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Chapter 1 General Introduction 

Cloud computing is a transformative technology that provides seamless access to a wide range 

of computing resources—including applications, servers, storage, and networks—without 

requiring an upfront investment. This technology supports substantial scalability, allowing 

users to pay only for the resources they utilize, which makes it highly adaptable to diverse 

needs. Cloud services, collectively known as "XaaS", facilitate data-driven decision-making, 

significantly enhancing productivity and customer service. Cloud computing effectively 

bridges the gap between client expectations and service delivery by offering internet-based 

services that improve collaboration, ease of access, and security [1]. (SLAs) are fundamental 

in defining the relationship between service providers and users by establishing the terms of 

service and quality expectations. SLAs also hold vendors accountable for non-compliance. As 

cloud computing adoption continues to grow, the importance of SLAs has increased, 

demanding robust guarantees for availability, uptime, and downtime. Effective SLAs go 

beyond mere contractual obligations; they are crucial for fostering trust between providers and 

clients, essential for sustainable success. Consequently, research has focused on developing 

SLA methodologies that enhance Quality of Service (QoS) and build customer trust, 

recognizing their significance in managing complex business relationships and shaping modern 

business practices [2][3]. Evaluating performance in cloud environments is complex due to the 

components involved, ranging from concrete elements like communication links to abstract 

ones like packets and protocols. Researchers and engineers must design a comprehensive 

performance evaluation plan to obtain meaningful results and answer critical questions. Such 

a plan should clearly define the objectives for assessing the system's performance and identify 

specific metrics to measure, such as RTT and response time, to provide actionable insights [4]. 

SLA-oriented resource allocation in cloud computing involves several key components: 

brokers, SLA resource allocators, (VMs), and PM. Users interact with cloud management 

systems through brokers, enabling dynamic resource allocation and concurrently operating 

multiple applications on a single machine. Data centers, composed of numerous servers and 

networks that function as transmission media for resources, form the backbone of cloud 

infrastructure. Despite these advanced capabilities, resource availability and privacy remain 

persistent concerns. Effective LB is crucial for enhancing service quality and optimizing 

resource utilization. Service brokers select the most appropriate geo-distributed data centers 

based on transmission delay, network delay, processing time, workload, and cost. The 

Datacenters (RLBGD) method employs a weighted combination of these criteria for 

optimization, ensuring efficient cloud resource management [5][6]. Fuzzy logic is a 

mathematical framework that handles uncertainty and imprecision by enabling approximate 

reasoning rather than fixed binary logic. Unlike traditional binary systems, where variables are 

strictly defined as true or false, fuzzy logic allows variables to have truth values between 0 and 

1. This approach is beneficial for modeling complex systems where binary logic falls short. 

Based on fuzzy set theory, fuzzy computing simulates the human brain's nonlinear and 

imprecise information processing capabilities. It is widely applied in fields like (FIS), often in 

combination with other AI methods. This approach enables more precise and scientific 

consumer preference designs by reducing ambiguity through the fuzzy comprehensive 

evaluation method [7][8]. This thesis introduces several innovative approaches using fuzzy 
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logic-based systems and algorithms to enhance SLA management, VM allocation, and 

decision-making in cloud computing environments. The study first presents the estimating 

Cloud Computing RTT Using Fuzzy Logic for Inter-Region Distances, a novel approach for 

estimating RTT in Amazon cloud environments. This method uses fuzzy logic to account for 

inter-region distances, providing a nuanced understanding of network latency by categorizing 

proximity and time and employing both ping tests and mathematical methods for accurate RTT 

calculation. Additionally, the thesis explores Selecting the SLA Guarantee by Evaluating the 

QoS Availability, which develops an intelligent SLA guarantee model using fuzzy theory. This 

model calculates SLA values for CSPs by evaluating specific computing and networking 

parameters and transforming data to manage ambiguity. The proposed fuzzy logic system 

classifies SLAs into 9 levels (ranging from 90% to 99.999%) based on QoS availability metrics, 

including computing (uptime and downtime) and networking (BW, jitter, RTT, and packet 

loss). The primary objectives are to develop a versatile SLA model that diverges from typical 

CSP offerings and improve SLA categorization’s precision, tailored to user-specific 

requirements. The work Enhancing Decision-Making in Uncertain Domains through 

Optimized Fuzzy Logic Systems proposes optimizing fuzzy logic systems by reducing fuzzy 

rules and improving decision-making accuracy. The study introduces flexible mathematical 

modeling to minimize time and cost while enhancing precision in fuzzy decision-making 

processes for classification and scheduling. A comparative analysis shows the advantage of 

this approach over traditional methods by employing three distinct membership functions 

(Triangular, Trapezoidal, and Gaussian), enhancing flexibility and accuracy in determining 

overlapping membership degrees. Another essential contribution is the Efficient Broker-Driven 

Request Packet Size approach, which introduces a broker-driven model using fuzzy logic for 

dynamic VM allocation based on request packet size. This method optimizes resource usage, 

reduces latency, and improves system performance. Compared to traditional techniques, 

simulations using data from Google Cloud Platform’s Europe West3 region demonstrated 

significant improvements in response time, data center processing, request serving time, and 

data transfer costs. Furthermore, the thesis presents the (IVCBS), which leverages an algorithm 

for dynamic VM allocation and intelligent SLA selection. The proposed algorithm utilizes a 

mathematical model that replicates the behavior of trapezoidal membership functions to 

compute continuous membership degrees (ranging from 0 to 1) for various parameters, such as 

VM attributes and user request sizes. These continuous values represent the degree to which 

inputs belong to linguistic categories (e.g., Poor, Fair, Excellent). In a subsequent decision 

stage, these membership degrees are transformed into binary scores (1 or 0) using predefined 

thresholds to streamline real-time resource allocation processes. Thus, while final allocation 

decisions are based on binary validation, the underlying fuzzy classification operates with 

continuous values. Tested across 31 AWS data centers worldwide with 11 EC2 types, IVCBS 

optimizes response time, improves processing efficiency, reduces VM and transfer costs, and 

enhances power efficiency while maintaining high QoS in cloud environments. Various tools 

and environments, including CloudAnalyst [9] and MATLAB, were utilized to conduct these 

studies. Lastly, the study proposes the Reliable and Cost-Effective Fuzzy-based Cloud Broker 

technique, which assists users in selecting suitable cloud service instances by evaluating user 

needs and service characteristics. This technique analyzes various scenarios, including static 

and mobile users, to assess the impact of user mobility on service quality and optimize cloud 
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service management. The work emphasizes the necessity of cloud brokerage services as 

intermediaries, balancing user needs with service provider interests. The Edge CloudSim 

simulator [10] implemented the proposed cloud broker on the (MEC) paradigm. This choice 

was made because services running on the virtualized edge are more sensitive to delay, and the 

broker's selection of the appropriate service instance significantly impacts such settings. In this 

scenario, different data centers belonging to AWS, Google Cloud (GC), and Azure Cloud 

Services (AZURE) were placed in different regions. 

1.1 Problem statement 

Cloud computing, a cornerstone of modern IT, offers scalable, flexible, and on-demand access 

to computing resources through various service models governed by (SLAs), formal contracts 

between a (CSP) and a customer that define the specific level of service the provider guarantees 

to deliver.  However, challenges such as compliance mechanisms by (CSPs), provider lock-in, 

and the proliferation of CSPs create complexity for users. Inconsistencies in promised Quality 

of Service (QoS) levels also complicate the decision-making process, leading to inefficiencies 

and suboptimal outcomes. As cloud data centers scale, energy consumption becomes a critical 

concern, making energy efficiency a vital aspect of cloud service management. Balancing 

energy consumption with QoS metrics is crucial for delivering sustainable and efficient cloud 

services that meet diverse user requirements [11][12]. By addressing these challenges, we can 

pave the way for more efficient and reliable cloud services, a key goal of this research. This 

will enhance the user experience and the overall performance of cloud computing. The 

complexity of cloud computing is amplified by factors such as the physical distance between 

data centers, which significantly impacts performance and RTT for data transmission. As IT 

services increasingly migrate to cloud infrastructures, monitoring network performance 

becomes essential for ensuring optimal service delivery. However, (CSPs) typically provide 

only qualitative information on network performance, resulting in uncertainties and suboptimal 

deployment decisions. To address these challenges, it is crucial to focus on cloud-to-user 

latency and the network paths connecting data centers to globally distributed users. 

Furthermore, managing distributed transactions in cloud environments involves balancing 

reliability and consistency, particularly in the face of hardware failures, network outages, and 

varying latencies. Analyzing these factors can lead to more informed strategies for cloud 

service deployment and optimization [13][14]. Given the current state of cloud service 

management, there is an urgent need for more intelligent and adaptive strategies. These 

strategies should focus on managing Service SLA selection and resource allocation in cloud 

environments. Their goal should be to optimize response times, reduce latency, and ensure 

service reliability. A compelling resource management strategy can enable cloud providers to 

lower energy consumption and minimize SLA violations within data centers, thus enhancing 

overall service efficiency and sustainability. Moreover, such a strategy can incorporate 

predictive models that anticipate future resource demands, prevent resource shortages, and 

dynamically scale resources in response to changing workloads, ensuring optimal performance 

and resource utilization [15][16]. Traditional approaches to managing cloud service 

environments often rely on extensive rule-based systems that are computationally intensive and 

lack the flexibility needed to adapt to these environments' diverse and dynamic nature [17]. 
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Challenges such as data migration, resource allocation, and competition among providers can 

significantly limit the capabilities of cloud computing environments. Similarly, in (AI), 

decision-making in uncertain and ambiguous real-world scenarios presents substantial 

complexities. Fuzzy logic systems have proven valuable tools in these contexts, offering a 

means to approximate optimal decisions by effectively handling uncertainty and vagueness 

[18]. While fuzzy logic is a valuable method for modelling computer knowledge, traditional 

approaches have their limitations. These approaches rely extensively on significant rule sets to 

determine the degree of membership for elements within a fuzzy set. This reliance results in 

considerable computational overhead and limits the scalability of such systems, posing 

challenges to their efficient implementation in complex environments [19]. Efficient allocation 

of (VMs) is essential for optimizing resource utilization in cloud environments. However, 

traditional VM allocation methods often face challenges in managing dynamic workloads, 

leading to suboptimal performance and increased operational costs. Resource management, 

particularly with a focus on CPU resource utilization, is a complex task that requires advanced 

strategies to enhance efficiency and reduce overall costs [20]. As cloud computing 

environments expand in scale and complexity, there is an increasing need for adaptive and 

efficient resource allocation strategies capable of dynamically responding to varying demand 

patterns in real time. Such a strategy must optimize resource utilization while maintaining low 

latency and fast execution times for real-time applications and interactive services (AI) is 

increasingly being leveraged to automatically manage and optimize cloud resources, 

addressing challenges such as real-time performance requirements and energy efficiency 

concerns. The effectiveness of these methods can be further enhanced by incorporating 

advanced AI models and developing innovative solutions to address emerging challenges in 

distributed and heterogeneous cloud environments [16]. To address the intertwined challenges 

of optimizing cloud service delivery, there is a pressing need for innovative cloud brokerage 

systems that utilize advanced techniques such as fuzzy logic and intelligent algorithms. These 

systems can act as intermediaries between users and (CSPs), enabling more accurate and 

efficient service selection by accounting for user requirements and different CSPs' diverse 

characteristics. Additionally, to tackle environmental and operational concerns, future 

generations of cloud computing must focus on becoming more energy-efficient and sustainable 

while maintaining the delivery of high-quality services. This is a crucial direction for the future 

of cloud computing [21]. In conclusion, cloud computing services' rapid growth and 

complexity necessitate developing reliable, adaptive, and cost-effective cloud brokerage 

solutions. These systems improve decision-making accuracy, optimize SLA selection, and 

manage workload distribution, preventing data center overload and minimizing costs [22]. 

1.2 The objectives of the thesis  

I. Estimating RTT in cloud computing environments using fuzzy logic to account for 

inter-region distances, providing a nuanced understanding of network latency by 

categorizing proximity and time, and employing two techniques a ping test and a 

mathematical approach—for accurate RTT calculation. 

II. To develop an intelligent fuzzy theory-based SLA guarantee model that calculates the 

SLA guarantee value for each CSP by considering specific computing and networking 



5 

 

 

 

parameters, using fuzzy logic to handle and transform data to address ambiguity in 

results. 

III. This research aims to push the boundaries of cloud computing by improving the 

precision and accuracy of fuzzy decision-making processes and non-probabilistic 

models. I propose an innovative approach to flexible mathematical modeling that 

minimizes time and cost while eliminating the need for extensive fuzzy rules. This 

approach promises to revolutionize the efficiency of cloud computing environments. 

IV. To develop the (IVCBS) using a fuzzy logic-based algorithm aligned with the 

trapezoidal membership function to optimize (VM) allocation dynamically, enhance 

response times, improve data center processing efficiency, reduce VM and data transfer 

costs, and achieve power efficiency, thereby addressing scalability and performance 

challenges while maintaining high Quality of Service (QoS) in cloud computing 

environments. 

V. Our research is dedicated to developing a broker-driven approach using a fuzzy logic 

system for the dynamic optimization of (VM) allocation in cloud computing 

environments. Based on request packet size, this approach promises to optimize 

resource usage, reduce latency, enhance overall system performance, and improve 

response times, data center processing times, request serving times, and data transfer 

costs. This approach will significantly contribute to the efficient management of cloud 

resources. 

VI. To develop a fuzzy logic-based cloud brokerage technique to assist users in selecting 

the most suitable cloud service instances by evaluating factors like user needs and 

service characteristics. The study aims to enhance decision-making processes for cloud 

service selection by analyzing multiple scenarios, including static and mobile users, to 

assess the impact of user mobility on service quality and explore the effects of 

implementing a brokerage service that supports service migration, optimizing cloud 

service management in dynamic environments. 

1.3 Dissertation Structure and Organization  

The remaining structure of the dissertation is organized as follows: 

• Chapter 2: Provides an in-depth understanding of cloud service models (IaaS, PaaS, 

SaaS) and deployment models, discussing their importance for informed decision-

making regarding customization, control, and scalability. It also introduces the NIST 

Cloud Computing Reference Architecture and essential characteristics of cloud 

computing systems. 

• Chapter 3: Explores the driving factors behind cloud adoption, emphasizing strategic, 

operational, and financial aspects. It discusses (CAFs), core business benefits (agility, 

adaptability, security), and financial advantages (cost savings, economies of scale). 

Focuses on best practices for successful cloud adoption, including governance, 

migration, and security. It highlights the benefits of cloud platforms, such as agility, 

business continuity, and economic advantages, alongside the importance of security. 
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• Chapter 4: Discusses the estimation of RTT in cloud computing environments using 

fuzzy logic, focusing on challenges like geographical distance, network congestion, and 

routing policies, with a case study on AWS demonstrating improved RTT estimation. 

• Chapter 5: Introduces a fuzzy logic-based SLA classification model, categorizing 

SLAs into 9 levels based on key QoS metrics such as uptime, BW, jitter, and RTT, 

offering a flexible, transparent, and user-friendly method for improved SLA selection. 

• Chapter 6: Examines the optimization of fuzzy logic systems for decision-making in 

uncertain environments, presenting a mathematical model using various membership 

functions to categorize input data, with comparisons to traditional FIS demonstrating 

improved performance. 

• Chapter 7: Discusses the Intelligent SLA Selection through the Validation Cloud 

Broker System (IVCBS), focusing on improving cloud computing efficiency through 

optimization algorithms and simulations that show IVCBS outperforms traditional 

methods in response time, processing, and cost reduction. 

• Chapter 8: Explores a broker-driven approach to (VM) allocation, using fuzzy logic to 

dynamically adjust resource distribution based on request packet sizes. The study 

demonstrates improved performance and cost efficiency through Cloud Analyst 

simulations. 

• Chapter 9: Presents the design of a fuzzy logic-based cloud broker system that balances 

CSP and customer interests by ranking service instances and users. It optimizes service 

quality and cost through service migration and mobility considerations, with 

simulations showing superior stability, service delay, and cost-effectiveness compared 

to other methods. 

• Chapter 10: presents a comprehensive conclusion of all contributions, outlining three 

key theses under the section "New Scientific Results," which constitute the primary 

objectives of this dissertation. 
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Chapter 2 Cloud Computing  

Provides an overview of cloud computing service models, deployment types, and key 

characteristics. It explains the differences between cloud serivec models, helping users choose 

the right model for their specific needs. The chapter introduces the NIST Cloud Computing 

Reference Architecture and examines public, private, community, and hybrid deployments, 

discussing trade-offs in control, security, cost, and scalability. It also highlights the main 

benefits of cloud computing, including on-demand self-service, broad network access, and 

resource pooling. 

2.1 Cloud Computing Service Models and Offerings  

Choosing the right service model is a critical factor for the successful delivery of cloud-based 

solutions. To make an informed choice, it is essential to understand each service model and the 

division of responsibilities between the CSP and the cloud service consumer [23]. Cloud 

service models include (SaaS),  (PaaS), and (IaaS). SaaS operates on top of PaaS, which, in 

turn, runs on IaaS. In recent years, the number of SaaS offerings has grown significantly, 

making it challenging for consumers to select the best service among those with similar 

functionalities [24]. Each cloud service model provides different levels of customization and 

ownership, depending on the user's needs—ranging from raw computing power to fully 

developed software solutions. The separation of responsibilities and customization options 

between the models varies, offering flexibility to users based on their requirements  . Appendix 

1 (Figure 1) provides an overview of the NIST Cloud Computing Reference Architecture, 

which identifies the key actors, their activities, and functions in cloud computing. This high-

level diagram is designed to help users understand the requirements, uses, characteristics, and 

standards of cloud computing [25][26]. Three cloud service models offer abstraction levels to 

simplify system building and deployment [25]. 

2.2.1 Infrastructure as a Service (IaaS) 

IaaS provides virtualized computing resources over the internet, letting users manage servers, 

storage, and networking without handling physical hardware. It enables rapid provisioning 

through APIs or web consoles, offering flexibility and cost efficiency. 

Key Offerings: 

• Compute: VMs, containers, bare metal. 

• Storage: Block, object, file. 

• Networking: Virtual networks, load balancers, VPNs. 

Benefits: 

• Full infrastructure control. 

• Scalable resources. 

• Pay-as-you-go pricing. 

Examples: AWS EC2, GCP, Azure VMs. 

2.1.2 Platform as a Service (PaaS) 

PaaS provides a cloud-based platform for developers to build, run, and manage applications 

without handling underlying infrastructure. According to NIST, PaaS enables users to deploy 

applications created with supported languages and tools while the provider manages the 



8 

 

 

 

underlying networks, servers, and storage. PaaS allows developers to focus on coding and app 

management, thereby simplifying the development process and accelerating deployment. 

PaaS Offerings: 

• Development frameworks (e.g., Java, Python, Node.js). 

• Application hosting. 

• Database services (e.g., MySQL, NoSQL). 

• Middleware for messaging and integration. 

Benefits: 

• Simplifies development. 

• Integrated tools streamline workflows. 

• Faster time-to-market. 

Examples: Google App Engine, Heroku, Azure App Service. 

2.1.3 Software as a Service (SaaS) 

SaaS delivers ready-to-use software over the internet, accessible via web browsers. Users 

handle only app settings, while providers manage infrastructure and updates. 

Offerings: 

• Business apps (e.g., CRM, collaboration). 

• Industry-specific tools. 

• Data analytics. 

Benefits: 

• No infrastructure management. 

• Automatic updates. 

• Subscription pricing. 

Examples include Dropbox, Slack, Zoom, and Google Workspace. 

2.2 Cloud Deployment Models 

Cloud deployment models define how clouds are built, owned, and used, impacting security, 

cost, and accessibility. NIST identifies four types: public, private, community, and hybrid 

clouds. Each model varies in infrastructure location, control, and suitability for different 

organizational needs, offering unique benefits and costs [27]. 

2.2.1 public cloud 

A public cloud is a model of cloud computing where services, such as storage, computing 

power, and applications, are provided by third-party vendors over the Internet. These services 

are shared among multiple customers, but each user's data and applications remain isolated and 

secure within their environment. 

2.2.1.1 Technical Architecture  

• Shared Resources: Virtualized infrastructure allows multiple tenants to share and 

manage resources via web browsers. 

• Elasticity: Resources scale instantly to handle fluctuating demand for computing, 

storage, and BW. 

• Network Accessibility: Infrastructure is accessible online through secure connections, 

such as VPNs, reducing the need for on-premises management. 

• API Access: RESTful APIs enable programmatic control, service integration, and 

support assistive technologies. 
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• Self-Service: Users can provision and manage resources independently via web portals, 

supporting unlimited scalability. 

2.2.1.2 Operational Considerations 

• Cost: Pay-per-use pricing helps organizations optimize costs by paying only for the 

resources they use. 

• Security: Users must secure data and apps with encryption, IAM, and compliance 

practices supported by audits and monitoring. 

• Performance: Distributed data centers reduce latency and boost performance by 

placing services closer to users. 

2.2.2 Private Cloud 

A private cloud is dedicated to a single organization, offering greater control, security, and 

customization compared to public clouds, where resources are shared. 

2.2.2.1 Technical Architecture 

• Single-Tenant Environment: Dedicated to one organization, ensuring control, 

security, and customizable resources. 

• Customization: Allows for tailored server, software, and security configurations to 

meet specialized needs. 

• Infrastructure: Can be on-premises or off-premises, using platforms like VMware, 

OpenStack, or Hyper-V for resource management. 

• Automation: Utilizes tools such as Kubernetes and OpenShift to automate 

provisioning, scaling, and operations. 

2.2.2.2 Technical Operational Considerations 

• Control: Offers complete flexibility and control over security, performance, and 

infrastructure, tailored to business needs. 

• Security: Ensures strong protection in a dedicated environment through robust 

protocols, firewalls, and encryption. 

• Compliance: Meets regulatory and industry standards, which are crucial for sectors 

such as finance, healthcare, and government. 

• Cost: Higher upfront costs require careful management to achieve long-term cost 

efficiency. 

2.2.3 Hybrid Cloud 

A hybrid cloud combines public and private clouds, enabling sensitive data to remain private 

while utilizing public clouds for less critical workloads. The environments remain separate but 

integrated, offering flexibility and tailored solutions through the addition of complexity. 

2.2.3.1 Technical Architecture 

• Integration: Connects public, private, and on-premises systems using orchestration 

tools, APIs, and middleware for smooth data and workflow management. 
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• Workload Distribution: Enables the flexible allocation of workloads across 

environments for enhanced efficiency, optimized resource utilization, and improved 

business continuity. 

• Cloud Bursting: Shifts excess demand from private to public clouds to scale resources 

during peak usage. 

• Network Management: Ensures secure, high-performance connectivity between 

integrated systems, addressing security and compliance needs. 

2.2.3.2 Operational Considerations 

• Flexibility: Enables strategic workload placement across on-premises and cloud 

environments, providing security and scalability tailored to business needs. 

• Interoperability: Requires seamless data compatibility and tools such as Kubernetes 

or Azure Arc for managing multiple environments. 

• Data Security: Combines strong on-premises and cloud security with encryption, 

governance, and access controls to protect data. 

2.2.4 Community Cloud 

A community cloud is shared by multiple organizations with common goals, offering more 

privacy than public clouds. It functions like a private cloud, serving a group and allowing 

shared resources and responsibilities while maintaining security and providing tailored 

solutions to meet the group’s needs. 

2.2.4.1 Technical Architecture 

• Shared Infrastructure: Multiple organizations share resources, lowering costs and 

meeting specific industry privacy and compliance needs. 

• Collaboration: Enables joint projects and resource sharing while maintaining security 

and regulatory standards with flexible hosting options. 

• Customization: Allows tailored performance, security, and compliance to fit unique 

business or regulatory requirements. 

2.2.4.2 Operational Considerations 

• Cost: Shared infrastructure reduces costs compared to private clouds, optimizing 

resource utilization and expenditure. 

• Governance: Requires joint governance frameworks to manage data privacy, security, 

and policy compliance. 

• Security: Requires robust security measures and coordinated policies to mitigate risks 

such as misconfigurations or unauthorized access. 

• Compliance: Ensures regulatory compliance across all members through monitoring 

and unified data protection practices. 

2.3 Characteristics of Cloud Computing 

 Cloud computing systems possess several key characteristics that make them highly promising 

for future IT applications and services. The (NIST) has identified five essential characteristics 

of cloud computing systems [28], as illustrated in Appendix 1 (Figure 2). These characteristics 

are outlined and described below [29]: 
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• On-Demand Self-Service: Users can automatically provision computing resources as 

needed, eliminating the need for human intervention from the provider. 

• Broad Network Access: Cloud services are accessible from diverse devices over the 

network, including laptops, smartphones, and tablets. 

• Resource Pooling: Providers share resources among multiple consumers in a multi-

tenant model, dynamically allocating resources with location independence. 

• Rapid Elasticity: Resources scale up or down quickly to meet changing demands, 

giving users flexibility and cost efficiency. 

• Measured Service: Usage is monitored and metered, enabling transparency, cost 

control, and optimized resource allocation for both providers and consumers. 
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Chapter 3 Adoption and Implementation of Cloud Platforms  

Chapter 3 explores key reasons for adopting cloud platforms, including high availability, data 

durability, virtualization, hardware and network architecture, and SLA management. It 

emphasizes benefits such as agility, redundancy, and cost reduction and discusses leading 

providers, including AWS, Google Cloud, and Azure. The chapter also examines the 

economics of cloud adoption, as well as the roles of virtualization and networking in achieving 

scalable and cost-effective operations. 

3.1 Key Drivers for Cloud Platform Adoption 

Organizations increasingly recognize the need for a strategic cloud adoption plan to effectively 

leverage the advantages of a cloud data platform. Major CSPs offer comprehensive frameworks 

to help businesses translate their strategic goals into actionable steps, ensuring a structured 

approach to cloud adoption. Many (CAFs) provide a range of tools and resources, including 

plan generators, trackers, templates, checklists, and readiness assessments. These tools cover 

critical areas such as environment preparation, governance, migration, innovation, 

management, organization, and security of the cloud platform, ensuring organizations follow 

best practices throughout the adoption process. While the benefits of the cloud over on-premise 

data centers are substantial, much of the focus has traditionally been on potential economic 

gains. However, it is important to note that migrating to a public cloud provider does not always 

guarantee cost savings. In fact, cost savings should not be the primary factor driving cloud 

adoption. Instead, organizations should prioritize the cloud's ability to enable or enhance their 

business objectives [30][31][32][33][34][35][27]. 

3.1.1 Enhancing Business Agility 

Business agility refers to an organization’s ability to adapt to changes and capitalize on new 

opportunities quickly. Cloud platforms support this agility by enabling rapid deployment and 

scalability, unlike traditional IT setups that take weeks to configure. Public cloud services 

enable the launch of global infrastructure in minutes, fostering innovation and responsiveness. 

3.1.2 Business Adaptability 

Cloud adoption boosts adaptability by providing flexible, scalable resources and high 

performance. It enables businesses to adjust capacity, explore new strategies, and leverage 

services such as AI and analytics to respond quickly to market shifts and customer demands. 

3.1.3 Ensuring Business Continuity 

Business continuity in the cloud ensures operations persist during disruptions through proactive 

planning, disaster recovery, and resilient cloud services. When adopting public cloud 

infrastructure, prioritizing business continuity safeguards critical functions against external 

events. 
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3.1.3.1 Cloud Redundancy and Disaster Recovery   

Cloud redundancy duplicates resources and data to keep services running during failures. 

Traffic shifts to backup systems if the primary fails. Public cloud providers offer: 

• Local Redundancy: Replicates resources within a single data center to protect against 

local issues. 

• Geographical Redundancy: Spreads data across distant data centers for protection 

against regional outages, often at no extra cost. 

Redundancy is vital for disaster recovery, preventing data loss and downtime, and ensuring 

business continuity even during crises. Businesses should integrate redundancy into cloud 

strategies and regularly review their continuity plans. 

3.1.3.2 High Availability in Cloud Adoption   

Redundancy in public clouds ensures reliable access to services by duplicating systems and 

data across environments. Most providers offer 99.99% uptime (≈52 minutes of downtime 

annually). However, industries that require near-continuous operations, such as healthcare, 

often require 99.999% uptime, limiting downtime to under 5 minutes per year. 

3.1.3.3 Data Durability and Integrity   

Data durability ensures that information stays intact and uncorrupted over time. Public cloud 

providers achieve this through extensive data replication across regions—for example, 

duplicating data six times across three locations. Many guarantees 99.99999999% durability 

(“eleven nines”), meaning data loss is extremely rare. High durability protects user experiences 

and business operations, maintaining trust, reputation, and revenue. 

3.2 Security Considerations in Cloud Adoption 

Cloud security faces challenges from hidden software and hardware vulnerabilities. Public 

clouds employ a shared responsibility model, dividing security tasks between the provider and 

the customer. Providers offer strong security tools, dedicated teams, and multi-level encryption 

to protect customer data and resources. 

3.3 Economic Implications of Cloud Computing 

Moving IT to the public cloud can cut costs by over 50%, shifting spending from upfront 

hardware purchases to flexible, pay-as-you-go models. Cloud providers leverage economies of 

scale and global reach to lower costs and improve efficiency, helping businesses avoid 

overprovisioning and reduce operational expenses. 

3.4 Virtualization in Cloud Infrastructure 

Virtualization is key to modern cloud operations, shifting tasks from hardware to software. It 

enables multiple (VMs) to run on a single physical server, as shown in Appendix 2 (Figure 1). 

While traditional servers host few applications, virtualization allows one server to support 

dozens or hundreds of VMs, reducing costs and hardware needs. Virtualization also 

encompasses areas such as web applications and databases. For example, data virtualization 

tools like Denodo enable users to access data from multiple sources as a single virtual database, 
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thereby simplifying data management and improving efficiency. Without virtualization, the 

cloud’s scalability and cost-effectiveness would not be possible. 

3.4.1 Fundamentals of Hardware Virtualization 

Before exploring how virtualization is implemented, it is essential to understand the 

fundamental components of a hardware server, Appendix 2 (Figure 2). Similar to workstations 

or laptops, a hardware server consists of key elements such as central processing units (CPUs), 

an operating system (OS), memory, and storage. These components provide the necessary 

infrastructure on which applications can be installed to deliver services to users. 

3.4.2 Hypervisor Technologies in Cloud Environments 

Hypervisors enable server virtualization by creating and managing (VMs) and allocating 

hardware resources, such as CPU and memory, to each VM. This ensures independent 

operation for each VM, optimizing physical server use and reducing costs. 

3.4.2.1 Type 1 Hypervisors 

Type 1 hypervisors run directly on hardware without a host OS, earning the name “bare-metal” 

hypervisors (see Appendix 2, Figure 3). They enable servers to host multiple, each running a 

different operating system, making them ideal for large data centers due to their efficiency and 

scalability. Examples include Microsoft Hyper-V, VMware ESXi, and Linux KVM. 

3.4.2.2 Type 2 Hypervisors 

Type 2 hypervisors run on top of a host operating system, such as Windows or Linux (see 

Appendix 2, Figure 4). They create (VMs) with separate guest operating systems, which can 

differ from the host—for example, running Linux on a Windows machine. However, 

dependence on the host OS can add costs, cause performance delays, and require more 

maintenance, making them less suitable for large enterprises. They are ideal for personal or 

small-scale use. Examples include Oracle VirtualBox and Microsoft Virtual PC. 

3.5 Virtual Machines and Cloud Workloads   

 VM is software that simulates a physical computer, running its operating system (OS) 

independently of the host machine. This enables multiple virtual environments on a single 

physical server. 

• Host Machine: Physical hardware and main OS. 

• Guest Machine: VM with a separate guest OS. 

Types of VMs: 

• System VMs (Full Virtualization): Replace real machines, allowing multiple VMs to 

coexist on one server via a hypervisor that isolates and manages them. Modern 

hypervisors utilize virtualization-specific hardware to achieve improved performance. 

• Process VMs: Run specific programs in a platform-independent environment, each 

acting as a self-contained computer with dedicated OS and resources. 

VMs maximize hardware efficiency by creating isolated environments for separate applications 

and workloads. 
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3.6 Network Architecture in Cloud Computing 

This approach focuses on the data centre network and data centre interconnect network, which 

are crucial areas in cloud computing. The interconnect network connects multiple data centers 

in private, public, or hybrid cloud environments, while the public Internet connects end users 

to public cloud provider data centers [36][37][38][39][40]. 

3.6.1 Data Center Networks   

 DCN connects all physical and virtual resources in a cloud data center, enabling efficient 

communication and high performance. As shown in Appendix 2 (Figure 5), DCNs often use a 

hierarchical architecture with three layers: 

• Access Layer: Connects servers via end-of-row (EoR), top-of-rack (ToR), or integrated 

switches. 

• Aggregation Layer: Consolidates access switches, supporting multi-tier applications 

and external connectivity. 

• Core Layer: Provides high-speed Layer-3 switching for routing traffic between the 

data center and external networks. 

In geographically distributed data centers, Layer-3 peering routing is critical for fast recovery 

from failures and preventing network loops. New optical technologies enhance throughput by 

adjusting network topologies, but they also introduce complexity and management overhead. 

A robust DCN is crucial for delivering scalable and reliable cloud services. 

3.6.2 Data Center Interconnect Network 

Data Center Interconnect Networks (DCIN) connect multiple data centers to deliver seamless 

cloud services. While traditional VPNs provide secure connections, they lack the flexibility 

required for modern needs, such as dynamic server migration and application mobility. DCINs 

use Layer 2 extensions to support disaster avoidance, high availability, and workload 

balancing, enabling cloud elasticity. Ongoing research aims to improve performance, load 

balancing, and security in these networks. 

3.7 Cloud Service Providers and Vendor Ecosystem 

Cloud vendors sell cloud-related products like software, hardware, and services, offering SaaS, 

PaaS, and IaaS solutions. Examples include Amazon, Microsoft, Google, IBM, and Oracle. 

Cloud providers deliver services (mainly IaaS and PaaS) over the Internet, managing physical 

infrastructure and offering on-demand resources. Major providers include AWS, Azure, and 

GCP. 

When choosing a provider or vendor, organizations should consider: 

• Budget: Assess financial feasibility. 

• Security: Check security and compliance features. 

• Scalability: Ensure the solution can grow with business needs. 

• Services and Tools: Evaluate required tools and platforms. 

It is also important to recognize that the best provider for one organization may not be the 

best for another, as different companies have varying needs and priorities. To learn more 

about specific providers, organizations can explore documentation, whitepapers, and case 

studies provided by vendors. Additionally, many cloud providers offer free trials, webinars, 

and certification programs to help users make informed decisions [31][42][43]. 
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3.7.1 Service-Level Agreement (SLA) Management in Cloud Computing 

In cloud computing, (SLAs) define expectations for performance, availability, and security and 

protect customers by providing compensation in the event of service failures. They establish a 

legal and formal framework between providers and consumers, ensuring mutual understanding 

and reliable service delivery. SLAs can be specified using the Web Service-Level Agreement 

(WSLA) language, originally for web services but applicable to hosting. WSLA includes 

parameters, metrics, measurement directives, objectives, and penalties [44][45][46]. 

Key SLA characteristics: 

• Attainability: Service levels must be realistically achievable. 

• Meaningfulness: All terms must be relevant. 

• Measurability: Service levels should be objectively measurable. 

• Controllability: Providers must be able to control factors that impact the SLA. 

• Understandability: Both parties must clearly understand SLA terms. 

• Affordability: Agreements should be cost-effective. 

• Mutual Acceptability: SLAs should result from negotiation between both parties. 

There are two types of SLAs from the perspective of application hosting. These are described 

in detail here. 

3.7.1.1 Infrastructure SLA 

An Infrastructure SLA holds the provider accountable for the availability of core infrastructure 

like servers, power, and network connectivity. Meanwhile, enterprises manage their 

applications on dedicated, isolated servers, ensuring privacy and security. Examples of service-

level guarantees appear in Appendix 2 (Table 1). 

3.7.1.2 Application SLA 

An Application SLA in a co-location model enables providers to allocate server resources 

based on application needs dynamically. Providers ensure customers’ (SLOs) are met, 

including specific performance metrics. An example is shown in Appendix 2 (Table 2). 

3.8 Amazon Web Services (AWS) 

Launched in 2006, AWS is one of the leading cloud platforms, offering a wide range of 

services, including computing, storage, networking, databases,ML, analytics, IoT, and 

enterprise solutions [47]. AWS helps organizations across industries enhance scalability, 

efficiency, and innovation, maintaining a strong presence in the cloud market since its inception 

[48]. 

3.8.1 Core Services of AWS  

3.8.1.1 Compute Services (Amazon EC2) 

 Amazon EC2 enables users to rent virtual servers, known as instances, to run applications. 

EC2 offers flexible configurations, allowing users to customize the amount of computing 

power, memory, and storage based on their specific workload needs. With just a credit card, 

individuals or businesses can access a virtually limitless pool of computing resources, renting 
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VMs for an affordable hourly rate, making cloud computing accessible to a wide range of users 

[49]. 

3.8.1.2 Storage Solutions (Amazon S3 & EBS) 

Amazon S3 offers scalable, internet-based storage for large data volumes and diverse use cases. 

Amazon EBS provides persistent, high-performance block storage for EC2 instances with low 

latency. Both solutions efficiently support large-scale storage needs [50]. 

3.8.1.3 Database Services 

AWS offers diverse managed database services [51]: 

• Amazon RDS: Fully managed relational databases like MySQL, PostgreSQL, Oracle, 

and SQL Server, automating backups, scaling, and patching. 

• Amazon Aurora: High-performance, managed relational database compatible with 

MySQL and PostgreSQL. 

• Amazon DynamoDB: Fully managed NoSQL database for scalable, low-latency 

applications. 

• Amazon Redshift: Data warehousing service optimized for big data analytics and 

complex queries. 

These services offer flexible and scalable solutions for relational, NoSQL, and data 

warehousing needs. 

3.8.1.4 Networking Services (Amazon VPC) 

Amazon (VPC) allows users to create secure, isolated cloud environments within AWS, 

connecting cloud resources and on-premises systems [52]. Key components include: 

• Network ACLs: Stateless controls managing inbound and outbound traffic at the 

subnet level. 

• Gateways: Connect VPCs to external networks. 

• Route Tables: Define rules for directing network traffic. 

• VPC Peering: Enables private communication between separate VPCs. 

Together, these features ensure robust networking and security for AWS resources. 

3.8.1.5 Security and Compliance   

AWS emphasizes security through services like IAM for access management, KMS for 

encryption, Secrets Manager for protecting sensitive data, and Shield for DDoS defense [53]. 

Operating under a shared responsibility model, AWS secures the infrastructure while 

customers protect their data and access. These tools help organizations reduce risk and stay 

compliant with industry regulations. 

3.8.2 AWS Pricing Models 

AWS offers flexible pricing, including pay-as-you-go, so businesses only pay for what they 

use [54]. Key options include: 

• On-Demand Instances: Pay-as-you-go pricing for resources like EC2, ideal for short-

term or unpredictable workloads. 

• Spot Instances: Up to 90% off on-demand prices for flexible, fault-tolerant workloads 

like big data or HPC. 
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• Savings Plans: Discounts are available for committing to consistent usage over 1 or 3 

years, covering services such as EC2, Fargate, and Lambda. 

• Geographic Selection: Deploy resources closer to users to reduce latency, comply with 

data laws, and optimize costs. AWS regions vary in pricing, and tools like the Simple 

Monthly Calculator help estimate costs. 

• Third-Party Pricing: Ensure third-party service costs align with cost optimization 

goals and scale based on actual outcomes rather than total spending. 

3.8.3 AWS Global Infrastructure and Availability   

AWS operates globally through regions—geographically separate locations containing 

multiple isolated Availability Zones (AZs) for resilience and fault tolerance [55]. Each AZ has 

independent power, networking, and facilities, improving reliability. Deploying resources 

across regions reduces latency, enhances security, and supports compliance and disaster 

recovery, ensuring high availability for applications. 

3.9 Google Cloud Platform (GCP)  

Launched with Google App Engine in 2008, (GCP) has expanded into a robust suite of services, 

including Cloud Storage (2010), Compute Engine (2013), Cloud SQL (2014), and Kubernetes 

Engine (2015) [56][57][58][59]. Drawing on Google’s experience with services like Search 

and Gmail, GCP provides scalable, reliable solutions for a diverse range of industries. Notable 

services, including BigQuery, Bigtable, Pub/Sub, and Dataflow, support advanced analytics 

and innovation. GCP empowers businesses and developers with tools for data management, 

AI, and scalable infrastructure. 

3.9.1 Comprehensive Cloud Services Portfolio 

• Compute Engine: IaaS service for creating customizable VMs scalable for web apps. 

• Storage: Bigtable handles extensive, high-throughput data; Cloud Storage offers 

secure, scalable object storage tailored to meet cost and performance needs. 

• Data Analytics: BigQuery is a serverless data warehouse for fast analysis of massive 

datasets. 

• AI & ML: Tools like AI and ML Engine help build, train, and deploy models for 

diverse business challenges. 

• IoT & Networking: GCP supports scalable IoT deployments and offers robust 

networking services like Dedicated Interconnect, Partner Interconnect, and Cloud VPN. 

• Serverless Computing: Services like Cloud Functions and App Engine allow app 

deployment without managing infrastructure, boosting speed and scalability. 

3.9.2 Performance and Scalability 

• Global Network: GCP uses a worldwide network of data centers to ensure low 

latency, high availability, cost efficiency, and sustainable operations. 

• Auto-Scaling: GCP’s Kubernetes Engine (GKE) auto-scales resources to match 

workload demands, optimizing performance and handling traffic spikes effectively.  
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3.9.3 Industry Adoption and Use Cases 

• Media & Entertainment: GCP offers a scalable infrastructure for content delivery, 

reducing costs and enhancing audience engagement. 

• Healthcare & Life Sciences: GCP supports genomics research, secure data storage, and 

advanced analytics, driving innovation in biotech and healthcare. 

• E-commerce & Retail: GCP enables digital transformation, improves analytics, and 

enhances customer experiences in retail operations. 

3.9.4 Compute Engine Resources: Regions and Zones 

Google Cloud Compute Engine distributes resources globally across regions and zones [60]. A 

region is a geographic area comprising at least three zones, each of which is an independent 

data center. Zonal resources, such as VMs or disks, benefit from fault isolation within zones. 

Deploying across regions ensures higher resilience. Regions connect zones via high-speed, 

low-latency networks for fast communication. Resources are classified as global, regional, or 

zonal, with regional resources shared across zones within the same region. Placement policies 

help optimize VM proximity, reducing latency and improving reliability. 

3.9.5 GCP Pricing Models 

Google Cloud offers flexible pricing options [61]: 

• Pay-as-you-go: On-demand pricing with no upfront costs, ideal for variable usage but 

more expensive per hour. 

• Long-term Reservations (Committed Use): Discounts of up to 70% are available for 

committing to one- or three-year usage, making them suitable for consistent 

workloads. 

• Free Tier: Provides limited, ongoing free resources and $300 in credits for new users 

to explore services. 

When selecting a model, organizations should consider their budget, usage patterns, and 

factors such as computing, storage, and network costs. 

3.10 Microsoft Azure: Enterprise Cloud Solutions  

Launched in 2008, Microsoft Azure is a rapidly growing cloud platform offering services 

across AI, analytics, computing, IoT, security, storage, and more [62]. Its strong integration 

with Microsoft products and flexible services makes it ideal for organizations of all sizes. Azure 

serves 95% of Fortune 500 companies, offering customizable solutions easily integrated with 

external systems. 

3.10.1 Compute Services in Azure 

• Azure Virtual Machines (VMs): Provide scalable, on-demand computing for diverse 

workloads, supporting multiple OS types across 60+ regions with a 99.99% SLA and 

robust security features [63]. 
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• Azure App Service: A PaaS solution for building and scaling web apps and APIs in 

various languages, offering seamless DevOps integration, high availability, and strong 

security compliance [64]. 

•  (AKS): Fully managed Kubernetes service for deploying and scaling containerized 

apps, reducing operational overhead and supporting fast, secure app delivery. Variants 

like K3s and K0s simplify Kubernetes for resource-limited environments [65]. 

3.10.2 Azure Storage Solutions 

• Azure Blob Storage: Stores large unstructured data like text, images, and backups with 

scalable capacity, multiple cost tiers, and security features like encryption and RBAC. 

Supports block and page blobs [66]. 

• HPC Storage: Azure offers HPC-optimized VMs (H- and N-series) and storage 

solutions, including Blob Storage, Azure Files, and Disk Storage, for high-performance 

workloads, providing 99.999% availability and robust security [67]. 

• Azure Files: Delivers serverless, scalable file shares via SMB and NFS, supports 

multiple OS environments, and integrates with various protocols like SOAP, REST, 

and XML [68]. 

3.10.3 Networking in Azure   

• Azure Virtual Network (VNet): Creates private, secure networks for deploying and 

managing VMs and services in Azure [69]. 

• Azure Virtual WAN: Centralizes networking, security, and routing, connecting 

branches, data centers, and Azure regions efficiently [69]. 

• Azure VPN Gateway: Provides secure, encrypted site-to-site communication between 

Azure networks and on-premises environments [69]. 

3.10.4 Azure AI and Machine Learning 

• Azure ML: Cloud service for advanced analytics and AI, offering secure, scalable 

solutions across industries [70]. 

• Azure Cognitive Services: Suite of AI tools for NLP, speech, and vision, integrating 

with IoT for insights in sectors like retail and healthcare [71]. 

• Azure Bot Services: Platform for building and deploying conversational AI bots, with 

easy integration into messaging platforms and cognitive services [72]. 

3.10.5 Security and Identity Management in Azure    

• Azure Active Directory: Cloud-based identity service offering authentication, Single 

Sign-On, user management, and security protocols like SAML and OAuth. Includes 

features like MFA and self-service password reset, with free basic functionality [73]. 

• Azure Security Center: Provides threat protection, security recommendations, 

continuous monitoring, and compliance management for Azure and hybrid 

environments. SSO enhances security but requires careful monitoring for potential 

threats [73]. 
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3.10.6 Azure Global Geographies and Data Center Locations 

Azure geographies are designed to meet data residency and compliance requirements, ensuring 

that critical data remains close to users [74]. Each geography contains one or more regions with 

fault-tolerant, high-capacity networks. Many regions include availability zones—separate data 

centers with independent power, cooling, and networking—connected by high-speed networks 

with latency latency under 2 ms. Zones are spaced to minimize shared risks from outages or 

weather events, thereby maintaining high availability and ensuring data synchronization. Data 

center locations are chosen through rigorous risk assessments to ensure resilience and 

reliability. 

3.10.7 Azure pricing models 

Azure uses a pay-as-you-go model, charging only for resources consumed, though this is pricier 

than reserved options [75]. New customers receive 12 months of complimentary popular 

services, 55 ongoing complimentary services, and a $200 credit for the first 30 days. After 12 

months, standard rates apply, with some services remaining free of charge. Cost-saving options 

include Reserved Instances (up to 72% savings) and Spot VMs (up to 90% off), which utilize 

unused capacity. Pricing may change, so users should refer to Azure’s official pricing page for 

the most up-to-date details. 
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Chapter 4  Triangular Membership Function-Based Estimation of Round-Trip Time 

(RTT) for Optimal SLA Evaluation 

This chapter addresses the estimation and optimization of RTT in cloud computing 

environments, with a specific focus on the impact of geographical distances and network 

conditions. This chapter introduces a novel approach that integrates multiple triangular 

membership functions for both input and output variables within a fuzzy logic framework to 

enhance the accuracy of RTT estimation, addressing the limitations of traditional methods, 

particularly in time-sensitive cloud applications. The proposed fuzzy logic-based model 

incorporates key factors influencing RTT, including network congestion, which is evaluated in 

terms of time (ms) and routing policies and analyzed based on distance (kilometers) and 

geographic distances. By integrating these parameters, the model provides a more refined and 

adaptable RTT prediction than conventional estimation techniques, ensuring greater precision 

in cloud performance assessments. Furthermore, The chapter highlights the benefits of fuzzy 

logic-based RTT estimation in evaluating and selecting the optimal network performance. By 

explicitly modeling the impacts of geographical distance and network congestion, the proposed 

approach enables customers to make informed decisions about service quality, taking into 

account their proximity to data centers and their awareness of current network conditions. This 

approach ensures greater accuracy in meeting Quality of Service (QoS) requirements and 

maintaining compliance with (SLAs). A comparative analysis of RTT values across 28 AWS 

regions is presented, demonstrating that the fuzzy logic-based system consistently yields more 

precise and lower RTT estimates than traditional measurement methodologies available 

through Websites standard online tools. These findings highlight the effectiveness of fuzzy 

logic in estimating latency and improving SLA evaluation. 

4.1 Introduction to Round-Trip Time (RTT) in Cloud Computing 

Traditional cloud computing is primarily used for storing, analyzing, and processing large 

volumes of data. However, it struggles to handle high latency issues in time-critical 

applications, such as computer gaming, e-healthcare, telemedicine, and robot-assisted surgery. 

Network latency, which causes delays in data transmission, is a critical factor for real-time 

applications. Traditional cloud computing methods are often insufficient to meet the stringent 

Quality of Service (QoS) requirements for devices operating in these environments. Challenges 

in calculating and expectation the RTT further complicate efforts to minimize latency when 

transmitting time-sensitive data in real-time [76]. RTT is a crucial determinant of latency in 

cloud services. Efficient management of RTT can significantly enhance QoS by ensuring faster 

data exchange and reducing response times. This optimization is essential for applications 

dependent on real-time interactions, where latency can drastically affect user experience and 

satisfaction. Ensuring low RTT is also essential for maintaining SLA compliance [77]. 

Scientists are evaluating cloud infrastructure for next-generation applications by analyzing the 

impact of geographical distance on latency. Private network backbones and direct peering 

agreements have been shown to significantly improve latency in cloud environments, reducing 

the delays experienced by users across different regions [78]. One study assessed the 

performance of the Tahoe Least-Authority File System (Tahoe-LAFS) by comparing its write 

operations on community network clouds and the Azure commercial cloud platform. The 

results revealed that read operations outperform write operations on Azure due to the platform’s 

network homogeneity, highlighting the performance differences between community and 
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commercial clouds [79]. In the pursuit of optimizing resource management and reducing 

communication costs, two approaches—queue-based dynamic resource allocation and spatial 

resource partitioning—were evaluated for their impact on latency, throughput, fairness, and 

latency fairness. The findings show that queue-based dynamic technology outperforms spatial 

partitioning in terms of latency reduction and overall performance [80]. DCN are also evolving, 

with line rates increasing to 200Gbps to support NVMe and distributed (ML) applications. 

However, this advancement leaves room for imperfect control decisions. To address this, the 

Bolt system was developed, founded on three core ideas: (i) Sub-RTT Control (SRC), which 

reacts to congestion faster than traditional RTT control loop delays; (ii) Proactive Ramp-Up 

(PRU), which anticipates future flow completions to quickly utilize released BW; and (iii) 

Supply Matching (SM), which explicitly matches BW demand with supply to maximize 

utilization. Bolt has been shown to reduce latency and improve flow completion times while 

maintaining near line-rate utilization, even at 400Gbps [81]. Cloud applications often operate 

exclusively on the servers provided by CSPs, accessible through a simple web browser or 

similar client interface. For example, AWS offers widely used business applications that are 

hosted on its servers and accessed online. AWS has demonstrated this by providing scalable 

infrastructure to accommodate various enterprise needs, further illustrating the potential impact 

of cloud computing [82]. Similar to how most people today opt to rent homes rather than build 

them, the future of computing may see organizations favoring scalable and reliable cloud 

providers instead of constructing their own IT infrastructures. This shift would significantly 

reduce the risks and costs associated with launching new applications and services, as cloud 

providers offer ready-made platforms for deployment [83]. The widespread enthusiasm for 

cloud computing has led to a surge of discussions surrounding network availability, reliability, 

and latency within cloud environments. Despite these discussions, there is a noticeable lack of 

empirical measurement studies that validate these claims. Specifically, there is a gap in research 

comparing networking performance metrics, such as RTT, with the actual RTT experienced by 

web hosting services across different geographical regions. This gap highlights the need for 

more comprehensive studies to better understand and address the challenges related to RTT 

and latency in cloud computing [76]. As a result, our research endeavors to assess the 

performance of networking services under varying load conditions to determine the validity of 

the hype generated around cloud computing. We approach the assessment of network 

availability from two broad perspectives: firstly, by computing network based RTT through 

ping tests to evaluate connectivity, and secondly, by adopting a mathematical respective with 

RTT approach to verify the scalability and performance claims made by CSPs [82]. To gain a 

deeper understanding of these aspects, we employ a fuzzy logic system that utilizes two input 

variables, each defined by three distinct triangular membership functions. The first input, 

Geographical Distance, is categorized linguistically into three categories: Small, Medium, and 

Long. The second input, Network Congestion, is represented by linguistic categories Light, 

Average, and Peak. The output of this fuzzy logic system is the Expected RTT, defined through 

nine distinct triangular membership functions labeled RTT1, RTT2, RTT3, RTT4, RTT5, 

RTT6, RTT7, RTT8, and RTT9. This system enables the measurement of service performance 

concerning the expected optimal RTT. The study is conducted within the AWS platform, where 

performance is evaluated based on the interaction between the sender and receiver when 

retrieving cloud services. RTT values are categorized into three distinct classes: small RTT 
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(RTT < 100 ms), medium RTT (100 ms < RTT < 200 ms), and large RTT (RTT > 250 ms). 

Following this classification, a comparative analysis is performed between the expected RTT 

values obtained using the triangular membership function in the fuzzy logic system and the 

actual RTT values provided by AWS. The findings indicate that the fuzzy logic-based approach 

for RTT estimation yields more accurate and predictable results than those promoted by AWS. 

For further investigation, ping tests were employed to analyze variations while accounting for 

inter-region distances and network latency. This method provides a practical solution to the 

first challenge identified in this study: enhancing cloud service management and selection. By 

integrating fuzzy logic-based SLA optimization, users can make informed decisions regarding 

cloud service selection based on their geographic proximity to AWS regions, ultimately 

improving service performance and efficiency. This contribution facilitates the analysis and 

evaluation of additional Quality of Service (QoS) criteria in both computing and networking, 

which will be examined in detail in the subsequent chapter. Furthermore, the fundamental 

principles underlying the fuzzy logic technology employed in this study will be systematically 

presented and discussed throughout this dissertation in a structured and sequential manner. 

4.2 Challenges in Estimating RTT in Cloud Environments 

Accurately estimating RTT in cloud environments presents a range of challenges due to the 

complex, dynamic nature of modern cloud architectures. 

4.2.1 Geographical Distance 

Cloud data centers are distributed globally, and the physical distance between nodes, such as 

between locations i and j, can introduce significant delays in data transmission. For example, 

transcontinental communications between data centers in Europe and Asia often experience 

higher RTT due to the long distances involved. The geographical separation between the sender 

and receiver plays a crucial role in network performance, particularly in terms of latency. As 

the distance increases, data transmission delays grow, which can have a substantial impact on 

time-sensitive applications that require real-time data exchange. This underscores the 

importance of optimizing routing and data transmission strategies to minimize the negative 

effects of geographical distance on network performance [84].  

4.2.2 Network Congestion 

As cloud networks continue to expand, network congestion becomes a growing concern, 

leading to variable delays in data transmission. In multi-tenant environments, where multiple 

clients share network resources, this competition can result in unpredictable fluctuations in 

RTT. A key issue often cited is the effect of out-of-order packet arrivals on the performance of 

TCP (Transmission Control Protocol). These out-of-order arrivals are typically interpreted as 

a sign of network congestion, causing the receiver to generate duplicate acknowledgements. 

This, in turn, prompts the sender to react as if packets were lost, triggering spurious 

retransmissions and unnecessary reductions in the sending rate. When it comes to flow control, 

the combination of traffic from multiple servers can exceed the capacity available at the 

destination server, further intensifying network congestion. This congestion can also spill over, 

affecting traffic to neighboring servers and exacerbating overall network performance issues. 
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Therefore, the management of congestion and the optimization of traffic flow are crucial to 

ensuring stable and efficient cloud network operations [85][86]. 

4.3 Transmission Performance Evaluation in Cloud Computing 

The Internet serves as a foundational component of computational technologies, facilitating 

extensive data generation that is stored on servers or within cloud infrastructures. The processes 

of data migration and transfer are integral to maintaining system integrity, ensuring 

consistency, and implementing essential security and load-balancing mechanisms. Among the 

key metrics for assessing transmission performance in network communications is RTT, which 

quantifies the duration required for a signal to travel from the source to the destination and 

return. RTT is widely utilized to evaluate the efficiency and Quality of Service (QoS) across 

diverse network environments, including cellular networks, Internet of Things (IoT) systems, 

and traditional Internet-based frameworks [87]. RTT analysis is particularly significant in 

network optimization, as it aids in diagnosing transmission delays and enhancing end-to-end 

communication performance. Moreover, RTT plays a pivotal role in congestion control 

protocols, such as TCP BBRv3, which is designed to optimize BW utilization and ensure 

fairness in networks exhibiting variable RTT values. Within IoT environments, RTT is 

assessed alongside other key performance indicators, including power consumption, to enhance 

data transmission reliability. The integration of RTT-based optimizations enables CSPs to 

maintain high levels of performance and reliability while simultaneously reducing their 

environmental impact [88]. Cloud computing systems are subject to performance evaluations, 

generally categorized into resource assessments and network infrastructure assessments. 

Resource assessments focus on analyzing the computational performance of cloud 

applications, particularly concerning the hardware and virtualized environments that support 

these applications. Each CSP employs distinct criteria for measuring CPU utilization. For 

instance, Google App Engine assesses resource consumption based on "Megacycles used," 

whereas Amazon EC2 evaluates performance in terms of deployment duration and instance 

utilization. Conducting such assessments typically requires root-level access permissions, 

limiting them to cloud providers or certified third-party evaluators [89]. 

4.4 Intelligent Systems and Network Service Prediction 

Intelligent systems encompass a diverse range of computational techniques derived from (AI) 

research, including fuzzy logic, neural networks, and genetic algorithms [90]. Among these 

approaches, fuzzy logic provides a powerful framework for managing uncertainty and 

imprecision, making it particularly effective for solving complex problems where traditional 

binary logic falls short. By incorporating partial truth values, fuzzy logic facilitates human-like 

decision-making in ambiguous situations, which is essential for applications such as control 

systems, decision-making processes, and pattern recognition. Fuzzy logic plays a crucial role 

in intelligent systems due to its capability to process uncertain, imprecise, and vague data. 

Unlike conventional logic systems that rely on absolute true or false values, fuzzy logic allows 

for degrees of truth, mimicking human reasoning and improving adaptability in dynamic 

environments. A fundamental aspect of fuzzy logic is the fuzzy linguistic approach, which 

utilizes linguistic variables to represent qualitative system attributes. This methodology is 
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particularly beneficial for ill-defined or highly complex scenarios, enhancing flexibility and 

adaptability in intelligent problem-solving [91]. Additionally, fuzzy reasoning aids in system 

behavior analysis, allowing for interpolation between input and output conditions, simplifying 

complexity management, and supporting induction-based learning—a critical feature for 

addressing intricate computational challenges. Ensuring balanced uncertainty is essential for 

optimizing model performance in such systems, particularly in server management and task 

distribution, which are fundamental to the efficient operation of service-based infrastructures. 

In cloud computing and networking, fuzzy logic plays a key role in addressing complex 

challenges such as network delay estimation, which is critical for accurately predicting task 

completion times and optimizing cloud resource allocation [90][92][93]. Empirical studies and 

simulations have demonstrated that fuzzy logic-based decision-making models operate 

effectively in uncertain environments, offering high precision in estimating network delays 

within cloud-based infrastructures. Given the complexity and dynamic nature of cloud 

infrastructures, adopting flexible and adaptive methodologies is essential for effective 

management. By providing a structured decision-making framework, fuzzy logic enables 

systems to efficiently handle uncertainty, ultimately enhancing efficiency, reliability, and 

resilience in cloud-based operations [94][95]. 

4.5 Experimental Methodology for RTT Measurement and Analysis Using Fuzzy Logic 

4.5.1 Experimental Testing Model Determination 

Several techniques are utilized to calculate RTT in network environments, each offering 

varying levels of accuracy and application. One widely used method is the Ping Test, which 

serves as a rapid and reliable tool for assessing network performance and connection quality. 

This technique measures the latency in ms between a user's device and a specified remote 

server. The RTT value is significantly influenced by the geographical distance to the server, 

with greater distances typically resulting in higher RTT values. A stable network connection is 

indicated by a consistently straight horizontal line on a ping test chart, whereas fluctuations in 

RTT may signal network instability or congestion [96].  Another method for calculating RTT 

involves mathematical modeling techniques implemented within network infrastructures. In 

this context, network performance metrics are derived by measuring transactions, defined as 

client requests followed by server replies, including TCP and UDP flows. Each read and write 

transaction between client and server is timed, providing essential data for RTT calculation. 

Typically, network appliances, such as Exinda device (1), are strategically placed between the 

client and server to facilitate precise measurement. These devices timestamp each intercepted 

packet with high-resolution nanosecond accuracy. Since the initial packet transmission from 

the client is unknown, RTT is calculated by summing the server-side RTT (from appliance to 

server and back) and the client-side RTT (from appliance to client and back). With increasing 

packets traversing the Exinda appliance, RTT estimations become more accurate by 

continuously averaging newly captured data. Consequently, RTT provides a reliable measure 

of the time required for a minimal packet to travel through the network and receive 

acknowledgment, improving progressively with ongoing data accumulation. [97][98]. The 

methodology for calculating RTT, along with its visual representation and governing 

 
(1) (https://docs.exinda.com/). 

https://docs.exinda.com/
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equations, is depicted in Appendix 3 (Figure 1), which provides a diagrammatic illustration of 

the RTT computation process. In this study, the ping technique was employed to assess the 

connectivity between the sender and receiver, enhancing the accuracy of the analysis and 

enabling precise tracking of the connection process between network nodes within the AWS 

computing environment. Appendix 3: 0.2 Figure 2. Ping testing process. A sample of the results 

obtained from the ping testing process was presented to verify the integrity of the connection 

and establish a reliable link between the user and the endpoint. This verification was performed 

across all selected servers in this study to ensure network stability and performance. 

4.5.2 Data Extraction and Geospatial Analysis for Communication Testing in AWS 

Regions 

In this study, data was systematically extracted to include the names of 28 AWS regions where 

data centers are located, along with relevant details necessary for conducting a comprehensive 

communication and connection assessment. These regions were considered as Amazon’s 

endpoints or receivers, facilitating the evaluation of network performance across different 

geographical locations. To conduct this analysis, the AWS latency testing platform(2) was 

utilized to measure network latency between the sender and AWS endpoints. Additionally, the 

Haversine formula was applied to determine the latitude and longitude of each endpoint. The 

Haversine formula, commonly used in navigation and geospatial analysis, calculates the great-

circle distance between two points on a sphere based on their geographic coordinates. This 

approach enabled precise estimation of the physical distance between the sender and AWS data 

centers. The sender's location was identified as Kut, Muhafazat Wasit, Iraq (IQ), with an IP 

address of 37.236.213.12 and geographical coordinates of latitude 32.6024 and longitude 

45.7521, The primary objective was to analyze and extract the precise distance between the 

sender and all AWS regions across multiple continents, Appendix 3 ( Figure 3, Table 1 ).This 

geospatial analysis facilitated a better understanding of network performance, enabling a more 

accurate evaluation of latency and connectivity between CSU and data centers worldwide. 

4.5.3 Fuzzy Logic Framework 

 4.5.3.1 Design System 

The proposed model employs several triangular membership functions. [99], formulated in 

Equation (4.1), to convert crisp values into fuzzy sets. The MATLAB Fuzzy Logic Designer 

tool was utilized to develop the model, as depicted in Figure 4.1, the model integrates two input 

parameters, as detailed in Appendix 3 (Figures 4 and 5). The model utilizes three triangular 

membership functions for each input parameter. 

𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (𝑑: 𝑙,𝑚, 𝑛) =

{
 
 

 
 

0, 𝑑 < 𝑙
𝑑−𝑙

𝑚−𝑙
 , 𝑙 ≤ 𝑑 ≤ 𝑚

𝑛−𝑑

𝑛−𝑚
 , 𝑚 < 𝑑 ≤ 𝑛

0 , 𝑑 > 𝑛

                  (4.1) 

where: 

 
(2)(https://aws-latency-test.com/). 

https://aws-latency-test.com/
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• l is lower bound of the triangle (left endpoint). 

• m is peak or center of the triangle (point of maximum membership value, equal to 1). 

• n is upper bound of the triangle (right endpoint). 

• d is input value being evaluated. 

 

Figure 4.1. Proposed model design. 

The fuzzy logic system developed in this study is grounded in a systematic design process for 

defining both fuzzy sets and inference rules. The membership functions for the two input 

variables. Geographical Distance and Network Congestion were established based on extensive 

analysis of RTT measurement data collected across 28 AWS regions. Geographical Distance 

was divided into three fuzzy sets. Small, Medium, and Long. Using triangular membership 

functions. The breakpoints were determined from empirical distance ranges corresponding to 

expected variations in RTT values. 

 

1) Input Variables Definition 

• Distance: 

Small: [0, 862.94, 4516]; Medium: [2689, 8170, 11824]; Long: [9997, 15478, 

15478.65] 

Network Congestion was similarly divided into three fuzzy sets. Light, Average, and Peak 

reflecting latency characteristics were measured at different times of the day and under 

varying network load conditions. 

• Network Congestion: 

Light: [0, 3, 6]; Average: [3, 6, 8]; Peak: [7, 14, 23.59]. 

2) Output Variables Definition 

The expected (RTT-Expectation) output is defined in Appendix (Figure 7) as follows: 

RTT1: [0, 0, 25]; RTT2: [10, 50, 75]; RTT3: [50, 100, 125]; RTT4: [100, 150, 175]; 

RTT5: [150, 175, 200]; RTT6: [175, 200, 250]; RTT7: [200, 250, 325]; RTT8: [250, 

325, 350]; RTT9: [325, 430, 500]. 

The output variable, Expected RTT, Table 4.1, was defined using nine triangular membership 

functions labeled RTT1 through RTT9, each corresponding to specific ranges of RTT delays 

identified in our measurements, Appendix 3 (Figure 6)., in accordance with fuzzy logic system 

standards (3 × 3) rules, as depicted in Appendix 3 (Figure 7). 
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Table 4.1 Expected RTT. 

          Distance 

 

Network 

congestion 

 

Small Medium Long 

RTT Expectation 

Light RTT1 RTT4 RTT7 

Average RTT2 RTT5 RTT8 

Peak RTT3 RTT6 RTT9 

4.5.3.2 Description of the Proposed Model 

The fuzzy logic system designed for estimating RTT comprises four integral components: 

fuzzification, inference engine, knowledge base, and defuzzification. The fuzzification process 

transforms precise numerical inputs into fuzzy sets using linguistic variables, effectively 

managing uncertainty and variability inherent in network conditions. The inference engine 

utilizes a defined set of fuzzy rules to process these input fuzzy sets, generating output fuzzy 

sets that determine RTT estimations. The knowledge base includes a rule base of conditional 

(if-then) rules and a database of membership functions specifying fuzzy sets for various 

network parameters. Finally, defuzzification converts fuzzy output values back into precise 

numerical values, yielding practical RTT estimates suitable for network performance decisions 

[100]. By leveraging these components, fuzzy logic offers an adaptive and intelligent approach 

to RTT estimation, superior to traditional deterministic methods, especially in handling 

unpredictable network fluctuations. The structured methodology ensures accurate 

transformation of raw data into meaningful RTT predictions, enhancing evaluation precision 

and network adaptability. In the fuzzification stage, crisp numerical inputs such as Distance 

(measured in kilometers, indicating geographical separation between sender and receiver) and 

Network Congestion (measured in ms, representing network traffic intensity and its impact on 

latency) are translated into linguistic terms mapped onto fuzzy sets using triangular 

membership functions. Following fuzzification, the system applies nine comprehensive if-then 

fuzzy rules, enabling dynamic adaptation to varying network conditions. The fuzzy outputs 

derived from the inference process are subsequently converted into precise numerical values 

through defuzzification using the centroid defuzzification method, also known as the (COG) 

method. This technique ensures realistic and weighted RTT estimates that accurately reflect 

real-world network conditions, significantly enhancing reliability, precision, and 

interpretability, thereby optimizing Quality of Service (QoS) and ensuring compliance with 

(SLAs) in cloud computing and network management contexts. By explicitly modeling the 

impacts of geographical distance and network congestion, our fuzzy logic approach provides 

precise and realistic RTT predictions that reflect actual network conditions. This enables users 

and network operators to make informed decisions regarding the selection of cloud services, 

choosing data center regions closer to their location to minimize RTT and ensure stable 

performance. Users can also anticipate periods of higher network congestion, helping them 

avoid scheduling heavy transmissions during peak times. Moreover, RTT prediction serves as 

an essential optimization tool by acting as an early warning system for potential congestion. 

When the predicted RTT increases unexpectedly, indicating growing network congestion, 

dynamic protocols such as TCP can adjust transmission rates proactively, reducing data flow 

to prevent congestion collapse. Conversely, when predicted RTTs are low, the system allows 

higher throughput, maximizing available BW and improving resource utilization. RTT 

predictions also inform adaptive routing protocols, enabling the network to select paths with 

lower expected delays and to avoid congested links. This contributes to efficient BW allocation 
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and load balancing, ensuring optimal network performance. Real-time RTT feedback supports 

traffic shaping policies, allowing prioritization of latency-sensitive applications like VoIP and 

video streaming, thus maintaining consistent QoS even under varying traffic conditions. 

Additionally, sustained increases in RTT act as early indicators of deeper network issues, 

allowing administrators to implement preemptive measures, such as upgrading links or adding 

capacity, to prevent severe congestion. This proactive management ensures network stability 

and enhances reliability. Figure 4.2 presents a surface viewer of the proposed fuzzy logic 

system, illustrating the relationship between distance, network congestion, and the expected 

RTT. The X-axis represents the geographical distance (in kilometers) between the service 

consumer and the cloud data center, ranging from 0 km to approximately 15,478 km, thereby 

covering local, regional, and global communication scenarios. The Y-axis corresponds to the 

network congestion level, mapped linguistically as Light, Average, and Peak, and modeled over 

a 24-hour time scale to reflect hourly fluctuations in network load. The Z-axis indicates the 

expected RTT, measured in ms, and the estimated delay for a data packet to travel from the 

user to the cloud and back. RTT values range from 0 ms to 500 ms, where higher values signify 

network performance degradation. The surface behavior shows that the RTT remains minimal 

at short distances and under light congestion conditions (e.g., RTT1: 25 ms). As the distance 

increases or the network congestion becomes more intense, the RTT values rise accordingly, 

aligning with intermediate fuzzy rule outputs such as RTT2 through RTT8. Under long-

distance communication and peak congestion scenarios, the model estimates the highest RTT 

values (e.g., RTT9: 500 ms), which may indicate potential service delays or connection 

timeouts. The system employs triangular membership functions for all inputs and outputs and 

is governed by nine fuzzy rules defining how input combinations translate into RTT 

classifications. For instance, a rule such as “If Distance is Long and Congestion is Peak, then 

RTT is Very High (RTT9)” exemplifies the model’s logic structure. The inference engine 

processes these rules to produce fuzzy output sets, which are then translated into precise RTT 

estimates through defuzzification using the Centroid (Center of Gravity) method, resulting in 

realistic and actionable RTT values that enhance network performance assessment and SLA 

compliance. 

 

 

Figure 4.2 Fuzzy Logic-Based RTT Estimation by Distance and Network Congestion. 

4.6 Evaluation and Analysis of the Proposed Model for RTT Estimation: Results and 

Discussion 

The proposed model was rigorously tested to ensure its accuracy and adherence to established 

standards. The primary objective of this evaluation was to validate the model's reliability in 
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estimating RTT by simulating real-world conditions. One of the critical aspects of this 

assessment involved verifying communication between two points on a network, specifically 

between a sender located in Kut, Iraq, and recipients across all AWS geographical regions. 

This verification, conducted using the ping tool, ensured the integrity and responsiveness of 

the network connection. Additionally, since RTT is influenced by factors such as geographical 

distance, network congestion, and peak cloud service usage, the distance between the sender 

and receiver was precisely calculated to account for its impact on RTT fluctuations. Following 

the implementation of the proposed system, the model successfully extracted and estimated 

RTT over 24 hours, capturing its variations across different congestion levels. The results 

demonstrated that during low congestion periods—typically corresponding to off-peak hours 

when cloud service and network traffic are minimal—the estimated RTT remained 

significantly low. Conversely, during moderate congestion periods, which generally coincide 

with regular business hours in companies and organizations, RTT values exhibited a gradual 

increase. The model also effectively estimated RTT under peak congestion conditions, 

representing the highest levels of cloud service utilization. Unlike conventional CSPs, such as 

AWS, which often display a single, static RTT value, the proposed model offers a dynamic and 

comprehensive RTT estimation. This approach enhances user confidence by providing a more 

detailed representation of RTT fluctuations, allowing users to make more informed decisions 

regarding their network performance. Table 4.2 presents details of the calculated distances 

between the sender and each recipient region, the RTT values reported by AWS, and the 

detailed RTT estimates generated by the proposed model. Furthermore, the results indicate that 

RTT1 to RTT3 correspond to optimal network performance, characterized by minimal latency 

and efficient data transmission. Conversely, RTT9 signifies severe network degradation, which 

may result in connection termination due to excessive delays. Intermediate RTT values, 

ranging from RTT4 to RTT8, reflect progressive performance deterioration, where users 

experience increased latency, extended page load times, and diminished service quality. Each 

estimated RTT result in the proposed system is labeled accordingly, allowing users to identify 

the most suitable geographic region based on their network requirements. 

4.7 Summary of an Innovative Fuzzy Logic-Based Model for RTT Assessment in AWS 

Cloud Services and SLA Optimization 

This research This research introduces a novel fuzzy logic-based model designed to accurately 

estimate RTT in AWS cloud environments. The primary objective is to improve the precision 

of RTT predictions by integrating multiple network parameters, particularly geographical 

distance, and network congestion, within a rule-based fuzzy inference framework. Compared 

to traditional RTT calculation methods, the proposed model offers a more detailed, dynamic, 

and adaptable assessment, thereby enhancing user decision-making when selecting (SLAs) 

from cloud providers. Traditionally, AWS supports RTT measurements using diagnostic tools 

such as ping and traceroute, which transmit Internet Control Message Protocol (ICMP) echo 

requests to specified destinations and measure the elapsed. AWS documentation describes this 

process as involving the execution of the ‘ping’ command, followed by the target IP address 

or hostname, which results in the collection of individual RTT measurements. However, this 

traditional mechanism has inherent limitations. RTT is highly variable, fluctuating due to 

factors like network congestion, routing changes, server load, and geographical distance. As a 

result, reporting a single RTT value for a region provides only a static snapshot rather than a 

comprehensive view of latency dynamics. AWS likely simplifies RTT reporting to avoid 
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overwhelming users with excessive technical detail, abstracting the measurement methods—

whether ICMP ping, TCP handshakes, or application-layer metrics—to ensure consistency 

across services. For the sake of user experience, AWS typically rounds or averages RTT values 

to present information in a more accessible format, recognizing that many users are not network 

engineers. While this approach is user-friendly, it can obscure important nuances, particularly 

for users requiring granular diagnostic insights. Moreover, revealing detailed RTT paths or 

node-level latency information could expose sensitive aspects of AWS’s internal infrastructure 

or routing strategies, which are kept confidential for security and competitive reasons. In 

contrast, the proposed approach developed in this study offers a dynamic and adaptive 

assessment of RTT for each AWS data center region. It considers both the geographical 

distance between users and data center locations, as well as variations in network conditions, 

such as peak traffic periods and congestion levels. This method enables context-aware 

predictions rather than static, single-value estimates, allowing users to anticipate service 

performance and potential latency issues better. It is essential to recognize that RTT 

measurements can vary significantly due to fluctuating network conditions and the inherent 

limitations of diagnostic tools, which pose challenges for accurate RTT estimation. This study 

highlights the crucial importance of accurate RTT prediction in ensuring optimal Quality of 

Service (QoS) in cloud computing, particularly for latency-sensitive applications. The 

proposed model categorizes RTT into various performance levels using triangular membership 

functions, allowing detailed analysis of network efficiency. Furthermore, it accounts for RTT 

variability across different congestion scenarios, distinguishing between optimal conditions, 

moderate degradation, and severe latency problems that could lead to service disruptions. A 

significant contribution of this research lies in the comparative evaluation between the 

proposed fuzzy logic model and RTT values reported by AWS. While AWS typically provides 

static RTT measurements, the proposed system dynamically estimates RTT variations 

throughout different times of the day, delivering more realistic and context-sensitive insights 

into network performance. This dynamic capability empowers users to make informed choices 

when selecting cloud regions that align with their specific networking and computational 

requirements. Additionally, this work addresses challenges related to the availability and 

reliability of critical network metrics, such as RTT, which are essential for assessing the 

performance of cloud-based services. Future sections of this thesis will explore additional 

network performance indicators, including vCPU, RAM, Storage, downtime, jitter, packet loss, 

and BW utilization, to achieve a 99.999% reliability target. The developed fuzzy logic based 

RTT estimation model represents a robust, scalable, and intelligent tool for cloud service 

selection, significantly enhancing network performance monitoring and resource allocation. 

By leveraging fuzzy inference techniques, the model enables more accurate, adaptive, and real-

time RTT predictions, thereby improving reliability, operational efficiency, and SLA 

compliance in contemporary cloud computing infrastructures. 

Table 4.2 Comparison of the Proposed Model Results with AWS Round-Trip Time (RTT) 

Measurements. 

NO 

Computed 

Distance 

Between the 

Sender and 

Receiver(km) 

Amazon 

(RTT) 

(ms) 

During 

Daytime 

Estimated Latency Values in the Proposed RTT 

Classifications During Daytime Hours(ms) 

Light congestion Average 

congestion 

Peak 

congestion 

1 862.94 62 9 45 92 
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2 1234.23 50 9 45 92 

3 3089.72 361 30 65 110 

4 3428.79 88 50 86 128 

5 3525.01 100 57 92 134 

6 3601.23 102 62 97 138 

7 3607.54 113 62 97 139 

8 4009.87 115 93 127 166 

9 4202.65 112 110 144 181 

10 4238.49 127 113 147 184 

11 4682.33 138 142 175 208 

12 5981.25 388 142 175 208 

13 6012.87 212 142 175 208 

14 6789.34 347 142 175 208 

15 7056.22 339 142 175 208 

16 7289.64 369 142 175 208 

17 7435.78 414 142 175 208 

18 7832.90 426 142 142 208 

19 8053.21 374 142 142 208 

20 8923.45 181 142 142 208 

21 10023.67 172 143 143 210 

22 10289.47 198 155 155 232 

23 12345.89 279 258 258 418 

24 12678.56 242 258 258 418 

25 13756.90 390 258 258 418 

26 14321.76 427 258 258 418 

27 14989.34 266 258 258 418 

28 15478.65 300 258 258 418 
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Chapter 5 Quality of Service (QoS) Availability Assessment for Optimal SLA Selection 

This chapter presents a significant advancement in cloud computing service selection by 

introducing a fuzzy logic-based classification model for evaluating Quality of Service (QoS) 

levels. The proposed method enhances user decision-making by enabling the confident 

selection of the most appropriate SLA, thereby improving the accuracy and reliability of cloud 

service utilization. Building upon the RTT estimation framework discussed in the previous 

chapter, this model expands the analysis to encompass a comprehensive set of quality-of-

service parameters. It systematically evaluates computing and networking metrics, including 

virtual CPU (vCPU), RAM, storage, BW, delay, jitter, and packet loss. The model categorizes 

SLAs into nine distinct service availability levels, ranging from 90% to 99.999%. It organizes 

them into structured tiers, beginning with entry-level agreements such as Normal SLA and 

Bronze SLA, culminating in the highest reliability classification under the Gold SLA. This 

granular classification framework empowers users to align SLA selection with their specific 

performance and reliability requirements. By leveraging fuzzy logic principles, the model 

supports a more adaptive SLA selection process, dynamically aligning service guarantees with 

real-world user demands and fluctuating network conditions. This approach enhances quality 

of service by increasing the precision and reliability of SLA classification, particularly 

benefiting users with high availability and performance needs. It also facilitates intelligent 

cloud service provisioning by enabling responsive adjustments to variations in service quality. 

Overall, the proposed model establishes a robust foundation for SLA optimization, contributing 

to improved network efficiency, more effective resource management, and greater reliability 

across modern cloud computing environments. 

5.1 Evaluating QoS metrics for determining SLA  

Cloud computing represents a transformative paradigm in networking, enabling seamless, real-

time access to a range of computing resources, including applications, servers, storage, 

services, and networks, without the need for upfront infrastructure investment. This model 

provides users significant scalability and flexibility, allowing them to pay only for the resources 

they consume. As a result, cloud computing facilitates the convergence of global data and 

service accessibility from any location at any time. Cloud infrastructure typically offers three 

primary service models: (SaaS), (PaaS), and (IaaS). Service providers deliver these models 

reliably and cost-effectively, earning user trust [101]. As cloud computing becomes 

increasingly ubiquitous across desktop and mobile platforms, new challenges have emerged 

for providers and users. The growing user base and rising storage demands have intensified 

concerns surrounding data privacy and system security [102]. Although cloud providers offer 

a broad array of services, a significant issue remains the lack of transparent guarantees 

regarding availability, uptime, and downtime as specified in (SLAs) [103]. In addition, network 

performance indicators—such as throughput RTT, jitter, and packet loss—are also critical to 

overall service availability [104]. These technical parameters are essential for meeting user 

expectations but are often presented in complex or unclear ways. Therefore, understanding the 

SLA decision framework is essential for ensuring timely and cost-effective service delivery. 

Users must ensure that cloud providers offer comprehensive guarantees regarding networking 

QoS metrics (e.g., BW, RTT, jitter, and packet loss) and computing QoS metrics (e.g., uptime 

and downtime). Before adopting cloud services, customers must conduct detailed assessments 

and maintain clear communication with providers to establish reliable SLA terms. A 
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trustworthy relationship between provider and customer hinges on this clarity. Moreover, 

defining guarantees in a cloud environment entail identifying key performance indicators such 

as task execution speed and responsiveness. Cloud providers must demonstrate transparency 

in their service offerings through detailed documentation, SLA disclosures, and performance 

metrics. Significantly, validation of SLA commitments operates within the shared 

responsibility model, wherein accountability is distributed between the cloud provider and the 

customer [105]. The Shared Responsibility Model is a foundational framework for cloud 

security and compliance. It delineates responsibilities for various components of the cloud 

environment, including hardware, infrastructure, endpoints, data, configurations, operating 

systems, network controls, and access management. This model clearly establishes the 

boundary between cloud providers' obligations and those of the customers. Irrespective of the 

chosen service model—be it IaaS, PaaS, or SaaS—the shared responsibility framework applies 

universally [106].  However, the increasing complexity and variability of component-level 

services present additional challenges in SLA selection. Existing selection methods are 

generally limited to formal service attributes and fail to accommodate unquantifiable user 

preferences or subjective opinions. Many web interfaces only allow customers to select pre-

configured service packages without explicitly articulating the guarantees these packages offer. 

The key challenge lies in capturing and expressing consumer preferences, which often involve 

abstract and non-measurable factors, and incorporating them into the decision-making process 

for optimal service selection [107]. To address these limitations, this research proposes a 

service selection mechanism that integrates users' subjective judgments into SLA decision-

making. By allowing users to express qualitative preferences—referred to as "human 

opinions"—for each service requirement, the model ensures alignment between selected 

services and individual user expectations. In SLA selection, a comprehensive understanding of 

Quality of Service (QoS) is vital, as QoS parameters are closely linked to user needs and 

application demands [108]. Accordingly, this study introduces a fuzzy logic-based QoS 

classification model designed to support efficient and practical SLA selection. The model 

systematically categorizes SLAs into nine distinct availability levels, ranging from 90% to 

99%, reflecting the diverse needs of cloud users. This classification incorporates both 

computing QoS metrics—such as vCPU, RAM, and storage—and networking QoS metrics, 

including BW, jitter, RTT, and packet loss. By integrating these parameters, the model 

facilitates a comprehensive evaluation of service quality, thereby enabling informed SLA 

selection. The proposed model enhances user empowerment by enabling informed decisions 

based on specific application requirements, budget constraints, and desired QoS guarantees. 

For instance, users with minimal computing demands, such as those using basic office 

applications, may select entry-level service tiers. Conversely, users engaged in activities like 

virtual conferencing may require enhanced service levels, while high-performance users, such 

as gamers or professionals working in video editing or scientific computation, may necessitate 

premium gold-tier services. The motivation for this research arises from the observed lack of 

clarity and interpretability in SLA representations provided by major cloud platforms. Leading 

providers such as AWS and GCP present SLA terms that are often difficult for users to 

interpret. For example, AWS specifies uptime guarantees ranging from 99.0% to 99.95%, while 

GCP offers guarantees for single-instance services at or above 99.95% uptime. Given the range 

of computing and networking services offered at varying price points, a transparent 
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classification model is needed to assist users in navigating service availability levels. The fuzzy 

logic-based model presented in this study addresses this need by providing a systematic 

classification of SLA options. By organizing SLAs into structured tiers—ranging from Normal 

and Bronze to premium gold levels—the model improves clarity, enabling users to make 

strategic choices that optimize cost-efficiency, performance, and reliability. Additionally, it 

incorporates user-defined qualitative factors, making the SLA selection process more adaptive 

and personalized. Ultimately, this model supports better resource allocation, enhances service 

performance, and boosts confidence in decision-making within modern cloud computing 

environments. 

5.2 Existing SLA Selection Methods and Service Availability Comparative Analysis 

Patel et al. [109] propose an architecture for managing cloud (SLAs) using the Web Service 

Level Agreement (WSLA) specification, distinguishing their approach by presenting three core 

WSLA services that facilitate cloud SLA automation. Their method also incorporates trusted 

third parties to enhance security within the SLA process. Similarly, Alhamad et al. [110] outline 

essential criteria for formulating SLAs across service models, including (IaaS),  (PaaS), and 

(SaaS). They emphasize specific factors for IaaS, such as boot time, scale-up/downtime, and 

response time, as critical components of effective SLA design. Building on the work of 

Alhamad and Baset, Qiu et al. [111] analyze 29 SLAs from various public cloud services, 

including 17 IaaS SLAs, identifying commonly mentioned attributes and significant gaps that 

impact the relationship between cloud providers and consumers. They note that many SLAs 

lack specific provisions concerning customer data, including security, privacy, protection, and 

backup policies, even as availability is consistently guaranteed. However, Qiu et al. also 

highlight a lack of detailed commitments on availability and penalties, suggesting a need for 

greater clarity and accountability in SLA agreements. As the demands of network applications 

evolve, the focus has shifted to include factors such as media quality, interactivity, and 

responsiveness, leading to a broader definition of (QoE). In telecommunications networks, 

QoE considers user satisfaction, expectations, and enjoyment [112]. In a related study, Baset 

[113] examines SLAs across five IaaS and PaaS providers, focusing on compute and storage 

services. Baset’s framework dissects SLAs into various components, facilitating comparisons 

between providers and aiding them in defining clear, comprehensive SLAs. In line with Baset’s 

approach, this study focuses on availability and provides a detailed classification of provider 

commitments to service availability. Expanding on SLA methodology, Godhrawala and 

Sridaran [114] propose a service-oriented architecture (SOA) that leverages a ML-based 

Apriori algorithm to connect quality of service (QoS) metrics, enhancing SLA strength and 

simplifying resource management. This approach improves SLA definitions, facilitates QoS 

management, reduces costs, and optimizes revenue. Akbari-Moghanjoughi et al. [115] 

underscore the importance of SLAs in managing service demands within ICT networks. Their 

survey reviews the current state of SLA establishment, deployment, and management, covering 

core concepts, methodologies, and challenges. The study also emphasizes the need to go 

beyond traditional networking by linking each Service Level Objective (SLO) to relevant 

service domains, with the ultimate goal of developing a comprehensive methodology for 

effective SLA definition, establishment, and deployment. Finally, Saqib et al. [116] address 

the limitations of conventional traffic classification, advocating for adaptive solutions in 

response to evolving traffic patterns. They introduce a framework to quantify SLA violations 

and an economic model to assess profitability impacts. Their study suggests adaptive ML 
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techniques to sustain classification accuracy over time. It concludes that an adaptive traffic 

classifier can mitigate penalties, optimize resources, and uphold SLA integrity, offering 

network operators a robust approach to managing traffic dynamics. 

5.3 Understanding Availability  

When a failure lasts more than a few seconds, it can disrupt not only individual user requests 

but also subsequent retries. If repeated attempts fail, the issue is considered a service outage, 

impacting availability metrics. Prolonged disruptions may eventually lead users to abandon 

access attempts, marking the service as unavailable. In complex systems, outages are classified 

as either service impact outages or network element impact outages. Service impact outages 

directly affect end-user access and are visibly disruptive. In contrast, network element impact 

outages involve failures within a network component that could impact service depending on 

redundancy and recovery time. High-availability systems must distinguish between these types 

to effectively monitor downtime and ensure backup resources are in place. Suppose a second 

failure occurs before resolving a network element outage. In that case, a prolonged service 

impact outage may result, emphasizing the need for robust redundancy and quick recovery to 

maintain consistent service availability [117][118]. The following criteria are commonly used 

to classify and rank availability [117]. In practical scenarios, cloud availability calculation 

necessitates consideration of additional elements, such as: 

                                       𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒−𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒

𝑆𝑒𝑟𝑣𝑖𝑐𝑒𝑇𝑖𝑚𝑒
                                           (5.1)  

Availability is a critical metric in cloud computing, quantified as a percentage representing the 

ratio of system uptime to total operational time. Uptime denotes the total duration for which a 

system or service is expected to remain operational, whereas Downtime refers to periods of 

inoperability. By incorporating these variables into the standard availability formula, 

availability can be expressed either as a ratio or as a percentage, providing a standardized 

measure of service reliability. CSPs prioritize high availability to ensure continuous access to 

applications and data, thereby minimizing service disruptions. (SLAs) define and guarantee a 

specific percentage of uptime, reflecting the provider's commitment to service reliability. 

Service outage, commonly referred to as downtime, is determined by subtracting the uptime 

percentage from 100%, thereby quantifying the proportion of time during which the service 

remains unavailable. The availability commitment represents the extent to which cloud 

providers assure service availability, often serving as a key differentiator in cloud service 

offerings. It is important to note that reliability is either conceptually like or a broader construct 

encompassing service availability [119]. Among surveyed SLAs, providers generally express 

their commitment in terms of availability rate [120]. Highly available systems, particularly 

those used in telecommunications and critical cloud services, are expected to meet a minimum 

of 99.999% availability, commonly referred to as the "five-nines" (5–9s) reliability standard. 

Appendix 4 (Table 1) illustrates the maximum allowable downtime for various levels of 

availability commitment across different operating intervals. For example, a system adhering 

to the 5–9s standard permits only 5 minutes and 15 seconds of downtime over a full year of 

continuous operation [121]. Such stringent availability requirements are fundamental in 

ensuring uninterrupted service delivery, particularly in mission-critical cloud-based 

infrastructures. 
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5.3.1. Measurement Period 

The Measurement Period refers to the timeframe in which cloud providers calculate their 

services' availability. There are two common forms: the billing month and the calendar month. 

The commitment level of cloud providers can vary depending on the length of the measurement 

period. Suppose the measurement period is set to one year. In that case, cloud providers can 

perform inconsistently for a few months while maintaining stability for the rest, still fulfilling 

the overall availability requirement. On the other hand, a measurement period of one month 

necessitates that providers consistently maintain stable and available services every month 

[122]. 

5.3.2 Accuracy in Service Provision 

Accuracy in service provision is the extent to which cloud providers classify failed services as 

unavailable, varying by component, such as VMs, hosts, or entire Availability Zones. Amazon 

EC2, for example, considers an outage only if multiple Availability Zones lose connectivity, 

while Aliyun Cloud treats any instance downtime as unavailable. To improve cloud system 

dimensioning, analytical and simulation models at the IaaS level are employed. These models 

account for the heterogeneous nature of cloud systems and physical server limitations. By using 

analytical tools, they approximate real traffic and calculate request loss probability, offering a 

reliable means to evaluate service availability and optimize resource allocation [120][123]. 

5.3.3 Time-Based Accuracy in Availability 

The accuracy in Time provision, refers to the unit of downtime used in the measurement period. 

Currently, three types of unit downtime are prevalent: 1 minute, 5 minutes, and half an hour. 

The way downtime is handled varies among cloud providers. Sometimes, if the downtime does 

not align perfectly with the time granularity, certain clouds may exclude those periods from 

the total service downtime calculation. On the other hand, other providers would include such 

periods in the calculation. For example, consider a cloud service experiencing a downtime of 

7 minutes with a time granularity of 5 minutes. In this scenario, the eventual downtime is either 

5 minutes or 10 minutes, depending on the specific policies adopted by the cloud provider. This 

difference in handling time granularity becomes more pronounced when using more extended 

periods, such as half an hour, and can significantly impact the availability calculation [120]. 

define availability as: 

                                        𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅
                                                          (5.2) 

MTTF represents the mean-time-to-failure, and MTTR denotes the mean-time-to-recovery. 

This measure is based on the duration when the system is either up or down, which holds 

significance for users. Consequently, it is unsurprising that several cloud providers, such as 

Microsoft's Office 365, employ this measure. Uptime corresponds to the time between failures, 

while downtime refers to the time taken to recover from a failure [121]. 

5.3.4 Exclusions in Availability Calculations 

Exclusions refer to scenarios not considered when determining whether cloud services are 

available. Several events are not taken into account when calculating availability. In most 

cases, occurrences of natural disasters, regularly scheduled maintenance, network outages that 
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occur beyond the demarcation point of the cloud provider, and internet attacks are excluded 

from coverage under this policy. Because these occurrences are deemed extraordinary and 

transient, they are not taken into account in the calculation of cloud service availability, as they 

may not accurately reflect the typical service performance of the provider [124]. 

5.4 Availability in Computing and Networking Environment 

In cloud computing, ensuring the availability of critical resources such as virtual CPUs 

(vCPUs), RAM, and storage is essential for maintaining a reliable and efficient computing 

environment. The availability of these resources is governed by multiple factors, including 

performance, scalability, fault tolerance, SLA guarantees, elasticity, monitoring, and security. 

Performance optimization is a crucial aspect of cloud computing, requiring resource 

availability to be adaptable to workload fluctuations. Efficient allocation of vCPUs is necessary 

to meet processing power demands, while RAM provisioning must be adequate to support 

memory-intensive applications and large-scale datasets. Similarly, storage infrastructure, 

particularly high-performance options such as solid-state drives (SSDs), must be capable of 

seamlessly accommodating growing data volumes. These performance criteria directly impact 

the expected availability of vCPU, RAM, and storage, establishing clear reliability benchmarks 

for CSU. To enhance service resilience, cloud providers must implement availability strategies 

that encompass network monitoring, fault tolerance, and proactive system management. 

Network monitoring has evolved from basic connectivity checks to sophisticated analytical 

techniques leveraging big data, ML, and (AI). These advanced approaches enable the 

optimization of network traffic flow, improved efficiency, and enhanced security by predicting 

and mitigating potential disruptions. (SLAs) serve as contractual frameworks that define 

performance metrics and ensure compliance with predefined quality standards. Key SLA 

parameters, including delay, jitter, packet loss, and BW, play a critical role in maintaining 

optimal network performance. These metrics facilitate the identification of network 

inefficiencies, enabling CSPs to address issues that may impact overall system productivity 

and user experience. The assessment of core performance metrics provides valuable insights 

into network efficiency and availability, allowing for continuous improvement and the 

prevention of service degradation. By incorporating these availability and performance criteria, 

cloud providers can offer resilient, high-performance services that meet user expectations for 

reliability, scalability, and security in modern cloud computing infrastructures 

[120][123][125]. 

5.4.1 Bandwidth Considerations 

The (BW) of a channel refers to the amount of data that can be transmitted per unit time, 

typically measured in bits per second. However, its interpretation varies depending on the 

context and underlying parameters [126]. One common definition equates BW with a path's 

capacity. For an end-to-end path composed of n sequential links indexed by i = 1,.., n, the path 

capacity C* is determined by the link with the smallest transmission capacity: 

                                          𝐶∗ =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
𝐶𝑖                                                               (5.3) 

Here, 𝐶𝑖 is the capacity of link i. The links where this minimum is attained—i.e., those 

satisfying  𝐶𝑖 = 𝐶
∗ are referred to as the narrow links or bottlenecks of the path. There may be 
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multiple such links. Let iK denote the K-th index such that  𝐶𝑖𝑘=𝐶∗ . In this context, k indexes 

the set of links that constitute the bottlenecks. Alternatively, BW may refer to available BW, 

which is the unused portion of the link's capacity at a given time t. It complements the utilized 

BW, expressed by the utilization factor: 𝑢𝑖
𝑡  ∈ [0,1] for each link. The instantaneous available 

BW of the path is defined as: 

                                      𝐴𝑡
∗ =

𝑚𝑖𝑛
𝑖 = 1, . . , 𝑛

[𝐶𝑖  . (1 − 𝑢𝑖
𝑡 )]                                               (5.4) 

In this formulation, the link iK  such that  𝐴𝑖𝐾= 𝐴𝑡
∗ is referred to as the tight link, representing 

the current performance bottleneck under existing traffic conditions. To account for temporal 

variation, the available BW is often averaged over a time interval [t, t + τ], yielding: 

                            𝐴∗(𝑡, 𝑡 + 𝜏) =
𝑚𝑖𝑛

𝑖 = 1, . . , 𝑛
[𝐶𝑖 . (1 − 𝑢𝑖(𝑡, 𝑡 + 𝜏))]                            (5.5) 

Where 𝑢𝑖(𝑡, 𝑡 + 𝜏) is the average utilization of link i over the interval. This averaged metric 

offers a more stable and meaningful reflection of path availability, particularly in dynamic or 

congested network environments. The (BTC) refers to the upper limit of data transmission per 

unit of time achievable by a congestion management method, such as TCP, when implemented 

within a protocol. The statistic in question is influenced by various elements [127], including 

the quantity of concurrent TCP sessions and conflicting traffic from the (UDP), among other 

variables. In order to conduct measurements of body weight (BW), two approaches can be 

employed: an active method or a passive approach. The efficacy of active techniques is 

influenced by the choice of transport protocol, resulting in potential variations in the reported 

parameters of measurements. For instance, the utilization of the packet train technique [127], 

which employs UDP, enables precise determination of the path's capacity C*. Conversely, 

estimations of the BTC can be obtained by measurements conducted with TCP traffic. Passive 

techniques are dependent on the monitoring of BW utilization by applications or hosts, thereby 

accounting for the number of transmitted bytes within a specific time frame. Absolute 

thresholds are not that helpful, but when the client detects BW is low (< 100 Kbps) audio 

quality can easily be impacted by other applications or network congestion.  

5.4.2 Network Latency and Delay   

Network delay, also known as latency, is a key metric for assessing network performance. It 

measures the time required for a data packet to travel from its source to its destination and back, 

a duration referred to as RTT and typically measured in (ms). High latency can cause significant 

communication delays, impacting the performance of applications that rely on real-time 

interaction, such as video conferencing and online gaming. Factors affecting network delay 

include the distance between endpoints, network congestion, and the quality of network 

equipment [128]. The delay can be calculated using the following equation: 

                                     𝐷𝑒𝑙𝑎𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
                                           (5.6) 

5.4.3 Network jitter 

Network jitter, defined as the variation in time delay between data packets as they traverse a 

network, often leads to irregular arrival times that can cause lag, buffering, and reduced quality 

in real-time applications such as video conferencing, online gaming, and calls. High jitter is 
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typically caused by varying traffic loads and frequent packet collisions (network congestion), 

which can lower Quality of Service (QoS) levels. Contributing factors include network 

congestion, where heavy traffic delays packets as they compete for BW; poor hardware 

performance from outdated or malfunctioning equipment; and insufficient packet 

prioritization, where important packets are not given precedence [129]. The Network jitter can 

be calculated using the following equation: 

                                                 𝑗𝑖𝑡𝑡𝑒𝑟 =
𝑇𝑜𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
                                                (5.7) 

5.4.4 Packet Loss 

Network packet loss, occurring when data packets fail to reach their destination, can lead to 

slow internet speeds, buffering, and lag in applications like streaming, gaming, and video calls. 

Causes include network congestion, hardware issues (faulty routers or cables), Wi-Fi 

interference, software bugs, ISP issues, and bit errors due to hardware malfunctions or random 

noise in wireless communications. Packet loss measurement for UDP traffic often uses 

protocols like Q4S or IPPM, which track sequence numbers to gauge reliability. Solutions 

include restarting routers and devices, checking connections, switching to wired setups, 

reducing network load, updating firmware and drivers, minimizing router interference, 

adjusting Quality of Service (QoS) settings, and contacting the ISP for unresolved issues  [129]. 

The Network packet loss can be calculated using the following equation: 

                      𝑃𝑎𝑐𝑘𝑒𝑡 𝑙𝑜𝑠𝑠 =  
𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡−𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡 𝑎𝑟𝑒 𝑠𝑒𝑛𝑡
  ∗ 100                    (5.8) 

5.5 QoS Availability 

5.5.1 Calculation of QoS Computing Availability Metrics 

QoS computing availability is computed by aggregating the individual availability percentages 

for vCPU, RAM, and Storage using a weighted average, as follows: 

AComputing=(WvCPU×AvCPU)+(WRAM×ARAM)+(WStorage×AStorage)                      (5.9) 

• AvCPU, ARAM, AStorage is represent the individual availability percentages. 

• WvCPU,WRAM, WStorage is represent the relative weights assigned to these metrics. 

If explicit weights are not provided, equal weighting (1/3 each) is assumed, thus simplifying 

the formula to: 

AComputing=AvCPU+ARAM+AStorage/3                                     (5.10) 

5.5.2 Calculation of QoS Networking Availability Metrics 

Similarly, QoS networking availability aggregates four network metrics: BW, RTT, 

Jitter, and Packet Loss. The weighted average aggregation formula is: 

ANetworking=(WBW×ABW)+(WRTT×ARTT)+(WJitter×AJitter)+(WPacketLoss×APacketLoss)    (5.11) 

• ABW, ARTT,AJitter, APacketLoss is represent individual network metric availabilities. 

• WBW, WRTT, WJitter, WPacketLoss is represent metric weights. 

If explicit weights are not provided, equal weighting (1/4 each) simplifies this equation to: 
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                                         ANetworking=ABW+ARTT+AJitter+APacketLoss/4                                 (5.12) 

These equations provide a structured, transparent, and reproducible approach to calculating 

the fuzzy inputs clearly from the individual QoS metrics. 

5.6 Methodology for SLA Assessment and Optimization 

5.6.1 Proposed Framework for SLA Selection 

A fuzzy logic-based service guarantee model is proposed to enhance the assurance of  (SLAs) 

within cloud computing environments (see Figure 5.1). The model employs Quality of Service 

(QoS) availability metrics as input variables to the fuzzy logic system, effectively capturing 

customer preferences, service requirements, and performance expectations. By systematically 

classifying QoS availability, the model facilitates a precise and context-aware evaluation of 

service reliability. The classification framework defines distinct SLA tiers based on availability 

levels: Normal SLA (90%–92%), Bronze SLA (93%–95%), Silver SLA (96%–97%), and Gold 

SLA (98%–99.999%). This categorization provides a clear and structured mechanism for SLA 

differentiation. The model ensures input consistency by validating that both QoS-computing 

and QoS-networking parameters are evaluated over the same domain, defined within the 

universe of discourse spanning from 90% to 100%. Appendix 4 (Table 2) presents the detailed 

definition of this domain, which serves as a reference for both input categories. The proposed 

model integrates two sets of input variables into the fuzzy logic system: QoS-computing 

parameters—including virtual CPU (vCPU), memory (RAM), and storage capacity—and QoS-

networking parameters, such as BW, delay, jitter, and packet loss. These inputs collectively 

enable a comprehensive classification of cloud services. The methodology for estimating QoS 

availability and its incorporation into the fuzzy inference process is further detailed in Table 

5.2. To establish a granular and structured representation of QoS availability levels, a 

systematic approach is adopted to define the progression of values within the universe of 

discourse. This sequence begins with an initial increment of approximately 0.09999, with each 

subsequent increment decreasing by 0.00001. The result is a smoothly increasing, non-linear 

sequence that converges toward a high-precision endpoint at 99.999%. The mathematical 

formulation governing this progression is defined in Equation (5.9): 

                             An=  90 + (n − 1) × (0.09999 − (n − 1) × 0.00001)                      (5.13) 

• An is the nth  availability level in the sequence. 

• n is the index of the term ranging from 1 to 101 (for n=1, the first term A1 is 90). 

The equation initiates the sequence with a maximum increment of 0.09999, which then 

decreases linearly by 0.00001 per term. This formulation generates a precisely calibrated, non-

uniform stepwise scale, making it particularly suitable for applications such as service level 

classification, where fine-grained availability tiers are necessary. 

• Strengths of the Equation: When n=1: 

         A1=  90 + 0. (0.09999 − 0.  0.00001)   =90, which correctly sets the starting point. 

• Controlled Increment: The term: 

(0.09999 − (𝑛 − 1).  0.00001)    
When n=101: 

         A101=  90 + 100. (0.09999 − 100 .  0.00001)    



43 

 

 

 

                =90 + 100. (0.09999 − 0.001)    

                =90 + 100 . 0.09899 = 99.999  

Furthermore, to express the output fuzzy logic-based SLA availability, the model considers 

uptime and corresponding downtime for a given period (e.g., daily, weekly, monthly, or 

yearly), based on the input QoS availability to the fuzzy logic system. The general equations 

for calculating uptime and downtime are formulated as follows: 

             𝑈𝑝𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 ×  𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒                             (5.14) 

 𝐷𝑜𝑤𝑛𝑡𝑖𝑚𝑒 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑝𝑒𝑟𝑖𝑜𝑑 × (1 − 𝑈𝑝𝑡𝑖𝑚𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)                           (5.15) 

 

Figure 5.1 Proposed SLA guarantee model. 

The detailed results of these calculations are presented in Appendix 4 (Table 3), offering a 

comprehensive analysis of service availability and performance assurance in cloud computing 

environments. By integrating fuzzy logic principles, this model provides a structured, scalable, 

and intelligent framework for SLA classification, ensuring an optimized and adaptive cloud 

service selection process. 

Table 5.2 QoS Network and Computing Metrics Availability. 

QoS Network Metrics Availability 

B
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d
 

w
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th
 

BW <500 Mbps [90% - 92%] 

500 Mbps <= BW <1Gbps [93% - 95%] 

1Gbps <= BW =<2.5Gbps [96% - 97%] 

BW >2.5Gbps [98% - 99.999] 

R
o
u
n
d
 

T
rip

 

T
im

e 

(R
T

T
) 

RTT > 500 ms [90% - 92%] 

250< RTT<=500 ms [93% - 95%] 

100 < RTT<=250 ms [96% - 97%] 

1<RTT<=100 ms [ 98% - 99.999] 

jitter 

35<= Jitter <=45 ms [90% - 92%] 

25< Jitter <=35 ms [93% - 95%] 

15< Jitter <=25 ms [96% - 97%] 

1< Jitter <=15 ms [ 98% - 99.999] 

P
ack

e

t lo
ss 

10 < Packet loss <=25 ms [90% - 92%] 

5 < Packet loss <=10 ms [93% - 95%] 

1 < Packet loss <=5 ms [96% - 97%] 
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0< Packet loss <=1 ms [ 98% - 99.999] 

QoS Computing Metrics Availability 

v
C

P
U

 

1< VCPU <=2 [90% - 92%] 

2< VCPU <=16 [93% - 95%] 

16< VCPU <=64 [96% - 97%] 

64< VCPU <=192 [ 98% - 99.999] 

R
A

M
 

4< RAM <=8 GB [90% - 92%] 

8< RAM <=64 GB [93% - 95%] 

64< RAM <=256 GB [96% - 97%] 

256< VCPU <=768 GB 

 
[ 98% - 99.999] 

S
T

O
R

A
A

G
E

 

1< Storage <=2 GB [90% - 92%] 

2< Storage <=12 GB [93% - 95%] 

12< Storage <=32 GB [96% - 97%] 

32< Storage <=88 GB [ 98% - 99.999] 

5.6.2 Fuzzy Logic-Based Methodology for QoS Evaluation 

5.6.2.1 Key Input Parameters 

Fuzzification is a foundational process in fuzzy logic systems through which crisp numerical 

inputs are converted into fuzzy sets characterized by linguistic variables, terms, and 

corresponding membership functions [98]. This transformation enables the system to represent 

imprecise or uncertain information, supporting more flexible, adaptive, and human-like 

reasoning in decision-making contexts. The input parameters for the model were designed 

using the Fuzzy Logic Designer, following the same methodological framework introduced in 

Chapter 4. However, the division of the universe of discourse in this chapter has been modified 

to suit the specific primitives and structural requirements of the model developed herein. 

Through this approach, the model systematically converts crisp QoS input values into fuzzy 

sets, allowing for the nuanced evaluation of computing and networking resource availability. 

These fuzzy sets serve as the basis for inferring the final SLA classification, thus supporting 

the accurate and optimized categorization of service levels. The first input to the fuzzy logic 

system corresponds to QoS-computing availability. This input is defined over a universe of 

discourse ranging from 90% to 100% and is represented using three triangular membership 

functions, structured as follows: 

• Light Availability: [90, 90, 95] 

• Middle Availability: [90, 95, 100] 

• High Availability: [95, 99.999, 100] 

The second input to the fuzzy logic system is QoS-networking availability, which reflects the 

availability of networking resources. Like the QoS-computing input, this parameter is defined 

over a universe of discourse spanning from 90% to 100% and is represented using three 

triangular membership functions, structured as follows: 

• Low Availability: [90, 90, 95] 

• Average Availability: [90, 95, 100] 
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• Top Availability: [95, 99.999, 100] 

By integrating these membership functions, the fuzzy logic system systematically evaluates 

availability conditions for both computing and networking resources. This structured approach 

enhances the model's ability to classify SLAs, ensuring that cloud service consumers receive 

accurate, reliable, and context-aware service guarantees tailored to their specific needs. 

5.6.2.2 Implementation of FIS and Defuzzification  for SLA Analysis 

To achieve an accurate and adaptive SLA classification, the proposed model implements a 

Mamdani FIS, utilizing three membership functions for the first input (QoS-computing) and 

three membership functions for the second input (QoS-network). Given this structure, the 

model requires 3 × 3 inference rules, ensuring a comprehensive decision-making process by 

considering all possible input-output relationships. 

i. Fuzzy Inference Rules 

Fuzzy inference rules play a critical role in fuzzy logic systems, using IF...THEN conditions 

to interpret input values and generate corresponding decisions. These rules effectively 

handle uncertain or imprecise information, transforming crisp input values into fuzzified 

outputs, which are then utilized for intelligent decision-making [98]. The model employs 

the following fuzzy rule base in table 5.3: 

Table 5.3 Fuzzy rule base. 

    QoS- Computing 

 

 

 

QoS-Network  

Light Middle High 

(SLA) Guarantees 

Low Normal-SLA1 Bronze-SLA1 Silver-SLA1 

Average Normal-SLA2 Bronze-SLA2 Silver-SLA2 

Top Normal-SLA3 Bronze-SLA3 Gold-SLA 

This rule base ensures that SLA classification is performed systematically, considering both 

computing resource availability (vCPU, RAM, and Storage) and networking parameters 

(BW, delay, jitter, and packet loss). 

ii. System Outputs 

Once the fuzzification and inference process is completed, the final step involves 

defuzzification, which converts fuzzy outputs into precise (crisp) values. This 

transformation is crucial for practical decision-making, as it provides a definitive SLA 

classification. The proposed model utilizes the centroid method of defuzzification, a 

widely adopted mathematical technique in fuzzy logic systems [130]. In the proposed 

model, triangular membership functions are employed during the fuzzification phase to 

map crisp inputs into fuzzy sets. After the inference process, the fuzzy output is 

converted into a single crisp value via the centroid defuzzification method. This crisp 

output, lying within the range of 90 to 100, is then mapped into SLA categories based 

on defined availability thresholds, supporting precise SLA classification. The SLA 

classification follows nine membership functions, as described below: 

1) Normal-SLA1: [90, 90, 91] 



46 

 

 

 

2) Normal-SLA2: [90, 91, 92] 

3) Normal-SLA3: [91, 92, 93] 

4) Bronze-SLA1: [92, 93, 94] 

5) Bronze-SLA2: [93, 94, 95] 

6) Bronze-SLA3: [94, 95, 96] 

7) Silver-SLA1: [95, 96, 97] 

8) Silver-SLA2: [96, 97, 98] 

9) Gold-SLA9: [97, 99.999, 100] 

The model enables precise classification of QoS availability by implementing a fuzzy 

logic system, ensuring that cloud service consumers receive context-aware and reliable 

SLA commitments aligned with their specific computing and networking requirements. 

5.6.2.3 Development and Validation of the Fuzzy Rule Base 

The development of the fuzzy inference rules in the proposed SLA classification model was 

conducted through a systematic and rigorous process designed to ensure both technical 

correctness and practical relevance. 

i. Rule Development Process 

The fuzzy rule base was established by combining three primary sources of knowledge: 

• Review of Existing Literature and Standards 

A thorough examination of existing research, industry standards, and publicly available SLA 

documentation from major CSPs (e.g., AWS, GCP) was performed. This review provided 

essential insights into typical thresholds and relationships among various QoS metrics and their 

mapping to different service levels. These references informed the selection of membership 

function ranges and the structuring of the rule base. 

• Domain Expert Knowledge 

Input from domain experts specializing in cloud architecture, network engineering, and SLA 

management was sought to translate practical operational realities into rule definitions. Experts 

provided guidance on how different combinations of computing and networking availability 

metrics should correlate with SLA tiers such as Normal, Bronze, Silver, and Gold. For example, 

configurations combining high networking availability with only medium computing 

availability were designated to mid-tier SLAs rather than premium tiers, reflecting practical 

service constraints. 

• Logical Consistency and Monotonicity 

A key design principle in the rule formulation was maintaining logical consistency and 

monotonicity. The rules were constructed to ensure that an increase in input availability metrics 

would not result in a decrease in the classified SLA level. This principle preserves intuitive 

system behavior and guarantees a smooth and logically coherent transition between service 

levels as input conditions improve. 

ii. Validation of the Fuzzy Rule Base 

Validation of the fuzzy rule base was performed through multiple complementary approaches: 
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• Expert Review 

The initial rule set was reviewed by domain experts who evaluated the rules for correctness, 

completeness, and practical applicability. Feedback from these experts led to refinements that 

ensured the rules accurately captured realistic service relationships and expectations in cloud 

environments. 

• Simulation-Based Testing 

Extensive simulations were conducted in MATLAB to verify the behavior of the FIS across 

the entire defined universe of discourse (90% to 100%). The simulations involved 

systematically varying input parameters to confirm: 

a) The logical consistency of the output as inputs changed. 

b) Correct handling of boundary conditions. 

c) Absence of contradictory or ambiguous rule interactions. 

• Benchmarking Against Real-World SLA Policies 

The output classifications from the fuzzy system were compared with published SLA 

guarantees from major CSPs. This benchmarking ensured that the model’s thresholds and 

classifications aligned closely with industry practices and expectations, further validating the 

practical reliability of the developed rules. 

The entire process was iterative in nature. Based on simulation outcomes and expert feedback, 

several rounds of refinement were undertaken to adjust the rules until the desired level of 

accuracy and robustness was achieved. 

iii. Responsibility for Rule Development and Validation 

The creation and validation of the fuzzy rule base were collaborative efforts. The rule 

development and computational testing were conducted by the authors of this thesis. Domain 

experts provided critical reviews and validation, ensuring that the fuzzy logic model’s rules 

were technically sound and operationally meaningful. This integrated approach to rule 

development and validation strengthens the credibility and practical applicability of the 

proposed fuzzy logic-based SLA classification system. It ensures that the model is not only 

theoretically sound but also well-suited for real-world deployment in cloud computing 

environments. 

5.7 Experimental Evaluation  

The proposed model was extensively analyzed within the MATLAB environment to assess its 

effectiveness in evaluating SLA classifications based on Quality of Service (QoS) parameters 

for computing and networking resources. The model was designed to process customer 

preferences by computing the availability ratio of virtualized computing resources—such as 

vCPU, RAM, and storage—alongside network resources, including BW, delay, jitter, and 

packet loss. By integrating these metrics into a Fuzzy Logic-based framework, the model 

systematically classified services into multiple SLA categories to provide a granular and data-

driven approach to service selection. The Fuzzy Logic inference system extracted results 

according to predefined conditions and criteria, which were established during the model 

design phase. These results were systematically categorized into multiple SLA levels based on 

their corresponding availability ratios. The classification hierarchy begins with the Normal 
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SLA tier, which includes Normal-SLA 1, Normal-SLA 2, and Normal-SLA 3; as availability 

conditions improve based on input classifications and the selected fuzzy inference rules, the 

model sequentially transitions into the Bronze SLA tier, which consists of, Bronze-SLA 1, 

Bronze-SLA 2, Bronze-SLA 3, In each classification level, the availability percentage 

progressively increases according to the pre-established input classification rules, ensuring a 

systematic and logical increase in service quality. Following this, the model advances to the 

Silver SLA tier, which further refines the service levels with improved availability metrics, 

Silver-SLA 1, Silver-SLA 2; at the highest tier, the Gold SLA classification represents the most 

optimal service category, characterized by the highest levels of availability and reliability, 

suitable for mission-critical applications requiring minimal downtime. The classification 

hierarchy, As illustrated in Figure 5.2, the model dynamically adjusts service availability ratios 

in response to varying QoS computing and networking inputs. This structured classification 

enables cloud consumers to identify and select the most suitable SLA level based on their 

specific performance requirements and budgetary constraints. Additionally, Table 5.4 presents 

a detailed explanation of the fuzzy input-output mappings and their corresponding SLA 

guarantees, showcasing the effectiveness of the proposed system implementation. 

 

Figure 5.2 Results of the proposed model. 

Table 5.4 Fuzzy Input-Output Mapping and Corresponding SLA Guarantees. 

No 

 

First input 

(Computing) 

Second input 

(Networking) 
Output SLA Guarantees 

1 90 90 90.333 SLA-Normal1 (90%) 

2 90.09999 90.09999 90.467 SLA-Normal1 (90%) 

3 90.19998 90.19998 90.592 SLA-Normal1 (90%) 

4 90.29997 90.29997 90.708 SLA-Normal1 (90%) 

5 90.39996 90.39996 90.816 SLA-Normal1 (90%) 

6 90.49995 90.49995 90.916 SLA-Normal1 (90%) 

7 90.59994 90.59994 91.010 SLA-Normal1 (90%) 

8 90.69993 90.69993 91.098 SLA-Normal1 (90%) 

9 90.79992 90.79992 91.181 SLA-Normal1 (90%) 
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10 90.89991 90.89991 91.259 SLA-Normal1 (90%) 

11 90.9999 90.9999 91.333 SLA-Normal2 (91%) 

12 91.09989 91.09989 91.402 SLA-Normal2 (91%) 

13 91.19988 91.19988 91.468 SLA-Normal2 (91%) 

14 91.29987 91.29987 91.530 SLA-Normal2 (91%) 

15 91.39986 91.39986 91.589 SLA-Normal2 (91%) 

16 91.49985 91.49985 91.645 SLA-Normal2 (91%) 

17 91.59984 91.59984 91.699 SLA-Normal2 (91%) 

18 91.69983 91.69983 91.749 SLA-Normal2 (91%) 

19 91.79982 91.79982 91.798 SLA-Normal2 (91%) 

20 91.89981 91.89981 91.844 SLA-Normal2 (91%) 

21 91.9998 91.9998 91.888 SLA-Normal3 (92%) 

22 92.09979 92.09979 91.931 SLA-Normal3 (92%) 

23 92.19978 92.19978 91.971 SLA-Normal3 (92%) 

24 92.29977 92.29977 92.010 SLA-Normal3 (92%) 

25 92.39976 92.39976 92.047 SLA-Normal3 (92%) 

26 92.49975 92.49975 92.083 SLA-Normal3 (92%) 

27 92.59974 92.59974 92.122 SLA-Normal3 (92%) 

28 92.69973 92.69973 92.163 SLA-Normal3 (92%) 

29 92.79972 92.79972 92.205 SLA-Normal3 (92%) 

30 92.89971 92.89971 92.249 SLA-Normal3 (92%) 

31 92.9997 92.9997 92.296 SLA-Bronze1 (93%) 

32 93.09969 93.09969 92.344 SLA-Bronze1 (93%) 

33 93.19968 93.19968 92.395 SLA-Bronze1 (93%) 

34 93.29967 93.29967 92.448 SLA-Bronze1 (93%) 

35 93.39966 93.39966 92.503 SLA-Bronze1 (93%) 

36 93.49965 93.49965 92.562 SLA-Bronze1 (93%) 

37 93.59964 93.59964 92.623 SLA-Bronze1 (93%) 

38 93.69963 93.69963 92.688 SLA-Bronze1 (93%) 

39 93.79962 93.79962 92.756 SLA-Bronze1 (93%) 

40 93.89961 93.89961 92.828 SLA-Bronze1 (93%) 

41 93.9996 93.9996 92.904 SLA-Bronze2 (94%) 

42 94.09959 94.09959 92.984 SLA-Bronze2 (94%) 

43 94.19958 94.19958 93.070 SLA-Bronze2 (94%) 

44 94.29957 94.29957 93.161 SLA-Bronze2 (94%) 

45 94.39956 94.39956 93.257 SLA-Bronze2 (94%) 

46 94.49955 94.49955 93.360 SLA-Bronze2 (94%) 

47 94.59954 94.59954 93.470 SLA-Bronze2 (94%) 

48 94.69953 94.69953 93.588 SLA-Bronze2 (94%) 

49 94.79952 94.79952 93.715 SLA-Bronze2 (94%) 

50 94.89951 94.89951 93.851 SLA-Bronze2 (94%) 

51 94.9995 94.9995 93.999 SLA-Bronze3 (95%) 

52 95.09949 95.09949 94.172 SLA-Bronze3 (95%) 

53 95.19948 95.19948 94.332 SLA-Bronze3 (95%) 

54 95.29947 95.29947 94.481 SLA-Bronze3 (95%) 

55 95.39946 95.39946 94.620 SLA-Bronze3 (95%) 

56 95.49945 95.49945 94.749 SLA-Bronze3 (95%) 
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57 95.59944 95.59944 94.870 SLA-Bronze3 (95%) 

58 95.69943 95.69943 94.983 SLA-Bronze3 (95%) 

59 95.79942 95.79942 95.090 SLA-Bronze3 (95%) 

60 95.89941 95.89941 95.190 SLA-Bronze3 (95%) 

61 95.9994 95.9994 95.285 SLA-Silver1 (96%) 

62 96.09939 96.09939 95.374 SLA-Silver1 (96%) 

63 96.19938 96.19938 95.459 SLA-Silver1 (96%) 

64 96.29937 96.29937 95.539 SLA-Silver1 (96%) 

65 96.39936 96.39936 95.615 SLA-Silver1 (96%) 

66 96.49935 96.49935 95.687 SLA-Silver1 (96%) 

67 96.59934 96.59934 95.755 SLA-Silver1 (96%) 

68 96.69933 96.69933 95.821 SLA-Silver1 (96%) 

69 96.79932 96.79932 95.883 SLA-Silver1 (96%) 

70 96.89931 96.89931 95.942 SLA-Silver1 (96%) 

71 96.9993 96.9993 95.999 SLA-Silver2(97%) 

72 97.09929 97.09929 96.054 SLA-Silver2(97%) 

73 97.19928 97.19928 96.106 SLA-Silver2(97%) 

74 97.29927 97.29927 96.155 SLA-Silver2(97%) 

75 97.39926 97.39926 96.203 SLA-Silver2(97%) 

76 97.49925 97.49925 96.249 SLA-Silver2(97%) 

77 97.59924 97.59924 96.305 SLA-Silver2(97%) 

78 97.69923 97.69923 96.364 SLA-Silver2(97%) 

79 97.79922 97.79922 96.425 SLA-Silver2(97%) 

80 97.89921 97.89921 96.488 SLA-Silver2(97%) 

81 97.9992 97.9992 96.555 SLA-Gold (98%) 

82 98.09919 98.09919 96.624 SLA-Gold (98%) 

83 98.19918 98.19918 96.697 SLA-Gold (98%) 

84 98.29917 98.29917 96.773 SLA-Gold (98%) 

85 98.39916 98.39916 96.853 SLA-Gold (98%) 

86 98.49915 98.49915 96.936 SLA-Gold (98%) 

87 98.59914 98.59914 97.024 SLA-Gold (98%) 

88 98.69913 98.69913 97.117 SLA-Gold (98%) 

89 98.79912 98.79912 97.215 SLA-Gold (98%) 

90 98.89911 98.89911 97.318 SLA-Gold (98%) 

91 98.9991 98.9991 97.427 SLA-Gold (99%) 

92 99.09909 99.09909 97.543 SLA-Gold (99%) 

93 99.19908 99.19908 97.665 SLA-Gold (99%) 

94 99.29907 99.29907 97.795 SLA-Gold (99%) 

95 99.39906 99.39906 97.934 SLA-Gold (99%) 

96 99.49905 99.49905 98.081 SLA-Gold (99%) 

97 99.59904 99.59904 98.239 SLA-Gold (99%) 

98 99.69903 99.69903 98.408 SLA-Gold (99%) 

99 99.79902 99.79902 98.590 SLA-Gold (99%) 

100 99.89901 99.89901 99.899 SLA-Gold (99%) 

101 99.999 99.999 99.999 SLA-Gold (99.999) 
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The inputs for QoS availability—both for computing and networking—are inherently 

continuous variables. However, Table 5.4 is not intended to serve as a discrete or static 

"lookup" table. Instead, it presents a sampled output from the continuous fuzzy mapping 

function that is defined and implemented via our Mamdani-type (FIS). As detailed in Section 

5.5.2.1 of the manuscript, both QoS-Computing and QoS-Networking availabilities are 

fuzzified using triangular membership functions over a continuous universe of discourse 

ranging from 90% to 100%. These inputs are then processed using a fuzzy rule base (outlined 

in Section 5.5.2.2) consisting of 9 inference rules. The output SLA classification is derived 

through fuzzy reasoning and defuzzification (via the centroid method), producing a continuous 

mapping function from input QoS metrics to a numerical SLA guarantee level. Table 5.4 

merely illustrates a dense sampling from this function, incremented using a mathematically 

defined non-linear progression (as explained in Equation 5.13), for demonstration and analysis 

purposes. These values are generated from a MATLAB simulation and demonstrate how the 

fuzzy model transitions through SLA categories (Normal, Bronze, Silver, and Gold) as input 

availabilities gradually increase. Therefore, while Table 5.4 may appear tabular, it is a result of 

a continuous fuzzy mapping, not a discrete mapping in the classical sense. 

5.8 Summary of the SLA selection Model 

One of the central contributions of the proposed model lies in its ability to align user 

preferences with optimal SLA classifications in real-time dynamically. The system effectively 

accommodates the inherent uncertainties in computing and networking performance by 

applying fuzzy logic principles, enabling a more adaptive and responsive approach to SLA 

selection. This intelligent mechanism surpasses traditional, static SLA models defined solely 

by service providers, offering enhanced flexibility and personalization. Furthermore, the model 

introduces a structured method for calculating and classifying availability ratios, equipping 

(CSPs) with a systematic framework for delivering tiered service offerings tailored to 

individual user requirements. Unlike conventional frameworks that depend on fixed SLA 

definitions, the proposed approach enables dynamic SLA mapping, ensuring more responsive 

and context-aware service delivery. The experimental analysis provides compelling evidence 

of the model's practical relevance. A comprehensive simulation in MATLAB was conducted 

using over 100 paired input values representing computing and networking QoS availability. 

The FIS generated output SLA classifications that followed a consistent, continuous gradient 

aligning with widely recognized SLA tiers such as SLA-Normal, Bronze, Silver, and Gold, as 

detailed in Table 5.4. For instance, the model produced granular availability scores, including 

90.333%, 91.333%, 92.296%, 95.999%, and 99.999%, each accurately mapped to the 

corresponding SLA category. These classifications are consistent with publicly published SLA 

policies by providers such as AWS EC2, which outline guarantees for availability levels such 

as 99.5% and 99.99%. The output labels assigned by the fuzzy system (e.g., SLA-Bronze3 for 

the availability of 95.999%) closely mirror the expected service levels defined by industry 

standards. This correlation affirms the model's classification accuracy and real-world 

applicability, positioning it as a robust decision-support tool for SLA compliance assessment 

in cloud environments.  Building on these results, our focus shifts to enhancing decision-making 

accuracy, which is addressed further in this study's next contribution. This next step involves 

refining fuzzy logic systems through optimization techniques to improve decision-making in 

complex systems. We aim to develop adaptive fuzzy logic models for efficient cloud service 

management and SLA optimization, tackling the challenges identified in this thesis. 
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Chapter 6 Enhanced Decision-Making in Uncertain Domains  

Thia Chapter presents an advanced mathematical methodology designed to facilitate decision-

making in uncertain environments. The advanced mathematical methodology introduced in this 

chapter consists of three original algorithms (Sections 6.4.1 to 6.4.3) that mathematically define 

the computation of membership functions using geometric and probabilistic models. Unlike 

conventional fuzzy logic approaches dependent on toolboxes and heuristic tuning, our method 

formulates precise mathematical calculations for determining membership degrees, offering 

enhanced precision, efficiency, and independence from specialized software tools. This chapter 

introduces a mathematically streamlined methodology for defining and computing fuzzy 

membership functions. Rather than relying on heuristic adjustments or external fuzzy 

toolboxes, we propose optimized analytical algorithms that directly compute membership 

degrees for triangular, trapezoidal, and Gaussian functions. Here, ‘optimization’ refers to the 

efficient, precise calculation process derived from mathematical principles, reducing 

complexity and dependency on manual tuning rather than numerical optimization in the 

classical sense. The primary contribution of this chapter is the formulation of an optimized 

strategy for the selection and implementation of fuzzy membership functions. Notably, the 

novelty of this approach is explicitly situated in the methodological innovations rather than the 

mere act of classifying input values. Specifically, the introduced mathematical model 

incorporates systematic and optimized algorithms for efficiently computing membership 

degrees. Unlike traditional fuzzy logic approaches that rely heavily on predefined, static 

membership functions—such as standard triangular, trapezoidal, or Gaussian forms, typically 

defined manually or through heuristic adjustments—the proposed methodology utilizes 

structured mathematical optimization techniques. This enables the dynamic and precise 

classification of crisp input values into corresponding fuzzy sets, thereby significantly 

enhancing accuracy and computational efficiency. The distinctiveness of this model arises from 

its structured mathematical optimization approach, systematically refining the process of 

classifying crisp inputs into fuzzy sets. Doing so achieves greater precision and computational 

efficiency than conventional methods reliant on heuristics or manual adjustments. This model 

explicitly incorporates optimization algorithms to streamline and enhance the calculation of 

membership degrees via three specialized algorithms, each analogous to traditional fuzzy logic 

membership functions, namely triangular, trapezoidal, and Gaussian. A significant aspect of 

the proposed approach lies in its independence from conventional fuzzy logic implementations 

that frequently depend on specialized fuzzy logic software, such as MATLAB's Fuzzy Logic 

Toolbox or other simulation frameworks. Traditional methods often rely on specific software 

dependencies, plugins, or graphical tools to define membership functions and inference 

mechanisms, which limits their adaptability and operational efficiency across various 

computational contexts. In contrast, the proposed method introduces a simplified, 

mathematically driven, and tool-independent model that does not necessitate external fuzzy 

logic software or environment-specific configurations. The advantage of this independence is 

evident in its broader applicability, simplified integration processes, and reduced 

computational requirements. Due to its inherent simplicity, computational efficiency, and high 

adaptability, the proposed method exhibits substantial potential across diverse AI applications, 

eliminating the necessity for complex adaptive systems or specialized software environments. 

This simplified mathematical framework ensures faster and more accurate classification of 

input values, effectively reducing computational overhead and enhancing operational 

performance in practical AI deployments. 
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6.1 Overview of Decision-Making Challenges  

Fuzzy logic has become a cornerstone of intelligent control systems, seamlessly integrating 

with advanced methodologies such as neural networks and genetic algorithms. It is widely 

applied to interpret, analyze, and resolve the inherent ambiguities associated with complex 

human-centric needs and challenges. Its unique ability to handle imprecise and uncertain data 

through fuzzy sets and rules positions it as a powerful tool for decision-making in dynamic and 

intricate systems. The core processes of fuzzy logic—fuzzification, inference (driven by IF-

THEN rules and an extensive knowledge base), and defuzzification—facilitate the conversion 

of vague inputs into precise, actionable outputs, ensuring effective and reliable system 

performance. This capability supports the suitability of robust control and decision-making 

across various applications. Integrating fuzzy logic with adaptive systems enhances its 

flexibility and optimization capabilities, making it indispensable in robotics, industrial 

automation, and (AI) domains. These fields frequently encounter inaccuracies from sensor data 

or other unpredictable inputs, whereas fuzzy logic systems demonstrate exceptional efficiency 

and reliability. The Mamdani fuzzy logic system is widely favored among the many fuzzy logic 

approaches for its straightforward structure and interpretability. In electric drive systems, fuzzy 

logic has been employed to develop an adaptive proportional-integral (PI) speed controller for 

vector control of induction motors (IM) [131]. This controller uses an Adaptive Neuro (ANFIS) 

to optimize control gains, ensuring resilience against parametric variations. Validation through 

MATLAB-Simulink simulations demonstrated its robust performance and suitability for 

enhancing electric drive reliability. In agriculture, fuzzy logic has addressed environmental 

uncertainty. For instance, a wheeled robot with a microcontroller was developed for 

autonomous pesticide spraying, achieving high decision-making accuracy in weed 

identification despite challenging environmental conditions [132]. Hydraulic systems have also 

benefited from fuzzy logic. Researchers proposed a discrete-time switching controller strategy 

for pumping stations, integrating fuzzy-PD or fuzzy-PID controllers with PI controllers. A 

fuzzy supervisor facilitates controller switching, ensuring robustness, stability, and asymptotic 

error correction [133]. In high-performance electric motor applications, integrating Model 

Reference Adaptive Systems (MRAS) with fuzzy logic has significantly improved rotor speed 

and resistance estimation in induction motors. The study "High-Performance Control of IM 

using MRAS-Fuzzy Logic Observer" highlights this advanced control strategy's effectiveness 

in high-demand environments [134]. Further advancements include a method for 

simultaneously estimating rotor resistance and speed using two independent adaptive observers 

alongside a streamlined algorithm for optimal controller gains [135]. The adaptability of fuzzy 

logic extends to managing ambiguity and vagueness, which occur when boundaries and 

alternatives are unclear. By employing fuzzy numbers and membership functions, fuzzy logic 

offers a structured approach to handling uncertainty, surpassing traditional Boolean logic 

[136][137]. This flexibility allows fuzzy logic systems to adapt to tasks such as navigation, 

object handling, and decision-making in uncertain environments, enabling human-like control 

in (AI) systems [138][139]. Classical information theory reduces uncertainty by increasing 

information; however, fuzzy logic uses membership functions to quantify degrees of 

association between inputs and sets within a universe discourse. These functions form the 

backbone of fuzzy logic systems, linking input values to degrees of membership and enabling 

approximate reasoning in complex scenarios [140][141][142]. Optimization algorithms 

enhance fuzzy logic by refining membership functions and improving actuator precision and 

control, especially in autonomous systems [143]. The development of fuzzy logic systems 
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hinges on constructing fuzzy partitions and defining the shape and number of membership 

functions (MFs). These MFs are essential as they quantify the degree to which a specific input 

belongs to a fuzzy set. Expert knowledge is pivotal in this process, guiding the selection and 

parameterization of appropriate MFs. Optimizing these systems minimizes reliance on 

subjective trial-and-error approaches, thereby enhancing the accuracy of input/output 

mappings [144]. Membership functions are fundamental to representing the degree of 

membership for each variable, serving as critical inputs for the inference rules that drive system 

functionality [145]. Building upon the findings of our previous contribution, this study seeks 

to enhance further the accuracy and robustness of the proposed classification approach. This 

section provides a detailed exposition of the mathematical methodology, which centers on 

applying three specialized classification algorithms. These algorithms operate analogously to 

the membership functions used in the Mamdani fuzzy logic system. The core of this approach 

is a novel mathematical model designed to systematically classify crisp input values into their 

appropriate fuzzy sets, thereby enhancing the accuracy of membership degree computations. 

Optimization techniques refine these computations through three distinct algorithms, 

corresponding to triangular, trapezoidal, and Gaussian membership functions. The model was 

implemented in MATLAB and evaluated using a dataset of 10000 user task size entries with 

varying magnitudes. The primary objective was to assess the performance of the proposed 

algorithms in categorizing task sizes into three predefined classes: Small, Medium, and Big. A 

comparative analysis with the Mamdani fuzzy logic system demonstrated that the proposed 

model produces classification results that are either equivalent to or slightly more precise than 

those generated by Mamdani’s approach, particularly regarding numerical accuracy. These 

findings validate the proposed method as a viable and competitive alternative to Mamdani’s 

model for classification tasks. Additionally, the mathematical simplicity and independence of 

the proposed model from simulation environments or third-party tools, such as dynamic-link 

libraries (DLLs), software extensions, or external simulation frameworks, make it particularly 

suitable for broader deployment in AI applications. This is especially advantageous in contexts 

where tool-dependent environments are unavailable or impractical. 

6.2 Advancements and Applications of Fuzzy Logic in Decision-Making 

Fuzzy logic systems have become influential in decision-making, particularly in uncertain 

contexts. They offer flexibility and approximate reasoning; however, the literature points to 

challenges such as the complexity of fuzzy rule formulations and computational inefficiencies. 

These challenges underscore the need for further optimization to enhance the applicability and 

effectiveness of fuzzy logic across various fields.  In his seminal work on fuzzy sets, Zadeh 

defined a fuzzy set as "a class of objects with a continuum of grades of membership," where a 

membership function assigns each object a grade ranging from zero to one. This work extends 

traditional notions such as inclusion, union, intersection, and complement to fuzzy sets, 

establishing various properties within this context. Notably, Zadeh also proved a separation 

theorem for convex fuzzy sets without requiring the sets to be disjoint [146]. Building on this 

foundation, researchers expanded fuzzy set theory by exploring its theoretical underpinnings 

and practical applications in managing uncertainty and imprecision across various domains 

[147]. However, these approaches often overlook the computational inefficiencies that arise 

when applying fuzzy logic in real-world decision-making scenarios. Recent advancements 

have attempted to address these inefficiencies. For instance, researchers have proposed a novel 
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approach to healthcare decision-making that integrates fuzzy logic with ML [148]. This hybrid 

model aims to improve diagnostic accuracy and resource utilization, particularly when dealing 

with incomplete and uncertain data, thus addressing traditional inefficiencies.  However, it has 

faced criticism for relying on subjective inputs, which can introduce biases and affect the 

consistency of outcomes [149].  Moreover, researchers have highlighted limitations in the 

fuzzy linguistic approach, particularly regarding information loss during fusion processes. 

They propose a 2-tuple model to enhance precision and extend aggregation operators [150], 

although its complexity continues to pose challenges for practitioners, making implementation 

cumbersome [151].  Further research has discussed adaptive fuzzy systems, which show 

promise but frequently experience stability issues [152], leading to inconsistent decision-

making in dynamic environments [153]. The Mamdani fuzzy inference model, while 

foundational, is often critiqued for its limited robustness under varying conditions [154]. 

Although recent studies have sought to enhance this model's applicability, challenges persist 

in managing time-sensitive decisions effectively [155]. Additionally, the researchers provided 

extensive insights into fuzzy systems but focused primarily on theoretical aspects [156], which 

hinders practical application and adoption by industry practitioners [157]. Doong et al. 

explored fuzzy risk assessment in engineering [158], yet their approach does not adequately 

address the interactions among risk factors, potentially oversimplifying complex decision-

making contexts [159]. In the context of business applications, researchers reviewed fuzzy 

decision-making [160], underscoring the pressing need for improved methodologies to handle 

severe uncertainties, particularly when data is sparse or incomplete [161]. Lastly, the 

integration of fuzzy logic with genetic algorithms has been explored [162]. However, this 

approach often struggles with computational efficiency and convergence issues, complicating 

its practical use in real-time decision-making scenarios [163].  In summary, the literature 

underscores significant gaps in the application of fuzzy logic systems within uncertain 

domains, highlighting the need for optimized methodologies to enhance robustness, efficiency, 

and applicability in decision-making processes. This study aims to address these critical gaps 

by focusing on accurately determining the degree of membership of input elements and their 

association with the most appropriate membership functions. The proposed mathematical 

model seeks to improve fuzzy logic systems' capacity to handle uncertainty and make accurate 

decisions by refining the process of selecting the best membership function and aligning it with 

closely related decisions. 

6.3 Background of Fuzzy Logic System 

6.3.1 Core Principles of Fuzzy Logic Systems 

Fuzzy logic is a form of many-valued logic that deals with approximate rather than fixed and 

exact reasoning. Unlike traditional binary logic, which operates with true or false values, fuzzy 

logic allows for a range of values between 0 and 1, which makes it particularly useful for 

handling the concept of partial truth. This approach is often referred to as "computing with 

words" because it can model the way humans think and reason with imprecise information 

[164] [165]. Figure 6.1 depicts the architecture of a fuzzy logic system. 
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Figure 6.1 Architecture of a fuzzy logic system. 

6.3.1.1 Fuzzy System Basics 

6.3.1.1.1 Crisp Input Processing 

In fuzzy logic, a crisp set refers to a set in which each element has a membership value that is 

strictly either 0 or 1, signifying complete exclusion or inclusion. This differs from fuzzy sets, 

where membership values can vary continuously between 0 and 1, enabling partial 

membership. In a crisp set, individuals are categorized into two distinct groups: members, who 

belong unequivocally to the set, and non-members, who are definitively excluded. Crisp sets 

adhere to classical binary logic, emphasizing a clear and absolute boundary for set membership. 

The indicator function for a crisp set, A, where elements in the set are assigned a value of 1 

and those outside the set are assigned a value of 0, can be expressed as: 

𝜇𝐴(𝑥) ={
1, 𝑥 ∈ 𝐴
0, 𝑥 ∉ 𝐴

                                                             (6.1) 

6.3.1.1.2 Fuzzification Process 

Fuzzification inference is a process that converts input data into fuzzy sets, which are 

subsequently used to generate outputs based on a predefined set of rules, typically expressed 

in the "IF…THEN" format. This process plays a vital role in FIS, facilitating the transformation 

of uncertain or imprecise information into structured, actionable outcomes for decision-making 

[166].  

6.3.1.1.3 Inference Engine 

An inference engine is a critical component of an expert system, employing logical rules to 

derive information or make decisions based on a knowledge base. It maps fuzzified inputs 

(obtained through the fuzzification process) to the rule base, generating fuzzified outputs for 

the applicable rules. The fuzzy inference engine follows a structured process comprising 

several key steps. Initially, it performs rule matching by identifying relevant rules from the 

knowledge base and comparing the input data to the conditions specified in each rule. Once the 

relevant rules are identified, the engine evaluates the degree of truth for each rule, determining 

the extent to which the input satisfies the conditions. Subsequently, it aggregates the 
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conclusions derived from the matched rules by combining their outputs to generate a coherent 

decision or conclusion. This process is iterative, with the engine continuously applying rules 

and updating the knowledge base until a solution is achieved or no further rules apply. This 

systematic approach enables the fuzzy inference engine to handle complex and dynamic 

scenarios effectively. Inference engines are widely used in AI applications, including 

diagnostic systems, recommendation systems, and other decision-making tasks [167]. 

6.3.1.1.4 Fuzzy Rule Base 

A fuzzy rule base is a set of fuzzy rules that describe the relationship between input variables 

and output results in a fuzzy logic system. These rules, often derived from linguistic 

expressions, characterize the dynamic behaviour of the system. Each rule consists of an 

antecedent (the "IF" part) and a consequent (the "THEN" part) based on the knowledge and 

expertise of a domain expert. Fuzzy rules generally follow the format:  

𝒊𝒇 → 𝒂𝒏𝒕𝒆𝒄𝒆𝒅𝒆𝒏𝒕(𝒔)  𝒕𝒉𝒆𝒏  𝒄𝒐𝒏𝒔𝒆𝒒𝒖𝒆𝒏𝒕(𝒔) 

Enabling the system to infer outputs under various input conditions. These rules are crucial for 

managing uncertainty and imprecision in control algorithms within systems [168][169]. 

6. 3.1.1.5 Defuzzification Process 

Defuzzification is the final step in a fuzzy system and is responsible for converting the fuzzy 

output generated by the inference engine into a precise numerical value. This process translates 

the fuzzy set produced during inference into a specific, actionable numerical value suitable for 

decision-making or control applications. Standard defuzzification techniques, such as the 

Centre of Gravity (COG) method illustrated in equation 6.2, derive a crisp result by calculating 

a representative value from the combined fuzzy sets generated by multiple rules. This step 

ensures the system's outputs are interpretable and practical for real-world implementation 

[170].  

𝑍 = ∑ (𝜇𝑖 
𝑛
𝑖=1 𝛽𝑖)/∑ 𝜇𝑖

𝑛
𝑖=1                                                    (6.2) 

Z: The crisp output (defuzzified value); 𝜇𝑖  : The membership degree of the fuzzy set for the 𝑖-
th rule; 𝛽𝑖 : The representative value (often the centroid) of the output fuzzy set for the 𝑖-th 

rule.; n: The total number of rules in the system. 

6.3.2 Membership Functions and Their Significance 

The membership function is a core concept in fuzzy logic. It quantifies the degree of belonging 

of a given input to a fuzzy set. Mapping inputs to values from 0 to 1 provides a nuanced 

representation of uncertainty and partial truth, enabling more flexible and accurate modelling 

than traditional binary logic. The function adheres to specific constraints and has a range of [0, 

1]. For every x ∈ X, μ _A(x) must be unique [171]. In this study, have selected three widely 

used membership functions recognized as essential in fuzzy logic systems: triangular, 

trapezoidal, and Gaussian. 

6.3.2.1 Triangular Membership Function 

Triangular membership function can be represented by the parameters {a, b, c}. As referenced 
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in the previous sections. 

6.3.2.2 Trapezoidal Membership Function 

Fuzzy trapezoidal MF is defined by the parameters {a, b, c, d} as in equation (6.3). 

                                               𝜇𝐹(𝑥) =

{
 
 

 
 
0;   x ≤ a
x−a
b−a

  ;a< x <b

1; b ≤ x ≤ c
d−x
d−c

 ;   c< x <d

0; x ≥ d

                                                           (6.3)                         

6.3.2.3 Gaussian Membership Function 

A fuzzy Gaussian membership function uses the Gaussian distribution to measure membership 

levels within a fuzzy set. It creates bell-shaped curves that manage uncertainty and vagueness. 

The function provides a continuous range of membership values between 0 and 1. The general 

formula for a fuzzy Gaussian membership function is: 

                          𝜇𝐴(𝑥) = 𝑒−(
𝑥−𝑐

𝜎
)2

                                                              (6.4) 

6.4 Methodology for Enhanced Decision-Making in Uncertain Domains  

The Mamdani fuzzy inference method, also known as the Max-Min method, is a widely used 

technique for designing control systems based on linguistic rules derived from expert 

knowledge. This method utilizes fuzzy set theory to establish mappings between input and 

output variables, making it a powerful tool in various applications. Its implementation typically 

follows a structured process in which fuzzy rules and membership functions are systematically 

defined to determine the final output [153]. Within this framework, every value in the universe 

of discourse is assigned a specific degree of membership across relevant fuzzy sets, regardless 

of its simultaneous association with other sets. This characteristic enables the proposed method 

to evaluate the degree to which any given value belongs to all pertinent membership functions 

in the model. Such an approach facilitates a comprehensive assessment of how each value 

influences the decision-making process within its operational context. The design of the system 

is further supported by mathematical principles and equations presented in the following 

sections. 

6.4.1 Mathematical Formulation for Algorithms 1 and 2 

The general equation for a straight line is expressed as in equation (6.5). 

y=mx+c                                                                            (6.5) 

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used 

equation form for a straight line in geometry. However, the straight-line equation can be 

presented in various forms, including point-slope. The equation of a straight line with a slope 

'm' that passes through a specific point (x1, y1) is derived using the point-slope form, which is 

expressed as in equation (6.6). 

                     y-y1=m(x-x1)                                                          (6.6)   

Where (x, y) denotes an arbitrary point on the line. The absolute value parent function is 
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represented as: 

𝑓(𝑥) = |𝑥|                                                                 (6.7) 

 

It is defined as:                         𝑓(𝑥) = {

𝑥, 𝑖𝑓  𝑥 > 0
0, 𝑖𝑓  𝑥 = 0
−𝑥, 𝑖𝑓 𝑥 < 0

                                                     (6.8) 

The stretching or compressing of the absolute value function 𝑦 = |𝑥|  is defined by the 

function 𝑦 = 𝛼|𝑥|  where  𝛼 is a constant. The graph opens if 𝛼 > 0 and opens down when 𝛼 < 

0. In a more general context, the equation for an absolute value function takes the form: 

                                                𝑦 = 𝛼|𝑥 − ℎ| + 𝑘                                                                  

(6.9) 

                                               𝛼 =
𝑦2−𝑦1

𝑥2−𝑥1
                                                                (6.10)                       

Here,  ℎ  signifies the horizontal translation, and  𝑘  represents the vertical translation [163]. 

6.4.2 Mathematical Formulation for Algorithm 3 

The Gaussian random variable is the most utilized and highly significant when investigating 

random variables. A Gaussian random variable is characterized by a probability density 

function (PDF) that can be expressed in a general form. 

                 𝑓𝑋(𝑥)=
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑥−𝑚)2

2𝜎2
)                                                   (6.11) 

   𝜎 = √
∑(𝑥𝑖−𝑥)̿̿ ̿

2

𝑛−1
                                                                (6.12) 

The PDF of the Gaussian random variable has two parameters, 𝑚 and 𝜎, which have the 

interpretation of the mean and standard deviation (𝜎), respectively. The parameter 𝜎2 is 

referred to as the variance [172] [173]. 

6.4.3 Classifying Variables and Determining Membership Degrees in Uncertain 

Domains 

The proposed methodology introduces a rigorous mathematical framework for categorizing 

inputs within a defined universe of discourse, facilitating precise and efficient determination 

of membership function levels. This approach incorporates three distinct algorithms derived 

from the mathematical formulations central to this study. The first algorithm enhances the 

construction of precise triangular membership functions, while the second refines the formation 

of trapezoidal membership functions. Additionally, the third algorithm optimizes the 

generation of Gaussian membership functions. At its core, this method employs a robust 

mathematical model that simplifies the computation of membership degrees, resulting in 

significantly improved processing speed compared to traditional methods such as the Mamdani 

fuzzy logic system. An inherent strength of this approach lies in its systematic classification of 

input values based on specific membership functions. By effectively addressing issues of 

ambiguity and uncertainty, the methodology ensures a more accurate determination of 

membership degrees, thereby supporting enhanced decision-making outcomes. Appendix 5 

provides detailed explanations and illustrative examples validating the effectiveness of these 

algorithms. 
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Algorithm 1: Input Partitioning and Membership Classification as similar work as 

Triangular MF 

//Membership degrees are calculated for each input value Vi with respect to membership 

functions defined over the universe of discourse. 

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of 

the membership functions—not the input data itself. 

• Input: V, a set of crisp input values for which the degree of membership will be 

calculated. 

//Parameters: Definitions of membership functions (PVs specifying boundaries, 

centers, or slopes for triangular MFs. 

n: The number of fuzzy partitions (i.e., number of membership functions) into which 

the universe of discourse is divided. 

• Output: 
A matrix of membership degrees μ(vi) for each vi across all defined membership 

functions. 

Procedure: 

1. Initialization: 

• Max(V)  max(Vi) // Calculate the maximum value of sets V in the universe 

discourse. 

2. Parameter Value Calculation: 

• PV1 (Max(V)/n)  // Determine the first parameter value. 

• PVn  n × PV1   // Compute the last parameter value. 

3. 3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1:if  Vi ≥0 and Vi ≤ PV1 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) 

//Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) // Determining the degree of element 

in the remaining MF domain. 

• Case 2: if  Vi ≥ PV1 and Vi ≤ PV2 

MF1  (
−𝑉𝑖

𝑃𝑉2
)+1; Output  (MF1, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF1 and Subsequent 

it, as MF2. 

α (Vi−PV2) // Define the alpha variable. 

MF2 (
−1

𝑃𝑉2−𝑃𝑉1
) × (|𝛼| + 1)  

// Compute the degree of element affiliated with both domains MF2 and previous 

it, as MF1. 

Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

• Case 3: if Vi ≥ 𝑃𝑉𝑛 − 1 and Vi ≤ PVn  

MFm((
1

𝑃𝑉𝑛−𝑃𝑉𝑛−1
) × (𝑉𝑖 − 𝑃𝑛 − 1); Output (MFm, Degree (Vi)) 

// Calculate Membership Function m. 

Output (MF1,MF2,…,MFm−1, Degree(Vi)) 
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//Determining the element's degree of membership across the remaining 

membership functions. 

4.End of Algorithm 1 

 

Algorithm 2: Input Partitioning and Membership Classification as similar work as 

Trapezoidal MF 

//Membership degrees are calculated for each input value Vi with respect to membership 

functions defined over the universe of discourse. 

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of 

the membership functions—not the input data itself. 

• Input: V, a set of crisp input values for which the degree of membership will be 

calculated. 

//Parameters: Definitions of membership functions (PVs specifying boundaries, 

centers, or slopes for Trapezoidal MFs. 

n: The number of fuzzy partitions (i.e., number of membership functions) into which 

the universe of discourse is divided. 

• Output: 
A matrix of membership degrees μ(vi) for each vi across all defined membership 

functions. 

Procedure: 

1. Initialization: 

• Max (V)max (Vi) // Calculate the maximum value from the sets V. 

2. Parameter Value Calculation: 

• PV1(Max (V)/n) // Determine the first parameter value. 

• PVn  n×PV1  

// Compute the last parameter value. 

3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1: if Vi ≥0 and Vi ≤ PV1 

Degree (Vi) 1; Output  (MF1, Degree (Vi)) // Compute Membership Function 

1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining membership 

functions 

• Case 2: if  Vi ≥ PV1 and Vi ≤ PV2 

MF1  (((
−𝑉𝑖

𝑃𝑉2
) – PV1

 )) +1; Output  (MF1, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF1 and 

Subsequent it, as MF2. 

o α(Vi−PV2) // Define the alpha variable; MF2  (((
−1

𝑃𝑉2−𝑃𝑉1
)) × (abs(α))) +1 

o Output  (MF2, Degree (Vi)) 

// Compute the degree of element affiliated with both domains MF2 and previous 

it, as MF1. 

o Output (MF3, MF4,…,MFm−1, Degree(Vi)) 
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//Determining the element's degree of membership across the remaining 

membership functions. 

• Case 3: if Vi ≥PVn-1 and Vi ≤ PVn  

o Degree (Vi) 1 

o Output (MFm, Degree (Vi)) 

// Calculate Membership Function m. 

o Output(MF1,MF2,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

4)End of Algorithm 2 

 

Algorithm 3: Input Partitioning and Membership Classification as similar work as 

Gaussian MF 

//Membership degrees are calculated for each input value Vi with respect to membership 

functions defined over the universe of discourse. 

//The parameters PV (parameter values) is defining the shape, boundaries, or centers of 

the membership functions—not the input data itself. 

• Input: V, a set of crisp input values for which the degree of membership will be 

calculated. 

//Parameters: Definitions of membership functions (PVs specifying boundaries, centers, or 

slopes for Gaussian MFs. 

n: The number of fuzzy partitions (i.e., number of membership functions) into which the 

universe of discourse is divided. 

• Output: 
A matrix of membership degrees μ(vi) for each vi across all defined membership 

functions. 

Procedure: 

1. Initialization: 

• Max (V)max (Vi) // Calculate the maximum value from the sets V. 

• 𝜎16339 //Define standard deviation of the Gaussian MF. 

2. Parameter Value Calculation: 

PV10; PV2MAX(V)/2; PVn   MAX(V); MF1 centerPV1; MF2 

CenterPV2; MFm CenterPVn 

3. Iterate Over Each Input Value Vi in the Set of Parameter Values: 

for each Vi ∈ V: 

• Case 1: if  Vi ≥0 and Vi ≤ PVn 

MF1 EXP (-((Vi – PV1 )
2) /(2* 𝜎 2)); Output  (MF1, Degree (Vi)) 

// Compute Membership Function 1. 

Output (MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

• Case 2: MF2EXP (-((Vi – PV2 )
2) /(2* 𝜎 2)) 

Output  (MF2, Degree (Vi)) // Compute Membership Function 2. 

Output (MF3, MF4,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions 
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• Case 3: MFm EXP (-((Vi – PVm )
2) /(2. 𝜎 2)) 

Output  (MFm, Degree (Vi)) // Compute Membership Function m. 

Output (MF1,MF2, MF3,…,MFm−1, Degree(Vi)) 

//Determining the element's degree of membership across the remaining 

membership functions. 

4.End of Algorithm 3 

6.5 Experimental Results and Analysis 

 Our proposed method has been applied to a dataset comprising over 10,000 user tasks of 

varying sizes, which was extracted from the Parallel Workloads Archive. This archive is a 

comprehensive repository that contains detailed logs of job-level usage data from large-scale 

parallel supercomputers, clusters, and grids. The logs encompass crucial information about the 

size of user tasks, which can vary significantly depending on the specific workload and system 

specifications. Given that each user base requests the cloud environment to perform its tasks, 

the data size is measured per request. For further specifics regarding user task sizes, you can 

explore the raw workload logs and models available on the Parallel Workloads Archive website 

at(3). In our work. These task sizes are generally random and unstructured, encompassing 

"small," "medium," and big" The recorded data consists of task sizes measured in bytes, 

ranging from a minimum of 0 to a maximum of 67170 bytes. This wide range reflects the 

diverse nature of user activities. The data were obtained directly from the database in their 

original form without preprocessing. Appendix 6 (Figure 1). depicts the database titles selected 

for the work. The task column data, specifically identified and prepared for analytical purposes, 

was systematically extracted from the database to serve as the foundation for the subsequent 

experimentation, Appendix 6 (Figure 2), shows the tasks before classifying. Operations using 

the MATLAB® (R2018b) software [174]. This program was selected due to its robust 

computational capabilities, enabling precise mathematical analysis, data manipulation, and 

visualization. The processing steps included data filtering and targeted analysis to derive 

meaningful insights and ensure the integrity of the results. 

6.5.1 Determine the Degree of Membership as The Triangular Membership Function 

In this context, tasks are classified by size using the proposed method, as outlined in Section 

4. To demonstrate this, determine the degree of membership through the triangular membership 

function by applying the first algorithm to values within the universe discourse. The 

implementation results are systematically illustrated to demonstrate the classification processes 

based on fuzzy logic principles. Figure 6.2 presents a classified single triangular membership 

function, showcasing the initial classification structure with a single membership function type 

for clarity and precision.   

 
(3)https://www.cs.huji.ac.il/labs/parallel/workload/. 

https://www.cs.huji.ac.il/labs/parallel/workload/
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Figure 6.2 Classify single Triangular MF. 

Figure 6.3 extends this analysis by depicting the classification of all nested membership 

functions, emphasizing the hierarchical arrangement and interactions between multiple 

membership functions within the system. In contrast, Appendix 6 (Figure 2), demonstrates the 

classification of the membership function achieved through the application of the Mamdani 

fuzzy logic system, which integrates fuzzy rules and inference mechanisms to produce 

comprehensive and interpretable classification results. These figures collectively highlight the 

progressive refinement of membership function classification, illustrating the effectiveness of 

fuzzy logic systems in managing uncertainty and delivering accurate outcomes. 

 

Figure 6.3 Classify all Triangular MF. 

6.5.2 Determine the degree of membership as the trapezoidal membership function 

In this context, tasks are classified based on their size using the proposed method, as outlined 

in Section 4. The classification process is achieved by determining the degree of membership 

through the implementation of a trapezoidal membership function. This function is applied 

using the second algorithm, which assigns membership values to data points within the defined 

universe discourse, ensuring a systematic and accurate task classification. The results of this 

implementation are illustrated in Figures 6.4 and 6.5. Figure 6.4 presents the classification of 

a single trapezoidal membership function, while Figure 6.5 depicts the classification of all 

trapezoidal membership functions, demonstrating the effectiveness of the second algorithm in 

assigning precise membership values. In contrast, Appendix 6 (Figure 3), presents the 
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corresponding Mamdani system membership functions, showcasing the fuzzy inference 

process and its integration into the classification framework. This detailed analysis highlights 

the significance of the proposed method and algorithms in accurately determining membership 

degrees, thereby enabling a precise and meaningful classification of tasks within the system. 

 

Figure 6.4 Classify single Trapezoidal MF. 

 

 

Figure 6.5 Classify all Trapezoidal MF. 

6.5.3 Determine the Degree of Membership as The Gaussian Membership Function 

In this context, tasks are classified based on their size using the proposed method, as outlined 

in Section 4. To demonstrate the effectiveness of this approach, the degree of membership is 

determined using the Gaussian membership function by implementing the third algorithm on 

values within the defined universe discourse. The Gaussian membership function, chosen for 

its smooth and continuous nature, ensures precise membership value assignment, facilitating 

accurate classification of task sizes. The results of this implementation are presented as follows: 

Figure 6.6 illustrates the classification using a single Gaussian membership function, providing 

a clear and focused representation of membership values for task sizes. Figure 6.7 expands on 

this by presenting the classification of all Gaussian membership functions simultaneously, 

showcasing the system's ability to handle multiple overlapping membership functions 

effectively. In contrast, Appendix 6 (Figure 4), depicts the classification results using the 

Mamdani fuzzy system membership functions, highlighting the integration of fuzzy inference 
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rules with membership functions to produce comprehensive, interpretable, and consistent 

outcomes. These results collectively validate the robustness and flexibility of the proposed 

method, demonstrating the precision of Gaussian membership functions and the effectiveness 

in managing uncertainty and enhancing task size classification. 

 

Figure 6.6 Classify single Gaussian MF. 

 

Figure 6.7 Classify all Gaussian MF. 

6.5.4 Validation-Based Comparative Analysis of Mamdani FIS and a Proposed 

Mathematical Model 

This study introduces algorithms for systematically classifying input values into fuzzy sets 

using mathematical methods analogous to standard fuzzy membership functions (triangular, 

trapezoidal, and Gaussian). These algorithms are integrated within a robust mathematical 

framework, providing an alternative to the heuristic or manually tuned fuzzy partitions 

typically employed in Mamdani-based inference systems. The proposed model demonstrates a 

novel application of standard fuzzy classification algorithms integrated within an optimized 

mathematical framework, specifically triangular, trapezoidal, and Gaussian membership 

functions. This innovative integration enhances fuzzy partitions' precision, computational 

efficiency, and systematic adaptability compared to conventional heuristic-based methods.  

The algorithms are capable of systematic input classification within the universe of discourse 

and precise computation of membership degrees. These algorithms are grounded in robust 

mathematical formulations: Triangular membership functions utilize point-slope line 

equations, Trapezoidal functions employ linear interpolation techniques, and Gaussian 

functions are based on probabilistic Gaussian distribution functions. Together, they replicate 
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and enhance the behavior of traditional membership functions while significantly reducing 

computational overhead. The integration of these analytical methods offers substantial benefits. 

The proposed algorithms maintain the interpretability of classical fuzzy logic systems while 

enhancing scalability, computational efficiency, and precision—qualities critical for modern 

intelligent applications. Moreover, the framework reduces dependency on simulation programs 

and environments, minimizing the need for extensive storage space, processors, and office 

software functions. To evaluate the effectiveness of the proposed model, a comparative 

validation study was conducted using ten representative input samples strategically selected 

from the universe of discourse. Each input underwent analysis to determine its membership 

degrees across all relevant functions, with outputs outside the input range assigned zero 

membership degrees. Results from the proposed mathematical model are detailed in Table 6.1, 

juxtaposed with outcomes from the classical Mamdani approach in Table 6.2, facilitating direct 

performance comparison. To further validate the robustness of the proposed method, a 

comprehensive validation study was conducted using 10,000 input samples representing a wide 

range of task sizes. The proposed framework exhibits superior adaptability and precision 

compared to the classical Mamdani system, particularly in managing complex and uncertain 

inputs. This thorough evaluation reaffirms the method's robustness, computational efficiency, 

and improved accuracy, thereby significantly contributing to the advancement of intelligent 

fuzzy classification systems. 

Table 6.1 Results of the Proposed Method Applied to Selected Samples. 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499091856 0.001816287 0 
17129 0.489980646 0.020038708 0 
17361 0.4830728 0.033854399 0 
17579 0.476581807 0.046836385 0 
25978 0.226499926 0.547000149 0 
26931 0.198124163 0.603751675 0 
28842 0.141223761 0.717552479 0 
31475 0.062825666 0.874348668 0 
33565 0.000595504 0.998808992 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182 0.500818818 0 
21582 0.393479232 0.606520768 0 
23875 0.222792914 0.777207086 0 
25331 0.114411195 0.885588805 0 
26846 0.001637636 0.998362364 0 
46120 0 0.566919756 0.433080244 
45451 0 0.616718773 0.383281227 
44329 0 0.700238202 0.299761798 
42852 0 0.810183117 0.189816883 
40336 0 0.997469108 0.002530892 

Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.120934543 0.000213895 
1 0.999999998 0.120949757 0.000213949 
10090 0.826402652 0.355634634 0.002238294 
32026 0.146469985 0.995458374 0.098946015 
49791 0.009627715 0.611475933 0.567984183 
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Table 6.2 Results of the Traditional Method Applied to Selected Samples.                                                                                        

6.6 Summary  

This chapter introduced and validated a novel mathematical framework designed to enhance 

decision-making under uncertainty by providing precise fuzzy classification. The primary 

contribution lies in systematically classifying input values into predefined fuzzy sets—

specifically, triangular, trapezoidal, and Gaussian membership functions—to significantly 

enhance accuracy and computational efficiency in determining membership degrees. The 

developed methodology integrates three optimized algorithms mathematically aligned with 

traditional fuzzy logic membership functions. These algorithms facilitate systematic input 

partitioning and precise computation of membership degrees, ensuring clear differentiation 

54045 0.004209592 0.456574063 0.724241188 
61138 0.000911417 0.241274197 0.934125619 
64852 0.000379417 0.160259114 0.989987311 
65069 0.000359903 0.156223736 0.991766863 
67170 0.000213895 0.120934543 1 

Samples of Degree of Triangular Membership Function 
value small medium big 
0 1 0 0 
16823 0.499076941,400667 0.001846117,1986660315 0 
17129 0.489965459,74273464 0.020069080,51453073 0 
17361 0.483057408,28966176 0.033885183,420676514 0 
17579 0.476566222,01048116 0.046867555,979037634 0 
25978 0.226476893,75893282 0.547046212,4821344 0 
26931 0.198100285,8504 0.603799428,2991901 0 
28842 0.141198189,61410197 0.717603620,7717961 0 
31475 0.062797760,83849452 0.87440447,83230109 0 
33565 0.000565745,5931395903 0.998868508,8137208 0 

Samples of Degree of Trapezoidal Membership Function 

value small medium big 

20162 0.499181182,07533124 0.500818817,9246688 0 
This table extends and complements the information presented in Table 6.2. 

21582 0.393479231,7999107 0.606520768,2000894 0 
23875 0.222792913,50305197 0.777207086,496948 0 
25331 0.114411195,47417002 0.885588804,52583 0 
26846 0.001637635,849337502 0.998362364,1506625 0 
46120 0 0.783443757,9096255 0.216556242,0903744

4 
45451 0 0.808345120,2263083 0.19165487,97736916

7 
44329 0 0.850107943,1251396 0.149892056,8748604

3 
42852 0 0.905084493,4117472 0.094915506,5882528 
40336 0 0.998734459,9121566 0.001265540,0878433

707 
Samples of Degree of Gaussian Membership Function 

value small medium big 

0 1 0.122 0.0002 
1 1 0.122 0.0002 
10090 0.8418 0.7201 0.0053 
32026 0.2931 0.996 0.1097 
49791 0.0304 0.5364 0.7211 
54045 0.0124 0.2917 0.8431 
61138 0.0028 0.1097 0.9959 
64852 0.0011 0.0566 0.9881 
65069 0.0010 0.0532 0.9926 
67170 0.0002 0.1218 1 
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among distinct membership levels (small, medium, and big). Compared to traditional Mamdani 

FIS, our approach delivers more accurate, computationally efficient, and robust results while 

preserving interpretability and simplicity crucial for broad practical adoption. Extensive 

validation using over 10,000 user-task-size samples confirmed that the proposed algorithms 

consistently match or surpass the performance of the traditional Mamdani method. Our model 

efficiently manages distinct and overlapping fuzzy set classifications, underscoring improved 

flexibility and precision. 

The main contributions of this chapter include: 

• A novel mathematical model enables precise input classification through triangular, 

trapezoidal, and Gaussian membership functions. 

• Algorithmic innovation through developing three original algorithms leveraging 

rigorous mathematical formulations to optimize fuzzy classification. 

• Enhanced computational efficiency, significantly reducing computational overhead 

without compromising accuracy or interpretability. 

• A robust comparative analysis demonstrates the proposed methodology's superior 

flexibility and effectiveness against traditional Mamdani-based fuzzy logic 

systems. 

The demonstrated effectiveness of this methodology highlights its potential applicability across 

diverse AI domains, notably in QoS categorization. Looking ahead, this chapter establishes a 

foundational model beneficial for future research endeavors, especially in real-time decision-

making contexts requiring high precision and scalability, such as healthcare diagnostics, 

financial forecasting, and cloud computing environments. Future work will expand this 

methodology's application within the (IVCBS), directly addressing QoS scalability and 

classification accuracy challenges and further validating the model’s suitability in practical, 

real-world decision-making scenarios.  
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Chapter 7  Intelligent Validation Cloud Broker System 

Chapter 7 contributes to the (IVCBS), which enhances SLA selection. In this work, the 

classification algorithm uses mathematical formulations like trapezoidal membership functions 

to assign fuzzy membership degrees to input values. These formulations mimic the shape and 

behavior of trapezoidal membership functions by employing linear equations to define 

ascending, plateau, and descending regions across the universe of discourse. Thus, the 

classification of VM resources and user request sizes is performed using a method that 

mathematically resembles trapezoidal membership functions, improves decision-making, 

reduces data centre processing time, and lowers VM costs. Simulations show that IVCBS, 

using the "Optimize Response Time" policy, outperforms traditional methods in response time, 

VM cost, and energy efficiency. This system also reduces data transfer costs and enhances 

power usage efficiency by improving data center request servicing times, offering a more 

efficient and cost-effective approach to cloud resource management. 

7.1 Overview of SLA Selection and the IVCBS Framework 

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to 

a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, 

and services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction. This cloud model promotes availability and is composed of five 

essential characteristics, three service models, and four deployment models [170]. Cloud users 

can access the key elements of the underlying architecture, such as Broad network access, which 

allows services to be consumed from anywhere; on-demand self-service, which enables usage 

when desired; resource pooling and virtualization, which combine infrastructure, platforms, and 

applications; rapid elasticity, which allows for horizontal scalability with pooled resources; and 

measured service charges based on consumption [171]. The services of cloud computing are 

broadly divided into three categories: Infrastructure-as-a-Service (IaaS), which is the delivery of 

huge computing resources, such as the capacity of processing, storage, and network., Platform-

as-a-Service (PaaS) supports a set of application program interfaces to cloud applications. Well-

known examples are AWS, Google App Engine, Microsoft’s Azure Services Platform, 

which replace the applications running on PCs. There is no need to install and run the special 

software on your computer if you use the SaaS [172]. The dynamic nature of cloud computing 

necessitates efficient resource allocation, which can be challenging due to potential resource 

shortages and conflicting interests between (CSPs) and (CSUs). SLA negotiations can mitigate 

these issues, and the proposed broker-based mediation framework optimizes these negotiations 

[173]. Cloud brokerage enhances service availability. Traditional brokers face limitations in 

ensuring service trust and outcomes. An intelligent cloud broker overcomes these limitations by 

validating and verifying service trust through factors like response time, sustainability, and 

accuracy. It also incorporates customer feedback and maps services from a service collection 

repository, outperforming traditional models in recommending services to cloud users [174]. 

Selecting the most suitable resources to meet diverse user demands is a significant research 

challenge. Quality of Service (QoS) parameters play a crucial role in ranking these resources. 

This study proposes using fuzzy logic to handle uncertainties in QoS attribute weights and pre-

classify resources, reducing computational costs [175]. Fuzzy logic-based optimization 

algorithms present Fuzzy-RLVMrB and Fuzzy-MOVMrB, designed to balance horizontal and 
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vertical loads across (PMs) by managing processor, BW, and memory resources. Simulations 

demonstrate that these algorithms excel in LB and energy efficiency compared to other methods 

[176]. Performance and Resource-Aware VM Selection using Fuzzy in Cloud Environment 

(PRSF) develops a VM selection policy to optimize CPU resource utilization and minimize 

migration counts. Utilizing the Mamdani fuzzy controller, the PRSF policy enhances decision-

making for VM selection, leading to decreased energy consumption and reduced migration 

events [177]. Furthermore, there are cloud simulators for creating and testing different cloud 

applications. These simulators are based on parameters like programming languages, availability, 

and SLA support. The analysis considers CloudSim to be the most effective and efficient 

simulator [178]. Simultaneously, Cloud Analyst is a simulation tool extended from CloudSim. 

LB is a major challenge in the cloud, where resources have to be directed to their respective 

servers so that the whole system works efficiently by distributing the workload efficiently. 

Compare the average response times of the six LB algorithms, like Round-Robin, by using a 

cloud analyst tool to perform a thorough comparative study along with three service broker 

policies, like optimizing response time, to find out which is the best [179].  Resource stalemates 

can occur during resource allocation. The currently available algorithms, such as Min-Min and 

Min-Max, have issues with overhead, hunger, and deadlock. A solution to some of these 

problems has been proposed that decreases the amount of time required to respond while 

simultaneously increasing the cloud's overall efficiency [180].  Building upon the methodologies 

discussed in prior studies, which focus on enhancing decision-making accuracy, this research 

advances solutions to the identified challenges within this thesis. The study introduces the IVCBS 

aimed at optimizing the allocation of AWS-EC2 resources based on user demands. Key AWS-

EC2 specifications, such as VCPUs, RAM, storage, and BW, collectively influence VM costs, 

power consumption, and processing times, impacting user confidence and decision-making in 

selecting (SLAs) that align with budgetary and performance needs. The study addresses a 

scenario involving one million customers entering a cloud environment, each presenting varying 

demands, utilizing real-world data from diverse datasets, with a particular emphasis on 11 types 

of AWS-General Purpose EC2 Instances. Employing MATLAB, an algorithm was developed to 

classify and organize EC2 resources. Furthermore, user demand sizes were categorized using a 

proposed mathematical model employing five membership functions: Poor, Fair, Good, Very 

Good, and Excellent, structured like the Trapezoidal Membership Function. The proposed 

mathematical framework calculates membership degrees for each input value—such as VM 

attributes (e.g., vCPU count, RAM size, storage capacity, BW) and user request sizes—using 

equations that emulate trapezoidal membership functions. These membership degrees, ranging 

between 0 and 1, represent the degree to which each input belongs to fuzzy linguistic categories 

such as Poor, Fair, Good, Very Good, or Excellent. This process enables precise and consistent 

classification of both cloud resources and user workloads, supporting effective decision-

making in resource allocation. The IVCBS operates in two stages. In the first stage, it calculates 

continuous membership degrees ranging from 0 to 1 for inputs such as VM attributes and user 

request sizes. This computation relies on mathematical models that emulate the behavior of 

trapezoidal membership functions, quantifying the degree to which each input belongs to 

categories such as Poor, Fair, or Excellent. In the second stage, these continuous values are 

converted into a binary membership score (either 1 or 0) based on a defined threshold, 

simplifying real-time decision-making. Only inputs assigned a score of 1 are validated for 
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resource allocation. This method preserves the precision of fuzzy classification while 

maintaining operational efficiency. This binary criterion ensures simplicity and operational 

efficiency by eliminating the need to manage intermediate fuzzy values during resource 

allocation. Specifically, if the computed fuzzy membership value exceeds the predefined 

threshold, the decision to allocate the resource is validated (membership score = 1); otherwise, 

the allocation is disregarded (membership score = 0). Thus, although continuous membership 

values derived from trapezoidal membership functions effectively capture nuanced, fuzzy 

categorizations of resources and user requests, the IVCBS strategically converts these continuous 

values into binary membership scores for practical real-time cloud resource allocation. 

Consequently, the system effectively integrates fuzzy logic principles for initial classification 

and categorization with crisp decision-making, ensuring efficient, straightforward, and 

transparent resource validation and allocation. However, the proposed algorithm categorizes 

AWS EC2 cloud computing resources and user request sizes based on linguistic variables, where 

a membership score of 1 denotes the highest relevance. This score serves as a validation criterion 

through broker validation processes. For example, CPU resources falling within specified values 

(vCPU: 1, 2, 4) are classified as 'Poor' according to the algorithm, driven by their membership 

score 1, aligning firmly with the 'Poor' membership function. Similarly, user request sizes 

categorized within ranges (3, 5, 10) MB also receive a membership score of 1, confirming their 

classification within the 'Poor' category. This systematic approach extends across all data in the 

'Poor' membership function domain, maintaining the same principle for the remaining four 

membership functions, focusing exclusively on values assigned a score of 1. Subsequently, the 

second algorithm, the matching algorithm, plays a pivotal role in the broker validation process 

by verifying whether all system metrics attain a membership score of 1. VM-EC2 resources are 

allocated to execute user requests when this condition is met. Conversely, if the score is 0, the 

matching process is disregarded. This streamlined methodology ensures efficient allocation of 

VM-EC2 resources based on validated criteria. The matching process validates all values derived 

from the algorithm, ensuring that each classification scenario defined by the five membership 

functions, whether for EC2 criteria or user request sizes, achieves a score of 1. Upon validation, 

the broker initiates the allocation process, assigning an EC2 VM to execute user requests 

effectively. Expanding the scope, the study distributes user requests across data centers in six 

geographic regions (North America (R0), South America (R1), Europe (R2), Asia Pacific (R3), 

Africa (R4), and Australia (R5)). It compares the performance of the traditional method with the 

(IVCBS). Using Cloud Analyst tools, two distinct broker policies were evaluated: the Optimize 

Response Time Policy, directing requests globally, and the Dynamic Reconfigure with Load 

Service Broker Policy, routing requests within users' regions. Across 11 scenarios involving one 

million users, simulations across 31 AWS data centers demonstrated the superiority of IVCBS, 

particularly with the Optimize Response Time policy, over the Dynamic Reconfiguration with 

Load policy. IVCBS consistently exhibited superior performance metrics, including overall 

response time, processing efficiency, total VM cost, and Data Center Request Servicing Times, 

highlighting its efficacy in enhancing cloud computing efficiency across diverse global 

environments. 
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7.2 Limitations of Traditional Methods and Advances in Intelligent Decision-Making 

If Cloud computing delivers computing resources via a network as a service. With the fast 

adoption of this emerging technology in practical scenarios, understanding how to assess its 

performance and security challenges has grown increasingly significant. Nowadays, modelling 

and simulation technology is a valuable and potent resource among cloud computing 

researchers to tackle these issues [181]. Qazi et al. [2] examine SLA methodologies in cloud 

computing, detailing their taxonomy, challenges in QoS management, evaluation metrics, and 

design goals. It also highlights open research areas, guiding future development for enhanced 

service delivery and CSP-CSU accountability. Chauhan et al. [182] emphasized the role of 

cloud brokers within an interconnected cloud computing framework. Their study explored the 

advantages and limitations of cloud brokers, focusing on aspects like pricing, optimization, 

trust, and Quality of Service (QoS). Being a survey, the work provides in-depth discussions to 

enhance the comprehension of cloud brokers in multi-cloud environments. Yao et al. Ahmad 

et al. [183] introduce the (COTD) algorithm for cloud and fog services, aiming to reduce costs 

by 35% without compromising response times. Tested with Cloud Analyst, COTD outperforms 

existing routing strategies, offering efficient real-time decision-making for service providers. 

[184] detailed the diverse roles played by cloud service brokers, including intermediation, 

aggregation, arbitration, integration, and customization. Therefore, the process of delivering 

services is a collaborative effort involving CSPs, cloud service brokers, and customers. Any 

issues arising within any of these parties will undoubtedly impact the broker's performance. 

Cinar et al. [185] aim to bolster security and compliance in multi-cloud environments by 

leveraging sophisticated encryption and IAM strategies and legal insights. They underscore the 

role of cloud service brokers in applying best practices to overcome challenges posed by 

technology adoption and regulatory intricacies. Petcu [186] tackled the interoperability issue 

among cloud services, highlighting the challenge posed by vendor lock-in and the necessity to 

integrate different clouds to meet user needs. Despite the existence of hybrid clouds, linking 

multiple cloud services is crucial for enhancing performance and user satisfaction. The authors 

suggested a strategy to enable portability and interoperability across various cloud providers. 

However, this proposal lacks a detailed practical method for addressing the interoperability 

challenges among CSPs. Chafai et al. [187] This work proposes a performance evaluation 

model for federated clouds using an open Jackson network, focusing on service diversity and 

user demand to improve system design. Calheiros et al. [188] explored the constraints a solitary 

cloud provider faces in service delivery.   They noted that with the rising demand for services, 

current methods fell short regarding SLA and Quality of Service (QoS). The authors introduced 

an inter-cloud framework that leverages agents to address these issues. These agents publish, 

discover, and deliver services to cloud users under agreed-upon SLAs.  Nonetheless, the work 

does not cover the decision-making strategies for purchasing and selling services.  Al-E'mari 

et al. [22] This article evaluates Cloud Service Broker policies for Cloud Datacenter selection, 

highlighting their role in enhancing cloud computing efficiency and addressing challenges to 

improve Quality-of-Service standards and decision-making. Ahmed I. El Karadawy et al. [189] 

conducted a detailed examination of the cloud analyst simulator, focusing on different (LB) 

algorithms and service broker policies. They specifically evaluated three unique LB 

algorithms: (RR), throttled, and (ESCE). Sunny Nandwani et al. [190] examined various 
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service broker policies and (LB) algorithms. They compared these LB algorithms across 

different service broker policies and conducted simulations using cloud analysts to evaluate the 

performance of existing algorithms. This comparison was based on various metrics to assess 

their effectiveness. 

7.3 Proposed System  

The proposed study centers on intelligently identifying cloud services through rigorous 

validation. This process ensures uniform attainment of a value of 1 across all outcomes from 

the classification algorithm, applicable to resource allocation and user request sizes, as 

discussed earlier. By maintaining this consistent criterion, the study assures the reliability and 

accuracy of the classification algorithm's outputs, thereby optimizing resource management 

and enhancing service efficiency in cloud computing environments. This systematic and 

uniform validation approach highlights its critical role in achieving precise identification of 

high-quality cloud services. Figure 7.1 depicts the proposed system. 

7.3.1 Extraction information Factors from AWS Cloud Environment 

Within the AWS cloud environment, users have access to a variety of service instance types, 

including General Purpose(4), Compute Optimized, Memory-Optimized, Accelerated 

Computing, and Storage-Optimized, all falling under the broad category of 'XaaS'. This study 

will concentrate on general-purpose EC2 instance types tailored to meet user requirements. 

General-purpose EC2 instances are strategically deployed across 31 AWS data centers in six 

geographic regions(5) , ensuring robust global infrastructure and service availability. 

7.3.2 AWS General-Purpose Instance Types 

 AWS boasts 212 types of EC2 general-purpose instances, meticulously designed to balance 

computing, memory, and networking resources. These versatile instances excel at diverse 

workloads, making them ideal for applications requiring equal resource distribution, such as web 

servers and code repositories [191]. By sharing certain standardized features, these EC2 instances 

are grouped into 11 categories based on similarities in their specifications. Tables 7.1 and 

Appendix 7 (Table 1), highlight the adopted AWS-EC2 families' specifications. while Appendix 

7 (Table 2), lists the actual on-demand cost of each EC2 device, as indicated on AWS's official 

pricing page(6). Table 7.2 displays the number of customers entering the cloud for each scenario 

and the sizes of their requests. 

 
(4) (https://aws.amazon.com/ec2/instance-types/). 

(5)(https://aws.amazon.com/about-aws/global-infrastructure/regions_az/). 

(6) (https://aws.amazon.com/ec2/pricing/on-demand/). 

https://aws.amazon.com/ec2/instance-types/),Compute
https://aws.amazon.com/ec2/pricing/on-demand/
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Figure 7.1 Intelligent Validation Cloud Broker System Framework. 

 Table 7.1 AWS-General purpose instance features. 

AWS-General-Purpose series Attributes and specs 
EC2- Series VCPU RAM 

GB 
Storage 
GB 

Bandwidth 
Gbps 

VCPU-clock 
speed 
GHz 

M6g.medium 1 4 1 2 2  
M6g.Large 2 8 2 4 2  
M6g.Xlarge 4 16 4 8 2.4  
M5.2XLarge 8 32 8 10 2.5  
M5.4XLarge 16 64 12 12 2.5  
M6gd.8XLarge 32 128 16 14 2.5  
M6gd.12XLarge 48 192 24 16 2.7  
M6g.metal 64 256 32 18 2.7  
M5d.metal 96 384 48 24 3.4  
M6i.metal 128 512 64 30 3.4  
M6a.metal 192 768 88 40 3.4  

7.3.3 Theoretical Framework and Methodology 

7.3.3.1 Mathematical Modeling in the Intelligent Validation Cloud Broker System 

(IVCBS) 

In cloud computing, "intelligence" signifies the deployment of sophisticated algorithms and 

decision-making techniques that emulate human cognitive abilities like learning, reasoning, and 

problem-solving [192]. In the (IVCBS), this intelligence is utilized through optimization 

algorithms rooted in a mathematical model influenced by the trapezoidal membership function. 

Implementing this model generates membership scores of 1 and 0 for the input values across all 

proposed membership functions within the system's universe of discourse. This approach 

significantly improves SLA selection and enhances overall system efficiency. 
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Table 7.2 Cloud users and sizes of their requests. 

Cloud users User request 
Scenario 
number 

 

Total 

number of 

users 

SaaS Size 

1 1000,000 App1 3 MB 

2 1000,000 App2 5 MB 

3 1000,000 App3 10 MB 

4 1000,000 App4 35 MB 

5 1000,000 App5 70 MB 

6 1000,000 App6 105 MB 

7 1000,000 App7 140 MB 

8 1000,000 App8 750 MB 

9 1000,000 App9 1500 MB 

10 1000,000 App10 2250 MB 

11 1000,000 App11 3000 MB 

Our method provides adaptability and utility, making it a valuable tool for scientists and 

researchers facing decision-making in ambiguous situations that require precise and 

comprehensive insights. It facilitates the assessment of a value's impact on the environment in 

connection with the decision-making process. Figure 7.2 demonstrates how the mathematical 

approach closely reflects the characteristics of a trapezoidal membership function, particularly in 

determining and generating degrees of membership or belonging. The equations and concepts 

presented in this figure provide the foundation for the outcomes produced by the algorithms 

detailed in Table 7.3. The behavior of the mathematical model as a membership function, which 

classifies and assigns membership levels to input values within the proposed system, can be 

effectively illustrated using equations that relate to point-slope lines and absolute values, as 

discussed in Chapter Six. 

y = mx + c                                                             (7.1) 

Here, 'm' represents the slope of the line, and 'c' stands for the y-intercept. This is the most used 

equation form for a straight line in geometry. However, the straight-line equation can be 

presented in various forms, including point-slope.  

The equation of a straight line with a slope 'm' that passes through a specific point (x1, y1) is 

derived using the point-slope form, which is expressed as: 

                                                                    y − y1 = m(x − x1)                                            (7.2) 

 

In this equation, (x, y) denotes an arbitrary point on the line [140][164]. The mathematical model 

employed in the IVCBS is classifies and arranges (VM) resources (e.g., VCPU, RAM, Storage, 

BW) and user request sizes. This model defines mathematical functions (Poor, Fair, Good, Very 

Good, and Excellent) similar to the trapezoidal membership function. These functions are used 

to classify and determine the membership degree for each input value within the discourse 

universe, evaluating the suitability of EC2 selections that adapt to client SLA criteria. The 

classification outcomes directly influence the decision-making process for validating the broker 

mechanism. A result of (1) indicates an effective decision, while (0) suggests exclusion. This 

section introduces a novel model to explore the intelligent features integrated into the (IVCBS). 
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It focuses on the intricate management of VCPU resources, using them as a key example. This 

rigorous method is consistently applied to all VM-EC2 resources and user request sizes, ensuring 

SLA-level classification uniformity and reliability. The MATLAB script demonstrates how this 

approach reinforces the consistency of resource allocation within the system. Furthermore, to 

illustrate the alignment of the mathematical model with the proposed membership functions, this 

approach has been integrated into the discussion on initializing and visualizing the membership 

function, as depicted in Appendix 7 (Figures 1 and 2). 

 

 

Figure 7.2 Fuzzy Partition Using Mathematical Model. 

7.3.3.2 Modeling and Implementing Algorithms in the Intelligent Validation Cloud 

Broker System (IVCBS) 

This section addresses the handling of ten user-base requests, employing the round-robin 

algorithm to evenly distribute workloads across VM clusters. It introduces a set of equations that 

form the mathematical basis for estimating the time required to process a given task. As 

previously discussed, our framework utilizes 31 individual VMs linked to 31 data centers, spread 

across six geographical areas and categorized based on 11 clustering factors. The rationale for 

using a single VM from each AWS-supported data center is to harness suitable computing 

resources that align with the demand of user requests. This strategy aims to achieve cost 

efficiency, enhance processing speed, reduce energy consumption, and ensure the availability of 

additional computing resources to handle other users' requests consistently. To operationalize 

this concept, applied the CloudAnalyst tool under a designated SBP in two distinct scenarios 

(optimizing response time and dynamically reconfiguring based on load).   

 Eq. (7.3) is given by n as the number of sets for the load (L) or requests that need to be 

scheduled to servers. 

  𝐿 = {𝐿1  , 𝐿2   , 𝐿3  , … , 𝐿𝑛  }                                                 (7.3) 

This equation is coherent in indexing because it uses sequential indices 1,2,3,…,n to denote 

each element Li  The indexing starts from 1 and progresses sequentially up to n. 

 



78 

 

 

 

Eq. (7.4) DC represents a set of data centers, with dc1,dc2,dc3,…,dck denoting each data center 

indexed from 1 to k. 

                                         DC = {dc1  , dc2  , dc3  , … . , dck}                                                  (7.4) 

This equation is coherent as well. It uses indices 1,2,3,…,k to denote each data center dci. 

Similar to Equation (7.3), the indexing starts from 1 and proceeds sequentially up to k, 

maintaining a consistent and logical index structure. 

The following equation (7.5) For each data center dci, there is a single VMi associated with it. 

                                                    dci = {VMi}                                                                       (7.5) 

This equation introduces i as the index for VMs within each data center dci. It is coherent 

because it specifies that dci has exactly one VMi, ensuring clarity and specificity in indexing. 

Eq. (7.6)  𝐷𝐶𝑠𝐿  represents the load of each VMi in the data centers. 

                                      DCsL = {VM1 L  , VM2L , VM3 L , … , VMk L}                                  (7.6) 

This equation uses i from 1 to k to denote each VMi and its associated load L. The indexing is 

coherent as it sequentially lists VMiL for each VM within the data centers. 

Eq. (7.7) This equation indicates that the load L of each VMi in the data centers 1,2,…,k is 

approximately equal. It uses i from 1 to k to represent each VMi. 

                                          VM1  L ≈  VM2  L ≈ VM3  L,… , VMk  L                                       (7.7) 

Eq. (7.8) t0 calculates the time required to allocate all tasks L to each VMi, where τ0i, represents 

the time τ0 required to execute each task Li. 

                                          t0 = ∑ τ0𝑖
𝑛
𝑖=1                                                                    (7.8) 

Where: 

i: Represents the index for tasks, consistent with Equation (7.3) where Li denotes each task or 

load. 

Eq. (7.9) This equation defines VM as a set containing k VMs within a specific data center. It 

describes how, when multiple VMs are available (denoted by k), all tasks can be evenly 

distributed among them for execution. This equation clarifies the method of task distribution 

across multiple VMs, highlighting the shared allocation approach in cloud computing 

environments. 

                                 VM = (VM1  , VM2 ,VM3 ,… , VMk ,)                                   (7.9) 

Eq. (7.10) shows that the total execution time T0 is the sum of the execution times Ti for each 

task i executed on the total number of VMs n in the data center: 

     T0 = ∑ T𝑖
𝑛
𝑖=1                                                               (7.10) 

This equation indicates that T0 represents the cumulative execution time across all tasks 

executed on n VMs within the specific data center. 
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Classification Algorithm 

 

Inputs: Parameter Value (PV)set= {PV1, PV2,,,PV11} 

Output=Classification with order Parameter Values. 

//Compute the level for each input parameters. 

1.For each input value (V) from input parameter value set 

2.IF (V >=PV1 and V <=PV2) 

3.MF1   (((-1/PV1-PV2)) *((V-PV2))) +1) 

//MF: Membership Functions 

4.Output  (Poor, MF1) 

5.Output  ((Fair, Good, V. Good, Excellent),0) 

6.End 

7.IF(V>PV2 and V<=PV3) 

8.MF1  1 

9.Output (Poor, MF1) 

10.Output ((Fair, Good, V. Good, Excellent),0)  

11.End  

12.IF (V>PV3 and V<=PV4) 

13.MF1 (((-1/(PV4-PV3)) *((V-PV3))) +1) 

14.Output (Poor, MF1) 

15.Output ((Good, V. Good, Excellent),0) 

16.MF2 (((-1/PV3-PV4)) *((V-PV4))) +1) 

17.Output (Fair, MF2) 

18.End 

19.IF(V>PV4 and V<=PV5) 

20.MF21 

21.Output (Fair, MF2) 

22.Output ((Poor, Good, V. Good, Excellent),0) 

23.End 

24.IF(V>PV5 and V<=PV6) 

25.MF2 (((-1/(PV6-PV5)) *((V-PV5))) +1) 

26.Outputç(Fair, MF2) 

27.Output ((Poor, V. Good, Excellent),0) 

28.MF3 (((-1/PV5-PV6)) *((V-PV6))) +1) 

29.Output (Good, MF3) 

30.Output ((Poor, V. Good, Excellent),0) 

31.End 

32.IF (V>PV6 and V<=PV7) 

33.MF31 

34.Output(Good, MF3) 

35.Output ((Poor, Fair, V.Good, Excellent),0) 

36.End 

37.IF (V>PV7 and V <=PV8) 

38.MF3 (((-1/(PV8-PV7)) *((V-PV7))) +1) 

39.Output (Good, MF3) 

40.Output (Poor, Fair, Excellent),0) 

41.MF4 (((-1/(PV7-PV8)) *((V-PV8))) +1) 

42.Output (V. Good, MF4) 

43.Output(Poor, Fair, Excellent,0) 

44.End  
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45. IF (V>PV8 and V<=PV9) 

46. MF41 

47.Output(V. Good, MF4) 

48.Output ((Poor, Fair, Good, Excellent),0) 

49.End 

50.IF (V>PV9 and V<=PV10) 

51.MF4 (((-1/(PV10-PV9)) *((V-PV9))) +1) 

52.Output (V. Good, MF4) 

53.Output ((Poor, Fair, Good),0) 

54.MF5 (((-1/(PV9-PV10)) *((V-PV10))) +1) 

55.Output (Excellent, MF5) 

56.Output ((Poor, Fair, Good),0) 

57.End 

58.IF (V>PV10 and V<=PV11) 

59.MF51 

60.Output (Excellent, MF5) 

61.Output (Poor, Fair, Good, V.Good),0) 

62.End 

63.End  

 

 

Matching Algorithm 

 

1.IF Output (Poor, PV1) 

2.Assign: User base Request (App1)   M6g.medium 

3.End 

4.IF Output (Poor, PV2) 

5.Assign: User base request (App2)   M6g.large 

6.End 

7.IF Output (Poor, PV3) 

8.Assign: User base request (App3)   M6g.XLarge 

9.End 

10.IF Output (Fair, PV4) 

11.Assign: User base request (App4)   M5.2XLarge 

12.End 

13.IF Output (Fair, PV5) 

14.Assign: User base request (App5)   M5.4XLarge 

15.End 

16. IF Output (Good, PV6) 

17.Assign: User base request (App6)   M6gd.8XLarge 

18.End 

19.IF Output (Good, PV7) 

20.Assign: User base request (App7)   M6gd.12XLarge 

21.End 

22.IF Output (V. Good, PV8) 

23.Assign: User base request (App8)  M6g.metal 

24.End 

25.IF Output (V. Good, PV9) 

26.Assign: User base request (App9)  M5d.metal 
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27.End 

28.IF Output (Excellent, PV10) 

29.Assign: User base request (App10)  M6i.metal 

30.End 

31.IF Output (Excellent, PV11) 

32.Assign: User base request (App11)  M6a.metal 

33.End 

 

7.3.3.3 Cloud Analyst Simulation Framework 

This framework extends the CloudSim simulator with new capabilities, allowing for the 

analysis of performance and costs associated with large, geographically dispersed cloud 

systems under extensive user workloads and various parameters. It offers a user-friendly 

graphical interface and the ability to customize settings for any geographically distributed 

system, including hardware configurations like storage, CPU, main memory, and BW. The 

results of simulations are provided in charts and tables, detailing aspects such as cost, response 

time, data center processing time, and data center load, among others [193]. Figure 7.3 depicts 

the cloud analyst model. 

 

Figure 7.3 Cloud Analyst Model. 

7.3.3.4 Round Robin Algorithm  

The RR algorithm, known for its simplicity, is popular among load-balancing mechanisms. It 

evenly distributes the workload by cyclically rotating through each server in sequence. This 

method effectively manages the queues within load-balancing systems by assigning turns to each 

virtual server, ensuring a systematic distribution cycle. The process operates on a fixed time 

allocation known as the time quantum, the designated duration for a process's execution within 

the system or for processing queued data. This approach is notably equitable, as it does not 

prioritize any process over others; each receives an equal time allotment, calculated as (1/n), 

where n represents the number of processes in the queue. Thus, the wait time for any process is 

limited to (n-1) times the quantum length, q, ensuring a fair and efficient distribution of 

processing time [194] [195]. 

7.3.3.5 Service Brokering Strategies  

The role of a service broker is essential for determining the appropriate data center to satisfy 

customer needs and for orchestrating the data exchange between consumers and data centers 

[196]. This intermediary position enhances the connection between customers and CSPs [197]. 

Through the (SBP), services are dynamically distributed between the cloud's infrastructure and 
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its service providers [198], effectively guiding the selection of data centers [196]. The 

assignment of VMs to physical hardware in data centers, a process critical to the data center 

broker known as VM deployment, underscores the importance of the SBP [199]. It is crucial 

to grasp the operational context of the SBP, particularly how it mediates between specific data 

centers and user demands. The SBP plays a pivotal role in identifying the most fitting data 

center to meet service expectations based on customer requests [196]. Our analysis involved 

adopting two foundational broker strategies and examining and contrasting their 

effectiveness.[200]. The primary policy focuses on optimizing response time, where the service 

broker evaluates essential attributes of data centers to gauge their performance [189]. This 

approach ensures the quickest possible response times for end-users during queries [201]. In 

this routing strategy, the efficiency of data centers is continuously monitored, with preference 

given to directing traffic to the data center that offers the best response time, effectively 

managing direct bottlenecks [202]. VMs are utilized to handle customer requests swiftly, 

enhancing point-to-point communication [203]. This policy assumes uniform processing 

requirements and execution times for all requests [204]. The secondary policy involves 

dynamic reconfiguration based on load, where the service broker manages scalability for cloud 

applications [189]. This involves the service broker dynamically reconfiguring and altering the 

VMs within data centers to match demand [201]. A cloud analyst facilitates the redistribution 

of loads across different data centers when the performance of the initial data center falls below 

a certain threshold [178]. This method calculates retention times to achieve the longest cycle 

time recorded, addressing both cost and performance expectations of users [204] and adjusting 

the number of VMs as needed [205].  

7.4 Experimentation and analysis 

7.4.1 Simulation the proposed system 

To test our proposed policy, deployed Cloud-Analyst with the optimize response time policy as 

part of an intelligent cloud broker validation process. This involved handling 1,000,000 user 

requests, allocated across ten user bases, and leveraging 31 individual AWS data centers spread 

across six geographic regions. Each data center operated with a single VM, with configurations 

based on 11 real-life EC2 attributes as previously described. This setup allowed us to benchmark 

the performance against existing routing policies, notably the Reconfigure Dynamically with 

Load broker policy. Before initiating the simulations, standardized the network delay metrics 

from AWS latency monitoring(7), shown in Appendix 7 (Table 3), and set advanced data center 

configurations for all tests, as detailed below. Table 7.4 displays data related to a Single User 

Base, which becomes pertinent in Table 7.5 as our research encompasses 11 analogous 

instances derived from this single-user base, varying according to the magnitude of user 

requests, employed Peak Hours (GMT) to depict the timing of user activity on AWS-Cloud. 

The number 60 is used to denote the number of requests per user within a one-hour simulation, 

measured hourly (60.0).  It's posited that the upper limit of users from each user base cluster 

 
(7) (https://www.cloudping.co/grid). 

https://www.cloudping.co/grid
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during peak times is 100,000 average peak users, while the lower limit during off-peak periods 

is 10,000 average users. This is established using the following mathematical formula: 

Avg peak users =  
Total User Count

10 UB
                                         (7.11) 

   Avg Off −  peak users =
Avg Peak users

10 
                                       (7.12) 

The data size per request (in bytes) and the instruction length per request (in bytes) were 

determined by applying mathematical formulas No. 7.12 and No. 7.13, respectively. The 

"Grouping factor in data centers" refers to the capacity of a single application server instance to 

handle multiple requests concurrently. Similarly, the "User grouping factor in user bases" denotes 

the maximum number of users accessing services from a single user base simultaneously. 

Additionally, a round-robin load-balancing strategy is employed to manage the distribution of 

workloads across VMs within a single data center.  

  Data size per request =
Total UB request

Avg peak users
                                      (7.13) 

Executable length =
Total UB request

10 UBs
                                    (7.14) 

Appendix 7 (Table 4) displays the foundational configuration for each of the 31 data centres 

featured in our research, which were deployed in 11 different scenarios adhering to the 

specifications of AWS General Purpose EC2 instances, as indicated in Appendix 7 (Table 5). 

The pricing is based on data transferred "in" to and "out" of Amazon EC2(8). In our study, 

contrasted the proposed (IVCBS) with traditional random allocation methods within the 

context of cloud resource management. Both approaches were evaluated under two distinct 

policies: optimizing response times and dynamically reconfiguring loads based on demand. 

Traditional methods of allocating (VM) resources typically distribute these resources to 

customer requests indiscriminately, using a random approach that does not account for the 

specific needs of the requests. Our study provides a comprehensive description of these 

traditional allocation strategies in Appendix 7 (Table 6). It is critical to note that the 

specifications of the EC2 instances utilized in these traditional methods are identical to those 

employed in the (IVCBS) method, as detailed in previous tables and sections of our study. This 

strategic allocation is further illustrated by the general distribution of EC2 across 31 data 

centers, as depicted in our study, apply this distribution in 11 different scenarios, tailored 

according to the number of user request sizes identified in this study.   

Table 7.3 Results of the Proposed Algorithm. 
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(8) https://aws.amazon.com/ec2/pricing/on-demand/. 

https://aws.amazon.com/ec2/pricing/on-demand/
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192 128 96 64 48 32 16 8 4 2 1 EC2 (VCPU) 

0 0 0 0 0 0 0 0 1 1 1 Poor 

0 0 0 0 0 0 1 1 0 0 0 Fair 

0 0 0 0 1 1 0 0 0 0 0 Good 

0 0 1 1 0 0 0 0 0 0 0 V.Good 

1 1 0 0 0 0 0 0 0 0 0 Excellent 

768 512 384 256 192 128 64 32 16 8 4 EC2 (RAM) 
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0 0 0 0 0 0 1 1 0 0 0 Fair 
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88 64 48 32 24 16 12 8 4 2 1 EC2 (Storage) 
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Table 7.4 Single-User Base Clusters. 

Single-

User 

Base 

Clusters 

Geographic 

Regions 

Requests 

per user 

per Hour 

Peak 

Hours 

(GMT) 

Avg 

peak 

users 

Avg 

Off- 

peak 

users Start End 

UB1 R0 60 12 15 100000 10000 

UB2 R1 60 14 17 100000 10000 

 UB3 R2 60 19 22 100000 10000 

UB4 R3 60 0 3 100000 10000 

UB5 R4 60 20 23 100000 10000 

UB6 R5 60 8 11 100000 10000 

UB7 R0 60 12 15 100000 10000 

UB8 R1 60 14 17 100000 10000 

UB9 R2 60 19 22 100000 10000 

UB10 R3 60 0 3 100000 10000 
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Table 7.5 (11-User Base Instances). 

11-User Base Instances 
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M6g.medium 10- UBs 30 100000 100000 300000 

M6g.large 10- Ubs 50 100000 100000 500000 

M6g.xlarge 10- Ubs 100 100000 100000 1000000 

M5.2xlarge 10- Ubs 350 100000 100000 3500000 

M5.4xlarge 10- Ubs 700 100000 100000 7000000 

M6gd.8xlarg 10- Ubs 1050 100000 100000 10500000 

M6gd.12xlarge 10- Ubs 1400 100000 100000 14000000 

M6g.metal 10- Ubs 7500 100000 100000 75000000 

M5d.metal 10- Ubs 15000 100000 100000 150000000 

M6i.metal 10- Ubs 22500 100000 100000 225000000 

M6a.metal 10- Ubs 30000 100000 100000 300000000 

7.4.2 Results and Comparative Analysis 

7.4.2.1 Implementation of IVCBS with two Service Broker Policies 

In the proposed methodology, IVCBS utilizes either the Optimized Response Time SBP or the 

Dynamic Reconfiguration with LB approach, both supported by the Cloud Analyst simulator. 

IVCBS employs these policies to route user requests from User Bases (UBs) to AWS 31 data 

centers worldwide. This router ensures that each data center adheres to predefined parameters 

tailored to the request volumes of each UB user group, by IVCBS, as detailed in Appendix 7, 

Table 5. Specifically, resources such as EC2-M6a.metal are optimized for handling high-volume 

user requests effectively. For instance, the allocation of VM-Cost is optimized to effectively 

address user requirements, with resources like EC2-M6a.metal specifically designated for 

handling high-volume user requests. Our analysis reveals that the Optimized Response Time 

Policy yields better outcomes than the Dynamic Reconfiguration with Load Policy in several key 

performance metrics: Average Overall Response Time, Average Data Center Processing Time, 

and Total VM Cost. This suggests that the optimized policy more efficiently handles these 

aspects of cloud service management. However, the scenario shifts when examining Data Center 

Request Servicing Times, where the optimized policy either matches or slightly exceeds the times 

achieved by the dynamic reconfiguration policy. This indicates a nuanced trade-off between the 

two approaches in handling specific service demands. To provide a clear comparison, Table 7.6 

showcases the results of implementing the IVCBS method with the Optimized Response Time 

Service Broker Policy, while Table 7.7 details the outcomes when applying the Dynamic 

Reconfiguration with Load Service Broker Policy. The experiments were carried out across 31 

Amazon data centers spanning 6 geographic regions. To capture data accurately during both peak 

and off-peak periods, 11 scenarios were implemented across 11 EC2 levels based on hourly 
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intervals. Appendix 7 (Figure 3), Presents the results of the IVCBS response time by region 

under the Optimize Response Time policy. The study explores the implementation of IVCBS 

with two distinct Service Broker Policies: The Optimized Response Time SBP and the Dynamic 

Reconfiguration with LB approach. It assesses regional average response times for ten user bases, 

emphasizing the effectiveness of IVCBS's Optimized Response Time Policy. This policy ensures 

even distribution of user requests across AWS data centers globally, irrespective of geographic 

proximity, consistently achieving reduced response times compared to the Dynamic 

Reconfiguration Policy. Appendix 7 (Figure 4) details the outcomes of the Dynamic 

Reconfiguration Policy, which directs user requests to data centers located in the same 

geographic region as the users, aiming to minimize latency under the IVCBS framework. Despite 

the intuitive logic behind this approach, response times were generally higher than those achieved 

by the Optimized Response Time Policy, highlighting a key area where the latter excels. The 

Average Data Center Request Servicing Time significantly influences energy consumption 

within cloud computing environments. Extended servicing times often reflect inefficient 

utilization of computing resources like processors and memory, which in turn can increase the 

energy load of operations. This inefficiency not only affects the Power Usage Effectiveness 

(PUE) of data centers but also demands more extensive cooling solutions, a major contributor to 

energy consumption in these facilities. Additionally, the need to scale up resources to reduce 

servicing times can lead to over-provisioning, further elevating overall energy usage. Enhancing 

the efficiency of request servicing times not only promotes more responsive cloud services but 

also helps in cutting down energy costs, thus supporting the broader goal of making cloud 

computing more energy-efficient and eco-friendly [206] [207]. Our observations indicate that 

the (IVCBS), when implemented with an optimized response time policy, significantly 

outperforms the dynamic reconfiguration policy. This superiority is clearly demonstrated 

through the comparative analysis presented in Appendix 7 (Figures 5 and 6). These results 

illustrate the superior performance of the optimized response time policy in managing the 

Average Data Center Request Servicing Time, thereby enhancing energy efficiency. Earlier 

findings indicated that systems employing IVCBS with a dynamically reconfigured load-

balancing broker policy, as shown in Appendix 7 (Figure 7), exhibit different performance 

characteristics compared to those using IVCBS optimized specifically for response times. 

Appendix 7 (Figure 8) presents the routing strategy implemented under the optimized response 

time policy. This performance variance primarily arises from the dynamics introduced by the 

reconfiguration process itself. The dynamic reconfiguration strategy routes user requests to data 

centers within the same geographic area as the users, often leading to increased processing delays. 

This occurs as requests queue up, awaiting available VMs for reconfiguration. Additionally, in 

some regions, having only one data center acts as a bottleneck, exacerbating delays during peak 

demand periods.  In contrast, the optimized response time policy excels by delivering superior 

RTT and more efficient processing. Moreover, our analysis is grounded in Amazon's real-world 

distribution of data center locations globally, utilizing eight (VMs) in North America, one in 

South America, eight in Europe, ten in the Asia Pacific and Australia, and four in Africa and the 

Middle East.  This strategic distribution facilitates the IVCBS's ability to redirect user requests 

to data centers with appropriate VMs, optimized both for the characteristics of the user requests 

and for reduced processing times, energy consumption, and costs. For example, small user 



87 

 

 

 

requests, defined in our study as 3 MB, are routed to VMs like the M6g.medium, while larger 

requests of 3 GB are directed to more robust machines like the M6a.metal. 

Table 7.6 Implementing IVCBS with optimize response time policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM Cost 

($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2475,8 2373,38 83,29 $298,59 

M6g.Large 3853,10 3740,25 167,24 497,65 

M6g.Xlarge 14325,08 10798,69 334,48 1255,96 

M5.2XLarge 140667,03 137632,98 853,50 3483,46 

M5.4XLarge 1010570,86 1031103,10 1707,06 6963,47 

M6gd.8XLarge 2151917,72 1947568,70 3140,37 9966,88 

M6gd.12XLarge 3684599,83 3335444,58 4709,26 13114,84 

M6g.metal 38334990,80 38234416,58 5351,62 25236,98 

M5d.metal 79337433,27 79315311,43 12090,55 14482,63 

M6i.metal 93529270,35 93372293,67 13730,36 6863,40 

M6a.metal 94549552,26 94331238,90 17150,67 3320,20 

Table 7.7 Implementing IVCBS with Dynamic Reconfiguration Load Service Broker Policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 6353,58 6324,05 166,32 $298,59 

M6g.Large 55390,42 55364 667,5 497,65 

M6g.Xlarge 275390,88 270714,32 2666,54 1255,83 

M5.2XLarge 2556092 2556270,05 8502,06 3483,45 

M5.4XLarge 3252254,20 3255057,05 20401,48 6234,76 

M6gd.8XLarge 3915809,21 3921022,05 43758,17 8915,92 

M6gd.12XLarge 3573677,62 3584236,77 74944,34 11618,91 

M6g.metal 37016372,94 37016688,54 95138,79 25828,65 

M5d.metal 81818244,66 81883142,21 273382,89 14705,94 

     

M6i.metal 93919067,50 93689019,40 379237,75 6796,75 

M6a.metal 96334126,87 96128434,12 607000,72 3341,66 

7.4.2.2 Traditional methods 

This approach starkly contrasts with the intelligent methodology implemented by IVCBS. In both 

the Optimize Response Time - SBP and the Dynamic Reconfiguration with Load Balancing, user 

requests of varying sizes are randomly distributed across the 31 data centers without 

consideration for the specific type and specifications of the EC2 VMs. There is no structured 

allocation across all DC-VMs. DC-VMs process requests with diverse parameters that lack 
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uniformity and fail to align with the request volumes of each user group (UBs), as detailed in 

Appendix 7, Table 6. For instance, the high VM cost is expensive for users whose task 

requirements are minor, thus failing to meet their basic needs adequately. Additionally, resources 

like EC2-M6a.metal are allocated to execute small user requests that EC2-M6g.medium could 

more efficiently handle. The setup and configuration of DCs for both methodologies are 

facilitated by the CloudAnalyst simulation environment, outlined in Appendix 7 (Table 4). This 

environment allows for configuring AWS-31 DC metrics, which differ between the proposed 

and traditional methods. These metrics include VM cost, vCPUs count, storage, RAM, and BW. 

There are 11 scenarios in both methods, similar in setup but differing in the numerical 

configuration of metrics for each EC2 instance. Employing the optimized response time policy 

resulted in a higher average overall response time, average data center processing time, and total 

VM cost than our proposed IVCBS method. However, it was observed that the Total Data 

Transfer Cost was either less than or equal to that of the proposed IVCBS method. These findings 

are detailed in Table 7.8. When evaluating the results from applying the dynamic reconfiguration 

policy with traditional methods, as detailed in Table 7.9, it is noted that the overall response time 

is broader than that achieved by the proposed IVCBS method in specific EC2 allocations 

(M5.4xlarge, m6gd.8xlarge, m6gd.12xlarge, m6g. metal, and m5d. metal). However, in all 

scenarios concerning the Total Data Transfer Cost, the traditional methods demonstrate lower 

costs than the IVCBS approach. Additionally, Appendix 7 (Figure 9) displays the regional 

average response times for the 10 user bases, showcasing the performance of the traditional 

Optimized Response Time Policy. Meanwhile, Appendix 7 (Figure 10) visualizes the regional 

average response times under the dynamic reconfiguration with load policy. Both figures 

highlight that these traditional methods were less effective than the results of the proposed 

IVCBS method. Furthermore, Appendix 7 (Figure 12) illustrates the outcomes when the 

traditional method incorporates the Dynamic Reconfiguration Policy. By comparing these 

findings with those from the proposed IVCBS method, it is evident that the IVCBS generally 

provides better Data Center Request Servicing Times. This improvement significantly impacts 

energy efficiency in the computing environment, showcasing the advantages of the proposed 

method over conventional strategies. This enhances the IVCBS's effectiveness, demonstrating its 

potential to accommodate future growth in cloud systems while ensuring efficient and cost-

effective user request processing within the cloud computing environment. Simultaneously, 

Appendix 7 (Figure 11) displays the average Data Center Request Servicing Time results across 

the 31 data centers in our study, applied in 11 different scenarios using the traditional Optimized 

Response Time Policy.  

 Table 7. 8 Implementing traditional with optimize response time policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total 

VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2648,32 2544,20 5039,17 298,59 

M6g.Large 3979,79 3866,43 5039,17 497,65 

M6g.Xlarge 16565,20 16507,91 5039,17 995,31 
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M5.2XLarge 200877,44 206148,60 5039,17 3483,25 

M5.4XLarge 1012024,16 1045751,95 5039,17 6965,51 

M6gd.8XLarge 2784038,22 2523254,74 5039,17 9907,33 

M6gd.12XLarge 4246474,38 3977103,11 5039,17 13054,04 

M6g.metal 44420610,74 43609256,19 5039,17 17375,69 

M5d.metal 80927473,71 80639117,03 5039,17 7093,73 

M6i.metal 95412416,34 95769447,44 5039,17 3711,87 

M6a.metal 97606171,17 98736234,17 5039,17 1686,10 

 

Table 7.9 Implementing traditional with Dynamic reconfiguration policy. 

AWS-EC2 

Overall 

Response 

Time (ms) 

Data Center 

Processing 

(ms) 

Total VM 

Cost ($) 

Total 

Data 

Transfer 

Cost ($) 

M6g.medium 2950,74 2918.84 137867,12 298,59 

M6g.Large 4501,42 4481,36 137962,28 497,65 

M6g.Xlarge 49465,79 49405,39 137677,42 995,31 

M5.2XLarge 1275803,03 1276385,26 137762,59 3483,52 

M5.4XLarge 3599233,17 3600108,32 137634,08 6234,08 

M6gd.8XLarge 5282197,57 5322005,63 137742,44 8914,56 

M6gd.12XLarge 7432190,15 7473084,39 137624,85 11566,42 

M6g.metal 48005803,13 47769425,91 136059,33 14250,25 

M5d.metal 84937790,73 85306107,68 134039,80 5810,42 

M6i.metal 93010845,72 93028448,77 131046,97 3042,69 

M6a.metal 91124687,42 90537061,27 124762,54 1462,37 

 

7.5 Summary  

This research delves into crucial cloud computing aspects such as optimizing resource use during 

peak and off-peak periods, minimizing data processing and transfer times and costs and reducing 

the average response time from different geographical regions. A novel simulation was 

developed to improve cloud computing's response times by adjusting (VM) attributes to match 

user request sizes and evenly distributing workloads as per SLA standards. This approach 

considers the current and future workloads and the available resources on each AWS-EC2 

instance, aiming to distribute user request across VM uniformly to ensure balanced system 

utilization and avoid over- or underutilization. A significant part of the study introduces the 

(IVCBS). Which enhances the proximity routing policy for data center selection by considering 

both VM attributes and the size of user requests. This modification allows for more efficient 

handling of variable request sizes, optimizing network delay, VM, and data transfer costs, and 

selecting data centers with minimal delay while considering real-time BW, EC2 attribute 

diversity, and expected processing times. This refined approach improves upon traditional 

performance-optimized routing policies by including job size in its considerations, thereby 

achieving better response and processing times. The (IVCBS), evaluated using the Cloud Analyst 
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simulator, demonstrated notable improvements compared to existing policies. The adoption of a 

throttled LB policy could further enhance the system's effectiveness, highlighting its potential to 

support future growth in cloud systems while ensuring the efficient and cost-effective processing 

of user requests within the cloud computing environment. This approach can be expanded upon 

in the next contribution of this thesis. Specifically, incorporating job size and classifying the 

workload into performance-optimized routing policies lead to significant improvements in both 

response and processing times in cloud systems. This addition provides a critical layer of 

optimization that directly impacts key performance metrics, including response and processing 

times, which are integral to cloud system efficiency. Furthermore, the introduction of the throttled 

LB policy serves as a natural extension of the proposed approach, facilitating more efficient 

workload management and distribution, particularly during peak demand periods. 
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Chapter 8  A Broker-Driven Approach Integrating Fuzzy Logic for Optimizing Virtual 

Machine Allocation 

Chapter 8 introduces a broker-driven approach integrating fuzzy logic to optimize (VM) 

allocation in cloud environments. This method dynamically adjusts VM distribution based on 

incoming request packet sizes and CPU utilization. It utilizes Google's General-purpose 

machine family for Compute Engine - T2D standard machine types, configured with 

specifications including VCPU, RAM (GB), Storage (GB), BW (GBPS), and Price per hour 

($), as applied in this study. Employing fuzzy logic, this system intelligently assigns VMs to 

user requests within the user base, ensuring alignment with appropriate sizes and cost 

considerations for the allocated VMs. In contrast, the traditional method relies on random VM 

allocation, disregarding user request sizes and assigning available VMs arbitrarily to execute 

tasks. 

8.1 Advancements in Packet Size Optimizations Cloud Service Delivery 

In the realm of cloud computing, the efficient allocation of (VMs) is paramount for optimizing 

resource utilization and ensuring high performance. The rapid proliferation of cloud services 

has necessitated sophisticated strategies to manage the dynamic and heterogeneous nature of 

cloud workloads. Traditional methods, which often prioritize metrics such as CPU, memory, 

and storage capacities, frequently overlook the varying sizes of request packets. This oversight 

can lead to suboptimal resource usage and potential performance bottlenecks, thereby 

hindering the overall efficiency and responsiveness of cloud services [208][209]. The 

complexity of cloud environments requires innovative approaches to VM allocation that can 

adapt to fluctuating workloads and diverse user demands. Recent advancements in cloud 

resource management have emphasized the need for intelligent and adaptive systems capable 

of making real-time decisions based on workload characteristics [210][211]. In this field, one 

promising direction is dynamically optimizing resource distribution by analyzing the size and 

nature of incoming request packets [212][213], approach leverages a centralized broker to 

monitor, analyze, and direct network traffic to the appropriate VMs based on the size of the 

request packets. This method not only enhances VM efficiency but also reduces latency and 

improves overall system performance. By incorporating a fuzzy logic system that uses 

imprecise inputs to make informed decisions, the broker can dynamically adjust VM allocation 

better to match the real-time demands of the cloud environment [214][76]. The Cloud Analyst 

tool provides a robust platform for implementing and simulating broker driven VM allocation 

strategies. It allows for detailed modeling and analysis of cloud computing environments, 

facilitating the evaluation of various allocation methods under different scenarios. The Cloud 

Analyst tool integrates fuzzy logic [215], [216], and [217]. As discussed in the previous 

contribution, propose a novel approach to (VM) allocation that optimizes resource utilization, 

reduces latency, and enhances overall system performance. This research aims to advance the 

field of cloud resource management by addressing the limitations inherent in traditional VM 

allocation strategies. By focusing on the dynamic optimization of VM allocation based on 

request packet size and workload classification, the proposed broker-driven approach seeks to 

provide high-quality cloud services while ensuring efficient resource use. 



92 

 

 

 

8.2 Current Issues and Challenges 

Research on advanced VM allocation strategies aims to optimize resource utilization and 

performance in cloud computing, addressing the limitations of traditional strategies that often 

overlook the impact of varying request packet sizes. Sangaiah, Arun Kumar, et al. (2023) 

propose an intelligent dynamic resource allocation method that integrates TSK neural-fuzzy 

systems with ACO techniques to reduce energy consumption in cloud networks. This method, 

which uses real-time data, significantly enhances efficiency and performance in VM migration 

[218]. However, existing methods often fail to consider the varying sizes of request packets, 

which can significantly impact network performance. In contrast, broker-driven approaches 

enhance network performance by dynamically allocating (VMs) based on request packet sizes. 

This allows for real-time optimization of resource distribution and reduces latency, effectively 

addressing the limitations of traditional methods.[219] proposes a broker-based mechanism to 

connect CSPs with customers, analyzing task tendencies and assigning resources. This model 

uses multi-criteria decision-making to maximize profits, ensure customer satisfaction, and 

reduce energy consumption in cloud data centers. [220] highlights the increasing demand for 

cloud services, which necessitates a flexible and dynamic design for data center deployment. 

Traditional traffic engineering approaches are inadequate for efficiently utilizing IT and 

network resources. The study suggests two fuzzy logic controllers for efficient VM allocation. 

These controllers are based on the Mamdani and Sugeno inference processes. Preliminary 

simulation tests validate the effectiveness of the proposed approach. The Cloud Analyst tool 

simulates cloud computing environments, evaluates VM allocation strategies, and simulates 

broker-driven approaches. It is used in a study [221], which discusses the widespread adoption 

of cloud computing for web applications. The study uses virtualization concepts and resource 

allocation policies to manage resources in a cloud computing environment. They use a GUI 

tool called Cloud Analyst to simulate the cloud environment, focusing on energy consumption 

minimization and class diagram design. Furthermore, integrating advanced algorithms with 

broker-driven approaches has shown significant promise for optimizing VM allocation. [222] 

proposes DeepBS, a DRL-based scheduler, to address the inherent uncertainties in cloud broker 

VM scheduling due to on-demand IaaS VMs.  Their study demonstrates that DeepBS improves 

cost optimization by learning from experience and enhancing scheduling strategies in 

unpredictable environments, showcasing its potential in dynamic cloud computing. Several 

recent studies have further expanded on these concepts. For instance, [223] emphasizes the 

significance of mobile terminal cloud computing migration technology in addressing evolving 

computer and cloud computing demands. They highlight the necessity for efficient data access, 

storage, and minimal time delays. They also introduce ML-based VM migration optimization 

and dynamic resource allocation as key research directions in cloud computing. Similarly, 

[224] introduces a resource allocation model called IMARM, which uses an intelligent multi-

agent system and reinforcement learning. Combining multi-agent characteristics and Q-

learning, IMARM dynamically allocates resources based on changing consumer demands and 

optimizes VM placement. Experimental results indicate that IMARM outperforms other 

algorithms in energy consumption, fault tolerance, load balancing, and execution time.[225] 

reviews resource allocation and service provisioning in multi-agent cloud robotics. They 

provide a taxonomy of resource allocation strategies, covering resource pooling, computation 
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offloading, and task scheduling. The work discusses challenges such as heterogeneous energy 

consumption rates and data transmission delays and suggests future research directions to 

advance the field. The authors emphasize addressing research gaps and mitigating data 

transmission delays for efficient service provisioning. [226] notes that cloud computing has 

revolutionized resource management, but challenges remain due to scalability, heterogeneity, 

and dynamic environments. (AI) technology has emerged as a solution to improve efficiency. 

This work reviews AI techniques for resource management, including ML, reinforcement 

learning, predictive analytics, natural language processing, and genetic algorithms. It discusses 

AI-based strategies for efficient resource management, including automated resource 

provisioning, intelligent workload planning, predictive maintenance, and energy-efficient 

management. The work also discusses evaluation metrics, performance analysis techniques, 

ethical considerations, and future directions for AI integration. VM allocation research has also 

focused on energy efficiency. [227] explores energy-efficient resource allocation using a 

hybrid heuristic algorithm, showing substantial improvements in energy consumption. 

Finally,[228] reviews the state-of-the-art and research challenges in cloud computing, 

providing a comprehensive overview of current trends and future directions in VM allocation 

and resource management. 

8.3 Broker-Driven Methodology in Cloud Computing 

The proposed methodology for optimizing (VM) allocation in cloud computing environments 

leverages a broker-driven approach, enhanced with a fuzzy logic system, to dynamically 

optimize resource distribution based on the size of incoming request packets. This method is 

designed to improve VM efficiency, reduce latency, and enhance overall system performance. 

The following sections detail the key components of the methodology: broker design, fuzzy 

logic system, integration with the Cloud Analyst tool, and evaluation metrics. Table 8.1, shows 

the Workload Sizes alongside the specifications for the Google Cloud Platform's t2d-standard 

machine type, using data from the Google Cloud Compute Engine Pricing. The system 

leverages real-time data for smart VM allocation, demonstrating its adaptability by adjusting 

resource distribution in response to changes in network conditions and workload demands. 

Table 8.1 workload size machine series specifications. 

Workload Size Machine type 

Series 

VCPU RAM 

(GB) 

Storage 

(GB) 

BW 

(GBPS) 

Price per 

hour ($) 

Small (<1 GB) t2d-Standard-1 1 4 2 2 0.054427 

Medium (1-10 GB) t2d-Standard-2 2 8 10 4 0.108854 

Large (10-100 GB) t2d-Standard-4 4 16 16 8 0.217708 

Very Large (>100 

GB) 

t2d-Standard-8 8 32 32 10 0.435416 

Massive (Big Data 

Processing) 

t2d-Standard-

16 

16 64 100 14 0.870832 

8.3.1 Design and Architecture of the Broker System 

Design and Architecture of the Broker System, Integrating Traffic Monitoring, Data Analysis, 

and Traffic Routing. The proposed methodology utilizes the Optimized Response Time SBP 
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with a LB approach, facilitated by the Cloud Analyst simulator. The broker acts as a mediator 

that monitors and analyzes incoming request packets. Its primary functions include: 

● Traffic Monitoring: continuously monitoring network traffic to collect data on packet 

sizes and associated metrics. 

● Data Analysis: analyzing the collected data in real-time to identify patterns and trends in 

request packet sizes. 

● Traffic Routing: directing traffic to the appropriate VMs based on the analysis, ensuring 

optimal resource allocation [229][230]. 

The broker features advanced data analytics to manage the varied and dynamic cloud 

workloads effectively.  

8.3.2 Implementation of Fuzzy Logic  

The Fuzzy Logic system is integrated into the broker to handle the uncertainty and variability 

inherent in cloud environments [76][231]. The model's input parameters were crafted using the 

Fuzzy Logic Designer, adhering to the methodological framework introduced in Chapter 4. 

However, for this chapter, adjustments were made to the division of the universe of discourse 

to align with the specific primitives and structural prerequisites of the developed model. This 

chapter focuses on utilizing two primary inputs and single outputs, categorized as VM 

categories. Five defined triangular membership functions characterize each input. 

First input (Workload- Request Packet Size) 

Represented by the size of incoming request packets. 

Small: [0 0.9 5]; Medium: [1 10 50]; Large: [10 100 150]; V.Large: [100 150 200]; 

Massive: [150 200 250] 

i. Second input (CPU Utilization) 

Current utilization levels of the available VMs. 

Poor: [10 30 40]; Fair: [30 50 60]; High: [50 70 80]; V.High: [70 85 90]; Excellent: [85 

100 100] 

ii. Output (T2D standard machine types-Levels) 

Simple: [0 0.1 0.2]; Moderate: [0.2 0.3 0.4]; Good: [0.4 0.5 0.6]; V.Good: [0.6 0.7 0.8] 

High-Performance: [0.8 1 1] 

These functions allow the system to evaluate the inputs and produce a set of fuzzy rules, 

illustrated in Appendix 8 (Figure 1), that determine the optimal VM allocation strategy. The 

outputs of the Fuzzy Logic system include VM classes, which categorize VMs based on their 

suitability for handling the current workload and CPU utilization levels [232]. Table 8.2. 

Illustrated the fuzzy logic output – Decision making. 

Table 8.2 Rules – Decision making. 

CPU 

Utilization     

Poor Fair High V.High Excellent 

Request 

Packet 

Size 

Output (T2D standard machine types-Levels) 

Small Simple Simple Simple Moderate Moderate 
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Moderate Moderate Simple Moderate Moderate Good 

Large Moderate Moderate Good Good V. Good 

V.Large Good Good V. Good V. Good H.Perf. 

Massive V.Good V.Good H.Perf. H.Perf. H.Perf. 

8.3.3 Integration with Cloud Analyst Tool 

The Cloud Analyst tool is employed to simulate and evaluate the proposed broker-driven 

approach. This tool provides a robust platform for modelling cloud computing environments 

and testing various VM allocation strategies [233]. The integration process involves: 

8.3.3.1 Cloud Environment Modeling 

Configuring a simulated cloud environment in Cloud Analyst involves setting up data centers 

with single VMs and associated user bases. This setup is tested across five scenarios, each 

employing the proposed broker technique to assess performance and efficiency. The process is 

illustrated in Appendix 8 (Tables 1 and 2). 

8.3.3.2 Throttling Algorithm  

In cloud computing, throttling plays a pivotal role in managing system loads and sustaining 

service quality while also keeping operational costs in check. This process is vital for scaling 

computing resources efficiently. Through the application of diverse algorithms, throttling 

ensures that cloud services remain scalable, dependable, and fair. Specifically, it regulates the 

allocation of critical computing resources such as CPU, BW, and memory. This control helps 

prevent any single user or application from monopolizing resources, thereby avoiding system 

overloads and ensuring equitable performance across all users [234]. 

8.3.3.3 Broker Policy for Response Time  

In cloud environments typically involves strategically managing resource allocation to 

minimize latency. This policy ensures that the broker prioritizes tasks or requests that are 

critical for performance, dynamically adjusting resource distribution based on real-time 

demands. Doing so effectively reduces waiting times for resource-intensive operations, 

ensuring that all processes are executed as swiftly as possible, thus enhancing overall system 

efficiency and user satisfaction [200]. 

● Implementing Broker Logic: embedding the broker’s traffic monitoring, analysis, and 

direction functionalities into the Cloud Analyst simulation. 

● Incorporating Fuzzy Logic: integrating the Fuzzy Logic system with the broker within 

Cloud Analyst to dynamically adjust VM allocation based on real-time data. 

8.4 Simulation and Evaluation of Results and Discussion 

The proposed methodology was rigorously evaluated through extensive simulations conducted 

using the Cloud Analyst tool [235].  In the proposed methodology, five distinct scenarios were 

executed. Each scenario involved deploying ten distinct user bases, consistent with the 

configuration described previously in this study. In the initial scenario, the user's request was 

within this amount. (500,000,000) Bytes were processed using t2d-Standard-1. Moving to the 
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second scenario, requests within this amount of a workload of 1,000,000,000 bytes were 

allocated to t2d-Standard-2. The third scenario handled requests within the workload of 

10,000,000,000 bytes assigned to t2d-Standard-4. Subsequently, requests amounting to 

150,000,000,000 bytes in the fourth scenario were managed using t2d-Standard-8. Finally, in 

the fifth scenario, where requests amounted to 200,000,000,000 bytes, t2d-Standard-16 was 

allocated for execution. Similar parameters were utilized when implementing the traditional 

method scenarios, as in the proposed method concerning user base logins to the computing 

environment, defined by Peak hours Start-End and Avg. Peak Users On-Off. However, the 

traditional approach diverges from the proposed method in how it distributes and processes 

user requests and workloads, as detailed in Table 8.3. 

Table 8.3 Basics of applying the traditional method. 

Scenario 

number 

User 

Bases 

 

Request Packet 

Size (Byte) 

Machine 

type 

Series 

Price per 

hour($) 

 

Load 

balance 

Algorithm 

Broker 

policy 

1 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

1 

0.054427 
Throttling 

algorithm. 

Optimize 

response 

time. 

2 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

1 

0.108854 
Throttling 

algorithm. 

Optimize 

response 

time. 

3 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

4 

0.217708 
Throttling 

algorithm. 

Optimize 

response 

time. 

4 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

8 

0.435416 
Throttling 

algorithm. 

Optimize 

response 

time. 

5 
[UB1 

UB10] 

[500,000,000 

200,000,000,000] 

t2d-

Standard-

16 

0.870832 
Throttling 

algorithm. 

Optimize 

response 

time. 

 

A variety of workload scenarios were implemented, each featuring distinct request packet sizes 

and VM resource demands. These simulations were designed to assess the robustness, 

adaptability, and practical viability of the broker-driven approach, particularly in comparison 

to traditional VM allocation strategies. The experimental setup modeled a realistic cloud 

environment where the dynamic nature of cloud workloads was replicated to test how 

effectively the system responds under varying operating conditions. The broker-driven system 

incorporates a fuzzy logic mechanism that utilizes workload packet size and CPU utilization 

as key input parameters to dynamically allocate (VMs) based on their classification across five 

levels of workload intensity. Appendix 8 (Figure 2) visually demonstrates the simulation 

execution process, while Appendix 8 (Figure 3) illustrates the decision outcomes produced by 

the fuzzy logic system. Quantitative performance metrics were collected, including overall 

response time, data center processing time, request serving time, total VM costs, and total data 

transfer costs. The comparison between the traditional VM allocation approach (summarized 

in Table 8.4) and the proposed method (detailed in Table 8.5) clearly demonstrates significant 
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improvements across all critical metrics. Specifically, the proposed broker-driven system 

reduced response time by up to 68%, decreased processing and serving times by an average of 

20% and achieved substantial reductions in cost—most notably in data transfer and VM 

provisioning. The novelty of this research lies in the introduction of a broker-driven VM 

allocation model that uniquely integrates fuzzy logic with packet size classification—an aspect 

widely neglected in conventional allocation approaches. Traditional methods largely 

emphasize Resource scalability capabilities, yet they often fail to account for the heterogeneity 

and variability of incoming packet sizes, which are essential determinants of workload 

behavior. By incorporating packet size as a classification factor alongside real-time CPU 

utilization, the proposed approach ensures a more granular and intelligent allocation of cloud 

resources. Moreover, the integration of fuzzy logic contributes significant adaptability to the 

decision-making process. The fuzzy inference engine enables the system to handle uncertainty 

and imprecision, aligning resource allocation with dynamic demand patterns more effectively 

than static rule-based methods. This enables the system not only to allocate resources optimally 

but also to proactively prevent bottlenecks and reduce energy consumption through more 

efficient VM utilization. The methodological innovation also includes a well-defined 

classification scheme that translates request sizes and CPU usage into actionable VM 

categories. This classification is mapped through triangular membership functions that support 

interpretability and computational efficiency—key features for scalable cloud infrastructure. 

The proposed approach has substantial practical implications. By dynamically aligning VM 

allocations with workload characteristics, cloud providers can achieve better energy efficiency, 

improve system responsiveness, and reduce operational costs. The ability to manage workloads 

based on packet size and CPU load allows for a more equitable and efficient distribution of 

cloud resources, enhancing the performance and reliability of services across heterogeneous 

and high-demand environments. This study contributes to the advancement of intelligent cloud 

resource management by offering a scalable, cost-effective, and energy-aware alternative to 

traditional VM allocation. The results validate the theoretical principles underpinning this 

model and position it as a promising solution for next-generation cloud systems where 

adaptability and performance optimization are paramount. 

Table 8.4 Summary of the results of the traditional method. 

Scenario  Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving 

times 

Avg(ms) 

Total data 

transfer cost 

($) 

1 571309,86 58,06 58,06 33959999,08 

2 548272,30 59,31 59,31 30557098,39 

3 565510,88 60,39 60,386 33791313,17 

4 558790,62 58,03 58,026 33726768,49 

5 574401,10 59,35 59,348 32435417,18 
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Table 8.5 Summary of the results of the proposed Method. 

Scenario 

Number 

Overall 

response 

time 

Avg(ms) 

Datacenter 

processing 

time 

Avg(ms) 

Datacenter 

request 

serving times 

Avg(ms) 

Total data 

transfer 

cost 

($) 

1 333748,21 56,41 56,141 4186420,44 

2 278151,12 49,88 49,875 6354904,17 

3 183111 44,30 44,297 9916305,54 

4 0 39,32 39,323 4909515,38 

5 0 40,26 40,264 4531860,35 

 

8.5 Summary  

This chapter introduced and validated a broker-driven approach enhanced by fuzzy logic for 

intelligent (VM) allocation in cloud computing. While the simulation results confirmed 

significant improvements in response times, resource utilization, and cost efficiency compared 

to traditional methods, the broader implications of this work extend beyond the numerical 

gains. The proposed methodology demonstrates how integrating fuzzy logic with packet size 

classification enables cloud systems to respond dynamically to heterogeneous workloads, 

addressing a critical gap in conventional resource allocation strategies. This adaptability is 

essential for future cloud environments that must support diverse and evolving service demands 

while maintaining energy efficiency and cost-effectiveness. Looking ahead, this research opens 

avenues for developing cloud brokerage systems capable of real-time service selection based 

on user requirements, network dynamics, and workload characteristics. Future contributions 

will focus on extending this approach to scenarios involving user mobility, service migration, 

and the complex interplay between performance and cost in dynamic cloud ecosystems. These 

developments aim to transform cloud resource management into a more intelligent, context-

aware process, aligning technical innovation with practical deployment needs.  
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Chapter 9 Reliable and Cost-Effective Fuzzy-based Cloud Broker 

Due to the rapid increase in CSPs, users find it challenging to select a cloud service that suits 

their needs and budget. Thus, having an intermediate entity between the two in cloud broking 

services is more crucial than ever. Chapter 9 Proposes a cloud broker that uses fuzzy logic to 

rank service instances and users, aiming to balance user needs and service provider interests. 

It investigates the impact of user mobility on service quality by analyzing scenarios involving 

stationary and mobile users. The study also examines the impact of service migration on 

performance and cost, highlighting the benefits of dynamic resource management. The 

proposed broker ensures reliable service delivery with stable performance and cost-efficient 

resource usage, outperforming traditional methods in mobility and service migration scenarios. 

9.1 Cloud Brokerage Systems and Cost Optimization Using Fuzzy Logic 

Remote processing has become increasingly popular in recent years with the rise of cloud 

computing [236], MEC [237], and fog computing platforms [238]. These paradigms are 

considered the main enablers for Ultra-Reliable Low Latency Communications (URLLC), 

Enhanced Mobile Broadband (eMBB), and Massive Machine-Type Communications (mMTC) 

services [239] that are promised for beyond 5G networks. These kinds of services are more 

strict in Key Performance Indicators (KPIs), which can only be achieved by overcoming the 

limitations of users’ equipment resources and exploiting the unlimited cloud resources via 

remote processing. Notwithstanding the indisputable advantages of these platforms, they also 

pose novel challenges for (CSPs) and their customers. For example, the user who needs a 

certain service will have difficulty choosing from the abundance of alternatives offered by the 

(CSPs). On the other hand, CSP may also have difficulty promoting their services and 

efficiently allocating their resources to accommodate more users. Therefore, mentioned in the 

previous chapters, focusing on representing a third party is usually recommended in the form 

of a cloud broker, which is an entity that acts as middleware between potential customers and 

CSP. The presence of such an entity can help not only offer efficient and affordable services 

for users but also help with resource management and LB cross-cloud or between different 

instances of the service in the same cloud. Driven by the importance of having a broking service 

that takes into account the customers' needs and the CSP's interests, present this study with 

several contributions in mind.  

9.2 Review of Existing Cloud Brokers and Analysis of Intelligent Cloud Brokerage 

Cloud brokerage services have been widely discussed in academia, where numerous studies 

have been conducted in search of the optimal broker. Focus-wise, some studies were customer-

centric, where the interest of the clients was considered the priority in terms of focusing on 

improving the Quality of Service (QoS) provided for the users. Examples of these studies are 

[240–244]. Other approaches were more focused on the broker profit [245–247]. This profit 

can mainly be acquired by wisely managing the cloud’s resources or by exploiting the 

difference in prices between on-demand and reserved service instances [247]. Some studies, 

however, tried to find a balance between the broker’s and user’s interests [248, 249]. The 

brokerage problem is viewed in some research studies as a resource provisioning and 

management problem, which can be summed up as deciding which resources should be set 
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aside for the user and then distributing the load among the resources that the service provider 

has available [250]. Thus, numerous studies focused on LB and efficient resource allocation 

such as [251–254], Methodology-wise, many techniques were employed for the brokerage 

service, such as game theory [255], reinforcement learning [256, 222], weighted algorithm 

[257, 258], ontology [259], Analytic Hierarchy Process (AHP) in combination with Technique 

for Order Preference by Similarity to Ideal Solution (TOPSIS) [260] and fuzzy logic [261–

263]. The main issue in game theory approaches is that the negotiating process becomes 

lengthy when the number of SLA parameters rises [264]. Similarly, the primary disadvantage 

of reinforcement learning approaches is their lengthy execution time to reach a stable model, 

which leads to a long learning phase in which the broker is not functioning. On the other hand, 

weighted algorithms need predefined weights and criteria to select the service efficiently. 

Setting a fixed value for these weights for all users may be unsatisfactory for some users. 

Meanwhile, defining values that correspond to each user takes a lot of effort and time. In AHP 

combined with TOPSIS approaches, the broker employs a multi-criteria decision-making 

technique to choose a suitable cloud provider after evaluating each provider’s quality and 

ranking each one according to the customer’s needs. Therefore, these approaches can be 

confusing for nonprofessional users since they are forced to specifically define their priorities 

and preferences. [250, 264]. Employing fuzzy logic systems can yield good results. However, 

two problems will surface when many input parameters are taken into account. The first issue 

is when the number of customers grows and online service selection is required, collecting this 

data can become more challenging if not impossible. Additionally, some service providers 

might be reluctant to divulge some parameters since doing so could reveal security flaws and 

compromise the service provider’s integrity. The second problem is that as the number of rules 

increases dramatically with the increase of input parameters, setting up the inference engine 

will become more difficult and time-consuming. These problems can be identified in studies 

such as the fuzzy-based brokers proposed in [261–263]. In our approach, combine two different 

techniques for our cloud brokerage system. They are fuzzy logic and a modified version of 

TOPSIS.  In the study, various data centers from AWS, Google Cloud (GC), and Azure Cloud 

Services (AZURE) are distributed across different geographical regions. These (CSPs) offer a 

range of VM types, including general-purpose, compute-optimized, memory-optimized, and 

accelerator-optimized instances. Our approach uses fuzzy logic to classify and rank the service 

instance and the user, trying to satisfy users’ and service providers’ interests and needs. 

Moreover, we only consider two easily acquired parameters for each fuzzy system, reducing 

the rules required in the engine and making the broker incorporation in the cloud environment 

more feasible. We associate the user with an appropriate service instance based on this ranking. 

Further details on our proposed brokerage system design are elaborated in the subsequent 

section. 

9.3 System Design 

The proposed system considers the user requirements as well as the service specifications 

offered by different cloud providers. The proposed system architecture is illustrated in Figure 

9.1, made an effort to build the system so that both novice and expert users could utilize the 
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broker with ease since the user interface is thought to be one of the most common problems 

with commercial brokers [265].  

 

 

Figure 9.1 Proposed System Architecture. 

i. Clarification and Detailed Explanation of the Matching Process: 

In the proposed fuzzy-based cloud brokerage system, the "Matching" phase constitutes 

a critical step in the overall service allocation process. The matching procedure occurs 

after two crucial prior stages, which are clearly described: 

1. Service Discovery: Users specify their service requirements (type, budget, desired 

quality), and the broker identifies relevant cloud service instances from available 

(CSPs). 

2. Ranking (Classification): 

• A fuzzy logic system is employed to independently classify (VMs) and users into 

distinct ranks: Gold, Silver, and Bronze. 

• VM ranking considers CPU availability and cost; user ranking considers task size 

and budget constraints. 

Once these classifications are established, the "Matching" process explicitly associates users 

with suitable VM service instances according to their respective ranks (Gold, Silver, Bronze). 

This step ensures alignment between user expectations and VM capabilities. 

ii. Detailed Explanation and Steps of the Matching Phase: 

The matching operation specifically follows these structured steps: 

Step 1: Rank-Based Matching: The system pairs users and VM instances according to 

their corresponding ranks: 

o Gold-ranked users are matched to Gold-ranked VM instances to ensure high-

quality service and resource availability. 

o   Silver-ranked users are matched to Silver-ranked VM instances, providing a 

balanced trade-off between performance and affordability. 

o Bronze-ranked users are matched to Bronze-ranked VM instances, satisfying 

basic service requirements economically. 

Step 2: Final Allocation: Once the matching pairs are established, the broker 

executes resource allocation, ensuring optimal performance, service quality, and 

cost-effectiveness for users and efficient resource utilization for providers. 
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iii. Reasoning for the Matching Process: The rank-based matching approach achieves 

several key objectives: 

o Optimal Compatibility: It ensures users receive appropriate resource types 

matching their service quality and budget constraints. 

o Balanced Load Distribution: Aligning user demands and VM capabilities helps 

maintain balanced resource utilization. 

o Enhanced User Satisfaction: The systematic matching ensures user needs are 

accurately met, enhancing overall satisfaction. 

o Efficiency in Decision Making: Utilizing predefined rankings simplifies the 

decision-making process, enabling efficient real-time service allocation. 

9.3.1 The broker’s Fuzzy-logic systems 

In the proposed cloud broker, we used two fuzzy logic systems. One is designated to rank the 

service, and the other is to rank the users. These two systems are detailed in the following 

subsections. 

9.3.1.1 VM ranking Fuzzy logic system 

The Fuzzy Logic System (FLS) system used for VM ranking is illustrated in phase 2 in Figure 

9.1. The input parameters for this system are the percentage of available Central Processing 

Unit (CPU) on the VM, and the cost of the VM. These parameters go into the fuzzification 

phase to be mapped into the linguistic values (low, medium, and high) according to the 

membership functions illustrated in Figure 9.2 and Figure 9.3, used trapezoidal and triangular 

fuzzy membership functions to map the crisp input variables into multivalued logic. After the 

fuzzification phase, these resulting linguistic values will go through the inference engine. To 

assess the fuzzy output variable indicating the VM ranking, the engine uses simple IF-THEN 

rules with a condition and conclusion. For instance: 

IF VM′s available CPU capacity is (Low)AND the VM cost per month is (Low) Then the VM 

has a (Silver) ranking. 

The VM will be classified as Gold, Silver, or Bronze according to its specification, Figure 9.4, 

illustrate the VM’s ranking membership function. This rank is subjective and a typical user’s 

assessment served as the basis for this classification. The set of fuzzy rules used in the inference 

engine is depicted in Table 9.1. The resulting ranking is then converted to a crisp value using 

the COG technique. 
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Figure 9.2 The VM’s availability membership function. 

 

Figure 9.3 The VM’s Cost membership function. 

Table 9.1 VM ranking FLS. 

          Available CPU 

 

Cost per month  

 

Low Medium High 

Service classification 

 

Low Silver Gold Gold 

Medium Bronze Gold Gold 

High Bronze Silver Silver 

 

 

Figure 9.4 VM’s ranking membership function. 
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9.3.1.2 User ranking Fuzzy logic system 

These parameters include the client's budget and the task length, measured in the number of 

instructions required. These fuzzy logic inputs are translated into Low, Medium, and High 

linguistic values. Triangular and trapezoidal membership functions were employed to convert 

the user budget and task length into fuzzy sets, depicted in Figure 9.5 and Figure 9.6, 

respectively. Based on their requirements and financial constraints, the user type will be 

classified as Gold, Silver, or Bronze.This rating is based on our estimation of what the service 

provider would assign to that user. To compute the user ranking, which is the output parameter, 

an IF-Then inference engine is used, with a set of rules summarized in Table 9.2. In the 

defuzzification stage, the linguistic value representing the user’s rank and derived from the 

inference engine is then mapped into a crisp value using the COG method for defuzzification. 

The membership function used for the user rank is depicted in figure 9.7. 

 

 

Figure 9.5 Task size membership function. 

Table 9.2 User ranking FLS. 

          Task size 

 

Cost per month  

 

Low Medium High 

Service classification 

 

Low Silver Bronze Bronze 

Medium Gold Silver Bronze 

High Gold Gold Gold 

 

 

Figure 9.6 User budget membership function. 
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Figure 9.7 User rank membership function. 

9.4 Scenario Description 

Used Edge CloudSim [266–269]. Simulator to implement the proposed cloud broker on (MEC) 

paradigm, made this choice as the services running on the virtualized edge are more sensitive 

to delay and the broker selection of the appropriate service instance will have a more significant 

impact in this kind of setting.  In the scenario, have different data centers belonging to AWS, 

Google Cloud (GC), and Azure Cloud Services (AZURE) and placed in different regions, 

namely: United State of America (USA), western Europe and Southeast Asia and the data 

centers located in different regions are connected via (WAN) and the datacenters located in the 

same region are connected by MAN network. Giant CSP have different types of VM, such as 

general purpose, compute-optimized, memory-optimized, and accelerator-optimized instances. 

Thus, tried to make the scenario more realistic by choosing one or more instances from these 

different types. The chosen instances are detailed in Table 9.3. All the values in this table are 

taken from the official websites of the three cloud providers. Four types of delay-intolerant 

services are used in the simulation setup, with them specifications in terms of the generated 

traffic characteristics mentioned in Table 9.4. The delay sensitivity is a value between 0 to 1 

where the value 1 indicates the application with the highest delay sensitivity. Each user requests 

a specific type of service identifying his budget and his needs will be determined by his traffic 

profile and more specifically his average tasks’ length measured in millions of instructions 

(MI). This value is usually estimated based on the application he requested. Based on these 

parameters, the cloud broker will identify the most appropriate service instance in the region 

where the user is currently located. The user communicates with the datacenter where the 

service is placed via a wireless local area network. This network is modeled as M/M/1 Queue. 

EdgeCloudSim includes realistic network measurements. For modeling WLAN delay, it 

examines the performance of an 802.11-family access point, while WAN delays are calculated 

using measurements from a fiber internet connection in Istanbul. The results of the empirical 

network delay analysis are detailed in [266]. 

Table 9.3 Official Application Specifications from the Three Cloud Providers' Websites. 

Name CSP Type Number of 

vcpu 

Memory 

T2A GC General 

purpose 

2 4 
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E2 GC Cost 

optimized 

2 1 

M1 GC Memory 

optimized 

40 961 

C2 GC Compute 

optimized 

4 6 

A2 GC Accelerator 

optimized 

12 85 

t2. small AWS General 

purpose 

1 2 

i4i.large AWS Storage 

optimized 

2 16 

r7a.medium AWS Memory 

optimized 

1 8 

r7a.large AWS Memory 

optimized 

2 16 

c7a.medium AWS Compute 

optimized 

1 2 

c7a.large AWS Compute 

optimized 

2 4 

p3.2xlarge AWS Accelerator 

optimized 

8 61 

hpc7g.4xlarge AWS HPC 

optimized 

16 128 

B2ls v2 AZURE General 

purpose 

2 4 

F2s v2 AZURE Compute 

optimized 

2 4 

E2as v5 AZURE Memory 

optimized 

2 16 

L8as v3 AZURE Storage 

optimized 

8 64 

NC6 AZURE GPU 

optimized 

6 56 

H8 AZURE High 

performance 

compute 

8 56 

 

Table 9.4 Types and Specifications of Delay-Intolerant Services in the Simulation Setup. 

Type 

 

Average of 

upload data 

 

Average of 

download data 

 

Task Length Delay 

sensitivity 

 

Health App 1500 25 9000 0.7 

Augmented 

Reality 

20 1250 3000 0.9 

Heavy 

Computing 

2500 200 45000 0.1 

Infotainment 25 1000 15000 0.3 
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9.5 Results analysis 

Compare the proposed system with two different approaches. They are, a random approach 

where the user randomly chooses the service instance, and the second approach is when the 

broker chooses the service instance with the highest capability in terms of processing power 

available to associate the user with, compare these approaches focusing on two main metrics 

which are the service delay experienced by the users and the cost the user needs to pay per 

month, make this comparison in four distinct scenarios. They are: 

• First scenario: the users are motionless. Upon selecting a service instance from a 

certain CSP, the user establishes and maintains the association until the simulation time 

expires. This represents the policy of reserved VM. 

• Second scenario: the users are mobile and move around following a nomadic mobility, 

spending a specific duration on one site before moving on to the next. In this scenario, 

the service instance stays in the original data center with which it was associated and is 

not migrated. The payment policy here is also a reserved instance policy. 

• The third scenario involves clients moving around following a nomadic mobility model. 

In this scenario, test a cross-cloud migration, where the broker seamlessly migrates the 

service across multiple cloud providers ensuring the satisfaction of SLA requirements 

defined by the user. The payment policy in this scenario is pay-as-you-go policy 

(PAYG). Where the user rents resources on-demand and only pays for his usage. 

For the first scenario, compare the proposed approach with two approaches. They are the Least 

Loaded (LL), in which the VM that is least loaded and within the budget of the user is chosen 

as a service instance. The second algorithm is a random selection, where the service instance 

is chosen randomly. The simulation is performed for five runs and the average results for 

service delay and the client’s budget savings are illustrated in figures Figure 9.8, and Figure 

9.9. As shown in these figures, by employing our fuzzy logic approach, were able to achieve 

better results regarding the average service delay. The increase in the delay in accordance to 

the increase of the number of clients is normal due to the limited number of service instances 

in the scenario. 

 

Figure 9.8 Average service delay for immobile users. 
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Figure 9.9 The average of monthly client payment. 

However, noted that our approach exhibits a more stable performance than both random and 

least-loaded approaches, where the variation in the delay is unnoticeable compared to the other 

two. This is a very important aspect from the service provider’s perspective as he is obligated 

to respect certain QoS limits defined in the SLA. Thus, employing our approach can guarantee 

more stable performance and prevent the violation of the SLA terms. The main reason why the 

LL approach failed to perform well is because service migration and dynamic task offloading 

are not supported in this scenario. Since each user is maintaining the association with the same 

service instance for the whole time, the effectiveness of choosing the least loaded instance is 

diminished. When comparing the proposed approach with the other two approaches regarding 

the average cost each customer has to pay, noticed LL and random approaches forced the clients 

to pay more as the number of clients increased. This is basically due to their imbalanced 

policies where the cost was not considered, and more users were associated with more 

expensive service instances. On the other hand, our approach surpassed both approaches and 

the customer were still able to get the service with the same quality while maintaining the same 

payment. 

9.5.1 The effects of Client’s mobility 

In the second scenario, we tested the three approaches on mobile clients. The clients follow a 

nomadic mobility model, mimicking a normal person’s daily routine, where he goes to certain 

points of interest such as the workplace, university, or home, spends some time there, and then 

moves to other places. In this scenario, once the user is associated with a service instance, he 

maintains his association regardless of his current location. This scenario reflects the 

operational policy of certain cloud brokers that do not support service migration, meaning that 

once a user is associated with a particular service instance in a specific data center, the 

connection remains fixed regardless of the user’s subsequent movements. As a result, the 

service continues to be delivered from the original data center even if the user relocates to 

another geographical region, potentially increasing communication delays and impacting 

overall service quality. The results are illustrated in Fig. 10. All three approaches were 

significantly affected by the client’s mobility as shown in Fig. 10. This is mainly because the 

communication delay started to play a significant part in the overall delay as none of the three 

approaches was able to mitigate the impact of the user’s getting further away from the service 
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instance. Our approach was not able to get notably better results in terms of the average service 

delay. However, it was able to maintain a certain stability in the performance, with less delay 

variation than both random and LL approaches. This is quite important for preventing SLA 

breaches. 

 

 

Figure 9.10 Average service delay for mobile users. 

9.5.2 Effects of Service Migration on SLA Compliance 

In the third scenario, examined the implementation of the three brokerage approaches on 

mobile users with the support of service migration. As the service instance associated with the 

user is changing in accordance with the user’s location, considered a pay-as-you-go pricing 

policy in each location, where the minimum reservation time is one hour. The resulting average 

service delay experienced by the clients as well as the average cost per user are illustrated in 

Figure 9.11 and Figure 9.12. Our approach and LL selection-based broker gave a very close 

performance in terms of service delay experienced by clients. The main advantage of our 

approach was in having the clients maintain the same quality of service while paying the same 

amount regardless of the number of users demanding the same service. 

9.6 Real-World Implementation and Practical Implications 

Estimate that our model can be integrated into the cloud computing environment easily. Using 

fuzzy logic for ranking can facilitate the use of this broker for unprofessional users. 

Nevertheless, several issues can arise. First, observed a significant amount of computation 

when the number of users increased. This resulted in a longer simulation time than other 

approaches such as the random and the LL service selection. When used in practice, this may 

have an impact on scalability. However, when sufficient resources are allotted for the broker 

to carry out fuzzy-logic-based ranking, significant computation time can be avoided. 
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Figure 9.11 Average service delay with mobile users and service migration. 

 

 

Figure 9.12 Average monthly payment in case of service migration. 

To mitigate the computational requirements of the proposed system, we have developed several 

strategies aimed at improving efficiency. Users can be clustered and ranked as a single cluster 

to assist cut down on the amount of processing required for ranking. One of our model’s 

primary input parameters for ranking a user is the average task size of the application he 

utilizes. When multiple people use the same application, both group-based and flow-based 

ranking are possible. For example, a group of video gamers at the same location or a group of 

employees in a firm using the same application can be ranked as a cluster using the aggregated 

flow specifications. Subsequently, a single service instance can be assigned to this group 

instead of allocating an instance for each user. Computation can also be minimized by 

employing user profiling and assigning a fixed rank for some clients based on the sensitivity 

of their services. For instance, users of health applications can be assigned the highest rank 

(Gold) due to the sensitivity and importance of the data transmitted. 
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9.7 Summary  

In this contribution, introduce a novel fuzzy logic-based broker that considers both the interests 

of the client and the service provider, analyze various scenarios, demonstrating the feasibility 

of our approach. For future work, aim to enhance the design of the proposed broker by 

incorporating additional parameters into the decision-making process, such as the delay 

sensitivity of applications and the client's mobility profile. Our observations revealed that 

network delay plays a significant role, especially in the absence of service migration support 

for mobile users. To address this, plan to implement a new mechanism within the broker to 

mitigate the impact of mobility on service quality. As discussed in previous chapters, utilizing 

a third-party intermediary, typically in the form of a cloud broker, is widely recommended. A 

cloud broker acts as middleware between potential customers and (CSPs). The inclusion of 

such an entity facilitates the provision of efficient and cost-effective services for users while 

also assisting with resource management and LB across multiple clouds or between instances 

within the same cloud. Cloud broking is a rapidly growing field driven by the increasing 

adoption of cloud computing. The cloud services broking (CSB) market is expected to continue 

its expansion in the coming years. CSBs are instrumental in managing multi-cloud and hybrid 

cloud environments, optimizing cloud expenditures, and integrating advanced technologies 

such as (AI), big data, and the Internet of Things (IoT). Future advancements in cloud broking 

are expected to focus on deeper AI integration, enhanced security measures, expansion into 

emerging markets, and greater automation. This positions cloud broking as a dynamic and 

promising area of growth and innovation in the future. 
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Chapter 10 Theses  

Cloud computing has become a cornerstone of contemporary IT infrastructure, delivering 

scalable and flexible access to computing resources through (SLAs) that define performance 

guarantees. Despite its advantages, several challenges persist. Compliance issues, vendor lock-

in, and variability in Quality of Service (QoS) hinder efficient decision-making and operational 

management. Moreover, the rapid expansion of cloud data centers has escalated concerns about 

energy consumption, emphasizing the need for sustainable and energy-efficient management 

strategies. Geographical distances between data centers contribute to fluctuations in RTT and 

service reliability, compounded by the fact that (CSPs) often provide predominantly qualitative 

rather than quantitative network performance data. Efficient management of cloud-to-user 

latency and network optimization is, therefore, critical for ensuring global service reliability. 

Furthermore, distributed transaction management continues to face the ongoing challenge of 

maintaining both reliability and consistency in the face of hardware failures, network 

disruptions, and variable latency. To address these challenges, intelligent and adaptive cloud 

service management techniques are essential. Advanced resource allocation, SLA 

optimization, and predictive modeling play crucial roles in enhancing performance, reducing 

latency, and ensuring scalable, cost-effective, and sustainable cloud services aligned with 

evolving IT demands. In this context, my doctoral research has contributed three significant 

systems and methodologies that advance the field of cloud computing through innovative 

applications of fuzzy logic and decision-making models: 

Thesis I: Intelligent SLA Guarantee Model for Cloud Computing 

I have developed an Intelligent SLA Guarantee Model for Cloud Computing, employing 

fuzzy logic for the estimation of RTT and the classification of  (SLAs). This model 

transforms complex technical measurements into linguistically interpretable terms, enabling 

clearer SLA assessments and more user-friendly decision-making processes. 

The results of this research have been published in the following conference proceedings: 

• Sekhi, I. (2023). Estimating Cloud Computing RTT Using Fuzzy Logic for Inter-

Region Distances. International Journal on Cybernetics & Informatics (IJCI), 12(12), 

95. 

• Sekhi, I. (2023). Selecting the SLA Guarantee by Evaluating the QoS Availability. 

Multidiszciplináris Tudományok: A Miskolci Egyetem Közleménye, 13(4), 80–102. 

https://doi.org/10.35925/j.multi.2023.4.8 

Thesis II: Intelligent Validation Cloud Broker System (IVCBS) 

I have created the (IVCBS), a fuzzy logic-based framework designed to optimize (VM) 

allocation and improve cloud computing efficiency. The system dynamically adjusts VM 

distribution based on the analysis of incoming request packet sizes, enhancing resource 

utilization, reducing latency, and maintaining consistent service quality. 

The outcomes of this research have been documented in the following journals: 

• Sekhi, I., & Nehéz, K. (2024). Intelligent SLA Selection Through the Validation Cloud 

Broker System. IEEE Access. DOI: 10.1109/ACCESS.2024.3439617 

https://doi.org/10.35925/j.multi.2023.4.8
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• Sekhi, I. (Accepted). Efficient Broker-Driven Request Packet Size. International Journal 

on Informatics Visualization. 

Additionally, related foundational concepts and fuzzy logic optimization techniques were 

published in: 

• Sekhi, I., Kovács, S., & Nehéz, K. (2025). Enhancing Decision-Making in Uncertain 

Domains through Optimized Fuzzy Logic Systems. Periodica Polytechnica Electrical 

Engineering and Computer Science, 69(1), 63–78. https://doi.org/10.3311/PPee.38729 

Thesis III: Intelligent Cloud Brokerage System 

I have designed an Intelligent Cloud Brokerage System that combines fuzzy logic with the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) to optimize cloud 

service selection and resource management across multiple (CSPs). This intelligent brokerage 

system serves as an intermediary, aligning user requirements with provider capabilities to 

improve service quality, cost efficiency, and operational performance. 

The findings related to this research are published in: 

• Sekhi, I. R., Abdah, H., & Nehéz, K. (2025). Reliable and Cost-Effective Fuzzy-Based 

Cloud Broker. International Journal of Networked and Distributed Computing, 13(1), 

1–9. https://doi.org/10.1007/s44227-024-00052-x 

These three theses collectively address critical challenges in cloud computing, contributing 

innovative solutions for enhancing performance, reducing latency, and improving the 

efficiency of resource management. The integration of fuzzy logic and advanced decision-

making techniques in my research provides new pathways for achieving scalable, reliable, and 

cost-effective cloud services. 

10.1 Future Research Direction 

• Future research should focus on integrating IoT, edge computing, and 5G to enhance 

cloud computing scalability and interoperability. Real-world testing is crucial to 

evaluate performance, adaptability, and SLA management. Incorporating ML and fuzzy 

logic can optimize SLA classification and QoS adjustments, improving efficiency and 

reliability. Additionally, adaptive traffic management should be explored to enhance 

QoS, resource allocation, and fault recovery. Further research on SLA prioritization 

will optimize cloud resource utilization and user satisfaction. These advancements will 

contribute to intelligent, adaptive, and efficient cloud brokerage systems, ensuring 

better service selection and resource optimization in dynamic cloud environments. 

• Enhance cross-cloud compatibility through standardized integration methods, ensuring 

seamless workload distribution across heterogeneous platforms for individual users and 

enterprises. This will also improve energy efficiency, reducing data centers' carbon 

footprint while maintaining high performance. Leveraging ML-driven workload 

distribution enables real-time optimization, dynamically adapting to service demands 

and enhancing resource efficiency. Addressing security and compliance challenges is 

crucial to mitigating vulnerabilities, improving data privacy, and maintaining 

https://doi.org/10.3311/PPee.38729
https://doi.org/10.1007/s44227-024-00052-x
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regulatory standards in multi-cloud environments. Additionally, context-aware 

decision-making in cloud brokerage systems should incorporate application delay 

sensitivity and client mobility profiles. Developing adaptive mechanisms to adjust 

resource allocation dynamically will help mitigate network delay, ensuring seamless 

service quality, minimal latency, and optimal performance in mobile cloud 

environments. 
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Appendices  

Appendix 1: Cloud Computing  

 

Appendix 1: 0.1 Figure 1. NIST Cloud Computing reference model. 

 

Appendix 1: 0.2 Figure 2. The essential characteristics of cloud computing. 

Appendix 2: Adoption and Implementation of Cloud Platforms  
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Appendix 2: 0.1 Figure 1. (a) Single application server. (b) Virtualized server. 

 

Appendix 2: 0.2 Figure 2. Hardware server components. 

 

Appendix 2: 0.3 Figure 3. Type1 hypervisor. 

 

Appendix 2: 0.4 Figure 4. Type2 hypervisor. 

 

Appendix 2: 0.5 Figure 5. Data center network architecture. 
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Appendix 2: 0.6 Table 1. Key Contractual Elements of an Infrastructural SLA. 

Hardware availability month 99% uptime in a calendar month 

Power availability  99.99% of the time in a calendar month 

Data center network 

availability 
99.99% of the time in a calendar month 

Backbone network 

availability 
99.999% of the time in a calendar month 

Service credit for 

unavailability 

Refund of service credit prorated on 

downtime period 

Outage notification 

guarantee 

Notification of customer within 1 hr. of 

complete downtime 

Internet latency 

guarantee 

When latency is measured at 5-min 

intervals to an upstream 

provider, the average doesn’t exceed 60 

msec 

Packet loss guarantee Shall not exceed 1% in a calendar month 

Appendix 2: 0.7 Table 2. Key contractual components of an application SLA. 

Service-level 

parameter metric 

• Web site response time (e.g., max of 3.5 sec 

per user request) 

• Latency of web server (WS) (e.g., max of 

0.2 sec per request) 

• Latency of DB (e.g., max of 0.5 sec per 

query) 

Function • Average latency of WS= (latency of web 

server 1+latency of web server 2) /2 

• Web site response time= Average latency of 

web server+ latency of database 

Measurement 

directive 

• DB latency available via 

http://mgmtserver/em/latency 

• WS latency available via 

http://mgmtserver/ws/instanceno/latency 

Service-level 

objective 

Service Assurance 

Penalty • web site latency, 1 sec when concurrent 

connection, 1000 Penalty. 

• 1000 USD for every minute while the SLO 

was breached 
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Appendix 3: Triangular Membership Function-Based Estimation of Round-Trip Time 

(RTT) for Optimal SLA Evaluation 

 

Appendix 3: 0.1 Figure 1. RTT process. 

The RTT calculation, The ensuing diagram and equations provide a visual representation of 

how the round-trip time is computed 

Server RTT: 

• RTTs1 = t2 - t1 

• RTTs2 = t5 - t4 

Client RTT: 

• RTTc1 = t3 - t2 

• RTTc2 = t7 - t6 

Average Server RTT = (RTTs1 + RTTs2)/2 

Average Client RTT = (RTTc1 + RTTc2)/2 

Average Total RTT = avRTTs + avRTTc 

 

 

 

 

 

 

 

 

 



119 

 

 

 

 

 

Appendix 3: 0.2 Figure 2. Ping testing process. 

 

Appendix 3: 0.3 Figure 3. AWS latency test. 

Appendix 3: 0.4 Table 1. Distances from Wasit Governorate to all AWS regions. 

No 
Region 

name 

Distance 

(KM) 
Latitude 

Longitude Endpoint 

1 Bahrain 862.94 26.0667 50.5577 ec2.me-south-1.amazonaws.com 

2 
UAE – 

Dubai 

1234.23 25.276987 55.296249 ec2.me-central-1.amazonaws.com 

3 Mumbai 3089.72 19.0760 72.8777 ec2.ap-south-1.amazonaws.com 

4 Milan 3428.79 45.4642 9.1900 ec2.eu-south-1.amazonaws.com 

http://aws.amazon.com/
http://aws.amazon.com/
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This table extends and complements the information presented in Appendix 3: 0.4 

Table 1. 

5 Zurich 3525.01 47.3769 8.5417 ec2.eu-central-2.amazonaws.com 

6 Frankfurt 3601.23 50.1109 8.6821 ec2.eu-central-1.amazonaws.com 

7 Paris 3607.54 48.8566 2.3522 ec2.eu-west-3.amazonaws.com 

8 London 4009.87 51.5074 -0.1278 ec2.eu-west-2.amazonaws.com 

9 Spain 4202.65 41.6488 -0.8891 ec2.eu-south-2.amazonaws.com 

10 Ireland 4238.49 53.3331 -6.2489 ec2.eu-west-1.amazonaws.com 

11 Stockholm 4682.33 59.3293 18.0686 ec2.eu-north-1.amazonaws.com 

12 
Hong 

Kong 

5981.25 22.3193 114.1694 ec2.ap-east-1.amazonaws.com 

13 Hyderabad 6012.87 17.3850 78.4867 ec2.ap-south-2.amazonaws.com 

14 Osaka 6789.34 34.6937 135.5023 ec2.ap-northeast-

3.amazonaws.com 

15 Seoul 7056.22 37.5665 126.9780 ec2.ap-northeast-

2.amazonaws.com 

16 Singapore 7289.64 1.3521 103.8198 ec2.ap-southeast-

1.amazonaws.com 

17 Tokyo 7435.78 35.6895 139.6917 ec2.ap-northeast-

1.amazonaws.com 

18 Jakarta 7832.90 -6.2088 106.8456 ec2.ap-southeast-

3.amazonaws.com 

19 
Kuala 

Lumpur 

8053.21 3.1390 101.6869 ec2.ap-southeast-

4.amazonaws.com 

20 

Canada 

Central – 

Ottawa 

8923.45 45.4215 -75.6972 ec2.ca-central-1.amazonaws.com 

21 
N. 

Virginia 

10023.67 38.0336 -78.5080 ec2.us-east-1.amazonaws.com 

22 Ohio 10289.47 39.9612 -82.9988 ec2.us-east-2.amazonaws.com 

23 
N. 

California 

12345.89 37.7749 -122.4194 ec2.us-west-1.amazonaws.com 

24 Oregon 12678.56 45.5234 -122.6762 ec2.us-west-2.amazonaws.com 

25 Melbourne 13756.90 -37.8136 144.9631 ec2.ap-southeast-

4.amazonaws.com 

26 Sydney 14321.76 -33.8688 151.2093 ec2.ap-southeast-

2.amazonaws.com 
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27 
Cape 

Town 

14989.34 -33.9249 18.4241 ec2.af-south-1.amazonaws.com 

28 São Paulo 15478.65 -23.5505 -46.6333 ec2.sa-east-1.amazonaws.com 

 

❖ Haversine Formula 

The formula to compute the distance d between two points (lat1, lon1) and (lat2, lon2) is: 

𝑑 = 2𝑅. arcsin ( √𝑠𝑖𝑛2 (
Δφ

2
) + cos(φ1) . cos(φ2) . 𝑠𝑖𝑛2  (

Δλ

2
)  ) 

Where: 

• d = distance between the two points (in kilometers or miles). 

• R = Earth's radius (mean radius = 6371 km or 3958.8 miles). 

• φ1, φ2 = latitudes of the two points in radians. 

• λ1, λ2 = longitudes of the two points in radians. 

• Δφ =φ2−φ1 (difference in latitudes). 

• Δλ =λ2−λ1 (difference in longitudes). 

 

Appendix 3: 0.5 Figure 4. Define first input (Distance). 

 

Appendix 3: 0.6 Figure 5. Define second input (Network-congestion).  
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Appendix 3: 0.7 Figure 6. Define Output (RTT-Expectation). 

 

Appendix 3: 0.8 Figure 7. Rule base system. 

Appendix 4: Quality of Service (QoS) Availability Assessment for Optimal SLA 

Selection 

Appendix 4: 0.1 Table 1. Maximum allowable downtime for different availability levels. 

Years of 

continuous 

operations 

1 2 3 

Availability Maximum allowable downtime 

99.0000% (2–

9s) 

3 d 15 h 36 min 

0 s 

7 d 7 h 12 min 0 

s 

10 d 22 h 48 min 

0 s 

99.9000% (3–

9s) 
8 h 45 min 15 s 17 h 31 min 12 s 

1 d 2 h 16 min 48 

s 

99.9900% (4–

9s) 
52 min 34 s 1 h 45 min 7 s 2 h 37 min 41 s 
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99.9990% (5–

9s) 
5 min 15 s 10 min 31 s 

15 min 46 s 

99.9999% (6–

9s) 
32 s 1 min 3 s 1 min 3 s 1 min 35 s 

Appendix 4: 0.2 Table 2. The universe of discourse for both inputs. 

The universe of discourse for both (Computing and networking) inputs 

90 93.39966 96.79932 

90.09999 93.49965 96.89931 

90.19998 93.59964 96.9993 

90.29997 93.69963 97.09929 

90.39996 
93.79962 

 
97.19928 

90.49995 
93.89961 

 
97.29927 

90.59994 93.9996 97.39926 

90.69993 
94.09959 

 
97.49925 

90.79992 94.19958 97.59924 

90.89991 94.29957 97.69923 

90.9999 94.39956 97.79922 

91.09989 94.49955 97.89921 

91.19988 94.59954 97.9992 

91.29987 94.69953 98.09919 

91.39986 
94.79952 

 
98.19918 

91.49985 94.89951 98.29917 

91.59984 94.9995 98.39916 

91.69983 95.09949 98.49915 

91.79982 95.19948 98.59914 
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This table extends and complements the information presented in 

Appendix 4: 0.2 Table 2. 

91.89981 95.29947 98.69913 

91.9998 95.39946 98.79912 

92.09979 95.49945 98.89911 

92.19978 95.59944 98.9991 

92.29977 95.69943 99.09909 

92.39976 95.79942 99.19908 

92.49975 95.89941 99.29907 

92.59974 95.9994 99.39906 

92.69973 96.09939 99.49905 

92.79972 96.19938 99.59904 

92.89971 96.29937 99.69903 

92.9997 96.39936 99.79902 

93.09969 96.49935 99.89901 

93.19968 96.59934 

99.999 93.29967 

 
96.69933 

 

Appendix 4: 0.3 Table 3. Proposed Uptime and downtime. 
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• EX: In equation form for 90% uptime in a single day: 

Uptime in seconds: 

       Uptime=Total Time per day × Uptime percentage; Where: 

Total Time per day = 86,400 seconds (for 24 hours), 

       Uptime percentage = 0.90 for 90%. 

Downtime in second: 
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        Downtime=Total Time per day × (1- Uptime percentage); Where: 

        Downtime percentage=1 - 0.90  

                Downtime= 0.10 

Then In equation form for 90% Uptime in a single day: 

        Uptime = 86,400 × 0.90 =77,760 seconds 

         Downtime = 86,400 × (1-0.90) 

                Downtime = 8,640 seconds 

To convert seconds into hours, minutes, and seconds: 

▪ Uptime:77,760 seconds =21 hours,36 minutes. 

▪ Downtime:8,640 seconds = 2 hours,2 minutes. 

These equations provide a clear way to calculate uptime and downtime for any  

percentage of uptime over any given period (e.g., a day, week, month, or year). 

Appendix 5: Implementation details of the three proposed algorithms for the system 

Appendix 5:0.1 Detailed Analysis of the First Algorithm 

▪ Maximum value: 67,170 

▪ Point1 = Maximum value / 4 

▪ Point2 = 2 * Point1 

▪ Point3 = 3 * Point1 

▪ Point4 = 4 * Point1 

▪ 𝜇small: [0 0 point2] 

▪ 𝜇medium: [point1 point2 point3] 

▪ 𝜇big: [point2 point4 point4] 

▪ When 0 ≤ value ≤point1 

Consider input value is 165  

Calculate Small Membership function: 

𝜇small (165) =( - value/point2)+1 

𝜇small (165) =( -165/33585)+1 

𝜇small (165) = -0.00491+1 

𝜇small (165) = 0.995087092 

" 𝜇medium (165) " remains 0 since the input value falls within the 0 to Point1 range. 

" 𝜇big (165) " remains 0 since the input value falls within the 0 to Point1 range. 

• When point1 ≤ value ≤point2 then: 
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Consider input value is 20892  

Calculate Small Membership function: 

𝜇small (20892) = (- value/point2)+1 

𝜇small (20892) = - 0.6218+1 

𝜇small (20892) = 0.377936579 

Calculate α 

α= value – point2 

α=20892 – 33585 

α= - 12693 

Calculate medium Membership function: 

𝜇medium (20892) = (-1/point2 - point1). | α |+1 

𝜇medium (20892) = (-1/33585– 16792.5). |12693|+1 

𝜇medium(20892)= (-1/16792.5) . 12693+1 

𝜇medium(20892)= - 0.7560+1 

𝜇medium(20892)=0.244126842 

" 𝜇big(20892)" remains 0 since the input value falls within the Point1 to Point2 range. 

Appendix 5:0.2 Detailed Analysis of the Second Algorithm 

• Maximum value: 67,170 

• Point1 = Maximum value / 5 

• Point2 = 2 * Point1 

• Point3 = 3 * Point1 

• Point4 = 4 * Point1 

• Point5 =5 * point1 

• 𝜇small: [0  0  point1  point2] 

• 𝜇medium: [point1  point2  point3  point4] 

• 𝜇big: [point3  point4 point4  point5] 

• When 0 ≤ value ≤point1 then: 

𝜇small (value) = 1 

" 𝜇medium (value) " remains 0 since the input value falls within the 0 to Point1 range. 

" 𝜇big(value) " remains 0 since the input value falls within the 0 to Point1 range. 

• When point1 ≤ value ≤point2 

Consider input value is 17132  

Calculate Small Membership function degree: 

𝜇small (value) = (- value/point2)+1 
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𝜇small (17132) = (- 17132/33585)+1 

𝜇small (17132) = - 0.6376+1 

𝜇small (17132) = 0.362364151 

Calculate α: 

α= value – point2 

α=17132 – 26868 

α= - 9736 

Calculate medium Membership function degree: 

𝜇medium (17132) = (-1/point2 - point1). | α |+1 

𝜇medium (17132) = (-1/26868 – 13434). |- 9736 |+1 

𝜇medium (17132) = (-1/13434). 9736+1 

𝜇medium (17132) = -0.7248+1 

𝜇medium (17132) =0.275271699 

" 𝜇big (17132)" remains 0 since the input value falls within the Point1 to Point2 range. 

Appendix 5:0.3 Detailed Analysis of the Third Algorithm 

• Maximum value: 67,170 

• Point1=0 

• Point2=Maximum value/2 

• Point4=Maximum value 

• Standard Deviation  𝜎 =16339 

• Small center= csmall=point1 

• 𝜇small: [ 𝜎   𝑝𝑜𝑖𝑛𝑡1] 

• Medium center= cmedium=point2 

𝜇medium: [ 𝜎   𝑝𝑜𝑖𝑛𝑡2] 

• Big center= cbig=point4 

𝜇big: [ 𝜎   𝑝𝑜𝑖𝑛𝑡4] 

Consider input value is 11381 

• Calculate Small membership function degree 

𝜇small (11381) =Exp (-(11381-0)2/2. (16339)2) 

Calculate the squared difference: 

(11381-0)2=129564361 

Compute 2. 𝜎2=2. (16339)2 

=533906642 

Divide and apply the exponent: 

𝜇small (11381) =Exp ( -129564361/533906642) 
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𝜇small (11381) =Exp (-0.2426) 

𝜇small(11381) =0.784590058 

• Calculate Medium membership function degree 

𝜇medium (11381) =Exp (-(11381-33585)2/2.(16339)2) 

Calculate the squared difference: 

(11381-33585)2=494383296 

Divide and apply the exponent: 

𝜇medium (11381) =Exp ( -494383296/533906642) 

                   𝜇medium =Exp(-0.9263)  

            𝜇medium = 0.397173449 

• Calculate Big membership function degree 

𝜇big (11381) =Exp (-(11381-67170)2/2. (16339)2) 

Calculate the squared difference: 

(11381-67170)2=3104115681 

Divide and apply the exponent: 

𝜇big (11381) =Exp ( -3104115681/533906642) 

𝜇big (11381) =Exp (-5.8146) 

𝜇big (11381) = 0.002940142 

Appendix 6: Optimized Fuzzy Logic Systems for Enhanced Decision-Making in 

Uncertain Domains  

 

Appendix 6: 0.1 Figure 1. Database Addresses. 

 

Appendix 6: 0.2 Figure 2. User task before classify. 
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Appendix 6: 0.3 Figure 3. Mamdani Triangular MF. 

 

Appendix 6: 0.4 Figure 4. Mamdani Trapezoidal MF. 

 

Appendix 6: 0.5 Figure 5. Mamdani Gaussian MF. 
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Appendix 7: Fuzzy Cloud Broker Validation System for SLA Selection Mechanisms 

Appendix 7: 0.1 Table 1. AWS-General-Purpose series Attributes and specs. 
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Appendix 7: 0.2 Table 2. AWS data centers and general costs. 
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This table extends and complements the information presented in 

Appendix 7: 0.2 Table 2. 
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This table extends and complements the information presented in 

Appendix 7: 0.2 Table 2. 
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Appendix 7: 0.3 Table 3. Delay matrix. 

Geographic-

Regions 

R0 R1 R2 R3 R4 R5 

R0 3,27 

 ms 

117,23 

ms 

94,24 

ms 

190,95 

ms 

227,74 

ms 

199,16 

ms 

R1 117,23 

ms 

2,63 

ms 

205,77 

ms 

299,86 

ms 

341,07 

ms 

312,32 

ms 

R2 94,24  

ms 

205,77 

ms 

4,99 

ms 

128,66 

ms 

155,91 

ms 

248,86 

ms 

R3 190,95 

ms 

299,86 

ms 

128,66 

ms 

3,51 

ms 

270,64 

ms 

153,24 

ms 

R4 227,74 

ms 

341,07 

ms 

155,91 

ms 

270,64 

ms 

8,1 ms 415 

ms 

R5 199,16 

ms 

312,32 

ms 

248,86 

ms 

153,24 

ms 

415 

ms 

4,42 

ms 

Appendix 7: 0.4 Table 4. Fundamental Data Center. 

31-AWS 

(DC- 

single 

instance) 

Geographic 

Regions 
Arch OS VMM 

Data 

transfer 

cost 

Physical 

HW-

units 

DC1 R0-N.virgina X86 Linux Xen 0,02 1 

DC2 R0- Ohio X86 Linux Xen 0,02 1 

DC3 R0-N.California X86 Linux Xen 0,02 1 

DC4 R0- Oregon X86 Linux Xen 0,02 1 

DC5 R0- Canada Central X86 Linux Xen 0,02 1 

DC6 R0-Canada west(Calgary) X86 Linux Xen 0,02 1 

DC7 R0-AWS GovCloud(US-

East) 

X86 Linux Xen 0,02 1 

DC8 R0-AWS GovCloud(US-

West) 

X86 Linux Xen 0,02 1 

DC9 R1- São Paulo X86 Linux Xen 0,02 1 
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DC10 R2- Frankfurt X86 Linux Xen 0,02 1 

DC11 R2- Ireland X86 Linux Xen 0,02 1 

DC12 R2- London X86 Linux Xen 0,02 1 

DC13 R2- Milan X86 Linux Xen 0,02 1 

DC14 R2- Paris X86 Linux Xen 0,02 1 

DC15 R2- Spain X86 Linux Xen 0,02 1 

DC16 R2- Stockholm X86 Linux Xen 0,02 1 

DC17 R2- Zurich X86 Linux Xen 0,02 1 

DC18 R3- Hong Kong X86 Linux Xen 0,02 1 

DC19 R3- Hyderabad X86 Linux Xen 0,02 1 

DC20 R3-Jakarta X86 Linux Xen 0,02 1 

DC21 R3- Melbourne X86 Linux Xen 0,02 1 

DC22 R3- Mumbai X86 Linux Xen 0,02 1 

DC23 R3- Osaka X86 Linux Xen 0,02 1 

DC24 R3- Seoul X86 Linux Xen 0,02 1 

DC25 R3- Singapore X86 Linux Xen 0,02 1 

DC26 R3- Sydney X86 Linux Xen 0,02 1 

DC27 R3- Tokyo X86 Linux Xen 0,02 1 

DC28 R4- Cape town X86 Linux Xen 0,02 1 

DC29 R4- Bahrain X86 Linux Xen 0,02 1 

DC30 R4- Israel X86 Linux Xen 0,02 1 

DC31 R4- UAE X86 Linux Xen 0,02 1 

 

Appendix 7: 0.5 Table 5. Data centers configurations according to EC2 class specifications. 

11-AWS-EC2 

Instances 

Data Centers Utilized for Execution within 

the EC2 Class Specification 

 

# of 

DCs 

# of 

VM 

VM policy 

M6g.medium 31 1 Time-Shared 

M6g.large 31 1 Time-Shared 

M6g.xlarge 31 1 Time-Shared 

M5.2xlarge 31 1 Time-Shared 

M5.4xlarge 31 1 Time-Shared 

M6gd.8xlarg 31 1 Time-Shared 

M6gd.12xlarge 31 1 Time-Shared 

M6g.metal 31 1 Time-Shared 

M5d.metal 31 1 Time-Shared 

M6i.metal 31 1 Time-Shared 

M6a.metal 31 1 Time-Shared 

Appendix 7: 0.6 Table 6. Arrangement of the EC2 instances in traditional methods. 

31-AWS 

(DC- 

single 

instance) 

Geographic 

Regions 

EC2 Cost ($) Physical 

HW-units 

DC1 R0-N.virgina M6g.medium 0.0385 1 

DC2 R0- Ohio M6g.xlarge 0.154 1 
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DC3 R0-N.California M5.4xlarge 0.896 1 

DC4 R0- Oregon M6gd.12xlarge 2.1696 1 

DC5 R0- Canada Central M5d.metal 6.048 1 

DC6 R0-Canada west(Calgary) M6a.metal 8.3922 1 

DC7 R0-AWS GovCloud(US-

East) 

M6g.large 0.0968 1 

DC8 R0-AWS GovCloud(US-

West) 

M5.2xlarge 0.484 1 

DC9 R1- São Paulo M6gd.8xlarg 2.304 1 

DC10 R2- Frankfurt M6g.metal 2.944 1 

DC11 R2- Ireland M6i.metal 6.848 1 

DC12 R2- London M6g.medium 0.0444 1 

DC13 R2- Milan M6g.xlarge 0.1792 1 

DC14 R2- Paris M5.4xlarge 0.896 1 

DC15 R2- Spain M6gd.12xlarge 2.4192 1 

DC16 R2- Stockholm M5d.metal 5.76 1 

DC17 R2- Zurich M6a.metal 9.6878 1 

DC18 R3- Hong Kong M6g.large 0.106 1 

DC19 R3- Hyderabad M5.2xlarge 0.404 1 

DC20 R3-Jakarta M6gd.8xlarg 1.808 1 

DC21 R3- Melbourne M6g.metal 3.072 1 

DC22 R3- Mumbai M6i.metal 6.464 1 

DC23 R3- Osaka M6g.medium 0.0496 1 

DC24 R3- Seoul M6g.xlarge 0.188 1 

DC25 R3- Singapore M5.4xlarge 0.96 1 

DC26 R3- Sydney M6gd.12xlarge 2.736 1 

DC27 R3- Tokyo M5d.metal 7.008 1 

DC28 R4- Cape town M6a.metal 9.513 1 

DC29 R4- Bahrain M6g.large 0.094 1 

DC30 R4- Israel M5.2xlarge 0.449 1 

DC31 R4- UAE M6gd.8xlarg 1.7728 1 

 

This MATLAB code serves as a foundational tool for analyzing and improving cloud 

resource allocation, playing a crucial role in system enhancement, have demonstrated that 

similar to previous examples, the following steps outline the configuration of the trapezoidal 

membership function. This continuation ensures a comprehensive understanding of our 

approach. 

• Data Import and Initialization 

This section initializes the FIS to explore the intelligent features built into the (IVCBS), 

looked into the complex sorting of VCPU sources, using them as a key example. This strict 

method is used the same way for all VM resources and user requests,. This makes sure that 

the SLA-level classification is correct and reliable. Moreover, to demonstrate the alignment 

of our mathematical model with the trapezoidal membership function, referenced this 

approach in the discussion on initializing and depicting the membership function. This 

MATLAB code is crucial, serving as a foundational tool for the analysis and enhancement of 

cloud resource allocation. 
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Appendix 7:0.7 Figure 1. VCPU Classification code. 

clear; close all; CLC; warning off fis = newfis('Classification'); d = xlsread('VCPU.xlsx'); 

Input-Value = d(:,1); MAX = max(Input-Value); 
 
(fis) and reads input data from an Excel file ('VCPU.xlsx'), extracting the 'Input-Value' column 
and determining the maximum value for normalization. 

• Defining Membership Functions 

pV1 = 1; pV2 = 2; pV3 = 4; pV4 = 8; pV5 = 16 ; 

pV6 = 32; pV7 = 48; pV8 = 64; pV9 = 96; pV10 = 128; pV11 = 192 ; 

fis = addvar(fis, 'input', 'VCPU', [0 MAX]) ; 

fis = addmf(fis, 'input', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ; 

fis = addmf(fis, 'input', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ; 

fis = addmf(fis, 'input', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ; 

fis = addmf(fis, 'input', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ; 

fis = addmf(fis, 'input', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]) ; 

fis = addvar(fis, 'output', 'VCPU Level', [0 MAX]); 

fis = addmf(fis, 'output', 1, 'Poor', 'trapmf', [pV1 pV2 pV3 pV4]) ; 

fis = addmf(fis, 'output', 1, 'Fair', 'trapmf', [pV3 pV4 pV5 pV6]) ; 

fis = addmf(fis, 'output', 1, 'Good', 'trapmf', [pV5 pV6 pV7 pV8]) ; 

fis = addmf(fis, 'output', 1, 'VGood', 'trapmf', [pV7 pV8 pV9 pV10]) ; 

fis = addmf(fis, 'output', 1, 'Excellent', 'trapmf', [pV9 pV10 pV11 pV11]); 

 

Membership functions (MFs) for the input and output variables are defined using trapezoidal 

membership functions (trapmf). These functions categorize the VCPU values into linguistic 

variables: Poor, Fair, Good, Very Good, and Excellent. 

• Visualization 

figure  

plotmf(fis, 'input', 1); 

This visualizes the trapezoidal membership functions. Finally, the specific MATLAB software 

and libraries, along with the parameters and functions examined in the Intelligent Cloud Broker 

Validation System, were represented. After the broker finalizes the classification of user 
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requests and SLA resources using the classification algorithm, it then performs precise 

matching of the validation results, ensuring that all outcomes equate to 1. This is accomplished 

through a specialized matching algorithm. This section delves into both algorithms, showcasing 

their crucial role in guaranteeing intelligent SLA selection for executing corresponding user 

requests. The following context in this section illustrates both algorithms. 

 

Appendix 7:0.8 Figure 2.  Apply the Trapezoidal proposed model of CPU levels. 

 

 

Appendix 7:0.9 Figure 3. IVCBS-Response time by region (optimize response time 

policy). 



139 

 

 

 

 

Appendix 7:1.0 Figure 4. IVCBS-Response time by region (reconfigure dynamically 

policy). 

 

Appendix 7:1.1 Figure 5. IVCBS DC- Request Servicing Time (optimize response time 

policy). 
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Appendix 7:1.2 Figure 6. IVCBS DC- Request Servicing Time (dynamic reconfiguration 

policy). 

 

Appendix 7:1.3 Figure 7. Routing strategy by the dynamic reconfigurations policy. 

 
 

Appendix 7:1.4 Figure 8. Routing strategy by the optimized response time policy. 

 

Appendix 7:1.5 Figure 9. Traditional-Response time by region (optimize response time 

policy). 



141 

 

 

 

 

Appendix 7:1.6 Figure 10. Traditional-Response time by region (reconfigure 

dynamically policy). 

 

Appendix 7:1.7 Figure 11. Traditional DC- Request Servicing Time (optimize response 

time policy). 

 

Appendix 7:1.8 Figure 12. Traditional DC- Request Servicing Time (dynamic 

reconfiguration policy). 
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Appendix 8: Optimizing Request Packet Size Through an Efficient Broker-Driven 

Approach 

 

Appendix 8:0.1 Figure 1. Fuzzy rule base. 

Appendix 8:0.2 Table 1. User base configuration. 

User Bases Geographic- 

Regions 

Requests- 

per users 

per Hour 

Peak Hours 

(GMT) 

Avg 

peak 

users 

Avg 

Off- 

peak 

users 

Start End 

UB1 :1000 R0: North 

America 

60 12 15 800 100 

UB2 :1000 R1: South 

America 

60 14 17 1000 100 

UB3 :1000 R2: Europe 60 19 22 1000 100 

UB4 :1000 R3: Asia  60 0 3 700 100 

UB5 :1000 R4: Africa and 

middle east 

60 20 23 900 100 

UB6 :1000 R5: Africa 60 8 11 1000 100 

UB7:1000 R0: North 

America 

60 6 9 1000 100 

UB8:1000 R1: South 

America 

60 12 15 500 100 

UB9 :1000 R2: Europe 60 18 21 750 100 

UB10 :1000 R3: Asia 60 7 9 1000 100 
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Appendix 8:0.3 Table 2. Advanced VM configuration in a single data center. 
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Appendix 8:0.4 Figure 2. Simulation process. 

 

Appendix 8:0.5 Figure 3. Surface Viewer for Fuzzy Model Output. 
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