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1 Introduction

Data is one of the most important assets for studying different aspects of
applied computing. It provides the foundation for understanding complex
phenomena and uncovering valuable insights. In cloud computing, workload
traces have been widely used as rich data sources for supporting more efficient
resource management, as shown in [1].

To gain the most benefit from these data, clustering and forecasting meth-
ods have been widely exploited as key techniques for data analysis [2]. Clus-
tering helps to extract important information from cloud traces, such as
detailed patterns of resource consumption in users’ records [3|. These pat-
terns are necessary for implementing crucial resource management tasks (e.g.,
resource provisioning). It enables a more insightful understanding and, con-
sequently, better forecasting of future consumption. Therefore, developing
tools for such extraction and forecasting will ensure the identification of po-
tential challenges and opportunities associated with resource utilisation and
management.

These tools benefit various studies. For instance, Kecskemeti et al. [4]
demonstrated that users’ behaviours have a great effect on maintaining the
free and unconstrained availability of cloud resources. Therefore, they pro-
posed offering these users virtual tokens (so-called engaging options) to im-
prove resource efficiency. This mechanism would require analysis of users’
patterns at a detailed level to target the engaging options more efficiently
towards the desired behaviour. The analysis process for these studies needs
to be unsupervised, as many cloud records show ambiguity in their users’
labelling.

1.1 Research Problems

Much of the literature has provided tools for trace analysis based on extrac-
tion via clustering and forecasting such as [3|. However, these works have
overlooked supporting such tools with a detailed consideration of the human
aspect. Analysing human patterns at this level is crucial for efficient resource
and energy management [5]. In this context, clustering-based studies in cloud
computing have neglected two of the main factors that affect clustering qual-
ity: the selection of dimensions (attributes) and the methods of clustering [6].
Both must be carefully considered to ensure that the clustering is not only
accurate but also useful for subsequent analysis or decision-making processes.
This is particularly pertinent in cloud computing, where workloads are often
characterised by large-scale, dynamic, and complex datasets.

Regarding attribute selection, many data analysis studies, such as [7]



and [8], have exploited methods of feature selection and dimensionality re-
duction. According to [9], the use of such general feature selection methods
requires supervisory inputs (e.g., predefined labels and categories). These
inputs are not typically available in cloud workload traces. Meanwhile, to
address clustering method selection, studies often rely on generic and unau-
tomated techniques, which are not reliable for repeated tasks. In addition,
these tools require full trace analysis. This is not applicable for cloud traces,
since many of these traces contain up to one million lines of users’ records,
making the full analysis process costly and less efficient for detailed-level
pattern extraction.

On the other hand, for forecasting, related research such as [10], [11], has
presented various prediction models. However, the forecasting approach in
these studies was designed to deal with consumption patterns as trends by
performing predictions at an overall level, which we will refer to as macro-
prediction in this dissertation. Thus, such an approach lacks the ability to
capture users’ hidden patterns from cloud traces and to forecast them at a
detailed, micro-prediction level.

1.2 Research Aims

This thesis aims to address the following gaps in existing analysis tools:

e Attribute and method selection that enable the extraction of patterns
from cloud traces at a detailed level.

e A micro-prediction approach capable of capturing and accurately pre-
dicting these detailed patterns.

To address these gaps, our research is divided into the goals that are
outlined as follows:

e The study of tools for attribute and clustering method selection that are
more efficient for the characteristics of cloud traces. These tools should
perform such selection for both single and multiple attributes, as well
as clustering methods, without the need for predetermined parameters.
They should be automated and unsupervised, and should not require
the analysis of full traces. These tools should enable clustering methods
to produce segments of extracted detailed patterns.

e The study of forecasting approaches that support capturing and pre-
dicting detailed patterns from cloud traces. This approach needs to



integrate the extraction tools described above and apply separate pre-
processing to produce trainable segments for each of the extracted pat-
terns. This needs to be followed by separate training for each of these
segments to generate a trained network for each. This enables more
accurate micro-forecasting.

Accordingly, the overall goal of this dissertation is to develop automated,
unsupervised tools for extracting and forecasting detailed cloud patterns with-
out requiring full-trace analysis or predefined parameters.

2 Literature Review

2.1 Review of clustering in cloud computing

While aiming to extract useful information from cloud workload traces, many
studies have investigated the benefits of clustering methods. For example,
Yousif et al. |3] proposed enhancing cloud resource utilisation by clustering
tasks in Google workload traces. This was done by clustering resource usage
attributes such as CPU and hard disk usage using two clustering methods:
K-means and density-based clustering. In addition, Gao et al. [12] developed
a hybrid approach incorporating K-means clustering to improve the accuracy
of resource provisioning, also using Google cluster traces.

Another application of clustering methods was conducted by |13]|. In that
paper, the researchers aimed to increase the accuracy of predicting parallel
application runtimes to improve the utilisation of parallel computing sys-
tems. This was carried out using datasets from a parallel workload for model
training by targeting the application runtimes in these data without consid-
ering their specific users. Furthermore, Patel and Kushwaha [14] proposed
exploiting two clustering methods, namely K-means and Gaussian Mixture
Models, to address the heterogeneity in the BitBrains trace caused by the
diverse nature of workloads that cloud systems encounter. In this trace,
resource usage attributes were targeted for clustering. The results showed
better clustering quality for the Gaussian Mixture Model, while less running
time was required for the K-means method.

The majority of the above studies applied cloud trace clustering to im-
prove resource provisioning and utilisation. This is reasonable, as the human
aspect was not required for most of these studies. However, human-centred
applications, such as steering users towards energy-aware usage, would re-
quire the analysis and extraction of humans’s behavioural patterns. Thus, it
is vital to target the human aspect of workload traces with clustering. This



necessitates a comprehensive investigation to test the applicability of cluster-
ing for such an implementation, which was not sufficiently discussed in these
works.

In addition, the cloud traces in these studies can consist of several at-
tributes. These attributes may not all be beneficial for clustering. To deal
with the multi-dimensionality in clustering, researchers have used feature
(attribute) reduction and selection methods. The authors in [15] presented
a novel three-way clustering approach for feature reduction. It achieves this
by dividing the targeted data into three regional groups for clustering. The
method involves random sampling and feature extraction to introduce ran-
domness and diversity, which makes the algorithm more robust. Such meth-
ods reconstruct the original data, which might not be beneficial for cases of
behaviour extraction.

As demonstrated in the above studies, feature selection and dimension-
ality reduction mechanisms have already been used in various analysis and
forecasting applications for cloud computing. The selection process in these
applications was either generic or resulted in new features that may not be
beneficial for extraction. Furthermore, these studies mainly target the re-
source aspect of the traces, where the data characteristics are less complex
and the necessary selection parameters are known. Hence, the challenge of
dealing with complex human patterns in the absence of these parameters
was not encountered. In other words, using such general methods of feature
selection requires further input parameters (e.g., the number of expected clus-
ters). These parameters are not usually available in cloud workload traces
(i.e., they do not disclose the number of users whose utilisation patterns the
traces represent).

It is worth noting that the above investigations were conducted using only
simple clustering methods (such as K-means). Thus, a wider range of cluster-
ing methods was not thoroughly investigated. Consequently, they overlooked
one of the main factors affecting clustering quality, which is method selection.
Few techniques have been developed to detect in advance the best method
among a given set for clustering a particular trace. Most suggested tools are
either generic or non-automated. In an attempt to provide a semi-automated
approach, Barak and Mokfi [7] presented an MCDM (Multi-Criteria Decision
Making) group model to select and rank clustering methods. In this study,
six clustering methods were evaluated using five indices. Nevertheless, these
processes and results are descriptive, limiting their suitability for automation,
and their outcomes can be difficult to explain and interpret. From the above,
we deduce that current techniques are inadequate for identifying high-quality
clustering methods for cloud datasets.



2.2 Review of Forecasting in Cloud Computing

In the area of cloud computing, researchers have developed various forecast-
ing models for different purposes. Most of these models specifically aim to
address the challenges of dynamic resource management and scaling.

In [16], Lu et al. proposed a model called RVLBPNN to forecast work-
load trends based on historical data, combined with the workloads’ level of
latency sensitivity. Later, [17] presented an improved version of RVLBPNN
by incorporating the K-means clustering method. This new version predicts
future workload trends based on the history of response time characteristics
for these workloads.

Kumar et al. [18] developed an LSTM/RNN-based model to enhance
resource management and optimise performance by accurately predicting
future workloads, which is crucial for efficient operation in cloud environ-
ments. The model predicts workload values based on previous samples. The
authors also presented a similar forecasting approach in [19], embedding a
self-directed learning process to predict future demand from cloud servers.

On the other hand, Qiu et al. [20] introduced an advanced large language
model (LLM) tailored for energy forecasting tasks (e.g., electricity load, solar,
and wind power). In this study, the authors aimed to address the challenge
of what is called hallucination. In this context, hallucination refers to cases
where forecasting models produce outputs that seem plausible but are not
grounded in actual user behaviour. This occurs when applying unstructured
and ambiguous data, similar to those presented previously, which we disre-
garded in our dissertation to avoid such a phenomenon.

It can be concluded from the above that a similar forecasting approach is
followed by the models in these studies. This approach targets and macro-
predicts the overall values and trends of workloads. Such a methodology is
designed to treat users’ patterns in the traces as a whole. Unfortunately, the
traces in their raw form do not reflect any meaningful patterns for prediction.
Thus, the current models lack an efficient mechanism to uncover and capture
the diversity and variability of users’ consumption at a detailed level.

3 Research Methodology

3.1 Extraction tools

This subsection provides a detailed description of our tools, which aim to
ensure more efficient extraction through clustering and achieve the goals
in Section [I.2l These tools are the non-supervisory method for attribute



selection (SeQual) and a technique for clustering attribute combinations and
method pre-detection (EFection).

3.2 SeQual: Attribute Selection Method for Clustering
Cloud Workload Traces

This method selects a clustering attribute for each trace without asking for
supervisory inputs or full trace analysis. It conducts this by first clustering
samples for each attribute. The clustering process is repeated for each at-
tribute for a predefined number of clusters, which ranges from 2 to 50, or
any reasonable range defined by the user. We have used this range, as in the
supervised traces where user identification is available, we have observed that
it is rarely possible for a trace to exhibit more than 50 uniquely identifiable
patterns.

Then, SeQual measures the quality of these clustering results at each point
in the above range using an internal validation metric. For this purpose, we
selected the Silhouette Coefficient (SC) metric, since our technique required
a simple computation process. As a result, this forms a sequence of SC scores
from 2 to 50 for each attribute. By drawing a plot of this sequence, a scale
of quality is obtained for each attribute.

Figures [1| show a sample of such scale of SC quality for the most relevant
attributes from sample trace (the ANL-Interpad 2009). Based on this chart,
each of the attributes (Requested Number of Process, Requested Time, Run
Time, Submit Time and Wait Time) shows different scales with respect to
the silhouette quality.

For instance, the attribute of Requested Number of Processors shows a
higher average of silhouette in comparison to the attribute of Submit Time.
The figure also demonstrates noticeable peaks and troughs in the entire range
of the measurement. In this context, the peaks and troughs represent irreg-
ular and sudden changes in clustering quality. Such behaviour can also be
seen in the SC scales of other trace attributes.

Based on these observations, we concluded that any attribute showing a
high mean of SC with a sharp peak and trough will potentially have a high
ability to extract detailed consumption patterns. As a result, the attributes
with such behaviour will be ranked higher for extraction, while those with
gradually increasing or stable trends will be ranked lower. This was used to
devise the proposed SeQual method for attribute ranking and selection.

We will describe the SeQual method in algorithm [3.2] In the first step,
the user selects a trace T for attribute selection (Step[l)). The trace T' consists
of a set of attributes C' = {cy, ¢a, ..., ¢}, and each attribute ¢, is processed
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Figure 1: Behaviour of SC scores for all applicable attributes in the ANL-
Interpad 2009 trace

individually. For each attribute ¢,, the algorithm performs clustering using
the K-means method, considering values for k ranging from 2 to 50 (Step
5). The results of the clustering process are stored in C,, ;. After clustering,
the quality of the clustering is evaluated using the silhouette coefficient S, ,
which measures how well-separated the clusters are (Step @

This process of clustering and calculating the silhouette score is repeated
for all values of k from 2 to 50 for each attribute. Next, we measure the
Quality(scale, average) for each attribute ¢, by plotting the silhouette scores
Sp.r for each value of k and calculating the average of these scores for each
attribute (Step [8).

Once the Qulality (scale, average) measured for all the attributes, they
are analysed for ranking based on that. The attribute ranked highest if it
exhibited Quality(scale, average) with the sharpest peaks and troughs and
the highest average of silhouette. A peak and trough are identified by finding
a significant drop in the silhouette score over fewer than three clusters (Step
. This entire process is repeated for each attribute ¢, in the input trace
T'. Finally the ranked list of attributes along with their corresponding ranks
are returned (Step [12).



Algorithm 1 The proposed SeQual method
Input: 7T, input traces; C' = {c1, ¢, ..., cn}, attributes from 77 Output:
Ranked attributes [C, r| with corresponding ranks.
1: Start
2:n<+1
3: while n < |C| do
4: for k < 2 to 50 do
5: C.. i < Cluster(c,, k)
6
7
8

Shk < Silhouette(C,, i)
end for
Quality (scale, average): Plot the silhouette score S, for k = 2
to 50 for each ¢, and compute their average.
9: n+<n+1
10: end while
11: r < Rank(C, Quality (scale, average)) > Rank attributes based on
silhouette score analysis (scale, peaks, troughs, and average)
12: Return [C,r]
13: Stop

As illustrated, the SeQual aims at addressing the challenges of ranking the
best single attribute for clustering without the need for supervisory inputs
or analysing the full trace. However, the dimensionality reduction aspect,
where there is a need to detect which combination of attributes is best for
the extraction, requires further consideration. Therefore, we propose the
detection technique in the next subsection.

3.3 EFection: Effectiveness Detection Technique for Clus-
tering Cloud Workload Traces

This subsection describes the process leading to EFection technique. This
technique aims at offering the ability to detect the combination of attributes
and the method that likely to give the highest clustering quality. It provide
such detection without changing the original data, ensuring entire automa-
tion process.

3.3.1 EFection Description

The literature review above, showed importance of selecting an effective
method and attributes to ensure high clustering quality. Algorithm [2| pro-
vides a detailed description of our technique, EFection. In this algorithm,



Algorithm 2 The proposed EFection technique

Input: (M, T)
Output: kpax, m

— e = e
Ll B

15:

Tt < Filtering T

Ty < uniform of random selection 7

D« 0

Cy +— {\V/Ci,Cj eTy: RQ(CZ‘,C]') > 0.5A¢ 7é Cj}
for Ym € M do

if C; # () then
K # P(C)\ 0
for Vk € K do
D+ DU {(l{?, DB<Cclustering(k7 m)))}
end for
else
for V¢; € D do
D+ DU {(Cz‘, DB<Cclustering(Ci7 m>>>}
end for
end if

16: end for
17: Return: (kpax, m : d € D : DB(Celustering (Kmax; ™)) = Mimax)

the user initially inputs the clustering methods and cloud trace into M and
T, respectively. No further parameters are required, and our technique does
not ask for a clustering validation criterion. By default, EFection considers
all the attributes in that trace and all the selected clustering methods, but
the user can limit the choice. Our technique’s algorithm proceeds in three
main phases:

e Pre-processing phase: The algorithm starts by conducting pre-processing

in steps [1] to It begins by filtering the provided trace T to Ty in
step [I The filtering process is conducted by disregarding attributes
with a distribution of constant values above 80%, as they are deemed
unsuitable for clustering. Then, our algorithm randomly selects the
sample portion T from the filtered trace T in step [2l Each attribute
in T, is denoted by c. Each ¢ is a vector of variables (v, vs,...,v,),
essentially a column in the filtered trace, where n is the size of c. Sam-
pling each attribute randomly ensures that the next phases will be less
biased towards any particular part of the workload trace.

Analysis phase: This phase extends from steps [ to [16] to analyse the
filtered attributes and the provided methods for potential detection. In
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this phase, the algorithm measures the R? for all combinations of pair
attributes (c;, ¢; in Ty [4l If the R? between any pair of ¢ exceeds 0.5,
the corresponding pair is stored in C, which is a subset of T As
mentioned previously in the description of methodology, we used R?
for filtering the combination attributes since it can determine a strong
linear correlation between these attributes. Such a strong correlation
can lead to an improvement in clustering quality when it reaches above
0.5, based on our observations. After identifying the combination of
attributes that exhibit strong correlations, the algorithm performs an
outer loop of the size of M [5] for each clustering method m in M. Within
this loop, for each clustering method, if C; is non-empty, the algorithm
finds the power set of Cy (encompassing all potential attributes of ¢;
in Cy). These attributes are stored as subsets in the K set, excluding
the empty set. This step gathers all possible combinations of attributes
that are recommended. The absence of the empty set implies that there
are no combinations selected, suggesting that clustering the attributes
individually is preferable.

If there are recommended combinations (i.e., Cy is not empty), an inner
loop [§ starts to measure the DB score for clustering each dimension of
combinations in K with the method m [0} Each score, along with its
corresponding dimension and clustering method, is catalogued in the
set D. Otherwise, if C is empty, the inner loop of [[2] measures the
DB score for clustering each attribute c¢; in T individually. These
scores, along with their respective attributes and clustering methods,
are then stored in the set D . In this phase, both R? and the DB
metric work together to analyse the targeted samples. R? identifies
which combination of attributes is nominated for clustering, while the
DB metric assesses the internal validation for these attributes or their
individual forms if C; is empty. This analysis is performed separately
for each of the selected clustering methods.

Detection phase: Finally, upon completing the previous phase, the al-
gorithm detects the optimal attribute and clustering method based on
the DB scores. It performs the detection by returning the attribute
subsets k... and the clustering method m associated with the highest
DB score Essentially, the algorithm selects the clustering methods
and attributes that yield the maximum DB score, which we have seen
is likely producing better precision values.
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3.4 MICRAST: Approach for More Efficient Forecast-
ing

We propose the MICRAST approach to predict the future consumption pat-
terns of cloud users. Our approach achieves this through a pipeline compris-
ing segmentation, pre-processing, and forecasting, as illustrated in Figure
In this section, we cover both the training and forecasting phases of the
approach, in comparison to existing methods.

Training Phase This phase proceeds as follows:

e The extraction pipeline employs clustering to uncover, from the input
trace, the hidden patterns that drive users’ requests. Based on our
findings, clustering has demonstrated a strong capability for such ex-
traction. To ensure efficient clustering, we perform two main tasks.
First, we filter the trace by excluding attributes that hold the same
value for more than 80% of the records. Such attributes are considered
unsuitable for clustering, as illustrated in [21].

Second, we apply two tools: the Sequential method of clustering Qual-
ity (SeQual) and the Effectiveness detection of clustering quality (EFec-
tion), to address both uni-attribute and multi-attribute feature selec-
tion scenarios. The SeQual method ranks individual attributes to de-
termine the best candidate for extraction when the user opts for uni-
attribute forecasting. Conversely, the EFection technique selects the
most compatible combination of attributes for extraction in the multi-
attribute forecasting scenario. Notably, if EFection selects only one at-
tribute, it is recommended that the user opts for uni-attribute forecast-
ing instead. Additionally, we use EFection to select the most suitable
clustering method for the chosen attributes. The selected clustering
method then groups similar historical usage records along with their
submission times to form consumption patterns for each user. The
output of this task is a set of segments representing detailed patterns.

e Parallel pre-processing pipelines prepare each segment of detailed pat-
terns for prediction. In their clustered form, these segments exhibit
non-uniform scales and formats that do not satisfy the requirements
for effective data forecasting. Therefore, in these pipelines, we per-
form uniforming processes in parallel, separately for each segment, as
depicted in Figure 2] First, the current time sequence for each seg-
ment is standardised into a consistent format across all traces. We
also apply time alignment to synchronise these segments on the same
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time scales. Second, linear interpolation is implemented to address any
missing records.

Subsequently, the data in each segment are normalised to a range be-
tween 0 and 1. This normalisation is essential for efficient forecasting, as
cloud workload traces often exhibit data on vastly different scales—for
example, the standard deviation of Requested Time compared to Used
Memory varies significantly. Without normalisation, such disparities
can hinder forecasting performance, whereas normalisation facilitates
better compatibility with ANN forecasting models. The output of these
pipelines is a set of uniform segments, each ready to be used as input
for forecasting training.

e A parallel forecasting pipeline feeds the uniformed segments into the
RNN model for training. It is important to emphasise that the RNN
model, which demonstrated high performance in our comparative ex-
periments. Once the RNN model is sufficiently trained, this pipeline
produces a trained network for each segment, which is then stored and
used later to forecast new input traces from the service provider’s sys-
tem.

In addition, this pipeline also computes the average centroid for each
segment. These centroids are stored alongside the corresponding trained
networks to facilitate the prediction phase.

Prediction Phase In this phase, our approach follows the same segmen-
tation and forecasting pipeline used in the training phase. As shown in
Figure [2| the new input data are first clustered into segments of detailed
patterns, after which the average centroid is calculated for each segment.
These segments are then fed into the appropriate trained networks to pre-
dict future events. This is achieved by comparing the centroid of each new
segment to the stored centroids from the training phase. When a match is
found within a defined range, the corresponding trained network is selected
and applied to the current segment for prediction.

In contrast to our approach, the methods adopted in recent cloud studies
follow a singular prediction pipeline. These methods are designed to perform
data preparation tasks, followed by forecasting, all on the full input dataset
without considering any detailed segmentation. The prepared data are used
to train a single forecasting model, which is then directly applied to the
entire new input data during the prediction phase. This traditional pipeline
is referred to as Macro-prediction.

13
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4 Evaluation and Results

4.1 A Comparative Evaluation of SeQual

We begin with a comparative evaluation to assess the performance of the
newly proposed SeQual method. This was carried out using 10,000 records
randomly selected from the supervised trace attributes. The purpose of the
SeQual method is to rank and select clustering attributes to extract detailed
consumption patterns from cloud workload traces. Therefore, the evaluation
criterion is based on each attribute’s ability to produce meaningful patterns
that can distinguish user labels via clustering.

To perform the comparison, we employed a ranking-difference approach.
Each attribute was individually clustered in an attempt to reveal the corre-
sponding users’ labels. The clustering outputs were then evaluated against
the user ID attribute using three quality metrics: Precision, Entropy, and
Adjusted Rand Index. The closer the clustering results are to the actual user
IDs, the higher the true rank of the attribute.

Next, we applied the SeQual method to rank the attributes and compared
its output with three commonly used feature selection methods: Laplacian
Score (LS), Random Forest (RF), and Principal Component Filtering (PCF).
For this comparison, we used unsupervised traces.

For the supervised methods (PCF and RF), the user ID was used as the
reference for generating the ranking. In contrast, for the unsupervised meth-
ods (SeQual and LS), the input attributes were evaluated without exposing
any direct user identifiers (e.g., user IDs, user groups, or executable names).
The effectiveness of each selection method was measured using the three met-
rics individually to avoid introducing bias from reliance on a single quality
measure.

The overall comparison of SeQual with LS, PCF, and RF was performed
using a weighting process. In this process, each attribute selected by a given
method was assigned a weight based on the proximity of its clustering quality
to the best-performing attribute, calculated as:

Clustering quality for selected attribute
Weighted selection = 64 Y

Highest clustering quality

In addition, we extended the evaluation by analysing the distributional
characteristics of the supervised traces used for attribute ranking. Specifi-
cally, we examined two statistical measures relevant to clustering behaviour:
the Coefficient of Variation (CV) and Skewness. We computed these mea-
sures for all attributes across the 19 supervised traces, then identified the
characteristic ranges within which attribute rankings were most effective.

15



This analysis indicates a potential correlation between the quality of at-
tribute ranking and these statistical properties. Accordingly, unsupervised
traces that fall within similar ranges of CV and Skewness are expected to
exhibit ranking performance comparable to those observed in the supervised
traces.

4.1.1 Testing and Results

To present the performance of each method in greater detail, we displayed
the ranges the input traces along with all performance metrics, in the box-
plots of Figure |3 These boxplots illustrate the distribution of each feature
selection method’s performance. A method exhibiting the highest and least
variable range of clustering quality across all validation metrics is considered
to demonstrate more stable performance. Accordingly, SeQual showed the
greatest stability among the methods tested.

As shown in Figure[3] the SeQual method outperforms all other evaluated
methods across the three quality metrics: Precision, Entropy, and Adjusted
Rand Index. Specifically, according to the Adjusted Rand Index, SeQual
achieves an attribute ranking accuracy of approximately 90%, compared to
74% for both LS and RF, and 79% for PCF. Regarding the Precision metric,
SeQual attained a score of 99%, while the other methods achieved around
92%. Conversely, the Entropy metric exhibited less variation among meth-
ods, with SeQual scoring 99% and LS, RF, and PCF all achieving roughly
98%.

Based on these results, it can be concluded that despite being an un-
supervised approach, SeQual demonstrates superior performance over the
compared methods by margins ranging from approximately 8% to 28%. This
improved performance is likely attributable to the fact that SeQual directly
performs sample clustering during the ranking process, thereby capturing the
underlying data structure more effectively.

4.2 EFection Validation: Accuracy, Comparison, and
Applicability

4.2.1 EFection Accuracy

In the accuracy experiment, we used various combinations of clustering meth-
ods and attributes sampled from all the traces listed in Table [I] We began
by measuring the precision of clustering for each of these samples. As in pre-
vious experiments described in this dissertation, clustering was performed

16
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with the goal of extracting users’ labels based on their usage patterns, and
precision was measured accordingly.

The attribu
considered the

te and method combination yielding the highest precision was
optimal choice. We then applied the EFection technique to
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Table 1: Scenario for correct EFection suggestion

Clustering | Attributes | MD clus- | Individual | EFection  Sug-
method tering Clustering | gestion
precision precision

Wait Time 65% Run Time with
K-means 7% F.First

Run Time 81%

Wait Time 86%
F.First Run Time 91% 96%

predict the best attribute-method combination for each input. To evalu-
ate its performance, we calculated the overall percentage of predictions that
matched the optimal choices. For the incorrect suggestions, we measured
the deviation from the optimal selections and used these to determine the
percentage error.

Based on these measurements, we calculated the overall accuracy of the
EFection technique. We illustrated this experiment using two representative
scenarios, as outlined below:

Scenario (1): Accuracy Measurement for Correct Detection In this
scenario, we considered two attributes (Run Time and Wait Time) from the
PIK-TPLEX trace and two clustering methods (K-means and F. First). We
used the EFection technique to identify the best combination of attributes
and method for clustering.

First, we measured the precision of the full trace for these attributes. As
shown in Table [l the precision for clustering Wait Time was 65% and 81%
for Run Time when using the K-means method. By combining these two
attributes, the precision dropped to 77%. While using the F. First method,
the Wait Time recorded 86% precision and 96% for the Run Time. Similarly,
the results of their combination dropped to 91%. By comparing these results
for the F. First and K-means methods, we noticed that F. First showed higher
precision than K-means, with a better result for individual clustering. These
results showed that it was better to use Run Time individually with the F.
First method for the clustering process.

Second, we compared the above results with the EFection suggestion.
Our technique suggested clustering the attribute of Run Time individually
rather than combining it with Wait Time when using K-means. Similarly,
for F. First, it proposed clustering run time individually. For method com-
parison, EFection suggested using the F. First clustering method rather than
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Table 2: Scenario for wrong EFection suggestion

Clustering | Attributes | MD clus- | Individual | EFection Suggestion
method tering Clustering
precision precision

Run Time 58% combine (Requested Time

K-means 55% and Run Time) with K-
means method

Req. Time 57%

Run Time 53%
F.First Req. Time | 53% 55%

K-means. The comparison showed that the suggestion from our technique
chose correctly the highest possible precision for the above scenario, in which
the accuracy will be recorded as (96%/96%= 1) based on the following equa-

tion: ) o
suggested option precision

(1)

Accuracy =
Y highest possible precision

Scenario(2): Accuracy measurement for wrong detection This sce-
nario considers two attributes of Run Time and Requested Time from the
SDSC DS 2004 trace and both K-means and EM methods. The result in Ta-
ble 2| showed that the precision was the highest, around 58%, for clustering
Run Time individually with K-means. While EFection suggested using the
attribute (Requested Time and Run Time) and the K-means method in the
clustering process. In this scenario, we measured the difference between the
precision of our technique’s suggestion and the highest precision. Using the
equation [4.2.1] the error percentage for this case recorded (55%,/58%= 0.94).

Experimental results By applying the above evaluation methodology,
the EFection technique was able to detect the best combination of attributes
and clustering method with optimal choice (Accuracy = 1) in 83% of these
cases. While the distribution of error percentages ranged between 2.8% and
10.8%.

4.2.2 Comparison with Recent Related Works

As previously mentioned, we introduced EFection as an automated technique
for simultaneously detecting useful combinations of attributes and cluster-
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ing methods. Most related works address these factors separately, offering
individual techniques for each. To address dimensionality, Daraghmeh et
al. employed a PCA-based approach, while Barak and Mokfi [7] utilised
an MCDM group methodology for method selection. Therefore, we evalu-
ated EFection by comparing it with an integrated implementation of these
two approaches (PCA & MCDM).

1004 100% 100%

90% 38%
80%

70%

60%

53%
50%

Precision

40% 399
30%
20%
10%

0%
EFection PCA/MCDM

Figure 4: Comparison between EFection and PCA & MCDM performance

For the experiment, we used samples comprising clustering methods. Re-
garding PCA & MCDM, we first applied the MCDM methodology to select
the clustering method, followed by PCA for dimensionality reduction of the
attributes. Then, we applied EFection on the same samples. Similar to
other experiments in this dissertation, we used the clustering process with
the selected methods and attributes to extract users’ labels and calculated the
precision of the results. Finally, we compared the precision of the suggestions
from EFection and PCA & MCDM with the combination that yielded the
highest clustering precision, calculating how closely each suggestion matched
the highest result.

The results, shown in Figure [4] as boxplots, reveal that EFection’s pre-
cision ranged from 74% to 100%, with a median of 100%. Meanwhile, the
PCA & MCDM approach achieved precision ranging from 53% to 100%, with
a median of 88%. Additionally, EFection had an average precision of 91%),
compared to around 79% for PCA & MCDM. This discrepancy is attributed
to the PCA component generating new features, which reduced clustering
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Table 3: Comparison between EFection’s suggestions and attributes used in
a utilisation improvement study

Clustering method CT | NT | Reference

K-means (Euclidean) | 85% | 15% | Yousif and Al-Dualimy [3]
K-means (Manhattan) | 82% | 18% | Yousif and Al-Dualimy [3]
Density Based 66% | 34% | Yousif and Al-Dualimy [3]
SOM 61% | 39% | EFection suggestion -

precision. These findings demonstrate that EFection offers better precision
and stability compared to the combined PCA & MCDM approach, improving
accuracy by 11 percentage points.

4.2.3 EFection Applicability in Clustering-based Studies

We evaluated EFection’s applicability by comparing the clustering quality of
its selections against the preferences in two related studies. We conducted
this by employing our technique to select the best method for a utilization
improvement study [3] and the most effective attributes for a pattern ex-
traction study [14]. We selected these works as they align with the dataset
characteristic of this thesis. Our technique’s comparison against each study
is illustrated as follows:

Compare Clustering Method Selection Against Utilisation Improve-
ment Study The first experiment compared the clustering quality of the
method suggested by our technique with the existing results in [3]. In their
study, the authors employed K-means and density-based methods to clus-
ter 12,500 records of Google workload traces, aiming at improving resource
utilisation. For distance measures in K-means clustering, this work used
Euclidean and Manhattan metrics. The number of clusters for these two
methods was set at two. Two groups of attributes used in this test were
computer tasks (CT) and non-computer tasks (NT). The selected attributes
for CT included CPU rate, maximum CPU rate, cycles per instruction, and
sampled CPU usage. For NT, the attributes were disc I/O time, local disc
space usage, and maximum disc I/O time. To detect the best method, we
adhered to the criterion that "The clustering algorithm, which divides the
workload traces into two groups with an almost equal number of elements,
is better to be applied" [3].

The results of using our technique showed that better results could be
achieved by using the SOM method to cluster Google workload traces. By
implementing this choice, SOM divided the traces into two parts, with a
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Table 4: Comparison between EFection’s suggestions and the methods used
in a pattern extraction study

Attributes No. clusters | No. clusters | Reference
(Google trace) (Bitbrain)
CPU 13 15 Eva et al. [14]
CPU + Memory | 18 15 Eva et al. [14]
CPU + Mem- | 21 17 EFection suggestions
ory + Usage +
Timestamp

proportion of 61% for CT and 39% for NT. This indicates that SOM was more
effective than K-means and density-based methods in segregating the tasks
of CT and NT, as illustrated in Table ] This demonstrates that EFection
successfully recommended a more efficient clustering method in this study.

Compare Attribute Selection Against Pattern Extraction Study
In the second experiment, we compared the quality achieved by EFection’s
suggested attributes against the quality of the attributes used in [14]. In
this study, Eva et al. investigated the extraction of characterisation and
patterns of Google and Bitbrain workload traces based on CPU and memory
utilisation. Two attributes were employed: CPU and Memory Usage. The
paper utilised the elbow method to select the optimal predefined number of
clusters. The study demonstrated that clustering results are more detailed
when using the combination of CPU and Memory Usage compared to using
them individually. The criteria employed were able to group the datasets
with more detailed characterisation.

By applying the EFection technique, it suggests that even more efficient
extraction (clustering) can be achieved by using the combination of CPU,
Memory Usage, and Time-stamp instead of the original attributes, as pre-
sented in Table {4l The EFection suggestion resulted in 21 clusters for Google
Trace and 17 for Bitbrain. This is more detailed compared to the original
results, which were around 13 to 18 clusters for Google Trace and 15 for Bit-
brain. This demonstrates the ability of EFection to detect better attributes
than those used in related studies.

4.3 MICRAST vs LSTM-RNN for Related Work

In this evaluation, we compared the performance of MICRAST with the
LSTM-RNN approach. This was conducted for both uni-attribute and multi-

22



Table 5: Comparison of uni-attribute forecasting results

Forecasting approach | R? | MAPE
LSTM-RNN 30% | 42.78%
MICRAST 97% | 2.38%

attribute forecasting scenarios to ensure comprehensive validation. To mea-
sure each approach’s performance, we used the R? and MAPE metrics. We
selected these metrics because they provide a clear scale for measuring fore-
casting accuracy. They assess the degree of alignment between actual and
predicted data with a clear and accurate percentage-based value, compara-
ble across different forecasting models. We present the comparison results
for each scenario.

Before proceeding to the results, we discuss the experimental configura-
tion. Both forecasting scenarios use all the selected traces. Accordingly, we
first utilised both approaches to predict consumption patterns for the se-
lected attribute, which represents users’ usage records (i.e., Requested Num-
ber of Processors). Second, in the multi-attribute scenario, we repeated the
previous steps with one difference: in this case, we trained the forecasting
models with the historical records of an additional attribute (i.e., RunTime).
Accordingly, we used the history of two attributes from the cloud trace to
forecast the value of one particular attribute. We selected these attributes
as they reflect major aspects of consumption (demand level and duration).

4.3.1 Uni-attribute Forecasting Scenario

Table [5| compares the average R? and MAPE scores for forecasting all the
selected traces by each approach. It demonstrates that our approach achieved
better R? and MAPE by 67% and 40%, respectively. These results show a
potentially significant improvement in accuracy when using our approach for
uni-attribute forecasting.

4.3.2 Multi-attribute Forecasting Scenario

In the second scenario, we observed that the related work exhibited even
lower performance than in the previous case. Table [6]shows the LSTM-RNN
recored even lower R? dropped by 3 percent. While, our approach maintained
it’s high performance with 97% R? and only 1% MAPE.

These results are due to challenges caused by the use of multiple attributes
with sudden change characteristics. Such characteristics make it difficult for
the LSTM-RNN approach to capture possible correlations between these at-
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Table 6: Comparison of multi-attribute forecasting results

Forecasting approach | R? | MAPE
LSTM-RNN 27% 43%
MICRAST 97% 1%

tributes, as they fail to provide meaningful patterns. In contrast, the extrac-
tion phase in MICRAST enables the uncovering of detailed attribute patterns
through clustering, making it easier for the prediction model (i.e., the RNN
model) to identify potential correlations.

4.4 Confidence range for MICRAST

In this experiment, we measured forecasting confidence by demonstrating
the change in R? values for our approach as we extended the range of the
forecast. We varied the range from 0.05% to 20% of each trace’s training
data (e.g., if the training data was 1 hour long, we made forecasts from 18
seconds to 9 minutes into the future). We have chosen this range because
our observations showed that within this range there are significant chances
of consumption pattern changes for each trace. Therefore, evaluating across
the complete range demonstrates our ability to cope with forecasting even
these changes.

We applied the same experimental configurations as in the previous eval-
uation. Similarly, we conducted uni-attribute forecasting of users’ consump-
tion patterns of Requested Number of Processors for all the selected traces.
Finally, we calculated the median of these traces’ R? for each step. Ulti-
mately, the (R?-median, R?) over a particular forecasting range gives our
MICRAST confidence.

The results in Figure |o|show that our approach forecasted the majority of
the traces with R? distributed within a range of 5 percentage points around
the median of 98% RZ2. This range expanded to 19 percentage points around
the median of 93% R? when reaching 20% of the steps in the training data.
This expansion is mainly noticed in the traces of DAS2 and ANL-Interpad.
As mentioned previously, these traces exhibit a significant characteristic of
sudden changes in their consumption patterns. This characteristic raises
more challenges for the RNN model when the time step increases, even after
the extraction process, affecting the prediction quality over time. Neverthe-
less, Figure |5 shows that our approach can maintain the high R? median
around 95% to 98% for the majority of the traces, while it drops by only 5
percentage points (to 93%) when reaching the full 20% of the rows from the
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Figure 5: Confidence range of the MICRAST approach over time

training trace. This demonstrates that predictions up to 4% of the trace can
be relied on for all traces, while for most traces we can reliably predict even
20% into the future of the training data.

To wrap up, the evaluation and results in this section underscore the
effectiveness of our extraction and forecasting tools. These findings highlight
the robustness and applicability of our methods, setting a solid foundation
for future research and development. In the next section, we will highlight
these contributions and provide conclusions on their implications for future
work.

5 Conclusion

5.1 Summary

In an attempt to obtain better cloud resource management, many studies
have been used to extract and predict vital information from cloud records
through clustering and forecasting tools. Such studies can assist greatly in
steering users towards more aware usage if they target the patterns in these
records at a detailed level.

Therefore, in Section [2| we initially conducted a through literature re-
view. This review demonstrated the necessity of providing selection tools for
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clustering attributes and methods and developing an approach to forecasting
that enables better detailed extraction and prediction of cloud patterns.

As a result, this thesis presented in Section [3]an analysis tools that provide
the aforementioned abilities. For single-attribute selection, we proposed the
SeQual method that ranks the candidate attributes for clustering by exploit-
ing the ability of the silhouette coefficient metric. While, for multi-attributes
and clustering method pre-detection, we developed EFection, which accom-
plishes this by using a combination of internal validation metrics (Davies-
Bouldin) and the Coefficient of Determination. Whereas, for efficient predic-
tion, we proposed the MICRAST which captures and predicts the detailed
patterns from cloud traces. Our approach accomplishes this by wrapping up
our previous extraction tool with phases of uniforming and time alignment.

The evaluation results in Section {4 demonstrated the performance of our
extraction and forecasting tools. They showed that SeQual can compete
with the supervised selection methods and perform better than unsupervised
ones by around 8% to 28%. The results also supported the ability of the
EFection technique to offer automated detection with high accuracy, around
83%, surpassing prior art by 15%. On the other hand, the assessment of
MICRAST demonstrated its ability to forecast detailed patterns with a level
of accuracy between 95% and 98%, outdoing related works by approximately
70%.

5.2 Contribution to Science

The new scientific findings of this dissertation are presented as follows:

o My proposed method of clustering attribute selection, SeQual, performs
more accurately without requiring supervisory inputs. It asks only for
the data as input, making it more applicable to cloud traces that do not
provide much information. To enable such selection, I performed sam-
ple clustering of the input attributes across a range of expected cluster
numbers k. I then employed the silhouette coefficient metric to form
a scale of quality scores for each wvalue of k across these attributes.
Finally, I examined this scale for the highest average silhouette score
and identified the pattern of peaks and troughs to rank each attribute.
The evaluation results support that my SeQual delivers higher accuracy
compared to related methods by around 8% to 28%.

Related Publications: [P1], [P3], [P5]

o My technique of pre-detecting multi-attribute combinations and clus-
tering methods, EFection, operates without merging these attributes or
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involving manual intervention. By doing so, it preserves the originality
of the information to be extracted and ensures its reliability for repeated
tasks. To achieve such pre-detection, I utilised both the Davies—Bouldin
index and the R? metric to analyse the quality of clustering samples for
different attribute—method combinations. The validation results demon-
strate that my EFection outperforms related works by approrimately
15%.

Related Publications: [P2], [P4]

e My new approach to forecasting, MICRAST, micro-predicts cloud re-
source consumption by training forecasting models on pre-processed, de-
tailed patterns extracted from cloud traces. It produces a trained net-
work for each of the extracted patterns, which is then used to forecast
the input trace. To support such prediction, I integrated both SeQual
and EFection during the extraction phase, along with uniforming and
time alignment for pre-processing. The validations of my approach MI-
CRAST show that it achieves a confidence level between 95% and 98%,
providing around 70% higher accuracy compared to existing macro-

prediction approaches.
Related Publication: [P6]

5.3 Recommendations and Future Work

For future work, we have identified the following directions for our analysis
tools. We plan to investigate whether the integration of other internal valida-
tion metrics, such as the Dunn Index, can enhance the accuracy of detection
within our extraction tools, SeQual and EFection.

Furthermore, we plan to test our tools on more diverse types of datasets
beyond scientific cloud traces (e.g., web applications, serverless cloud func-
tions, IoT systems, or platform-specific services like Azure). This will support
the applicability of these tools for more general use. It is expected that our
tools will be applicable to these traces that exhibit general characteristics
similar to those of the traces used in this thesis for validation. However,
using such data may raise the possibility of prediction hallucination, as dis-
cussed in Section To mitigate this, it is recommended that future sys-
tems incorporate a human-in-the-loop mechanism. In this approach, users
or domain experts would have the ability to review forecast outputs, provide
contextual input, or override model predictions when necessary. Introducing
this form of human oversight could improve the reliability and contextual
relevance of the predictions, while also supporting ethical alignment. This
recommendation aims to reduce over-reliance on automated decisions and
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promote transparency, trust, and accountability in data-driven forecasting
systems.
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