., & Tam, F. (Eds.). (2012). Service availability: principles and practice. John Wiley
& Sons.

[120] Hauer, T., Hoffmann, P., Lunney, J., Ardelean, D., & Diwan, A. (2020). Meaningful availability.
In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20) (pp.
545-557).

[121] Hanczewski, S., Stasiak, M., & Weissenberg, M. (2024). High-Accuracy Analytical Model for
Heterogeneous Cloud Systems with Limited Availability of Physical Machine Resources Based on
Markov Chain. Electronics, 13(11), 2161.

[122] Aceto, G., Botta, A., Marchetta, P., Persico, V., & Pescapé, A. (2018). A comprehensive survey
on internet outages. Journal of Network and Computer Applications, 113, 36-63.

[123] Miracle, N. O. (2024). The role of network monitoring and analysis in ensuring optimal network
performance. International Research Journal of Modernization in Engineering Technology and
Science. https://doi. org/10.56726/irjmets59269.

[124] Strauss, J., & Kaashoek, M. F. Estimating Bulk Transfer Capacity.

https://doi.org/10.7763/IJMLC.2011.V1.62
https://doi.org/10.1109/COMPSAC.2015.39
https://doi.org/10.1109/IFITA.2009.91
https://doi.org/10.1109/NWeSP.2008.41
https://doi.org/10.1109/DEST.2010.5610586
https://doi.org/10.1109/SCC.2013.24
https://doi.org/10.1145/2331576.2331586
https://doi.org/10.1016/j.jnca.2015.11.014

150

[125] Ramos, J., del Río, P. S., Aracil, J., & de Vergara, J. L. (2011). On the effect of concurrent
applications in bandwidth measurement speedometers. Computer Networks, 55(6), 1435-1453.

[126] Barney, D. (2024, June 10). 12 network metrics and KPIs you should probably care about.
Network Computing. Retrieved from https://www.networkcomputing.com.

[127] Abts, D., & Kim, J. (2022). High performance datacenter networks: Architectures, algorithms,
and opportunities. Springer Nature.

[128] Schmidt, F. (2015). Heuristic Header Error Recovery for Corrupted Network Packets. Shaker
Verlag.

[129] Kim, D., & Cho, I. H. (1998). An Optimal COG Defuzzification Method for A Fuzzy Logic
Controller. In Soft Computing in Engineering Design and Manufacturing (pp. 401-409). Springer
London.https://doi. DOI:10.1007/978-1-4471-0427-8_44

[130] Regaya, C. B., Farhani, F., Hamdi, H., Zaafouri, A., Chaari, A. "Robust ANFIS vector control of
induction motor drive for high-performance speed control supplied by a photovoltaic generator,"
WSEAS Transactions on Systems and Control, 15(37), pp. 356–365, 2020.
https://doi.org/10.37394/23203.2020.15.37

[131] Tahmasebi, M., Gohari, M., Emami, A. "An autonomous pesticide sprayer robot with a color-
based vision system," International Journal of Robotics and Control Systems, 2(1), pp. 115–123,
2022. https://doi.org/10.31763/ijrcs.v2i1.480

[132] Chakchouk, W., Ben Regaya, C., Zaafouri, A., Sellami, A. "Fuzzy supervisor approach design-
based switching controller for pumping station: Experimental validation," Mathematical Problems in
Engineering, 2017(1), Article ID 3597346, 2017. https://doi.org/10.1155/2017/3597346

[133] Regaya, C. B., Farhani, F., Zaafouri, A., Chaari, A. "High-performance control of IM using
MRAS-fuzzy logic observer," International Journal of Tomography and Simulation, 30(2), pp. 40–
52, 2017. ISSN 0973-7294.

[134] Ben Regaya, C., Zaafouri, A., Chaari, A. "Electric drive control with rotor resistance and rotor
speed observers based on fuzzy logic," Mathematical Problems in Engineering, 2014(1), Article ID
207826, 2014. https://doi.org/10.1155/2014/207826

[135] Sharma, R., Gaur, P., Mittal, A. P. "Design of two-layered fractional order fuzzy logic controllers
applied to robotic manipulator with variable payload," Applied Soft Computing, 47, pp. 565–576,
2016. https://doi.org/10.1016/j.asoc.2016.05.043

[136] Berkachy, R. "Fuzzy Rule-Based Systems," In: The Signed Distance Measure in Fuzzy Statistical
Analysis, Fuzzy Management Methods, Springer, Cham, 2021, pp. 35–45. ISBN 978-3-030-76915-
4 https://doi.org/10.1007/978-3-030-76916-1_3

[137] Zuliana, E., Abadi, A. M. "Sugeno fuzzy inference method and MATLAB application program
for simulation of student performance evaluation in the elementary mathematics learning process,"
International Journal of Advanced Trends in Computer Science and Engineering, 9, pp. 4223–4228,
2020. ISSN 2278-3091. https://doi.org/10.30534/ijatcse/2020/08942020

[138] Petrović, V. M. "Artificial intelligence and virtual worlds–toward human-level AI agents," IEEE
Access, 6, pp. 39976–39988, 2018. https://doi.org/10.1109/ACCESS.2018.2855970

[139] Voskoglou, M. "Fuzzy logic: History, methodology and applications to education," Sumerianz
Journal of Education, Linguistics and Literature, 1(1), pp. 10–18, 2018. ISSN (p): 2617-1732.

[140] Mounika, G., Rajyalakshmi, K., Rajkumar, G. V. S., Sravani, D. "Prediction and optimization of
process parameters using design of experiments and fuzzy logic," International Journal on Interactive
Design and Manufacturing (IJIDeM), 18(4), pp. 2333–2343, 2024. https://doi.org/10.1007/s12008-
023-01446-x

[141] Valdés, L. V. "Methods and elements of graph theory and fuzzy logic for communication network
management," PhD, Universidad de Málaga, 2022.

[142] Lagunes, M. L., Castillo, O., Soria, J. "Optimization of membership function parameters for fuzzy
controllers of an autonomous mobile robot using the firefly algorithm," In: Castillo, O., Melin, P.,
Kacprzyk, J. (eds.) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical
Aspects and Real Applications, Springer, Cham, 2018, pp. 199–206. ISBN 978-3-319-71008-2
https://doi.org/10.1007/978-3-319-71008-2_16

[143] Nadeem, A., Rizvi, A. A., Noor, M. Y. "Applying a higher number of output membership
functions to enhance the precision of a fuzzy system," IEEE Transactions on Emerging Topics in
Computational Intelligence, 1, pp. 1–12, 2024. https://doi.org/10.1109/TETCI.2024.3425309

[144] Ying, H. "Fuzzy Control and Modeling: Analytical Foundations and Applications," Wiley-IEEE
Press, 2000. ISBN 0780334973. https://doi.org/10.1109/9780470544730

https://www.networkcomputing.com/
https://doi.org/10.1007/978-1-4471-0427-8_44
https://doi.org/10.37394/23203.2020.15.37
https://doi.org/10.31763/ijrcs.v2i1.480
https://doi.org/10.1155/2017/3597346
https://doi.org/10.1155/2014/207826
https://doi.org/10.1016/j.asoc.2016.05.043
https://doi.org/10.1007/978-3-030-76916-1_3
https://doi.org/10.30534/ijatcse/2020/08942020
https://doi.org/10.1109/ACCESS.2018.2855970
https://doi.org/10.1007/s12008-023-01446-x
https://doi.org/10.1007/s12008-023-01446-x
https://doi.org/10.1007/978-3-319-71008-2_16
https://doi.org/10.1109/TETCI.2024.3425309
https://doi.org/10.1109/9780470544730

151

[145] Zadeh, L. A. "Fuzzy sets," Information and Control, 8(3), pp. 338–353, 1965.
https://doi.org/10.1016/S0019-9958(65)90241-X

[146] Dubois, D., Prade, H. Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.
ISBN 0-12-222750-6.

[147] Gupta, K., Kumar, P., Upadhyaya, S., Poriye, M., Aggarwal, S. "Fuzzy logic and machine learning
integration: Enhancing healthcare decision-making," International Journal of Computer Information
Systems and Industrial Management Applications, 16(3), pp. 20–20, 2024.

[148] Zheng, Y., Xu, Z., Wu, T., et al. "A systematic survey of fuzzy deep learning for uncertain medical
data," Artificial Intelligence Review, 57, pp. 230, 2024. https://doi.org/10.1007/s10462-024-10871-
7

[149] Herrera, F., Martínez, L. "A 2-tuple fuzzy linguistic representation model for computing with
words," IEEE Transactions on Fuzzy Systems, 8(6), pp. 746–752, 2000.
https://doi.org/10.1109/91.890332

[150] Marín Díaz, G., Galdón Salvador, J. L. "Group decision-making model based on 2-tuple fuzzy
linguistic model and AHP applied to measuring digital maturity level of organizations," Systems,
11(7), p. 341, 2023. https://doi.org/10.3390/systems11070341

[151] Wang, L. X., Mendel, J. M. "Fuzzy basis functions, universal approximation, and orthogonal least-
squares learning," IEEE Transactions on Neural Networks, 3(5), pp. 807–814, 1992.
https://doi.org/10.1109/72.159070

[152] Al-qaysi, Z. T., Albahri, A. S., Ahmed, M. A., Salih, M. M. "Dynamic decision-making
framework for benchmarking brain–computer interface applications: a fuzzy-weighted zero-
inconsistency method for consistent weights and VIKOR for stable rank," Neural Computing and
Applications, 36(17), pp. 10355–10378, 2024. https://doi.org/10.1007/s00521-024-09605-1

[153] Perera, L. P., Carvalho, J. P., Soares, C. G. "Solutions to the failures and limitations of Mamdani
fuzzy inference in ship navigation," IEEE Transactions on Vehicular Technology, 63(4), pp. 1539–
1554, 2013. https://doi.org/10.1109/TVT.2013.2288306

[154] Raju, M. R., Mothku, S. K. "Delay and energy aware task scheduling mechanism for fog-enabled
IoT applications: A reinforcement learning approach," Computer Networks, 224, Article ID 109603,
2023. https://doi.org/10.1016/j.comnet.2023.109603

[155] Pedrycz, W. "Evolvable fuzzy systems: Some insights and challenges," Evolving Systems, 1, pp.
73–82, 2010. https://doi.org/10.1007/s12530-010-9002-1

[156] Kovacic, Z., Bogdan, S. "Fuzzy controller design: theory and applications" [e-book], CRC Press,
2018. ISBN 9781315221144. https://doi.org/10.1201/9781420026504

[157] Dong, T., Li, H., Zhang, Z. "The using effect of fuzzy analytic hierarchy process in project
engineering risk management," Neural Computing and Applications, pp. 1–11, 2023.
https://doi.org/10.1007/s00521-023-09046-2

[158] Seddik, H. M., Rachid, C. "Fuzzy approach and possibility to solve uncertainty weaknesses in
conventional quantitative risk assessment," Soft Computing, 27(10), pp. 6109–6133, 2023.
https://doi.org/10.1007/s00500-023-07960-0

[159] Sahoo, S. K., Goswami, S. S. "A comprehensive review of multiple criteria decision-making
(MCDM) methods: advancements, applications, and future directions," Decision Making Advances,
1(1), pp. 25–48, 2023. https://doi.org/10.31181/dma1120237

[160] He, S. F., Pan, X. H., Wang, Y. M., Zamora, D. G., Martínez, L. "A novel multi-criteria decision-
making framework based on evidential reasoning dealing with missing information from online
reviews," Information Fusion, 106, Article ID 102264, 2024.
https://doi.org/10.1016/j.inffus.2024.102264

[161] Gen, M., Lin, L. "Genetic algorithms and their applications," In: Pham, H. (ed.) Springer
Handbook of Engineering Statistics, Springer Handbooks, Springer, London, 2023, pp. 635–674.
ISBN 978-1-4471-7502-5. https://doi.org/10.1007/978-1-4471-7503-2_33

[162] Guerrero Granados, B., Quintero M, C. G., Núñez, C. V. "Improved genetic algorithm approach
for coordinating decision-making in technological disaster management," Neural Computing and
Applications, 36(9), pp. 4503–4521, 2024. https://doi.org/10.1007/s00521-023-09218-0

[163] Zadeh, L. A. "Fuzzy logic = computing with words," IEEE Transactions on Fuzzy Systems, 4(2),
pp. 103–111, 1996. https://doi.org/10.1109/91.493904

[164] Mitiku, T., Manshahia, M. S. "Neuro fuzzy inference approach: A survey," International Journal
of Scientific Research in Science, Engineering and Technology, 4(7), pp. 505–519, 2018. Print ISSN:
2395-1990, Online ISSN: 2394-4099.

https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1007/s10462-024-10871-7
https://doi.org/10.1007/s10462-024-10871-7
https://doi.org/10.1109/91.890332
https://doi.org/10.3390/systems11070341
https://doi.org/10.1109/72.159070
https://doi.org/10.1007/s00521-024-09605-1
https://doi.org/10.1109/TVT.2013.2288306
https://doi.org/10.1016/j.comnet.2023.109603
https://doi.org/10.1007/s12530-010-9002-1
https://doi.org/10.1201/9781420026504
https://doi.org/10.1007/s00521-023-09046-2
https://doi.org/10.1007/s00500-023-07960-0
https://doi.org/10.31181/dma1120237
https://doi.org/10.1016/j.inffus.2024.102264
https://doi.org/10.1007/978-1-4471-7503-2_33
https://doi.org/10.1007/s00521-023-09218-0
https://doi.org/10.1109/91.493904

152

[165] Zadeh, L. A., Klir, G. J., Yuan, B. "Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers,"
World Scientific, 1996. ISBN: 978-981-02-2421-9. https://doi.org/10.1142/2895

[166] Hasan, M. H., Jaafar, J., Hassan, M. F. "Fuzzy C-Means and two clusters' centers method for
generating interval type-2 membership function," In: 2016 3rd International Conference on
Computer and Information Sciences (ICCOINS), Kuala Lumpur, Malaysia, 2016, pp. 627–632.
https://doi.org/10.1109/ICCOINS.2016.7783288

[167] Takagi, T., Sugeno, M. "Fuzzy identification of systems and its applications to modeling and
control," IEEE Transactions on Systems, Man, and Cybernetics, 15(1), pp. 116–132, 1985.
https://doi.org/10.1109/TSMC.1985.6313399

[168] Abramowitz, M., Stegun, I. A. (eds.) Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, US Government Printing Office, 1988.
https://doi.org/10.1119/1.15378

[169] Oluborode, K. O. "Adaptive neuro-fuzzy controller for double lane traffic intersections," PhD,
Federal University of Technology Akure, 2021. https://doi.org/10.30534/ijatcse/2020/330942020

[98] Klir, G., Yuan, B. "Fuzzy Sets and Fuzzy Logic," Prentice Hall, New Jersey, 1995. ISBN 0-13-
101171-5.

[170] Simon, M. K. "Probability distributions involving Gaussian random variables: A handbook for
engineers and scientists," Kluwer Academic Publishers, Boston-Dordrecht-London, 2002. ISBN
978-0-387-34657-1.

[171] Miller, S. "Probability and random processes: With applications to signal processing and
communications," Academic Press, 2012. ISBN 978-0-12-386981-4.

[172] Elgendi, M. "PPG signal analysis: An introduction using MATLAB®" [e-book], CRC Press,
2020. ISBN 9780429449581. https://doi.org/10.1201/9780429449581

[173] Ruparelia, N. B. (2023). Cloud computing. Mit Press.
[174] Rao, M. N. (2015). Cloud computing. PHI Learning Pvt. Ltd.
[175] Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z. (2010, September). The characteristics of

cloud computing. In 2010 39th International Conference on Parallel Processing Workshops (pp. 275-
279). IEEE.

[176] Bharti, P., Ranjan, R., & Prasad, B. (2021). Broker-based optimization of SLA negotiations in
cloud computing. Multiagent and Grid Systems, 17(2), 179-195.

[177] Nagarajan, R., Vinothiyalakshmi, P., & Thirunavukarasu, R. (2023). An Intelligent Cloud Broker
with Service Ranking Algorithm for Validation and Verification of Cloud Services in Multi-cloud
Environment.

[178] Dilli, R., Argou, A., Pilla, M., Pernas, A. M., Reiser, R., & Yamin, A. (2018, April). Fuzzy logic
and MCDA in IoT resources classification. In Proceedings of the 33rd Annual ACM Symposium on
Applied Computing (pp. 761-766).

[179] Ghasemi, A., Toroghi Haghighat, A., & Keshavarzi, A. (2023). Enhanced multi-objective virtual
machine replacement in cloud data centers: combinations of fuzzy logic with reinforcement learning
and biogeography-based optimization algorithms. Cluster Computing, 26(6), 3855-3868.

[180] Mongia, V., & Sharma, A. (2021). Performance and resource-aware virtual machine selection
using fuzzy in cloud environment. In Progress in Advanced Computing and Intelligent Engineering:
Proceedings of ICACIE 2020 (pp. 413-426). Springer Singapore.

[181] Singh, H., Tyagi, S., & Kumar, P. (2021). Comparative analysis of various simulation tools used
in a cloud environment for task-resource mapping. In Proceedings of the International Conference
on Paradigms of Computing, Communication and Data Sciences: PCCDS 2020 (pp. 419-430).
Springer Singapore.

[182] Mohanty, S., Patra, S., Sarkar, S., Dube, P., & Pattnaik, P. K. (2024, February). Load Balancing
in Cloud Environment to Minimize Average Response Time. In 2024 International Conference on
Emerging Systems and Intelligent Computing (ESIC) (pp. 187-192). IEEE.

[183] Garg, R., Sharma, R. K., Dalip, D., Singh, T., Malik, A., & Kumpsuprom, S. (2023). Optimization
of Cloud Services Performance using Static and Dynamic Load Balancing Algorithms.

[184] Zhao, W., Peng, Y., Xie, F., & Dai, Z., Modeling and simulation of cloud computing: A review.
In 2012 IEEE Asia Pacific cloud computing congress (APCloudCC) (pp. 20-24). IEEE. (2012)

[185] Chauhan, S. S., Pilli, E. S., Joshi, R. C., Singh, G., & Govil, M. C., Brokering in interconnected
cloud computing environments: A survey. Journal of Parallel and Distributed Computing, 133, 193-
209. (2019)

[186] Ahmad, S. G., Iqbal, T., Munir, E. U., & Ramzan, N., Cost optimization in cloud environment
based on task deadline. Journal of Cloud Computing, 12(1), 9. (2023)

https://doi.org/10.1142/2895
https://doi.org/10.1109/ICCOINS.2016.7783288
https://doi.org/10.1109/TSMC.1985.6313399
https://doi.org/10.1119/1.15378
https://doi.org/10.30534/ijatcse/2020/330942020
https://doi.org/10.1201/9780429449581

153

[187] Yao, J., Yang, M., Deng, T., & Guan, H., The Cloud Service Broker in Multicloud Demand
Response. IEEE Cloud Computing, 5(6), 80-91. (2018)

[188] Cinar, B., The Role of Cloud Service Brokers: Enhancing Security and Compliance in Multi-
cloud Environments. Journal of Engineering Research and Reports, 25(10), 1-11. (2023)

[189] Petcu, D., Portability and interoperability between clouds: challenges and case study. In Towards
a Service-Based Internet: 4th European Conference, ServiceWave 2011, Poznan, Poland, October
26-28, 2011. Proceedings 4 (pp. 62-74). Springer Berlin Heidelberg. (2011)

[190] Chafai, Z., Nacer, H., Lekadir, O., Gharbi, N., & Ouchaou, L., A performance evaluation model
for users’ satisfaction in federated clouds. Cluster Computing, 1-22. (2024)

[191] Calheiros, R. N., Toosi, A. N., Vecchiola, C., & Buyya, R., A coordinator for scaling elastic
applications across multiple clouds. Future Generation Computer Systems, 28(8), 1350-1362. (2012)

[192] El Karadawy, A. I., Mawgoud, A. A., & Rady, H. M., An empirical analysis on load balancing
and service broker techniques using cloud analyst simulator. In 2020 international conference on
innovative trends in communication and computer engineering (ITCE) (pp. 27-32). IEEE. (2020)

[193] Achhra, S. N. M., Shah, R., Tamrakar, A., & Joshi, P. K., Prof Sowmiya Raksha,“Analysis OF
Service Broker And Load Balancing In Cloud Computing,”. International Journal Of Current
Engineering And Scientific Research (IJCESR), 2(4), 92-98. (2015)

[194] Wittig, A., & Wittig, M. (2023). Amazon Web Services in Action: An in-depth guide to AWS.
Simon and Schuster.

[195] Manvi, S., & Shyam, G. (2021). Cloud computing: Concepts and technologies. CRC Press.
[196] Ahmed, A., & Sabyasachi, A. S., Cloud computing simulators: A detailed survey and future

direction. In 2014 IEEE international advance computing conference (IACC) (pp. 866-872). IEEE.
(2014).

[197] Srujana, R., Roopa, Y. M., & Mohan, M. D. S. K., Sorted round robin algorithm. In 2019 3rd
International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 968-971). IEEE.
(2019)

[198] Youm, D. H., & Yadav, R., Load balancing strategy using round robin algorithm. Asia-pacific
Journal of Convergent Research Interchange, 2(3), 1-10. (2016)

[199] Patel, H., & Patel, R., Cloud analyst: an insight of service broker policy. International Journal of
Advanced Research in Computer and Communication Engineering, 4(1), 122-127. (2015)

[200] Gaur, A.; Garg, K. Survey paper on cloud computing with load balancing policy. Int. J. Eng. Res.
2015, 2, 7.

[201] Arseniev, D. G., Overmeyer, L., Kälviäinen, H., & Katalinić, B. (Eds.), Cyber-Physical Systems
and Control (Vol. 95). Springer Nature. (2019)

[202] Puri, T., Challa, R. K., & Sehgal, N. K., Energy-efficient delay-aware preemptive variable-length
time slot allocation scheme for WBASN (edpvt). In Proceedings of 2nd International Conference on
Communication, Computing and Networking: ICCCN 2018, NITTTR Chandigarh, India (pp. 183-
194). Springer Singapore. (2019)

[203] Benlalia, Z., Beni-hssane, A., Abouelmehdi, K., & Ezati, A. A new service broker algorithm
optimizing the cost and response time for cloud computing. Procedia Computer Science, 151, 992-
997. (2019)

[204] Radi, M., Efficient service broker policy for large-scale cloud environments. arXiv preprint
arXiv:1503.03460. (2015)

[205] Mesbahi, M. R., Hashemi, M., & Rahmani, A. M., Performance evaluation and analysis of load
balancing algorithms in cloud computing environments. In 2016 Second International Conference on
Web Research (ICWR) (pp. 145-151). IEEE. (2016)

[206] Khalil, K. M., Abdel-Aziz, M., Nazmy, T. T., & Salem, A. B. M., Cloud simulators–an evaluation
study. International Journal Information Models and Analyses, 6(1). (2017)

[207] Nayak, S., & Patel, P., Analytical Study for Throttled and Proposed Throttled Algorithm of Load
Balancing in Cloud Computing using Cloud Analyst. International Journal of Science Technology &
Engineering, 1(12), 90-100. (2015)

[208] Bahwaireth, K., Tawalbeh, L. A., Benkhelifa, E., Jararweh, Y., & Tawalbeh, M. A. (2016).
Experimental comparison of simulation tools for efficient cloud and mobile cloud computing
applications. EURASIP Journal on Information Security, 1-14. (2016)

[209] Mondal, S., Faruk, F. B., Rajbongshi, D., Efaz, M. M. K., & Islam, M. M. (2023). GEECO: Green
Data Centers for Energy Optimization and Carbon Footprint Reduction. Sustainability, 15(21),
15249.

154

[210] Liu, J., Yan, L., Yan, C., Qiu, Y., Jiang, C., Li, Y., ... & Cérin, C. (2023). Escope: An energy
efficiency simulator for internet data centers. Energies, 16(7), 3187.

[211] Rimal, B. P., Choi, E., & Lumb, I. (2009). A taxonomy and survey of cloud computing systems.
Network and Communication Technologies, 4(4), 1-10.

[212] Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6), 599-616.

[213] Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Applications, 1(1), 7-18.

[214] Biswas, A., Majumdar, S., Nandy, B., & El-Haraki, A. (2017). A hybrid auto-scaling technique
for clouds processing applications with service level agreements. Journal of Cloud Computing, 6, 1-
22.

[215] Hwang, K., Fox, G. C., & Dongarra, J. (2012). Distributed and cloud computing: From parallel
processing to the internet of things. Morgan Kaufmann.

[216] Calheiros, R. N., Ranjan, R., De Rose, C. A. F., & Buyya, R. (2009). CloudSim: A toolkit for
modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Software: Practice and Experience, 41(1), 23-50.

[217] Beloglazov, A., Buyya, R., Lee, Y. C., & Zomaya, A. Y. (2011). A taxonomy and survey of
energy-efficient data centers and cloud computing systems. Advances in Computers, 82, 47-111.

[218] Xiao, Z., Song, W., & Chen, Q. (2013). Dynamic resource allocation using virtual machines for
cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 24(6), 1107-
1117.

[219] Kansal, N. J., & Chana, I. (2012). Cloud load balancing techniques: A step towards green
computing. International Journal of Computer Science Issues, 9(1), 238-246.

[220] Wided, A., Çelebi, N., & Fatima, B. (2023). Effective Cloudlet Scheduling Algorithm for Load
Balancing in Cloud Computing Using Fuzzy Logic. In Privacy Preservation and Secured Data
Storage in Cloud Computing (pp. 226-243). IGI Global.

[221] Sangaiah, A. K., Javadpour, A., Pinto, P., Rezaei, S., & Zhang, W. (2023). Enhanced resource
allocation in distributed cloud using fuzzy meta-heuristics optimization. Computer
Communications, 209, 14-25.

[222] Aljuhani, A., & Alhubaishy, A. (2023). Dynamic Cloud Resource Allocation: A Broker-Based
Multi-Criteria Approach for Optimal Task Assignment. Applied Sciences, 14(1), 302.

[223] Adami, D., Gabbrielli, A., Giordano, S., Pagano, M., & Portaluri, G. (2015, December). A fuzzy
logic approach for resources allocation in cloud data center. In 2015 IEEE Globecom Workshops
(GC Wkshps) (pp. 1-6). IEEE.

[224] Zaidi, R. T. (2018). Virtual Machine Allocation Policy in Cloud Computing Environment using
CloudSim. International Journal of Electrical & Computer Engineering (2088-8708), 8(1).

[225] Li, X., Pan, L., & Liu, S. (2023). A DRL-based online VM scheduler for cost optimization in
cloud brokers. World Wide Web, 26(5), 2399-2425.

[226] Gong, Y., Huang, J., Liu, B., Xu, J., Wu, B., & Zhang, Y. (2024). Dynamic resource allocation
for virtual machine migration optimization using machine learning. arXiv preprint
arXiv:2403.13619.

[227] Belgacem, A., Mahmoudi, S., & Kihl, M. (2022). Intelligent multi-agent reinforcement learning
model for resources allocation in cloud computing. Journal of King Saud University-Computer and
Information Sciences, 34(6), 2391-2404.

[228] Afrin, M., Jin, J., Rahman, A., Rahman, A., Wan, J., & Hossain, E. (2021). Resource allocation
and service provisioning in multi-agent cloud robotics: A comprehensive survey. IEEE
Communications Surveys & Tutorials, 23(2), 842-870.

[229] Huang, J., Chen, X., & Wang, H. (2020). Edge computing-based VM allocation for latency-
sensitive applications in cloud environments. IEEE Internet of Things Journal, 7(8), 7345-7357.

[230] Kang, J., Yu, S., & Yang, K. (2020). Energy-efficient resource allocation for cloud data centers
using a hybrid heuristic algorithm. Journal of Supercomputing, 76(3), 1631-1649.

[231] Zhang, Q., Cheng, L., & Boutaba, R. (2020). Cloud computing: State-of-the-art and research
challenges. Journal of Internet Services and Applications, 11(1), 1-23.

[232] Taheri, H., Abrishami, S., & Naghibzadeh, M. (2023). A cloud broker for executing deadline-
constrained periodic scientific workflows. IEEE Transactions on Services Computing.

155

[233] Balachandar, S., & Chinnaiyan, R. (2023). Intelligent Broker Design for IoT Using a Multi-Cloud
Environment. In Convergence of Deep Learning and Internet of Things: Computing and
Technology (pp. 23-41). IGI Global.

[234] Ramakrishnan, S. (Ed.). (2017). Modern Fuzzy Control Systems and Its Applications. BoD–
Books on Demand.

[235] Mateen, M., Hayat, S., Tehreem, T., & Akbar, M. A. (2020). A self-adaptive resource provisioning
approach using fuzzy logic for cloud-based applications. International Journal of Computing and
Digital Systems, 9(03).

[236] Shahid, M. A., Alam, M. M., & Su’ud, M. M. (2023). A systematic parameter analysis of cloud
simulation tools in cloud computing environments. Applied Sciences, 13(15), 8785.

[237] Buyya, R., Vecchiola, C., & Selvi, S. T. (2013). Mastering cloud computing: foundations and
applications programming. Newnes.

[238] Singh, A., & Kumar, R. (2020, January). Performance evaluation of load balancing algorithms
using cloud analyst. In 2020 10th International Conference on Cloud Computing, Data Science &
Engineering (Confluence) (pp. 156-162). IEEE.

[239] Velte, A.T.V.T.J., Elsenpeter, P.D.R.: Cloud Computing, (2010)
[240] Giust, F., Costa-Perez, X., Reznik, A.: Multi-access edge computing: An overview
of etsi mec isg. IEEE 5G Tech Focus 1(4), 4 (2017)
[241] Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the internet of things.

In: Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13–16
(2012)

[242] Zhu, Z., Li, X., Chu, Z.: Three major operating scenarios of 5g: embb, mmtc, urllc. Intell. Sens.
Commun. Internet Everything 1, 15–76 (2022)

[243] Bellavista, P., Carella, G., Foschini, L., Magedanz, T., Schreiner, F., Campowsky,K.: Qos-aware
elastic cloud brokering for ims infrastructures. In: 2012 IEEE Symposium on Computers and
Communications (ISCC), pp. 000157–000160 (2012). IEEE

[244] D’Agostino, D., Galizia, A., Clematis, A., Mangini, M., Porro, I., Quarati, A.: A qos-aware broker
for hybrid clouds. Computing 95, 89–109 (2013)

[245] Devgan, M., Dhindsa, K.S.: Qos and cost aware service brokering using pattern-based service
selection in cloud computing. International Journal of Soft Computing and Engineering 3, 441–446
(2014)

[246] Anastasi, G.F., Carlini, E., Coppola, M., Dazzi, P.: Qos-aware genetic cloud brokering. Future
Generation Computer Systems 75, 1–13 (2017)

[247] Li, X., Pan, L., Liu, S.: An online service provisioning strategy for container-based cloud brokers.
Journal of Network and Computer Applications 214, 103618, (2023)

[248] Rogers, O., Cliff, D.: A financial brokerage model for cloud computing. Journal of Cloud
Computing: Advances, Systems and Applications 1(1), 1–12 (2012)

[249] Wang, X., Wu, S., Wang, K., Di, S., Jin, H., Yang, K., Ou, S.: Maximizing the profit of cloud
broker with priority aware pricing. In: 2017 IEEE 23rd International Conference on Parallel and
Distributed Systems (ICPADS), pp. 511–518, (2017). IEEE

[250] Mei, J., Li, K., Tong, Z., Li, Q., Li, K.: Profit maximization for cloud brokers in cloud computing.
IEEE Transactions on Parallel and Distributed Systems 30(1),190–203, (2018)

[251] Sathish, A., Dsouza, D., Ballal, K., Archana, M., Singh, T., Monteiro, G.:Advanced mechanism
to achieve qos and profit maximization of brokers in cloud computing. EAI Endorsed Transactions
on Cloud Systems 7(20) (2021)

[252] Iturriaga, S., Nesmachnow, S., Dorronsoro, B.: Optimizing the profit and qos of virtual brokers
in the cloud. Cloud Computing: Principles, Systems and Applications, 277–300 (2017)

[253] Li, X., Pan, L., Liu, S.: A survey of resource provisioning problem in cloud brokers. Journal of
Network and Computer Applications 203, 103384 (2022)

[254] Jyoti, A., Shrimali, M.: Dynamic provisioning of resources based on load balancing and service
broker policy in cloud computing. Cluster Computing 23(1), 377–395 (2020)

[255] Valarmathi, R., Sheela, T.: Differed service broker scheduling for data centres in cloud
environment. Computer Communications 146, 186–191 (2019)

[256] Jyoti, A., Shrimali, M., Tiwari, S., Singh, H.P.: Cloud computing using load balancing and service
broker policy for it service: a taxonomy and survey. Journal of Ambient Intelligence and Humanized
Computing 11, 4785–4814 (2020)

156

[257] Alwada’n, T., Al-Tamimi, A.-K., Mohammad, A.H., Salem, M., Muhammad, Y.:Dynamic
congestion management system for cloud service broker. International Journal of Electrical and
Computer Engineering (IJECE) (2023)

[258] Ray, B.K., Khatua, S., Roy, S.: Negotiation based service brokering using game theory. In: 2014
Applications and Innovations in Mobile Computing (AIMoC), pp. 1–8 (2014). IEEE

[259] Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service brokering
in multi-cloud via deep reinforcement learning. In: Service-Oriented Computing: 19th International
Conference, ICSOC 2021, Virtual Event,November 22–25, 2021, Proceedings 19, pp. 756–764
(2021). Springer

[260] Shannaq, F., Alshorman, A., Al-Sayyed, R., Shehab, M., Alomari, W.: Weighted service broker
algorithm in cloud environment. Informatica 48(7) (2024)

[261] Chauhan, S.S., Pilli, E.S., Joshi, R.C.: Bss: a brokering model for service selection using
integrated weighting approach in cloud environment. Journal of Cloud Computing 10, 1–14 (2021)

[262] Singh, N.K., Jain, A., Arya, S., Bhambu, P., Shruti, T., Chaudhary, V.K.: Cloud service broker
using ontology-based system. Engineering Proceedings 59(1), 11 (2023)

[263] Achar, R., Thilagam, P.S.: A broker based approach for cloud provider selection.In: 2014
International Conference on Advances in Computing, Communications and Informatics (ICACCI),
pp. 1252–1257 (2014). IEEE

[264] Vimercati, S.D.C., Foresti, S., Livraga, G., Piuri, V., Samarati, P.: A fuzzy-based brokering
service for cloud plan selection. IEEE Systems Journal 13(4), 4101–4109 (2019)

[265] Shivakumar, U., Ravi, V., Gangadharan, G.: Ranking cloud services using fuzzy multi-attribute
decision making. In: 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–8
(2013). IEEE

[266] Qu, L., Wang, Y., Orgun, M.A.: Cloud service selection based on the aggregation of user feedback
and quantitative performance assessment. In: 2013 IEEE International Conference on Services
Computing, pp. 152–159 (2013). IEEE

[267] Vakili, M., Jahangiri, N., Sharifi, M.: Cloud service selection using cloud service brokers:
approaches and challenges. Frontiers of Computer Science 13, 599–617 (2019)

[268] Ionescu, S.: Best cloud broker of 2024 (2023). https://www.techradar.com/best/best-cloud-
brokers

[269] Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: An environment for performance evaluation
of edge computing systems. Transactions on Emerging Telecommunications Technologies 29(11),
3493 (2018)

