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Preface 

The development of intelligent machines capable of operating autonomously in complex, dynamic 

environments has long been a central pursuit in the fields of artificial intelligence and robotics. While 

significant progress has been made in mechanical control, sensory perception, and cognitive reasoning, the 

integration of affective and ethologically grounded behaviour in artificial agents remains a relatively 

underexplored and challenging frontier. This dissertation addresses this gap by investigating how 

ethologically inspired emotional constructs specifically fear, escape, and attack, as conceptualized in 

ethology can be computationally modeled, behaviourally expressed, and operationally deployed within 

autonomous robotic systems. 

Drawing on Archer’s ethological framework of aggression and fear in vertebrates, this research explores 

how these adaptive emotional responses can be meaningfully translated into robotic behaviour that is both 

functionally intelligent and socially interpretable. The central argument of this work is that embedding 

emotional constructs into machine behaviour not only enhances the realism and expressiveness of 

autonomous agents but also significantly improves their capacity to interact safely, intuitively, and  

adaptively with humans and dynamic environments. The dissertation is structured around three core 

contributions, each representing a progressive development in the conceptual, methodological, and 

technical integration of Archer’s ethological model into artificial systems. 

The research first introduces a novel framework that formalizes Archer’s model using Fuzzy Behaviour 

Description Language (FBDL). This represents the first machine-executable and computationally 

interpretable model of ethologically defined aggression and fear, utilizing fuzzy linguistic variables and 

rule-based reasoning. The framework enables artificial agents to generate nuanced, context-sensitive 

emotional responses and is characterized by its dual interpretability being both human-readable and 

machine-operational. It supports real-time behavioural execution, visual tracking of emotion-driven 

behavioural trajectories, and adaptability through learning algorithms. This contribution lays the theoretical 

foundation for embedding affective dynamics into intelligent control systems.  

Building on this foundation, the research then extends into embodied robotics by implementing an 

ethologically inspired fuzzy state machine within the Robot Operating System (ROS). Leveraging real-time 

sensory data (e.g., LIDAR), Simultaneous Localization and Mapping (SLAM),  and fuzzy logic controllers, 

the system enables robots to exhibit behaviour patterns such as escape and attack in response to dynamically 
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evolving environmental cues. Unlike conventional reactive systems based on deterministic rule sets, the 

proposed model accommodates uncertainty, allowing fluid transitions between behavioural states based on 

the situational appraisal of threat levels. The architecture supports both individual and multi -agent 

coordination, offering a scalable approach suitable for complex scenarios such as collaborative rescue 

missions, autonomous surveillance, and navigation in unstructured or hazardous terrains. 

Further extending this work, the research introduces a hybrid framework that integrates Virtual Force Field 

(VFF) navigation with fuzzy emotional behaviour coordination. This system enables robots to evaluate 

spatial constraints alongside emotional variables such as perceived threat, environmental familiarity, and 

escape feasibility. By embedding affective logic into behavioural decision-making, the robot modulates its 

trajectory based on internal states like fear, rather than relying solely on geometric op timization. 

Implemented within the Robot Operating System (ROS) and enhanced by Simultaneous Localization and 

Mapping (SLAM), LIDAR, and sonar sensing, the framework allows real-time, adaptive navigation that 

mirrors ethological escape patterns. This biologically inspired architecture not only improves 

interpretability and responsiveness but also lays a foundation for emotionally intelligent agents in human-

centric or safety-critical environments. 

Together, these contributions form a unified theoretical and technical foundation for affective robotics, 

grounded in both ethological science and fuzzy logic control. This work advances current understanding of 

artificial emotional intelligence, affective behaviour generation, and autonomous navigation. Moreover, it 

provides practical tools and architectures for designing emotionally responsive and socially aware 

machines. 

This dissertation is the result of an interdisciplinary inquiry, drawing upon theories and methods from 

behavioural ethology, cognitive science, robotics, control systems, and artificial intelligence. The journey 

was intellectually demanding and profoundly enriching. I extend my deepest appreciation to my 

supervisors, collaborators, and academic mentors, whose guidance, rigor, and insight shaped this work. I 

am equally grateful to my peers and loved ones, whose unwavering encouragement sustained me through 

the many phases of research and writing. 

It is my hope that this work not only contributes meaningfully to the academic community but also serves 

as a practical blueprint for the development of the next generation of intelligent, adaptive, and emotionally 

responsive machines that reflect, in their behaviour, the nuanced complexity of the ethological systems that 

inspired them. 
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Chapter 1: Introduction 

1.1 Overview 

In recent years, there has been a growing connection between ethology the scientific study of animal 

behaviour and the fields of robotics and artificial intelligence (AI). This connection is driven by a shared 

goal: to build robotic machines that don't just work mechanically, but can adapt and behave intelligently, 

much like animals do. Ethology looks at behaviours like communication, self-defense, and aggression, both 

in nature and in controlled experiments. These studies offer important insights for building systems that can 

handle real-world complexity and unpredictability [1]. 

At the center of ethological modeling is the careful observation of how animals behave. From this, 

researchers build behaviour-based models structured systems that explain actions in terms of responses to 

specific situations [2]. These models are now helping engineers design intelligent robots by breaking down 

complex tasks into smaller, behaviour-focused modules. This cross-disciplinary field is known as 

Ethorobotics [3], combining ethology, robotics, and fuzzy logic. It forms the scientific foundation of this 

work by translating animal behaviour strategies into control systems for robots, helping bridge the gap 

between natural and artificial intelligence. 

This research presents a innovative methodology called the Fuzzy Behaviour Description Language 

(FBDL) [4], which is used to describe and analyze models of aggression based on animal behaviour, 

especially following Archer’s ethological framework [5]. FBDL uses fuzzy logic and fuzzy set theory to 

handle the complexity of aggression how it emerges from internal states, outside stimuli, and the situation 

an agent is in. 

Before going further, it's important to clarify that “behaviour” in this context means the full range of actions 

and reactions that animals or robots show in response to their environment [6].  By using behaviour-based 

architecture, robots can tackle complex problems by combining simple behaviour modules [7]. For 

example, a robot navigating on its own may use separate modules for following a path, avoiding obstacles, 

and reaching a goal. Each module works independently but is part of a well-coordinated system. This design 

makes the robot more flexible and adaptable, allowing it to perform well in changing and uncertain 

environments across different tasks. 

 



 

Chapter 1: Introduction 

 

4 

 

1.2 History 

Ethology offers valuable perspectives for designing intelligent robotic systems by analyzing how animals 

behave and adapt to their environments [8]. One of the most influential contributions to this field comes 

from Nikolaas Tinbergen, who formulated four essential questions to understand behaviour: function, 

mechanism, evolution, and ontogeny [9]. Though originally intended for studying animal behaviour, these 

questions have been successfully adapted to guide robotics research and behaviour modeling. 

In robotics, the question of function concerns the role a behaviour plays in achieving operational goals, such 

as efficient navigation, threat avoidance, or mission completion. For example, aggressive behaviour in a 

security robot may serve to deter intruders or defend territory. The mechanism question examines the 

internal and external triggers that initiate behaviour. In robotic systems, this often involves interpreting 

sensory data such as proximity or motion detection using fuzzy logic to transition between behavioural 

states like warning, retreat, or attack. These fuzzy variables help manage uncertainty and allow the robot to 

respond flexibly. 

The evolutionary dimension relates to how robotic behaviours are refined over time or generalized across 

different platforms. A behaviour developed for land-based navigation, for instance, can be adapted for aerial 

or underwater systems through abstraction and iterative testing. Lastly, ontogeny refers to the development 

of behaviour through learning or environmental interaction. In robotic terms, this involves updating 

behavioural rules based on experience, allowing the robot to refine its responses such as distinguishing 

between familiar and unfamiliar entities through repeated encounters.  

Applying these ethological dimensions enables the creation of adaptive, goal-driven control models in 

robotics. Complex dynamics like predator-prey interactions or dominance hierarchies can be translated into 

control rules for navigation, conflict resolution, or escape maneuvers. Specific behavioural domains such 

as aggression, communication, and defense provide rich templates for designing realistic and responsive 

robotic behaviour [10]. 

This research applies fuzzy logic and fuzzy behaviour modeling to simulate aggression patterns observed 

in animals. Fuzzy logic handles uncertainty by assigning degrees of truth to inputs, enabling robots to 

respond with greater flexibility than rigid, rule-based systems [11]. A key implementation of this approach 

is the Fuzzy State Machine (FSM), which incorporates fuzzy rules into robotic decision-making to navigate 

uncertainty in dynamic environments [12]. Unlike traditional finite state machines that use fixed state 
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transitions, FSMs allow for smooth, gradual changes between behaviours, reducing abrupt shifts and 

improving both resilience and adaptability [13]. 

Robotic behaviour is commonly structured through control architectures such as deliberative, reactive, 

hybrid, and behaviour-based systems [14]. Fuzzy logic, known for its effectiveness in handling uncertainty, 

is often integrated into these frameworks to support flexible and adaptive decision-making. In deliberative 

control, also known as "Think Then Act," robots analyze current sensory inputs along with past experiences 

to plan their actions. This approach requires building internal symbolic models of the environment, enabling 

high-level reasoning and long-term planning [14]. While it supports optimized decision-making, its reliance 

on computation and planning time may reduce responsiveness in fast-changing environments. In contrast, 

reactive control or "Don't Think, Just Act" maps sensory inputs directly to motor outputs without relying 

on internal models. Robots using this method follow predefined rules to generate immediate responses, 

making it well-suited for unpredictable or rapidly evolving situations [15]. Its simplicity allows for quick 

reactions, though it often lacks strategic depth and adaptability over time.  

Hybrid control combines the strengths of deliberative and reactive paradigms [16]. Known as 

"Simultaneously Think and Act," it enables robots to respond immediately to environmental stimuli while 

also planning complex behaviours when time allows. Typically, this is implemented through a layered 

architecture, where a deliberative layer manages long-term planning, and a reactive layer handles real-time 

interaction. Effective coordination between these layers ensures cohesive behaviour, even under unexpected 

conditions. Another important control paradigm is the behaviour-based control approach [17]. This method 

organizes robotic systems into multiple distributed modules, known as behaviours, that operate 

concurrently and interact dynamically. Following the principle "Think the Way You Act," these modules 

operate concurrently and interact dynamically based on sensory inputs. This architecture allows robots to 

adapt through environmental interaction, supporting learning and robustness in complex,  real-world 

scenarios [18] [19]. 

Building on these frameworks, this study models robotic aggression based on Archer’s ethological 

framework [5]. The aim is to replicate key patterns observed in animals, such as fear, flight, attack, or 

freezing, and to encode responses to familiar versus unfamiliar stimuli. For instance, encountering an 

unfamiliar agent may trigger a fear-based retreat, while recognition of a familiar one could lead to reduced 

aggression. These behaviours can be translated into robotic rules that drive realistic threat responses. To 

support this, recognition algorithms are integrated to distinguish between known and unknown entities, and 
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combined with navigation and mapping systems, they allow the robot to adapt its behaviour based on 

environmental familiarity. By fusing these perceptual and behavioural modules, the system can simulate 

complex aggression dynamics in diverse scenarios, ensuring both functional performance and ethological 

credibility. 

1.3 Motivation  

The motivation for Implementing Ethologically Inspired Fuzzy Behaviour-Based Systems stems from the 

desire to make robotic systems behave more naturally, especially when responding to danger, navigating 

unfamiliar environments, or engaging in social interactions. Traditional robotic systems often rely on binary 

decision-making simple yes/no logic which lacks the flexibility required to operate effectively in dynamic, 

real-world conditions. In contrast, animals exhibit a broad range of adaptive behaviours such as fleeing, 

freezing, or displaying aggression that are context-sensitive and shaped by evolutionary pressures. These 

behaviours reflect not only mechanical reactions but also emotional and situational assessments that 

enhance survival. The goal is to design robots that act not only efficiently but also naturally, adjusting their 

actions in real time based on what they perceive. 

This study draws from ethological frameworks, particularly Archer’s theory of aggression and fear, to 

enable robots to interpret and respond to their environment in ways that mimic animal decision-making 

under stress. Building on this foundation, the research integrates principles from ethology, fuzzy behaviour-

based control, and Virtual Force Field navigation. This combination allows robots to make graded decisions 

based on continuous variables such as perceived threat levels, proximity, and environmental familiarity 

rather than relying on rigid rules. 

Beyond technical innovation, this work aims to develop emotionally aware, context-sensitive robotic 

systems. Such systems are especially valuable in applications like search and rescue, where quick, instinct-

like responses are crucial, or in human-robot interaction, where socially intelligent behaviour enhances trust 

and safety. Additionally, by simulating emotional behaviour computationally, the research supports ethical 

advancements by potentially reducing reliance on animal-based behavioural studies. Ultimately, the goal is 

to create robotic systems that fuse computational precision with the adaptive fluidity of biological 

intelligence. 
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1.4 Methodology 

To develop an emotionally aware and behaviourally intelligent robotic system, this research integrates core 

principles from animal behaviour science, fuzzy logic, and robotic control systems  [Aaqib1- Aaqib7]. The 

framework is primarily grounded in Archer’s ethological model of aggression and fear [5], which offers a 

conceptual basis for modeling stress-responsive behaviours. Additional behavioural cues are drawn from 

human-animal interaction studies [20], ensuring the system reflects real-world, socially relevant contexts. 

At the center of the design is a fuzzy behaviour-based control architecture, inspired by Archer’s model. 

This architecture processes environmental variables such as distance to other agents, f amiliarity with the 

environment or individuals, and availability of escape routes to determine both the intensity and direction 

of behavioural responses. Instead of rigid, binary decisions, the system uses fuzzy logic to assess how 

strongly the robot should react in different scenarios, selecting behaviours like escape, attack, or immobility 

based on contextual input. 

Behavioural decisions are encoded using the Fuzzy Behaviour Description Language (FBDL) [4], a 

modular, human-readable framework for defining fuzzy rules that support adaptive, real-time decision-

making. FBDL replaces static, pre-programmed responses with context-sensitive evaluations. The 

methodology follows a structured three-step process. First, Archer’s model is translated into a fuzzy 

rulebase using FBDL, capturing key variables such as proximity, familiarity, and perceived threat level. Its 

modular structure allows for the addition of further behaviour categories such as social bonding, 

cooperation, or mating making FBDL a flexible tool for biologically inspired control.  

In the second step, the fuzzy framework is implemented within a Fuzzy State Machine (FSM) to allow 

smooth transitions between behavioural states. The system is developed and tested in the Robot Operating 

System (ROS) environment, with simulations conducted in Gazebo and real-time visualization via RViz. 

LIDAR sensors provide real-time obstacle detection and distance estimation, while Simultaneous 

Localization and Mapping (SLAM) enables the robot to build and continuously update an internal map of 

its surroundings. This multi-modal sensory input feeds directly into the fuzzy control system, ensuring 

ongoing context-awareness. 

The third step integrates the fuzzy behavioural architecture with a Virtual Force Field (VFF) navigation 

mechanism. Behavioural outputs inform the computation of attractive and repulsive force vectors, where 

attractive forces guide goal-seeking and repulsive forces promote threat avoidance. A key innovation is the 

dynamic scaling of repulsive forces based on internal emotional states, such as fear or aggression. For 
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example, higher fear levels increase the magnitude of repulsion, prompting robots to retreat more quickly 

and decisively. This emotion-weight navigation enhances the realism and safety of robotic behaviour in 

complex and uncertain environments. 

The methodology presents a biologically grounded yet computationally robust approach to robotic control. 

By integrating fuzzy logic, ethological theory, and advanced simulation platforms, this study enables 

artificial agents to exhibit emotionally nuanced and context-sensitive behaviours, establishing a new 

benchmark in the design of intelligent, adaptive robotic systems. 

1.5 Simulation Environment and Experimental Setup 

The ethologically inspired fuzzy behaviour-based control system was developed and tested using the Robot 

Operating System (ROS), which served as the middleware framework for integrating sensing, decision-

making, and navigation. ROS provides a modular, publish-subscribe architecture that enables real-time 

communication between the fuzzy logic controller, sensors, and actuators making it particularly suitable 

for behaviour-based robotic control. Its flexibility, scalability, and seamless integration with tools such as 

Gazebo and RViz align well with the modular structure of the proposed system. Furthermore, ROS’s 

support for real-time processing enhances the system’s capability for adaptive, emotionally informed 

decision-making. Overall, ROS provides a robust and extensible platform for developing and validating 

biologically inspired robotic architectures. 

Simulations were conducted using ROS-integrated tools. The primary simulation environment was Gazebo, 

a physics-based robotics simulator capable of modeling dynamic interactions such as collisions, object 

behaviour, and terrain response. Gazebo was selected for its ability to replicate realistic operational 

conditions for mobile robots, especially in behaviour-intensive scenarios. To monitor and debug 

behavioural states during runtime, RViz a 3D visualization tool within ROS was used to display real-time 

sensor data, trajectory planning, and active behaviour modules. Sensor simulation was achieved using ROS-

compatible plugins for LIDAR, which provided obstacle detection and proximity measurements. These data 

were processed through a Simultaneous Localization and Mapping (SLAM) module, enabling the robot to 

build and update an internal map of its surroundings. This mapping capability was essential for assessing 

environmental familiarity, a key contextual variable influencing behavioural arbitration within the fuzzy 

logic system. 
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The experiments were conducted in a structured yet dynamic environment containing both static and 

variable obstacle placements. Two robot agents, R1 and R2, were used, with the primary focus on R1, 

which was responsible for executing aggression-related behaviours. To evaluate the robustness and 

generalizability of the system, approximately 50 simulation trials were performed under varying initial 

conditions. These included different starting positions, dynamic obstacle layouts, proximity and recognition 

of robot agents, and differing levels of environmental familiarity. Each trial was designed to activate 

different combinations of behaviour modules such as escape, attack, or immobility ensuring that the fuzzy 

logic controller encountered a wide range of interaction scenarios. These trials provided empirical 

validation of the system’s ability to transition between behaviours in real time, influenced by factors such 

as spatial proximity, inter-agent recognition, and familiarity with the environment. 

For benchmarking, a baseline control system was implemented using traditional reactive logic, both with 

and without fuzzy behaviour modulation. This comparison allowed the evaluation of the proposed fuzzy 

control architecture against a simpler rule-based approach. Key performance metrics recorded included task 

completion time, number of collisions, behaviour switching latency, and adaptability in unfamiliar 

environments. The results quantified using classification metrics such as precision, recall, F1 -score, and 

accuracy demonstrated that the fuzzy-based system achieved greater behavioural flexibility, improved 

contextual awareness, and smoother transitions between competing behaviours when compared to the 

baseline system. 

All experiments were conducted entirely in simulation. No physical robots were used during the 

development or testing phases. However, the complete control architecture including fuzzy behaviour 

modules, SLAM integration, and behaviour coordination is fully ROS-compatible, making it directly 

deployable to physical robotic platforms with minimal modification. Based on the promising simulation 

results, future work will aim to implement and validate the system on real-world robots such as TurtleBot3 

or Clearpath Husky, particularly in applications involving human-robot interaction and mobile navigation 

in unstructured or dynamic environments. 
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Chapter 2: Ethologically Inspired Fuzzy Behaviour Model  

2.1 Ethology 

Ethology, the scientific study of animal behaviour, focuses on how animals interact with their environment 

and with one another [1]. Ethological models are critical for understanding and predicting behaviour 

patterns and have become foundational elements for developing behaviour-based robotic control systems. 

These models operate on the principle that natural selection favors behaviours that are best adapted to 

specific environmental challenges, thereby ensuring their transmission across generations. Additionally, 

ecological models, such as predator-prey dynamics, provide essential insights into species interactions 

within natural ecosystems. 

In robotics, ethologically inspired models are increasingly employed to overcome the limitations of 

traditional behaviour systems. Pioneering ethologists such as Baerends, Tinbergen, and Lorenz developed 

foundational frameworks for describing animal behaviours, frameworks that have now found direct 

application in robotic design and control. This interdisciplinary convergence enables roboticists to create 

adaptive systems based on biologically grounded models, while offering ethologists a new experimental 

platform to test and refine behavioural theories through synthetic implementations [Aaqib1]. 

Although ethology and robotics share common components such as the concepts of sensors, actuators, and 

navigation their methodologies differ. Ethology relies on systematic observation and empirical analysis of 

natural behaviours, whereas robotics seeks to recreate and operationalize these behaviours within artificial 

agents using synthetic sensors, actuators, and control architectures. Despite these differences, the synergy 

between the two disciplines significantly enriches both fields, enhancing the understanding, validation, and 

application of behaviour models in both biological and synthetic systems [2]. 

2.2 Fuzzy Behaviour-Based Systems  

One effective approach to implementing ethologically inspired behavioural models in robotics is through 

Fuzzy Behaviour-Based Systems [21]. These advanced computational systems utilize fuzzy logic to govern 

the operations of robots and autonomous agents within complex and dynamic environments. By managing 

degrees of truth or membership values, fuzzy logic enables systems to make nuanced, co ntext-sensitive 

decisions rather than relying on rigid binary outcomes. This adaptability is critical for replicating behaviours 

observed in animals such as avoidance, aggression, and exploration. Individual behaviour units control 

these actions, and fuzzy rules integrate their outputs to ensure coherent system performance. A Fuzzy 
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Behaviour-Based System is essentially constructed upon a framework of fuzzy rule-based systems, which 

are particularly effective for modeling animal behaviour and designing autonomous systems that must adapt 

to evolving environments [22], [23]. A fuzzy rule-based system is an expert system where knowledge is 

represented as production rules, typically structured as If [condition] Then [action] statements. For 

instance, a behavioural model’s “Fear” level can be defined using fuzzy logic, as demonstrated in the 

following example:   

If AFTP = Low And AFTA = Low And ADTA = Low Then FEAR = High 

Here, AFTP represents Animal Familiarity Toward Place, AFTA denotes Animal Familiarity Toward 

Another Animal, and ADTA indicates Animal Distance Toward Another Animal. Such structures allow 

robots to simulate complex emotional states and behaviour transitions based on environmental conditions. 

The architecture of a Fuzzy Behaviour-based System [24] comprises several key modules, including 

Behaviour Coordination (or Arbitration), Behaviour Fusion, and individual Component Behaviours. Each 

module and its respective behaviours are implemented as fuzzy rule-based systems, also called Fuzzy Logic 

Controllers (FLCs), as depicted in Figure 1. 

 

Figure 1. The Applied Fuzzy Behaviour-Based System [24] 
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Behaviour Coordination also known as arbitration, plays a pivotal role in fuzzy behaviour-based systems, 

especially when multiple behaviours are activated simultaneously and may produce conflicting outputs. In 

real-world scenarios, autonomous robots frequently operate in complex environments where behavioural 

modules such as exploration, obstacle avoidance, aggression, and retreat can be triggered concurrently. 

Arbitration mechanisms are responsible for resolving these conflicts, ensuring that the robot responds in a 

coherent and contextually appropriate manner. As illustrated in Figure 2, sensory input received through 

exteroception, and proprioception activates multiple behaviours. The arbitration strategy then evaluates the 

situation and assigns control weights to each behaviour [25]. These weights are processed through a 

Command Fusion unit, which blends or selects outputs to produce the final control signal.  

 

Figure 2. The Architecture of Behaviour Arbitration [25] 

Traditional behaviour-based architectures often use a hierarchical arbitration strategy, where behaviours 

are prioritized in a predefined order. For example, in a surveillance robot, obstacle avoidance may be ranked 

above exploration. If the robot encounters an obstacle while navigating a corridor, the arbitration system 

suppresses the exploration behaviour and activates the avoidance routine. Once the obstacle is bypassed, 

control reverts to the exploration module. This ensures that safety-critical behaviours take precedence, 

maintaining operational reliability. 
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In contrast, fuzzy arbitration supports more flexible and adaptive decision-making by evaluating the degree 

of activation for each behaviour using fuzzy logic. Instead of relying on binary switching, fuzzy arbitration 

blends behaviour outputs proportionally. For instance, during a navigation task, if a robot is tracking a target 

while simultaneously detecting an obstacle, the fuzzy coordination module may assign a high priority to 

obstacle avoidance (e.g., 0.9) and a moderate priority to goal-seeking (e.g., 0.6). The resulting behaviour 

blend enables the robot to cautiously advance toward the target while maintaining a safe distance from the 

obstacle. This form of arbitration allows context-aware decision-making and mimics biological survival 

responses, where multiple competing goals are pursued in balance rather than one being entirely suppressed. 

Such mechanisms contribute to more adaptive, ethologically grounded robotic behaviour. 

Behaviour Fusion involves merging the outputs from behaviour coordination processes. For instance, if a 

robot navigating a path encounters an obstacle, the arbitration mechanism would prioritize obstacle 

avoidance. However, there are situations where behaviour fusion alone cannot fully resolve conflicts 

between behaviours. A fuzzy rule-based system can evaluate competing conditions and determine which 

behaviour to prioritize [26]. Fuzzy behaviour fusion is a behaviour fusion built upon the elements of fuzzy 

systems. It has wide applications in fields such as robotics, autonomous vehicles, and healthcare [27] [28]. 

More broadly, fuzzy behaviour fusion provides a versatile computational mechanism for synthesizing 

complex behaviour components, facilitating precise and flexible decision-making. 

A behaviour-based system consists of interconnected modules, referred to as behaviours, that collectively 

define a robot’s functionality and decision-making architecture. Each behaviour models a specific action 

or interaction scenario, enabling the robot to operate adaptively and intuitively within complex 

environments [29]. In the context of social robots, which are designed to engage naturally with humans, 

behaviours must be carefully designed to respond to nuanced social cues. These models often draw 

inspiration from human-dog interactions, where a dog’s ability to interpret gestures, vocal tones, and 

proximity serves as a natural template for social engagement. Just as dogs adjust their behaviour across 

diverse contexts, social robots can be programmed to replicate similar interaction patterns. By 

systematically observing and documenting a dog’s responses, researchers can infer the internal conditions 

driving these behaviours and translate them into robotic behaviour models. This approach enables robots 

to exhibit socially intelligent behaviour and engage with human users in a more natural and context-aware 

manner [11]. 

Developing ethologically inspired fuzzy behaviour-based systems to replicate animal aggressive behaviours 

in robotics requires an integrated and methodical approach. The process begins with an extensive literature 
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review to establish a robust theoretical foundation, focusing on Archer’s ethological model of aggression 

and fear in vertebrates, the fundamentals of fuzzy logic, and their application in behaviour-based robotics. 

Archer’s model is then translated into a fuzzy logic framework, where key behavioural components are 

linked to fuzzy rules capable of managing the variability and uncertainty inherent in aggressive behaviours. 

A fuzzy inference system is constructed to process sensory inputs and generate appropriate behavioural 

outputs [Aaqib2]. Integration of the Fuzzy Behaviour Description Language (FBDL) enables seamless 

communication between the robot's sensory systems and control architecture, allowing adaptive behaviour 

modulation. This research ultimately aims to develop a resilient and flexible robotic system capable of 

accurately simulating aggressive behaviours under varying environmental conditions. The system’s 

performance and adaptability are evaluated through real-world application testing, validating the practical 

potential of ethologically inspired fuzzy behavioural models in robotics. 

2.3 Comparative Analysis with Existing Fuzzy and Bio-Inspired Controllers 

The proposed ethologically inspired fuzzy behaviour-based system builds upon established paradigms in 

autonomous robotics, particularly those involving fuzzy control and biologically motivated architectures. 

To contextualize its contributions, this section compares the system with three key approaches: 

Subsumption Architecture, Belief-Desire-Intention (BDI) models, and Neuro-Fuzzy Systems. The 

comparison focuses on four aspects: behaviour coordination, emotional modeling, environmental reactivity, 

and real-time adaptability. 

The Subsumption Architecture, developed by Brooks [30], organizes robot behaviours into hierarchical 

layers in which higher-level behaviours can suppress or inhibit lower-level ones. Although effective for 

reactive, real-time responses especially in navigation and obstacle avoidance it lacks the capacity to model 

internal emotional states and cannot support graded behavioural transitions. By contrast, the proposed 

system uses fuzzy logic to represent emotions such as fear and aggression along a continuum. This 

facilitates nuanced behavioural blending, resulting in more ethologically realistic responses rather than 

simple binary suppression. 

BDI models, which are prominent in deliberative agent design, use symbolic reasoning to select actions 

based on explicit representations of beliefs, desires, and intentions [31]. These models are powerful in 

structured environments that benefit from formal planning. However, they are computationally intensive 

and less adaptable to dynamic, unpredictable scenarios. In contrast, the proposed system avoids symbolic 
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world modeling by grounding decision-making in fuzzy ethological rules. This results in faster, context-

sensitive responses crucial for emotionally responsive and socially interactive environments.  

Neuro-fuzzy systems combine the learning capabilities of neural networks with fuzzy inference to adapt 

rule structures over time [32]. While such systems can optimize behaviour through experience, they 

typically require extensive training datasets and often operate as "black boxes," limiting interpretability 

especially in safety-critical applications. The proposed system addresses this limitation by employing a 

transparent and interpretable rule base derived from Archer’s aggression theory. This ensures tha t each 

fuzzy rule is biologically grounded and traceable, enhancing both ethical accountability and system 

adjustability. 

While existing studies such as [22] which apply fuzzy logic to medical diagnosis in livestock, and [23], 

which focus on fuzzy control for obstacle avoidance and mobile robot navigation demonstrate the utility of 

fuzzy logic, they do not incorporate biologically grounded emotional behaviour. The current system 

advances the field by embedding emotion-driven, ethologically inspired behaviours directly into the control 

logic. As a result, the robot can exhibit survival responses such as freezing, fleeing, or aggression in ways 

that are contextually appropriate and biologically plausible. 

2.4 Implementing the “Aggression” Behaviour  

This research aims to develop a fuzzy behaviour-based model for simulating aggression, drawing upon 

Archer’s ethological framework presented in "The Organization of Aggression and Fear in Vertebrates: 

Perspectives in Ethology" [5], as illustrated in Figure 3. Archer’s model offers a theoretical foundation for 

analyzing the structure, function, and mechanisms of aggression and fear behaviours in vertebrates, 

providing key insights into their underlying motivations and decision-making processes. By integrating 

fuzzy logic, which is well-suited for managing imprecise and uncertain data [33], the model can better 

represent the complexity and variability inherent in animal aggression.  

The combination of Archer’s ethological principles with fuzzy behaviour-based system design enables the 

development of a more adaptable, scalable, and context-sensitive representation of aggressive behaviour. 

This integrative approach not only enhances the fidelity of robotic simulations but also deepens the 

understanding of the dynamic and often ambiguous nature of aggression and fear responses in vertebrates. 

It supports the modeling of fluid behavioural decisions that are influenced by environmental cues, internal 

states, and prior experiences. 
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Figure 3 illustrates the structure and decision-making flow of the implemented aggression model based on 

Archer’s ethological framework. Each stage of the behavioural sequence represents a cognitive or reactive 

component that contributes to the animal’s final response. A detailed explanation of each stage is provided 

below: 

Expectation Copy: The animal forms expectations about the behaviour of another animal. These 

expectations are informed by prior experiences, general behavioural knowledge, and the animal’s current 

internal state, such as its arousal level. 

Sensory Input: The animal receives sensory information from other animals, including cues such as size, 

posture, movement, and other observable behaviours. 

Orientation Response: After processing the sensory input, animal orients toward the other animal, assessing 

the situation based on the new sensory input. 

Discrepancy: The animal compares the incoming sensory information with its established expectations. 

Any mismatch triggers increased arousal and may prompt a fight-or-flight response. 

Decision Process 1 - Fear or Attack?: The animal evaluates whether to respond with Fear or initiate an 

attack. This decision depends on factors such as the degree of mismatch, hormonal levels, past experiences 

with conflict, and current emotional state. 

Attack: If aggression is selected, the animal engages in an attack toward the opponent.  

 

Figure 3. Archer Organization Model [5] 
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Environmental Consequences of Behaviour: The aggressive action may lead to various environmental 

changes, such as the retreat or submission of the other animal.  

Decision Process 2 - Escape or Immobility?: If the animal decides not to attack during Decision Process 1, 

it proceeds to decide between escape or immobility. This choice considers variables like hormonal state, 

the position of the other animal, and the animal’s perceived likelihood of successful Escape. 

Escape: If the decision is to flee, the animal attempts to distance itself from the other animal.   

Sensory input no longer impinges on the animal: If the animal chooses to escape, then the sensory input 

from the other animal no longer affects the animal’s senses. 

If Escape is blocked: If Escape is not feasible, the animal may switch to aggression and initiate an attack. 

Immobility: If the animal neither attacks nor escapes, it enters a state of immobility. Which subsequently 

leads to the Sensory Input Switched Off . 

Sensory Input Switched Off: The animal disengages from reacting to the sensory input provided by the other 

creature. In short, it means animals will not do anything at all.  

The Archer Control Theory model provides a structured framework for understanding how biological 

systems regulate behaviour to achieve specific objectives. Within this model, animals govern their actions 

through the interplay of internal and external influences, particularly within motivational systems. A 

simplified version of the theory, focused on aggression and fear in vertebrates, posits that these behaviours 

are managed by two opposing systems: the aggression system and the fear/anxiety system. These systems 

operate dynamically, and the equilibrium between them determines the animal’s behavioural outcome. The 

balance is influenced by a range of internal variables such as physiological state and emotional arousal as 

well as external environmental cues, which shift based on context and need.  

The dynamics of aggression are typically expressed through three primary behavioural responses: Attack, 

Escape, and Immobility. Modeling these responses using Fuzzy State Machines (FSMs) allows for more 

biologically realistic representations, as FSMs accommodate the uncertainty, gradation, and imprecision 

inherent in animal behaviour [34]. The implementation process involves several core steps. First, the system 

states representing distinct behaviours like Attack, Escape, and Immobility are defined. Second, the 

system’s inputs are identified, encompassing both internal factors (e.g., emotional state) and external stimuli 

(e.g., proximity to another animal or object). These inputs are modeled using fuzzy logic. For example, the 

input “presence of another animal” may be represented by a fuzzy set with levels such as Low, Medium, or 

High, based on familiarity. 
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Once the states and inputs are defined, fuzzy rules are established to govern state transitions. These rules 

represent probabilistic decision-making, reflecting the animal's ambiguous and context-dependent 

behaviour. A typical rule might be: “If familiarity with another animal is Low and familiarity with the 

environment is Low, then the likelihood of “Escape” is High.” Terms such as High, Medium, and Low 

allow for nuanced interpretation of behaviour. Finally, outputs are determined based on the selected state. 

For instance, the output “Attack” might be triggered when the animal is unfamiliar with both its 

environment and another animal. This methodology provides a robust framework for simulating 

ethologically valid aggression responses in artificial systems. 

To apply this ethologically inspired behaviour model, the process begins with categorizing scenarios that 

provoke aggression. The model identifies how such situations elicit behavioural responses like Fear, Attack, 

Escape, and Immobility. It then generalizes these conditions to formulate a broader theory of aggression 

and fear triggers. Internal variables such as physiological states, motivational drives, and memory of prior 

experiences are combined with external environmental factors to calculate the likelihood of specific 

responses. These elements are encoded using fuzzy logic to ensure the model accommodates the non-

binary, fluid nature of real animal behaviour. Before implementation, specific terms and rules are defined 

and expressed using fuzzy logic to capture animal behaviour’s nuanced and complex nature. 

State Variables: The fuzzy “Aggression” behaviour model incorporates four primary state variables, as 

illustrated in Figure 4. Three of these “Attack,” “Escape,” and “Immobility” represent observable 

behavioural responses, while the fourth, “Fear,” serves as a hidden state variable. Although “Fear” cannot 

be directly observed, it plays a critical modulatory role by influencing transitions among the observable 

states.  

“Fear”: This variable reflects an animal’s internal physiological, emotional, and behavioural response to 

threatening stimuli. While fear is not directly observable, it often manifests through secondary indicators 

such as changes in posture or movement. Common signs include a lowered body and head, ears drawn 

back, widened eyes, and a tucked tail. In this model, Fear functions as a latent state, lacking a distinct 

behavioural output but exerting a significant influence on the decision-making dynamics between Attack, 

Escape, and Immobility. 

“Attack”: This state involves a rapid, targeted action directed at a specific stimulus, typically resulting in 

physical contact or harm. Examples include biting, striking, or pecking, and these behaviours are associated 

with aggression or defense, rather than predation or food acquisition.  
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“Escape”: This variable encompasses behaviours intended to increase distance from a perceived threat. 

Escape responses are typical in life-threatening situations, such as evading predators or avoiding aversive 

stimuli, and may include running, flight, or evasive maneuvers.  

“Immobility”: Also known as “freezing”, this state reflects a complete cessation of movement. It may occur 

as a conditioned fear response to a known threat or as a spontaneous reaction to sudden or ambiguous 

stimuli particularly those resembling predator presence. Immobility is often an adaptive strategy that 

reduces detection by predators. 

Observations: Drawing from the ethological model of Aggression as outlined in [5], this simplified fuzzy 

behaviour model identifies a set of key observational variables that inform the system's state transitions 

[Aaqib2]. These variables reflect the animal’s familiarity, proximity, past experience, and environmental 

context, serving as inputs to determine the likelihood of entering states such as Fear, Attack, Escape, or 

Immobility. 

“Animal Familiarity Towards Place” (AFTP): Represents the extent to which an animal is familiar with 

its surroundings. It considers scenarios where an animal encounters familiar or unfamiliar environments. 

Fear is more likely to be triggered in unfamiliar environments. However, if a suitable target is present, 

aggressive behaviour may also occur even in unfamiliar settings. 

“Animal Familiarity Towards another Animal” (AFTA): This captures the degree of familiarity an animal 

has with another animal. This applies across both familiar and unfamiliar territories. For example, 

encountering an unknown animal in a familiar space or entering another animal’s known territory  may 

result in fear or aggression.  

“Animal Distance Towards another Animal” (ADTA): Refers to the physical proximity between two 

animals. For instance, when an animal is unfamiliar with another animal and environment, and the distance 

between them is in close range, and there is no available escape route, the likelihood of fear or aggressive 

behaviour increases significantly. 

“Animal Familiarity Towards Object” (AFTO): Measures how familiar the animal is with an object. This 

situation occurs in an animal’s familiar and unfamiliar environment, like when a moving object comes close 

to an animal or when the distance between the animal and the object decreases in an unfamiliar place. Also, 

when a novel object enters an animal’s familiar place, these include the conventional territorial issue and a 

wide range of other scenarios such as Fear, Attack, and escape behaviours. This observation (and also 

ADTO) serves as a robotic extension of the original model by Archer by considering that the appearance 

of a non-living object causes territorial issues for robots. 
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“Animal Distance Towards Object” (ADTO): Measures the distance between an animal and an object. It 

considers situations where the animal may be unfamiliar with the place or object. For example, when an 

unfamiliar object comes too close in an unfamiliar place, the animal may exhibit Fear, aggression, or escape 

behaviours. 

“Escape Path Exists” (EPE): Evaluates the availability of a clear and viable escape route. When approached 

by another animal or object, the presence of an escape path generally results in flight. In contrast, if escape 

is not possible, fear may escalate into aggression, particularly under conditions of stress or perceived threat.  

“Positive Impact With Respect to Previous Experience” (PIWPE): Reflects how past experiences, whether 

positive or negative, influence current behavioural responses. For instance, prior exposure to threatening 

situations can predispose the animal toward defensive behaviours such as fear or aggression in similar future 

contexts.  

Figure 4 presents the fuzzy model for simulating animal aggressive behaviour, integrating all previously 

defined inputs such as familiarity with place, other animals, objects, and spatial distance. The model uses 

these observations to generate context-dependent behavioural responses, emphasizing the interaction 

between environmental familiarity, social recognition, physical proximity, and experiential memory. By 

encoding these variables within a fuzzy logic framework, the system effectively captures the uncertainty 

and variability inherent in real animal behaviour. This enables a nuanced representation of behavioural 

dynamics influenced by both context and experience. Consequently, robotic systems built on this model 

can exhibit lifelike, adaptive responses to complex, multi-dimensional scenarios bringing biologically 

grounded realism to artificial behaviour modeling. defensive behaviours such as fear or aggression in 

similar future contexts. 

 

Figure 4. Fuzzy Behaviour Model for Animal Aggressive Behaviour



Chapter 3: The Fuzzy Model for the “Aggression” Behaviour 

 

21 

 

Chapter 3: The Fuzzy Model for the “Aggression” Behaviour 

3.1 Model Overview and Implementation Guidelines 

To implement the fuzzy behaviour model for “Aggression,” the Fuzzy Behaviour Description Language 

(FBDL) [4] is utilized. FBDL is based on fuzzy rule-based systems and Fuzzy Rule Interpolation (FRI) [35] 

[36] which facilitates the construction of behaviour components and their behaviour coordination. Its rule-

based approach ensures that knowledge representation is self -explanatory for humans. Additionally, 

fuzziness and linguistic terms defined as fuzzy sets enhance human understanding, mainly when variables 

are expressed within continuous universes. Numerical evaluations can be performed directly with the fuzzy 

behaviour model defined in FBDL. The FBDL code can either be executed on a system as is or, with 

supplementary measurement data, applied as input for machine learning optimization algorithms.  

The FBDL specifies input and state variable universes, their linguistic terms (fuzzy sets used in the rule-

bases), and the fuzzy rule-bases. For instance, if we consider an observation such as the level of “Animal 

Familiarity to the Place,” which is an input universe with two linguistic terms, ‘Low’ and ‘High’, the 

variable can be represented with the symbol ‘AFTP’ in FBDL as follows: 

universe “AFTP” 

description “Level of the Animal Familiarity to the Place.” 

     “low” 0 0 

     “high” 1 1 

end 

An example fuzzy rule from the behaviour coordination to determine the level of the “Fear” hidden state 

variable based on factors such as animal familiarity with the place (AFTP), another animal (AFTA), and an 

approaching object (AFTO) could be expressed as: 

If AFTP=High And AFTA=High And AFTO=High Then FEAR=Low 

whereas the AFTP, AFTA, and AFTO are antecedent universes. FEAR is the consequent universe, Low 

and High are fuzzy linguistic terms in the corresponding universes. 

In FBDL format, the same rule is written as: 

Rule “Low” When “AFTP” is “High” And “AFTA” is “High” And “AFTO” is “High” end 

The fuzzy model of the “Aggression” behaviour in FBDL format 
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The FBDL definition of the input and state variable universes are: 

universe “Universe label” 

  “low” 0 0 

  “high” 1 1 

end 

where “Universe label” is “AFTP”, “AFTA”, “AFTO”, “ADTA”, “ADTO”, “PIWPE”, “EPE”, “FEAR”, 

“ATTACK”, “ESCAPE” and “IMMOBILITY”. 

The FBDL based definitions of state rule bases are designed to address a range of ethologically relevant 

scenarios. These include the animal’s familiarity with its surroundings, objects, or other animals, as well as 

encounters involving spatial intrusion such as when a moving object or another animal approaches too 

closely. Another key scenario involves the entry of a novel object or unfamiliar animal into a known 

territory, potentially triggering territorial or defensive behaviours. Fear responses are particularly prevalent 

when animals enter unfamiliar environments, though even familiar objects in strange contexts can alter 

behavioural outcomes. Additionally, the valence of prior experiences especially the degree of positivity or 

negativity associated with past aggressive encounters plays a significant role in modulating cu rrent 

behaviour. Collectively, these scenarios provide a robust foundation for constructing the fuzzy state rule 

bases, enabling the model to dynamically represent behaviours such as Fear, Aggression, Escape, and 

Immobility in a context sensitive and interpretable manner. 

In fuzzy rule-base format, the FEAR Fuzzy Rule-base (RFEAR) is the following: 

If AFTP=Low And AFTA=Low And AFTO=Low Then FEAR=High  

If AFTA=Low And ADTA=Low And EPE=Low Then FEAR=High  

If AFTO=Low And ADTO=Low And EPE=Low Then FEAR=High  

If AFTP=Low And EPE=Low And PIWPE=Low Then FEAR=High 

If AFTP=High And AFTA=High And AFTO=High Then FEAR=Low  

If AFTA=High And ADTA=High And EPE=High Then FEAR=Low 

If AFTP=High And AFTA=High And EPE=High And PIWPE=High Then FEAR=Low 

The same FEAR rule-base in FBDL format appears as: 

RuleBase “FEAR” 

Rule High when “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end 

Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end 

Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end 

Rule High when “AFTP” is Low and “EPE” is Low and “PIWPE” is Low end 

Rule Low when “AFTP” is High and “AFTA” is High and “AFTO” is High end 
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Rule Low when “AFTA” is High and “ADTA” is High and “EPE” is High end 

Rule Low when “AFTP” is High and “AFTA” is High and “EPE” is High and “PIWPE” is High end 

end 

where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE are the antecedent universes . FEAR is the 

consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes. 

In fuzzy rule-base format the ATTACK Fuzzy Rule-base (RATTACK) is the following: 

If AFTA=Low And ADTA=Low And EPE=Low Then ATTACK=High  

If AFTO=Low And ADTO=Low And EPE=Low Then ATTACK=High 

If AFTP=Low And ADTA=Low And ADTO=Low And EPE=Low Then ATTACK=High  

If FEAR=High And EPE=Low Then ATTACK=High 

If AFTP=High And AFTA=High And PIWPE=High Then ATTACK=High 

If AFTP=High  And AFTO=High And PIWPE=High Then ATTACK=High  

If EPE=High And FEAR=High Then ATTACK=Low 

If EPE=High And AFTP=Low And ADTA=High Then ATTACK=Low 

If EPE=High And AFTA=Low And ADTA=High And PIWPE=Low And ADTO=High Then 

ATTACK=Low 

If EPE=High And AFTO=Low And ADTO=High And PIWPE=Low Then ATTACK=Low  

If AFTA=Low And AFTP=Low And AFTO=Low And EPE=High Then ATTACK=Low 

The same ATTACK rule-base in FBDL format  

rulebase “ATTACK” 

Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end 

Rule  High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end 

Rule High when “AFTP” is Low and “ADTA” is Low and “ADTO” is Low and “EPE” is Low end 

Rule  High when “FEAR” is High and “EPE” is Low end 

Rule  High when “AFTP” is High and “AFTA” is High and “PIWPE” is High end 

Rule  High when “AFTP” is High and “AFTO” is High and “PIWPE” is High end 

Rule  Low when “EPE” is High and “FEAR” is High end 

Rule  Low when “EPE” is High and “AFTP” is Low and “ADTA” is High end 

Rule  Low when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low and 

“ADTO” is High end 

Rule  Low when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end 

Rule  Low when “AFTA” is Low and “AFTP” is Low and “AFTO” is Low and “EPE” is High end 

end 

The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR. The consequent 

universe is ATTACK, and Low and High are fuzzy linguistic terms in the corresponding universes. 
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In fuzzy rule-base format the ESCAPE Fuzzy Rule-base (RESCAPE) is the following: 

If EPE=High And FEAR=High Then ESCAPE=High 

If EPE=High And AFTP=Low And AFTA=Low And AFTO=Low Then ESCAPE=High  

If EPE=High And AFTA=Low And ADTA=High And PIWPE=Low Then ESCAPE=High 

If EPE=High And AFTO=Low And ADTO=High And PIWPE=Low Then ESCAPE=High  

If EPE=High And AFTP=Low And ADTA=High And ADTO=High And PIWPE=Low Then 

ESCAPE=High 

If FEAR=Low And EPE=Low Then ESCAPE=Low 

If FEAR=Low And PIWPE=High Then ESCAPE=Low 

If AFTA=High And AFTO=High And AFTP=High And PIWPE=High Then ESCAPE=Low  

If AFTA=High And ADTA=High And PIWPE=High And EPE=Low Then ESCAPE=Low  

If AFTO=High And ADTO=High And PIWPE=High And EPE=Low Then ESCAPE=Low 

The same ESCAPE rule-base in FBDL format  

Rule base “ESCAPE” 

Rule High when “EPE” is High and “FEAR” is High end 

Rule High when “EPE” is High and “AFTP” is Low and “AFTA” is Low and “AFTO” is Low 

end 

Rule High when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low 

end 

Rule High when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low 

end 

Rule High when “EPE” is High and “AFTP” is Low and “ADTA” is High and “ADTO” is High 

and “PIWPE” is Low end 

Rule Low when “FEAR” is Low and “EPE” is Low end 

Rule Low when “FEAR” is Low and “PIWPE” is High end 

Rule Low when “AFTA” is High and “AFTO” is High and “AFTP” is High and “PIWPE” is High 

end 

Rule Low when “AFTA” is High and “ADTA” is High and “PIWPE” is High and “EPE” is Low 

end 

Rule Low when “AFTO” is High and “ADTO” is High and “PIWPE” is High and “EPE” is Low 

end 

end 

whereas AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR are the antecedent universes, ESCAPE 

is the consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes 
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In fuzzy rule-base format the IMMOBILITY Fuzzy Rule-base (RIMMOBILITY) is the following: 

If FEAR=Low And EPE=Low Then IMMOBILITY=High 

If AFTA=Low And ADTA=High And EPE=Low Then IMMOBILITY=High 

If AFTO=Low And ADTO=High And EPE=Low Then IMMOBILITY=High 

If AFTP=Low And ADTA=High And EPE=Low Then IMMOBILITY=High 

If AFTP=Low And AFTA=Low And PIWPE=Low Then IMMOBILITY=High 

If EPE=High And FEAR=High And PIWPE=Low Then IMMOBILITY=Low 

If EPE=High And AFTA=Low And ADTA=Low And PIWPE=Low Then IMMOBILITY=Low 

If EPE=High And AFTO=Low And ADTO=Low And PIWPE=Low Then IMMOBILITY=Low 

The same IMMOBILITY rule-base in FBDL format  

Rule base “IMMOBILITY” 

Rule High when “FEAR” is Low and “EPE” is Low end 

Rule High when “AFTA” is Low and “ADTA” is High and “EPE” is Low end 

Rule High when “AFTO” is Low and “ADTO” is High and “EPE” is Low end 

Rule High when “AFTP” is Low and “ADTA” is High and “EPE” is Low end 

Rule High when “AFTP” is Low and “AFTA” is Low and “PIWPE” is Low end 

Rule Low when “EPE” is High and “FEAR” is High and “PIWPE” is Low end 

Rule Low when “EPE” is High and “AFTA” is Low and “ADTA” is Low and “PIWPE” is Low 

end 

Rule Low when “EPE” is High and “AFTO” is Low and “ADTO” is Low and “PIWPE” is Low 

end 

end 

The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR, and the 

consequent universe is IMMOBILITY, the fuzzy linguistic terms are Low and High in the corresponding 

universes. 

Table 1 presents a structured mapping between key ethological observations derived from Archer’s 

aggression and fear model and their corresponding fuzzy logic rules within the proposed behavioural 

framework. Each rule is linked to specific contextual variables (e.g., FEAR, AFTA, EPE) and justified 

based on biologically observed survival responses such as Escape, Attack, or Immobility, thereby ensuring 

the fuzzy system retains behavioural plausibility and interpretability grounded in ethological theory. 
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Ethological 

Observation  

(Archer's Model) 

Fuzzy Input 

Variables 

Derived Fuzzy Rule 

(Example) 

Justification 

Discrepancy between 

expected and actual 

behaviour leads to 

increased arousal and 

potential attack 

FEAR (High) 

Escape Path 

Exists (Low) 

If FEAR is High AND 

EPE is Low THEN 

ATTACK is High 

When the robot experiences high 

fear but no escape path is 

available, aggressive behaviour 

becomes a likely outcome, 

aligning with fight 

Encounter with 

unfamiliar animal in 

unfamiliar environment 

triggers fear and retreat 

AFTA (Low) 

AFTP (Low) 

ADTA (Low) 

EPE (High) 

If AFTA is Low AND 

AFTP is Low AND 

ADTA is Low AND 

EPE is High THEN 

ESCAPE is High 

Unfamiliarity and close proximity 

elevate threat perception; a clear 

escape route triggers flight 

behaviour, simulating natural fear-

driven avoidance. 

Familiar animal in 

familiar environment 

with low perceived 

threat does not provoke 

aggressive response 

AFTA (High) 

AFTP (High) 

FEAR (Low) 

If AFTA is High AND 

AFTP is High AND 

FEAR is Low THEN 

IMMOBILITY is High 

Indicates no immediate threat; 

immobility as passive behaviour 

aligns with low arousal and 

situational comfort. 

Prior positive 

experience with a 

similar agent or 

situation increases 

likelihood of aggression 

PIWPE 

(High) 

AFTA (Low) 

ADTA (Low) 

If PIWPE is High 

AND AFTA is Low 

AND ADTA is Low 

THEN ATTACK is 

High 

Negative memory combined with 

current threat cues encourages 

preemptive aggression. 

Proximity to a novel 

object in an unfamiliar 

environment triggers 

uncertainty and freeze 

response 

AFTO (Low) 

AFTP (Low) 

ADTO (Low) 

EPE (Low) 

If AFTO is Low AND 

AFTP is Low AND 

ADTO is Low AND 

EPE is Low THEN 

IMMOBILITY is High 

Freezing is a common response 

when an animal cannot determine 

a safe action under ambiguous 

stimuli. 

Presence of escape 

route reduces 

aggression even under 

high fear 

FEAR (High) 

EPE (High) 

If FEAR is High AND 

EPE is High THEN 

ESCAPE is High 

High fear redirects behaviour 

toward safe avoidance rather than 

confrontation, aligning with 

adaptive strategies. 

No escape route in 

threatening condition 

raises aggression 

probability 

FEAR (High) 

EPE (Low) 

AFTA (Low) 

If FEAR is High AND 

EPE is Low AND 

AFTA is Low THEN 

ATTACK is High 

A blocked escape path combined 

with low familiarity and high fear 

justifies offensive action as a last 

resort. 

Table 1. Mapping of Ethological Observations to Fuzzy Rules 

Animal behaviours such as Fear, Escape, Attack, and Immobility are influenced by a variety of factors that 

determine how an animal responds to a given situation. These influences can be broadly categorized into 

internal characteristics and behavioural outcome variables. Internal characteristics refer to the mechanisms 
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by which an animal interprets and reacts to external stimuli. A primary factor is the discrepancy between 

expectations and observations. When there is a significant mismatch such as an unexpected movement or 

the presence of an unfamiliar entity the animal often perceives it as a threat, triggering defensive responses 

like fear or escape. Conversely, if the observed stimulus closely matches the animal’s expectations, 

particularly in familiar environments, it may elicit assertive behaviours such as attack. Another critical 

internal factor is positive motivation shaped by prior experience. Animals reinforced for aggressive 

responses in the past are more inclined to attack rather than avoid similar situations in the future, illustrating 

how learned behaviour influences future responses. Additionally, experiential factors including early-life 

experiences, socialization history, or long-term isolation can substantially impact an animal’s perception of 

threat and its coping strategies. For instance, animals exposed to early social interactions may exhibit more 

cautious or avoidant behaviour [Aaqib1], while those with limited social exposure may escalate more 

quickly to aggression. Collectively, these internal variables underscore the role of memory, learning, and 

emotional regulation in shaping behavioural outcomes. 

In parallel, behavioural outcome variables also significantly influence the response selection process. One 

such variable is the physical characteristics of the perceived target, including its size, mobility, and 

proximity. Larger or more mobile targets often provoke heightened vigilance or hesitation, whereas smaller 

or immobile targets may be approached with greater assertiveness. Another influential factor is the animal’s 

predisposition toward passive or active coping strategies. Some animals are naturally inclined either 

biologically or behaviourally to freeze or remain still in the face of danger, while others instinctively engage 

in active escape. These tendencies are shaped by both genetic predispositions and environmental 

conditioning and can also be affected by sensory discrepancies such as sudden movements or unusual 

sounds, which heighten arousal and vigilance. Finally, the perceived feasibility of escape is a crucial 

determinant of behaviour. When an escape route is available, animals typically choose flight over fight; 

however, when escape is obstructed such as in confined spaces aggression may be triggered as a last-resort 

defensive mechanism. These outcome-based factors interact fluidly with internal characteristics, forming a 

flexible, context-sensitive decision-making system. Together, they highlight the multifactorial, situational 

nature of animal aggression and defense, providing a robust framework for modeling such responses in 

fuzzy rule-based robotic systems. 

Figure 5(a)-5(d) illustrates how changes in behaviour components Fear, Attack, Escape, and Immobility 

are modulated by varying observations within the fuzzy model of aggressive behaviour [Aaqib2]. The 

analysis decomposes each behaviour into its dynamic components, demonstrating how environmental and 

internal factors interact to shape an animal’s overall response. The graphs were generated using 
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computational evaluations from the Fuzzy Behaviour Description Language (FBDL) [4], implemented 

through publicly available FBDL functions [37] [38]. In our example, two key input variables ADTA 

(Animal Distance Towards Another Animal) and EPE (Escape Path Exists) are varied (vary from Low to 

High). All other variables are held constant, with the animal assumed to be highly familiar with the 

environment (AFTP = High) and the conspecific (AFTA = High), but less familiar with an object (AFTO 

= Low) and its proximity (ADTO = Low), and with minimal positive influence from previous experiences 

(PIWPE = Low). In all plot graphs, red denotes a High response, and blue denotes a Low response.  

The Figure 5(a) graph shows changes in Fear based on ADTA and EPE [Aaqib2]. Fear levels are High 

when no escape path exists (EPE=Low), and the approaching animal is unfamiliar (AFTA=Low). 

Conversely, Fear levels are Low when the animal is familiar with its surroundings (AFTA=High, 

AFTP=High, AFTO=High). Figure 5(b): Graph represents changes in Attack behaviour. Attack levels are 

High when the animal is unfamiliar with the approaching animal (AFTA=Low), the distance to the other 

animal is small (ADTA=Low), and no escape path exists (EPE=Low). Attack levels decrease to Low when 

an escape path is available (EPE=High).   

 

Figure 5 (a). Level of Fear Behaviour                                       
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Figure 5 (b). Level of Attack Behaviour 

 

Figure 5 (c). Level of Escape Behaviour                            
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Figure 5 (d). Level of Immobility Behaviour 

Figure 5 (a), (b), (c), (d). Graphical Representation of Behaviours 

Figure 5(c) illustrates changes in Escape behaviour. Escape levels are High when the animal is unfamiliar 

with the approaching animal (AFTA=Low), unfamiliar with the place (AFTP=Low), and an escape path is 

available (EPE=High). Escape levels are Low when no escape path exists (EPE=Low).  Figure 5(d) shows 

changes in Immobility behaviour. Immobility is High when the animal is unfamiliar with the approaching 

animal (AFTA=Low), the distance to the other animal is small (ADTA=Low), and no escape path exists 

(EPE=Low). Immobility decreases to Low when an escape path exists (EPE=High), and the distance to the 

other animal is large (ADTA=High).   

These examples demonstrate how variations in input observations directly affect behavioural responses, 

highlighting the underlying complexity and sensitivity of the fuzzy aggression model. Table 1 presents of 

summary of behaviours and f igures 5(a) through 5(d) illustrate how contextual factors modulate the 

likelihood of different behavioural outcomes Fear, Attack, Escape, and Immobility within an ethologically 

inspired fuzzy framework. Fear levels increase when the animal is in close proximity to an unfamiliar threat 

and lacks an escape route but diminish in familiar and controlled environments. Attack becomes more 

probable when the animal and the perceived threat are nearby, especially when escape options are 

unavailable. However, the availability of an escape path significantly reduces the tendency to attack. Escape 
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behaviour is most likely when the animal is unfamiliar with both the intruder and the environment and 

perceives a viable escape route. In contrast, escape responses decline when no such path exists. Immobility, 

which often functions as a passive substitute for aggression, becomes prominent in scenarios involving 

immediate threat and restricted movement options. When the threat is distant and escape is possible, 

immobility is less likely to be exhibited. Overall, the model captures the nuanced interplay of environmental 

familiarity, proximity, and threat perception, offering a biologically grounded framework for modeling 

complex behaviour in both animals and autonomous systems. 

Behaviour High Behaviour 

Conditions 

Low Behaviour Conditions Key Influencing Factors 

 
Fear 

EPE = Low (No escape 
path) 

AFTA = Low (Unfamiliar 
with another animal) 

AFTA = High 
AFTP = High 
AFTO = High 

i.e. High Familiar with 
animal, place and object 

 
Escape path availability, 
Familiarity with animal, 

place and object 

 
Attack 

AFTA = Low 
ADTA = Low (Close 

distance) 
EPE = Low 

 
EPE = High (Escape path 

exists) 

 
Proximity and escape 

route 

 

Escape 

AFTA = Low 

AFTP = Low 

EPE = High 

EPE = Low (No escape 

path) 

Familiarity with 

environment and escape 

path 

 

Immobility 

AFTA = Low 

ADTA = Low (Close 

distance) 

EPE = Low 

EPE = High (Escape path 

exists) 

ADTA = High (Greater 

distance) 

 

Threat distance and 

mobility constraints 

Table 2: Summary of Behavioural Responses Based on ADTA and EPE 

3.2 Trajectories for simulating Aggressive Behaviour 

This section investigates the implementation of ethologically inspired fuzzy control models through the 

simulation of robotic trajectories, focusing specifically on two fundamental behavioural responses observed 

in the animal kingdom: Escape and Attack. These responses are not only integral to the survival of 

biological organisms but are also critically relevant in the design of intelligent, adaptive robotic agents 

operating in unstructured and unpredictable environments. By modeling such interactions between two 

autonomous robots hereafter referred to as Robot_1 and Robot_2 the system aims to emulate real-time 

behavioural transitions governed by fuzzy logic, capturing the complexity of threat evaluation and decision-

making. 
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The simulations integrate both internal motivational states (e.g., fear, familiarity) and external 

environmental cues (e.g., proximity, escape path availability) into a unified fuzzy control framework. 

Unlike traditional binary systems, fuzzy logic allows for gradated responses that reflect the ambiguity and 

contextual sensitivity of real animal behaviour. This results in the emergence of dynamic, continuous 

trajectories in which robots do not simply react, but rather adapt, negotiate, and learn from their 

environments and interactions with other agents. The following subsections detail the implementation and 

analysis of escape and attack behaviours, with associated visualizations (Figures 7 and 8) illustrating how 

these strategies unfold in both spatial and behavioural dimensions. 

3.2.1 Escape Behaviour  

Escape behaviour in animals is a rapid, adaptive response to immediate threats, often triggered by the 

perception of an approaching entity or an environmental anomaly. This simulation models such 

ethologically inspired escape dynamics using a fuzzy behaviour control system, with Robot_1 (R1) as the 

primary agent performing the escape response. Figure 6 depicts the interaction between Robot_1 (R1) and 

Robot_2 (R2), each following a trajectory influenced by its sensory and cognitive inputs. R1 starts at 

coordinates (0.5, 0.5), while R2 begins at (6, 6). Each robot is programmed to move towards near to the 

other’s initial location, creating a deliberate encounter that escalates proximity and simulates a potential 

confrontation. The blue trajectory represents R1, and the green trajectory represents R2, both exhibiting 

complex patterns that resemble animal-like behaviour, with an emphasis on escape reactions to social 

stimuli. 

R1 is initialized with low familiarity with both the environment and R2, resulting in a baseline fear state. 

In contrast, R2 is assumed to possess high familiarity, maintaining a neutral behavioural profile. As robots 

approach one another, R1 continuously assesses three factors using fuzzy inference: distance to the Robot_2 

(ADTA), fear level (FEAR), and escape path existence (EPE). When the inter-robot distance drops below 

a predefined threshold, R1’s internal fear metric increases. If an escape route is available (as determined by 

EPE), R1 initiates an evasive maneuver. This behavioural transition is visually encoded by a trajectory color 

shift from blue to red, signaling elevated arousal and active avoidance. The transition is not binary but 

reflects a gradual, context-sensitive modulation of behaviour. As R1 gains distance from R2 and re-

establishes safety, its fear level declines, and the trajectory color gradually shifts back to blue representing 

a return to a calmer state. 

This fear-response cycle anticipation, reaction, and recovery closely mirrors behavioural adaptations 

observed in prey species. Notably, the trajectories of R1 and R2 are interdependent, exhibiting behavioural 
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synchronization that reflects real-world social modulation. R1’s escape behaviour influences R2’s spatial 

decisions, illustrating how one agent’s actions can dynamically shape another’s response. This emergent, 

bidirectional interaction highlights the strength of fuzzy control systems in capturing complex behavioural 

patterns. Such responsive coordination is particularly valuable in domains like robot swarms, multi-agent 

navigation, and socially adaptive robotics, where real-time context sensitivity and fluid behaviour 

modulation are essential for effective operation. 

 

Figure 6. Trajectories for Escape Behaviour, where colours of the paths are representing the level of the 

“Fear” [Aaqib2] 

Algorithm 1: Fuzzy Logic-Based Escape Behaviour for Robots 

Input: 

    Robot_1_Start ← (0.5, 0.5) 

    Robot_2_Start ← (6, 6) 

    Parameters ← {ADTA, FEAR, EPE} 

    Threshold_Distance ← D  (Critical distance for fear increase) 

Initialize: 

    Set Robot_1 fear_level ← LOW 

    Set Robot_2 familiarity_level ← HIGH 

    Move Robot_1 toward Robot_2_Start 

    Move Robot_2 toward Robot_1_Start 

While Robot_1 and Robot_2 are moving: 

    CD ← ComputeDistance(Robot_1.position, Robot_2.position) 

    FEAR ← EvaluateFuzzyLogic(ADTA, FEAR, CD) 
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    If CD ≤ Threshold_Distance: 

        Increase Robot_1 fear_level 

        If EPE exists: 

            TriggerEscape(Robot_1)    

        Else: 

            ContinueMovement(Robot_1) 

    SynchronizeBehaviour(Robot_1, Robot_2) 

    If CD increases: 

        Decrease Robot_1 fear_level 

        SetTrajectoryColor(Robot_1, BLUE)  

EndCondition: 

    If Robot_2 reaches near Robot_1_Start location and Robot_1 escaped successfully:  

        StopSimulation() 

        LogBehaviourData() 

Output: 

    - Robot_1 trajectory: BLUE → RED → BLUE 

    - Adaptive escape response recorded 

    - Simulated natural escape behaviour in robotics 

3.2.2 Attack Behaviour  

While escape behaviour centers on evasion and retreat, attack behaviour involves assertive confrontation, 

often emerging from motives such as territorial defense, dominance assertion, or perceived superiority. 

Figure 7 illustrates the attack trajectories of Robot_1 (R1) and Robot_2 (R2), modeled through a fuzzy 

behaviour control system that simulates aggression dynamics inspired by animal interactions. This fuzzy 

rule-based framework captures the inherent uncertainty and complexity of aggressive behaviour in multi-

agent systems. Each robot’s movement is visualized through color-coded trajectories that trace their 

spatiotemporal interactions. These visual patterns mirror behavioural phenomena commonly observed in 

animal encounters within shared spaces. 

R1 begins at coordinates (1, 1), initially exhibiting low aggression, as denoted by its blue trajectory. R1's 

objective is to approach R2, assert dominance, and potentially escalate into an aggressive display. In 

contrast, R2 begins at (5.5, 5.5) with a green trajectory, representing a calm, non-threatening posture. As 

R1 advances, figure 7 captures its behavioural escalation from neutral to aggressive triggered by increasing 

proximity to R2. The behaviour of R1 and R2 are governed by fuzzy logic rules that evaluate multiple input 

variables: distance to another animal (ADTA), fear level (FEAR), familiarity with place (AFTP), and 

familiarity with another animal (AFTA). When R1 detects a specific pattern close proximity, low fear, and 

low familiarity the system triggers a transition to an aggressive state, visually marked by a shift from blue 
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to red. This color transition represents the onset of assertive behaviour, akin to territorial charging or 

dominance displays in animals. 

Simultaneously, R2 interprets R1’s behavioural shift as a threat. In response, its trajectory color changes 

from green to orange, signaling rising fear and a defensive posture. The system dynamically prompts R2 to 

retreat, reorient, or otherwise attempt de-escalation mimicking natural avoidance strategies observed in 

animal populations. This bidirectional modulation creates a feedback loop where both agents continuously 

adapt their actions based on the other’s behaviour and internal emotional states. As the proximity diminishes 

whether through movement or mutual de-escalation R1’s aggression subsides, and its trajectory returns to 

blue. Similarly, R2’s fear dissipates, reverting its trajectory to green. These changes reflect the system’s 

ability to simulate temporary, context-dependent emotional states and fluid behavioural transitions, 

grounded in environmental and social stimuli. 

Figure 7. Trajectories for Attack Behaviour, where colours of the paths are representing the level of the 

“Attack” [Aaqib2] 

The interaction patterns between R1 and R2 underscore the expressive power of fuzzy systems in modeling 

lifelike behaviours. By capturing aggression, fear, and adaptive responses in real-time, this framework 

offers a robust approach for simulating animal-inspired behaviour in autonomous robots. It also provides a 

foundation for applications in robot training environments, multi-agent conflict resolution, and even 

behavioural modeling in social psychology. More broadly, the model contributes to cross-disciplinary 
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insights linking robotics, behavioural ecology, and cognitive systems. It supports the development of 

intelligent agents capable of naturalistic interactions, adaptive decision-making, and emergent behaviour in 

complex, uncertain environments. 

Algorithm 2: Fuzzy Logic-Based Attack Behaviour for Robots  

Input: 

    Robot_1_Start ← (1, 1) 

    Robot_2_Start ← (5.5, 5.5) 

    Parameters ← {ADTA, FEAR, AFTP, AFTA} 

    Threshold_Distance ← D (Critical distance for aggression increase) 

Initialize: 

    Set Robot_1 aggression_level ← LOW (BLUE) 

    Set Robot_2 fear_level ← NONE (GREEN) 

    Move Robot_1 toward near Robot_2_Start 

    Keep Robot_2 stationary initially 

While Robot_1 is moving: 

    CD ← ComputeDistance(Robot_1.position, Robot_2.position) 

    FuzzyParams ← EvaluateFuzzyLogic(ADTA, AFTP, AFTA, FEAR, CD) 

    If CD ≤ Threshold_Distance: 

        Increase Robot_1 aggression_level 

        SetTrajectoryColor(Robot_1, RED) 

        Increase Robot_2 fear_level 

        SetTrajectoryColor(Robot_2, ORANGE) 

        Robot_2 evades position to avoid damage 

    If CD increases again: 

        Decrease Robot_1 aggression_level 

        SetTrajectoryColor(Robot_1, BLUE) 

        Decrease Robot_2 fear_level 

        SetTrajectoryColor(Robot_2, GREEN) 

EndCondition: 

    If Robot_1 presents Aggression successfully: 

        StopSimulation() 

        LogBehaviourData() 

Output: 

    - Robot_1 trajectory: BLUE → RED 

    - Robot_2 trajectory: GREEN → ORANGE → GREEN 

    - Adaptive attack behaviour recorded 

    - Simulated animal-like attack behaviour in robotics  

The simulated trajectories of both escape and attack behaviours provide robust validation for the capacity 

of fuzzy logic to emulate ethologically grounded behavioural patterns in autonomous robotic systems. 

Rather than functioning as rigid, pre-programmed reflexes, these behaviours emerge from a continuous and 
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dynamic inference process, shaped by real-time sensory input and internal motivational states. The resulting 

behavioural expressions ranging from evasive maneuvers to assertive confrontations demonstrate a level of 

flexibility and nuance that closely parallels the situational adaptiveness observed in animal behaviour. 

Furthermore, these simulations highlight the effectiveness of fuzzy behaviour-based systems in enabling 

robots to engage in complex social dynamics, including multi-agent coordination, emotional modulation, 

and contextual learning. The seamless behavioural transitions between states such as fear, aggression, 

avoidance, and calmness reveal an underlying architecture capable of mimicking emotional and cognitive 

fluidity, a characteristic essential for real-world applications where responsiveness to both environmental 

and social cues is paramount. These capabilities position fuzzy logic systems as not only a tool for behaviour 

modeling but also as a foundational approach for building emotionally intelligent, ethically aware, and 

socially interactive robots. As such, this work represents a meaningful step toward bridging the disciplinary 

gap between biological ethology and artif icial intelligence, paving the way for next-generation robotic 

agents capable of operating autonomously, adaptively, and intuitively in dynamic human and non-human 

environments. 

3.3 Conclusion 

This research introduces a novel fuzzy behaviour model, developed in the FBDL language, to simulate 

aggressive behaviours in animals based on Archer’s ethological framework of aggression and fear in 

vertebrates. Through a fuzzy rule-based system, the study effectively models complex behavioural 

responses ranging from evasion to confrontation in robotic agents, with visualized escape and attack 

trajectories that parallel adaptive patterns observed in nature. These simulations demonstrate the system’s 

ability to support nuanced transitions between behavioural states such as fear, aggression, avoidance, and 

calmness, reflecting an underlying architecture capable of emotional modulation and context-sensitive 

decision-making. By integrating ethological principles with fuzzy logic, the model extends beyond 

technical functionality to support emotionally intelligent, socially interactive, and ethically aware robotic 

systems. Such behaviour-rich agents are equipped to handle real-world uncertainty with animal-like 

judgment and responsiveness, especially in dynamic multi-agent environments. The ultimate goal is to 

implement these ethology-inspired behaviours in both virtual simulations, such as TurtleBot, and physical 

mobile robots, marking a significant advancement in applying biological behaviour models to robotics. This 

work offers a foundation for developing intelligent, adaptive systems with the capacity to engage naturally 

within complex environments, paving the way for future innovations in robotics, autonomous systems, and 

bio-inspired artificial intelligence
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3.4 Thesis I. 

This thesis proposes a novel framework that translates Archer’s ethological model of aggression and fear 

in vertebrates into a computationally interpretable and machine-executable architecture using the “Fuzzy 

Behaviour Description Language” [Aaqib1, Aaqib2]. 

3.4.1 Scientific Foundations 

Unlike rigid binary control systems such as finite state machines (FSMs), FBDL supports continuous, 

graded behavioural transitions in ambiguous or multi-modal sensory environments. This work builds upon:  

Archer’s Model of Aggression: A theory grounded in vertebrate ethology, Archer’s model conceptualizes 

behaviour as the outcome of internal motivational conflicts (e.g., fear vs. aggression), dynamically 

modulated by external environmental cues such as familiarity, proximity, and threat level. 

Zadeh’s Fuzzy Set Theory: Introduced by Lotfi Zadeh, fuzzy set theory allows input variables to belong 

partially to multiple linguistic categories (e.g., "Low", "Medium", "High") with degrees of membership. 

This enables graded reasoning and nuanced decision-making in ambiguous or noisy environments. 

Fuzzy Rule Interpolation (FRI) with FIVE: The primary inference mechanism in this work, implemented in 

FBDL, enabling reasoning with sparse or incomplete rule bases. For baseline comparisons in dense rule 

sets, a Mamdani Type-1 FIS is used. 

3.4.2 Mathematical Formalism 

The proposed ethologically inspired fuzzy behaviour-based control architecture enables robots to make 

emotion-aware decisions by interpreting both internal affective states and external environmental stimuli. 

This process is governed by a multi-step fuzzy inference mechanism consisting of fuzzification, rule 

evaluation via interpolation, defuzzification, and optionally probabilistic state transitions. This section 

formalises each component of the inference chain using standard mathematical notation to enhance 

transparency and reproducibility. 

Behavioural Mapping Function: The robot’s active behaviour Bi (equation 1) is determined by a function f 

that maps internal emotional variables Fj and external context cues Ck to a behavioural decision: 

Bi = f (Fj, Ck)           (1) 

Where: Fj ∈  (FEAR, ATTACK etc.), and Ck ∈ (ADTA, AFTA, AFTP, EPE etc.). 

This mapping is implemented through fuzzy logic, using a set of predefined linguistic rules derived from 

Archer's Aggression Ethological Model. 
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Membership Function Definitions: Each crisp input variable Xk ∈ R is mapped into the fuzzy linguistic 

terms Lxk ∈ {Low, Medium, High} via membership functions:  

μLxk (xk): R →[0,1]            (2) 

Two commonly used membership functions in this framework are Triangular and Trapezoidal (equation 3 

and 4), these functions are configured based on expert knowledge and empirical trials.  

Triangular Membership Function (used for smooth variables like proximity): 

   μTri (x; a, b, c) = {

0      𝑖𝑓 𝑥 ≤  𝑎 𝑜𝑟 𝑥 ≥  𝑐
𝑥−𝑎

𝑏−𝑎
            𝑖𝑓 𝑎 <  𝑥 ≤  𝑏

𝑐−𝑥

𝑐−𝑏
           𝑖𝑓 𝑏 <  𝑥 <  𝑐

                       (3) 

Trapezoidal Membership Function (used for thresholds like EPE or familiarity): 

μTrap (x; a, b, c,d) = 

{
 
 

 
 
0      𝑖𝑓 𝑥 ≤ 𝑎 𝑜𝑟 𝑥 ≥ 𝑑
𝑥−𝑎

𝑏−𝑎
            𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

1              𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

 𝑑−𝑥
𝑑−𝑐
             𝑖𝑓 𝑐 < 𝑥 < 𝑑

                      (4) 

Fuzzy Rule Evaluation (Inference Engine): Behavioural decisions are made using fuzzy IF-THEN rules and  

are governed by ethologically grounded fuzzy rules derived from Archer’s aggression model, Example: 

Fear Rule-Base: Rule Fear is High When AFTA is Low AND EPE is Low 

Inference follows Fuzzy Rule Interpolation (FIVE), as implemented in FBDL: 

Similarity & activation: For each rule Rk, compute the similarity between each input xj and its antecedent 

fuzzy set Ak,j combining them into an activation weight wk. 

Interpolation ratio: Determine how the input vector x lies between the closest rules in the antecedent space. 

Consequent interpolation: Interpolate the consequent fuzzy sets 𝐵𝑘 according to activation weights wk and 

the interpolation ratio to produce a single inferred consequent B*(x), even when no rule matches exactly.  

Defuzzification: If a crisp output is required, apply a standard method such as the centroid to B*(x).  

This process ensures robust reasoning in sparse rule bases while preserving interpretability. Mamdani max-

min composition is used only in baseline comparisons for dense rule bases.  For example, for a behaviour 

𝐵𝑖, the fuzzy output is (equation 5): 

μB(x) = maxi (minj μLxj(xj))         (5) 

Whereas μLxj(xj) is the membership degree of input Xj to label Lxj, minj represents the logical AND across 

antecedents, and maxi aggregates rules affecting the same behaviour. 
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Behaviour Arbitration and Defuzzification: When multiple behaviours are activated simultaneously, 

behaviour arbitration ensures that the robotic system selects the most contextually appropriate response. 

Following fuzzy inference, the system generates output membership functions for each candidate behaviour 

Bi. These fuzzy outputs are then aggregated across all rules to represent the total contribution for each 

behaviour. To convert these aggregated fuzzy sets into actionable decisions, the system applies the Centroid 

(Center of Gravity, equation 6) method for defuzzification. This method computes the crisp output value 

Bcrisp, representing the weighted average location of the fuzzy output distribution: 

Bcrisp  =  
∫ μB(x) .  x dx 
𝑏
𝑎

∫ μB(x) dx 
𝑏
𝑎

                  (6) 

Where  μB(x) is the aggregated membership function for behaviour Bi , x is the output domain variable 

(e.g., behavioural intensity or activation level), [a,b] defines the support range of the fuzzy set.  The 

behaviour associated with the highest 𝐵crisp value is selected as the dominant behaviour for execution. The 

centroid method is preferred for its smooth and continuous output transitions, which are essential for 

emotionally nuanced systems. Unlike binary or max-based methods, it reflects the full distribution of belief 

across fuzzy outputs, enabling realistic and adaptive modeling of graded emotional states like fear or 

aggression. This enhances context-sensitive behaviour and control stability in dynamic environments. 

State Transition Dynamics: In the proposed fuzzy behaviour based system, behaviours are managed using 

a Fuzzy State Machine (FSM), allowing smooth transitions between states instead of abrupt switches. 

Transitions from one behaviour Bi to another 𝐵j are governed by fuzzy activation levels based on sensor 

inputs xk, such as distance to threat or escape possibility. The transition likelihood is defined as:  

P(Bj ∣ Bi, xk) = 
μBj(xk)

∑ μBn(xk)𝑛
       (7) 

Here, 𝜇𝐵𝑗(𝑥𝑘) is the fuzzy membership value representing how strongly behaviour Bj is activated by input 

xk. The denominator normalizes across all behaviours, yielding a probability-like score. This mechanism 

enables behaviour blending for instance, allowing partial commitment to both escape and obstacle 

avoidance rather than strict selection. It reflects natural behaviour where multiple instincts operate in 

parallel. Additionally, temporal smoothing or hysteresis can be applied to avoid rapid state switching, 

ensuring coherent and biologically realistic behaviour over time. 
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Rule Derivation Based on Archer's Ethology: As an example, the following rule 

Attack Rule-base: Rule ATTACK is High when FEAR is High AND EPE is Low 

is derived directly from Archer’s observation that high fear, when escape routes are limited, leads to 

defensive aggression rather than avoidance. This is mathematically translated as: 

μATTACK = min (μFEAR:High, μEPE:Low)        (8) 

This highlights the interpretability of the system: each rule is not only mathematically grounded, but also 

biologically justified. 

3.4.3 Simulation-Based Evidence 

The proposed fuzzy behaviour architecture has been validated through a series of controlled simulations 

that demonstrate its capacity to generate context-sensitive, ethologically grounded responses. As depicted 

in Figures 5(a-d) and Table 1, specific combinations of internal affective states and environmental inputs 

produce consistent and biologically interpretable behaviours: 

• Low familiarity (AFTA) and low escape possibility (EPE) result in elevated fear and immobility, 

reflecting risk-averse defensive responses. 

• Close proximity to other agents (low ADTA), when paired with low EPE, reliably triggers aggressive 

behaviour, simulating defensive confrontation. 

• When EPE is high, the agent engages in escape behaviour, particularly when internal fear levels are 

concurrently elevated. 

• Under favourable conditions (e.g., high AFTA and high EPE), agents revert to goal-directed exploration 

or navigation, indicating behavioural normalization. 

Figure 6 illustrates real-time behavioural modulation using colour-coded motion trajectories that reflect 

transitions between affective states such as fear, escape, and aggression. Figure 7 captures inter -agent 

emotional influence, showing how Robot_1’s aggression induces fear, and triggers escape responses in 

Robot_2. Collectively, these empirical results support the system's: Internal coherence (rule consistency 

and integration), Biological plausibility (alignment with ethological theories), Reactive realism (adaptive 

responses to dynamic multi-agent scenarios). 

3.4.4 Falsifiability and Testability 

The proposed architecture has been explicitly designed to support empirical verification, repeatability, and 

comparative evaluation: 

• The fuzzy rule base comprises a finite and enumerable set of ~36 rules, each of which can be unit-tested 

in isolation to confirm correct input-output behaviour mappings. 
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• Behavioural trajectories and decision outcomes can be systematically benchmarked against 

conventional finite state machine (FSM) models under identical simulation conditions, enabling 

quantitative comparison of flexibility, response time, and behavioural richness. 

• Key behavioural metrics including trajectory dynamics, reaction latency, and state transition 

frequencies are tracked across variable settings of critical input parameters (EPE, AFTA, ADTA etc.) 

to ensure robustness and generalizability. 

3.4.5 Novelty and Impact 

This thesis offers multiple contributions to the fields of bio-inspired robotics, fuzzy logic control, and 

computational ethology: 

• First known implementation of Archer’s theory of aggression in a robot-executable fuzzy inference 

framework, demonstrating the feasibility of translating ethological models into actionable control 

systems.  

• Introduction of Fuzzy Behaviour Description Language (FBDL) as a declarative emotional modelling 

language, enabling transparent, modular, and expressive behaviour programming across platforms 

including mobile robots, virtual agents, and animal simulators. 

• Provides explainability and visual traceability for emotion-driven behaviours which is essential features 

for ethical and accountable AI in Human-Robot Interaction (HRI) contexts. 

• Establishes a modular architecture that can be extended to more complex domains such as: Multi-agent 

social interaction, Collective behaviour modelling, Learning-driven evolution of rule bases in adaptive 

robotic systems. 

3.4.6 Applications 

The proposed fuzzy ethological control system enables robust, interpretable, and adaptive navigation across 

diverse robotic applications. In search and rescue scenarios, fear-driven escape behaviours help robots 

avoid hazardous areas, improving mission safety. In human-robot interaction, emotionally grounded 

responses such as hesitation or retreat enhance user trust and social compatibility. For multi-agent systems, 

biologically inspired coordination supports emergent group dynamics without centralized control. In public 

or unstructured environments, the system dynamically modulates obstacle avoidance based on emotional 

salience, improving maneuverability. Its modular, transparent architecture also suits behavioural 

simulations and affective computing, making it a versatile tool for emotion-aware robotic intelligence.
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Chapter 4: Implementing Aggressive Behaviour in ROS robotic environment 

4.1 Embedded Model Overview 

The rapid advancement of robotics, driven by emerging technologies and a deepening integration with the 

natural world, has opened new avenues for behaviour-based modeling. This research focuses on embedding 

ethologically inspired aggressive behaviours specifically escape and attack into robotic systems using fuzzy 

behaviour-based systems (FBBS). By fusing the precision of robotics with the adaptability of fuzzy logic, 

the work moves beyond traditional binary models to replicate the nuanced dynamics of animal-like 

responses. The resulting systems exhibit lifelike, context-sensitive behaviour capable of real-time 

adaptation to environmental stimuli. 

Building on the behaviour models developed in Chapter 3, the study employs the Robot Operating System 

(ROS) [39] [40] in combination with tools such as Gazebo and RViz to simulate biologically plausible 

behaviour. The system orchestrates perception, decision-making, and motor execution within a virtual 

environment. A core component of this framework is Light Detection and Ranging (LIDAR), which offers 

real-time, high-resolution environmental scanning essential for detecting moving objects, evaluating spatial 

configurations, and executing rapid escape maneuvers. LIDAR's ability to gather spatial data from multiple 

angles ensures accurate recognition and response, particularly in fast-paced scenarios. 

Integrating these ethologically inspired behaviours into ROS represents a key step in bridging biological 

and synthetic systems. Animal behaviours such as escape and attack are adaptive survival mechanisms 

shaped by a combination of sensory input, internal state, and contextual awareness. Escape behaviour 

demands rapid situational assessment and decisive action, while attack involves complex evaluations of 

proximity, familiarity, and threat level. FBBS effectively captures this decision-making under uncertainty, 

enabling flexible responses to perceived threats. By translating these processes into computational models, 

the system replicates animal-like adaptability in autonomous robots. 

Attack behaviour, by contrast, combines aggression with situational judgment. Its replication in robotics 

requires not only target identification but also appropriate action modulation. FBBS supports this by 

interpreting dynamic inputs and determining graded responses based on context, much like animals adjust 

aggression levels in real-time. The integration of such biologically grounded strategies contributes to the 

development of robots that are intelligent, versatile, and responsive. Though challenging to  implement, 
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these capabilities unlock transformative applications across domains that require real-time environmental 

interaction. 

However, embedding aggressive behaviours also raises important ethical considerations. As robots gain 

autonomy and emotional expressiveness, concerns emerge regarding control, responsibility, and societal 

impact. This research emphasizes the importance of interdisciplinary collaboration across ethology, 

neuroscience, and artificial intelligence to ensure that behaviour modeling is both scientifically robust and 

ethically grounded. Applications include search and rescue, defense, and wildlife interaction, where 

intelligent, context-aware robotics may operate with minimal human supervision. Ultimately, this work 

pushes the boundaries of both robotics and our understanding of intelligent behaviour, synthetic or 

biological. 

4.2 Methodologies for Biologically Inspired Behaviour Modeling in Robotics 

This section presents two complementary methodologies aimed at developing context-sensitive, 

biologically inspired behaviours in autonomous robotic systems. Each method addresses unique aspects of 

behavioural modeling, focusing on adaptability, interaction with dynamic environments, and inspiration 

from ethological studies. The approaches described herein form the theoretical and experimental foundation 

for simulating animal-like escape and adaptive behaviours in robots. 

4.2.1 Knowledge-Based Ethologically Inspired Behaviour Design 

The knowledge-based ethological design framework integrates behavioural insights from the field of 

ethology specifically, the study of animal behaviour under natural conditions into robotic system 

development [Aaqib1]. This interdisciplinary methodology supports the creation of biologically plausible 

robot actions by translating observed animal responses into functional robotic behaviours. This approach 

serves not only to improve robotic adaptability and performance but also to offer new perspectives for 

ethological investigations. The procedure follows an iterative, data-driven model as illustrated in figure 8. 

It begins with a comprehensive review of relevant ethological literature to extract structured behavioural 

patterns, including action triggers, behavioural sequences, and decision-making heuristics observed in 

biological organisms. These extracted models are subsequently mapped onto the robot’s sensorimotor 

architecture, ensuring compatibility between naturalistic behaviours and the robotic platform’s physical and 

computational constraints [Aaqib3]. 

Following model integration, robotic experiments are conducted under controlled and variable 

environmental conditions [Aaqib2]. These experiments assess the robot’s ability to replicate the targeted 
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behaviour accurately and adaptively. Quantitative and qualitative data obtained from these trials are 

analyzed to evaluate behavioural fidelity and performance consistency. Discrepancies between observed 

and expected behaviours inform iterative refinement of the implemented model. A distinguishing feature 

of this methodology is its bidirectional feedback loop between robotic implementation and biological 

inquiry. Insights from robotic experimentation often illuminate gaps or ambiguities in the original 

biological data, prompting the formulation of new hypotheses or the design of supplementary ethological 

studies. For instance, robotic failure to emulate a behaviour may indicate the presence of unmodeled 

environmental variables or inter-agent dynamics in the biological reference system. This framework 

supports a synergistic relationship between biology and robotics, wherein robotic models validate, 

challenge, or extend ethological theories while gaining biologically grounded robustness. The approach has 

demonstrated utility in various domains, including autonomous navigation, predator-prey modeling, and 

bio-mimetic swarm coordination. 

 

Figure 8. A Knowledge-Based Ethological Approach for Robot Behaviour Design. 

4.2.2 Situated Action-Based Behaviour Design 

Situated action-based behaviour design emphasizes the robot’s capacity to interpret and respond to real-

time environmental stimuli through context-dependent behaviours [Aaqib1] [Aaqib2] [Aaqib3]. In contrast 
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to traditional rule-based systems that rely on pre-scripted decision trees, this methodology foregrounds 

situational awareness, behavioural fluidity, and environmental interaction as primary drivers of robotic 

action. This dynamic, stimulus-response framework is particularly suitable for deployment in unstructured 

and evolving operational domains. As outlined in figure 9, the design process initiates with an assessment 

of the robot’s dynamic environment. This phase involves identifying potential environmental variables, 

challenges, and interaction zones that the robot may encounter. These environmental features are segmented 

into discrete, manageable “situations,” each corresponding to a unique behavioural requirement. Contextual 

behavioural responses are then formulated for each identified situation. These responses are derived from 

empirical observations of animal behaviour or synthesized using domain-specific control strategies. 

Behavioural primitives are programmed into the robot, enabling it to select and transition between actions 

based on situational input received from onboard sensors (e.g., LIDAR) [Aaqib2]. 

Robotic trials are subsequently performed to evaluate behavioural effectiveness and adaptability. Feedback 

from these experiments is used to refine behavioural mappings, enhance decision robustness, and improve 

transition smoothness between contextual states. This iterative tuning process continues until the robot 

demonstrates consistent and reliable performance across a broad spectrum of environmental conditions 

[Aaqib3]. The situated action design model incorporates a hierarchical control structure that allows flexible 

switching between behavioural modules. This hierarchy improves reaction time, ensures decision 

prioritization, and enables concurrent management of multiple stimuli a critical requirement for robots 

operating in real-world scenarios. 

The applications of this design strategy extend across a diverse range of domains that demand high levels 

of adaptability and real-time decision-making [Aaqib4]. In disaster response, autonomous robots are 

required to navigate debris-laden and unstable terrains, where environmental conditions change 

unpredictably, necessitating context-aware behavioural responses. In the field of social robotics, these 

methodology supports interactive capabilities that enable robots to engage in real-time human-robot 

interactions, particularly in caregiving settings or public service environments, where sensitivity to human 

behaviour and environmental cues is essential [Aaqib5]. In agricultural robotics, this approach facilitates 

operations in highly variable outdoor environments, such as uneven terrain, fluctuating weather conditions, 

and unpredictable biological elements, ensuring sustained performance and minimal human intervention. 

Finally, in marine and environmental monitoring, the capacity for autonomous, context-sensitive behaviour 

allows robots to operate effectively within complex and dynamic ecological systems, such as underwater 

habitats or forested regions, where consistent data collection and adaptability to environmental changes are 

critical for success. 
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Figure 9. The Situated Action-Based Design. 

In summary, situated action-based design facilitates the creation of robotic agents that exhibit high degrees 

of environmental responsiveness, behavioural plasticity, and operational autonomy. When coupled with 

bio-inspired strategies, this approach enhances the realism, efficacy, and robustness of robotic behaviour in 

dynamic and uncertain environments. 

4.3 System Architecture and Implementation 

To embed ethologically inspired behaviours such as escape and attack into robotic systems, a modular 

architecture was developed using the Robot Operating System (ROS) [40] as the foundational middleware. 

ROS offers a flexible and robust framework capable of integrating both high-level cognitive processes and 

low-level sensor-actuator loops. Its compatibility with advanced simulation and visualization tools such as 

Gazebo and RViz makes it well-suited for modeling complex animal-like behaviour in controlled yet 

realistic environments. Gazebo provides a physics-based 3D simulation platform, while RViz supports the 

real-time rendering of sensor feedback, navigation trajectories, and robot states.  
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The architecture is composed of several functional layers such as Perception, Behaviour Evaluation, Fuzzy 

Inference Engine, and Motion Execution each implemented as independent ROS nodes communicating via 

topics and services. This modular design promotes scalability, supports real-time operation, and facilitates 

the integration of diverse sensors and decision-making components. Each layer is engineered to handle a 

specific role, collectively enabling biologically inspired behaviour to emerge in dynamic and uncertain 

scenarios. 

4.3.1 Perception Layer 

The Perception Layer is responsible for real-time environmental sensing and situational interpretation. The 

core of this layer is a LIDAR-based mapping system, which generates high-resolution 2D or 3D spatial data 

of the surrounding environment. To enable situational awareness and spatial reasoning, the system employs 

Simultaneous Localization and Mapping (SLAM). SLAM allows the robot to construct a map of an 

unknown environment while simultaneously tracking its own position within that map. This capability  is 

essential for context-aware behaviour, as it supports continuous localization even in environments with 

limited GPS or external positioning. 

SLAM is implemented using ROS-compatible packages such as gmapping, hector_slam, depending on 

experimental requirements. The SLAM output is used to update the robot’s occupancy grid and cost maps 

in real-time, which in turn inform behavioural decisions particularly in escape scenarios where spatial 

layout and obstacle proximity dictate viable paths. 

In addition to LIDAR, the perception system incorporates cameras and RGB-D sensors (e.g., Intel 

RealSense or Kinect) to enhance object and agent recognition. These inputs are processed to extract 

behaviourally relevant variables: 

ADTA / ADTO: Distance to other agents or objects, 

EPE: Escape path availability based on free-space mapping, 

PIWPE: Positive Impact With Previous Experience, modeling learned safety from past encounters, 

AFTA / AFTO / AFTP: Familiarity metrics based on recognition of agents, objects, and places.  

The integration of SLAM and multi-modal sensing enables the robot to maintain a persistent, high-fidelity 

understanding of its surroundings critical for nuanced and adaptive behavioural expression. 
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4.3.2 Behaviour Evaluation Layer 

This layer transforms raw sensor data into fuzzy linguistic variables that can be processed by the inference 

engine. For example, a measured ADTA of 0.4 meters might be categorized as “Low,” while a PIWPE 

score may reflect a “Positive” prior outcome. This semantic transformation ensures that the robot can 

interpret complex, continuous data streams in terms of qualitative behavioural relevance. 

The layer also computes historical metrics such as PIWPE, which serves to modulate threat perception 

based on previous encounters in similar environmental contexts. These fuzzy descriptors become the 

foundation for rule-based behavioural decisions in the subsequent cognitive layer. 

4.3.3 Fuzzy Inference Engine 

At the core of the decision architecture is a Fuzzy Inference Engine, implemented using the Fuzzy 

Behaviour Description Language (FBDL). This module evaluates a set of ethologically grounded fuzzy 

rules to infer the appropriate behavioural state. It supports: 

Fuzzy Rule Interpolation (FRI) for reasoning with sparse or incomplete rulesets. 

Multiple Rule Bases allowing parallel controllers for Escape, Attack, and Immobility . 

Behavioural State Transition Management where supervisory logic governs switching between behaviours 

based on rule confidence and sensor inputs. For example: 

If "EPE" is High and "FEAR" is High, Then "Escape" is High. 

Such logic allows for graded behavioural output instead of binary choices, improving the realism and 

flexibility of the robot’s response to ambiguous stimuli.  

4.3.4 Motion Execution Layer 

Once a behavioural decision is made, the Motion Execution Layer translates it into a physical trajectory 

using ROS’s navigation stack. For escape behaviour, the robot selects paths that maximize distance from 

the identified threat, calculated using the SLAM-derived cost maps. For attack behaviour, the robot instead 

minimizes the distance to the target entity, adjusting its speed and trajectory based on proximity metrics.  

Trajectory plans are visualized in RViz with color-coded indicators reflecting behaviour mode (e.g., red for 

Attack, blue for Escape). The robot’s controller uses these directives to generate velocity commands 

(/cmd_vel) which are executed through motor drivers in either simulation or real-world deployment. 
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4.3.5 System Synchronization and Communication 

The architecture’s modular layers communicate via ROS topics and services, orchestrated by a central 

controller node responsible for synchronization and behavioural arbitration. Key communication streams 

include: 

/scan or /lidar_scan: Raw LIDAR input for SLAM and obstacle mapping 

/map and /odom: SLAM outputs including the robot’s estimated position and environment structure 

/fuzzy_inputs: Processed fuzzy variables like FEAR, ADTA, and AFTA 

/behaviour_state: Currently active behaviour (e.g., Escape, Attack) 

/cmd_vel: Motor commands derived from the selected behaviour path 

This decentralized communication model enables robust, scalable coordination, including multi-agent 

interaction, where multiple robots can synchronize aggression or escape in complex scenarios.  

4.4 Motivation for Integration 

Integrating aggressive animal behaviours into robotics through the fuzzy behaviour-based systems (FBBS) 

framework offers a novel pathway for enhancing robotic adaptability, decision-making, and situational 

awareness. Traditional robotic systems often operate on rigid, binary rules that limit their ability to respond 

effectively in unpredictable real-world environments. In contrast, animals have evolved complex survival 

strategies such as escape and aggression that are triggered by contextual factors and processed through 

flexible, experience-based reasoning. By emulating these behaviours, FBBS enables robots to interpret 

sensory inputs with varying degrees of uncertainty, leading to graded, context-sensitive reactions that mirror 

natural cognitive processes. This shift from deterministic logic to fuzzy inference significantly improves 

robotic flexibility and realism. 

The practical applications of this integration are extensive. Robots with escape behaviours can improve 

navigation in hazardous settings, making them valuable in search and rescue operations. Similarly, 

environmental monitoring robots designed to behave unobtrusively can operate with minimal disturbance 

to wildlife. In defense and security contexts, aggression-capable robots could autonomously assess threats 

and respond in high-risk scenarios, reducing the need for human intervention. However, these 

advancements also raise important ethical concerns. As robots adopt increasingly autonomous and 

emotionally evocative behaviours, there is a growing need to assess their impact on human safety, 

ecological balance, and societal norms. This interdisciplinary research bridging ethology, neuroscience, 

artificial intelligence, and robotics not only drives technological innovation but a lso provides valuable 
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insight into the cognitive mechanisms of animal behaviour, contributing to the development of intelligent, 

ethically aligned robotic systems. 

4.5 Behaviour implementation 

Implementing ethologically inspired behaviours such as escape, attack, and immobility into robotic systems 

is a critical step toward achieving autonomous agents that can exhibit biologically plausible and context-

sensitive decision-making. This process involves enabling robots to perceive potential threats, assess 

situational cues, and select appropriate behavioural responses, such as retreating, confronting, or freezing 

in response to dynamic stimuli. Unlike conventional rule-based systems, this approach leverages models of 

natural behaviour observed in animals, particularly in predator-prey and threat-avoidance contexts, to 

inform robotic decision-making. 

The implementation of such adaptive behaviours relies on the seamless integration of real-time sensor 

inputs, environmental mapping, and layered decision algorithms grounded in fuzzy logic systems. These 

systems introduced in detail in Chapters 2 and 3 comprise fundamental components such as fuzzy rule 

bases, behaviour arbitration mechanisms, and behaviour fusion modules. Together, these modules enable 

robots to evaluate multiple concurrent inputs (e.g., threat proximity, familiarity with agent or terrain, escape 

path availability) and execute actions that reflect biologically inspired priorities.  

Figures 10 and 11 present high-level conceptual visualizations of escape and attack behaviours, highlighting 

the transition from an agent’s initial path to a dynamically adjusted trajectory based on threat interaction. 

These diagrams emphasize the robot’s capacity to change course in response to stimuli, mimicking 

naturalistic responses observed in ethological studies. In contrast, Figures 12 and 13 demonstrate the 

practical embedding of these behaviours within a ROS-based simulation environment, where real-time data 

streams and fuzzy logic modules collaboratively govern the robot’s behaviour under controlled but dynamic 

conditions. 

The successful embedding of such ethologically grounded behaviours holds significant importance for real-

world applications, particularly in mission-critical domains such as search and rescue, exploration, and 

security operations. In these contexts, robots are often required to operate in unpredictable, hazardous, or 

unstructured environments, where the ability to adapt quickly and appropriately can directly affect mission 

success and system survivability. As shown in the referenced studies [17] [18] [Aaqib1] [Aaqib2]  

biologically inspired behaviour embedding improves both autonomy and resilience, positioning robotic 

systems as capable agents in complex, high-risk settings. 
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Figure 10. Basic Visualization of Escape Behaviour. 
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Figure 11. Basic Visualization of Attack Behaviour. 

4.5.1 Implementing Escape Behaviour 

The escape behaviour was tested using a ROS simulation involving two autonomous robots Robot_1 and 

Robot_2 within a bounded environment containing obstacles. This simulation, illustrated in Figure 12(a)-

12(e), demonstrates how fuzzy behaviour-based control enables robots to adaptively avoid perceived 

threats. Robot_1, represented by blue trajectory points, starts near a central object, while Robot_2, depicted 

by red points, begins closer to a boundary wall. In this scenario, Robot_1 functions as the primary agent, 

with its behaviour serving as the focus for observation and analysis. Its decision-making is governed by 

fuzzy logic, sensor integration, and predefined escape rules modeled after animal-like reactions. 

The simulation begins with both robots at rest, as shown in figure 12(a). As they begin to move towards 

one another, their trajectories evolve in accordance with their internal behavioural models, presented in 

figure 12(b). During this movement phase, Robot_1 employs LIDAR to continuously assess its proximity 

to Robot_2 and other environmental features. At this stage, behaviour fusion and coordination mechanisms 
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come into play, integrating multiple behavioural signals such as trajectory analysis, object proximity, and 

direction of movement to shape Robot_1’s adaptive responses.  

Upon detecting Robot_2, Robot_1 evaluates the situation using its fuzzy rule-based system, shown in 

Figure 12(c). This assessment includes factors like familiarity with the other robot (AFTA), environmental 

knowledge (AFTP), relative distance (ADTA), and the availability of a viable escape path (EPE). When the 

calculated fear level exceeds a predefined threshold and an escape route is available, Robot_1 initiates an 

escape maneuver, demonstrated in figure 12(d). This transition is coordinated through the behaviour 

arbitration module, ensuring seamless control flow between perception and motor execution.  

Figure 12(a). Initial Position of Robots: Both Robots Start at Designated Positions. 

Finally, Figure 12(e) captures the outcome: Robot_1 successfully distances itself from Robot_2 and exits 

the threat zone. This result reflects the effective interaction of fuzzy logic, behaviour coordination, and 

fusion mechanisms. Robot_1's behaviour shows a realistic, adaptive escape response based on its internal 

states and sensory evaluations closely mirroring the situational adaptability found in biological organisms. 

The success of this simulation confirms the viability of using fuzzy behavioural models for embedding 

context-sensitive escape behaviours in autonomous robotics. 
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Figure 12(b). Movement Stage: Robots Start Moving. 

Figure 12(c). Detection and Fear Assessment: Robot_1 Detects Robot_2 and Assesses Fear Based on 

Proximity and Environment Unfamiliarity. 
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Figure 12(d). Robot_1 Escaping (Because of High fear and the Presence of an Escape Route) 

Figure 12(e). Robot_1 Successfully Presented Escape Behaviour  
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4.5.2 Implementing Attack Behaviour  

The embedding of attack behaviour was simulated using two autonomous agents, Robot_1 and Robot_2, 

within a constrained indoor environment enclosed by obstacles and walls. As shown in Figures 13(a)-13(e) 

[Aaqib2], Robot_1, marked by blue trajectory dots, is initially placed at the center of the space, while 

Robot_2, represented by red dots, starts from a nearby peripheral location. The objective of this scenario is 

to simulate aggression by directing Robot_1 to approach Robot_2’s initial position and initiate an attack 

response. As Robot_1 advances, Robot_2 evaluates the threat using its sensors and fuzzy logic-based fear 

assessment. A progressive increase in red dots around Robot_2 represents escalating fear intensity in 

response to Robot_1’s approach. 

 

Figure 13(a). Initial Position of Robots 

The simulation employs fuzzy component behaviour, behaviour fusion, and behaviour coordination to 

analyze the system's interactive performance. Robot_1’s movement is driven by an aggression -triggering 

fuzzy rule set, while Robot_2 continuously evaluates its proximity to Robot_1, familiarity levels (AFTA), 

environmental awareness (AFTP), and the presence of viable escape paths (EPE). In figure 13(a), both 

robots are at their starting positions. As the simulation progresses, figure 13(b) shows Robot_1 initiating a 
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goal-oriented trajectory toward Robot_2. In figure 13(c), Robot_2 detects the proximity of Robot_1 

interpreted as a potential threat triggering a rise in its internal fear level based on fuzzy input evaluations.  

Upon crossing a critical distance threshold and confirming the availability of an escape route, Robot_2 

executes an evasive maneuver, depicted in figure 13(d). Concurrently, Robot_1 continues to pursue 

Robot_2's original position, enacting the attack behaviour encoded in its fuzzy logic rule base. Behaviour 

coordination synchronizes both agents’ reactions: Robot_1's aggressive pursuit is dynamically linked to 

Robot_2’s avoidance behaviour, reflecting ethologically inspired predator-prey dynamics. These 

synchronized responses result from behaviour fusion mechanisms, which resolve potential conflicts 

between overlapping behavioural priorities and ensure coherent interaction between multiple fuzzy 

controllers. 

Figure 13(b). Robot_1 Starts Moving Towards its Goal Task 

In the final stage, shown in figure 13(e), Robot_1 successfully reaches Robot_2’s original location, 

signaling the completion of its attack task. This interaction validates the robustness of the fuzzy rule-based 

decision framework, highlighting the system’s capacity to simulate lifelike aggressive interactions. By 

modeling combat-like behaviour through real-time sensory data, fuzzy inference, and spatial awareness, 

the system demonstrates high adaptability in unpredictable environments.  
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Beyond simulation fidelity, this scenario illustrates the broader potential of integrating fuzzy aggression 

modeling within robotic platforms. Technologies such as ROS, Gazebo, RViz, and LIDAR play a pivotal 

role in enabling this advanced behaviour embedding. The ability to simulate nuanced behaviours like attack 

and escape contributes to the development of emotionally responsive robotic agents. Moreover, this work 

has implications for human-robot interaction, where safety and ethical behaviour must be maintained. In 

multi-agent systems, such models can facilitate complex group dynamics in domains such as joint 

manufacturing, defense, autonomous surveillance, and coordinated search-and-rescue. By enabling robots 

to process ambiguous stimuli, adapt to context, and coordinate with peers, fuzzy behaviour embedding 

enhances decision-making under uncertainty advancing both autonomy and safety in intelligent robotic 

ecosystems. 

Figure 13(c). Robots are Getting Close to Each Other (Robot_2 Identifies an Unknown Animal Robot is 

Approaching). 
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Figure 13(d). Robot_1 shows Aggression (Robot_2 Fear Level is Increasing and Starts to Leave) . 

Figure 13(e). Robot_1 Successfully Presented Attack Behaviour (Robot_2 is far from Robot_1) 



Chapter 4: Embedding Aggressive Behaviour in Robotics 

 

61 

 

4.5.3 Classification Metrics and Empirical Benchmarking  

Figures 14(a) and 14(b) present the classification performance of a fuzzy logic -based behavioural 

framework embedded in autonomous robotic agents. This evaluation assesses the model’s ability to classify 

context-sensitive behaviours Escape and Attack under dynamic environmental conditions. Behaviour 

selection is governed by biologically inspired fuzzy rules. For example: 

Escape behaviour is activated when: Rule High when “EPE” is High and “FEAR” is High end 

Attack behaviour is triggered by: Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low 

end 

 
Figure 14 (a). Escape Behaviour Classification Metrics 

 
Figure 14 (b). Attack Behaviour Classification Metrics 
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To evaluate system performance, classification metrics including accuracy, precision, recall, and F1-score 

were computed from approximately 50 simulation trials conducted within the ROS environment. These 

trials covered a range of realistic scenarios using dynamic sensory inputs such as proximity, obstacle layout, 

robot speed, and environmental familiarity. To assess practical effectiveness, the fuzzy controller was 

benchmarked against a traditional reactive controller [22] [23] [30] [31] ]32]. Key performance indicators 

included task completion time, number of collisions, behaviour-switching latency, and classification 

accuracy, summarized in Table 3 (more details in section 2.3). Additionally, Table 4 presents a conceptual 

comparison between the proposed fuzzy ethological architecture and traditional behaviour-based systems 

such as Subsumption Architecture, BDI Models, and Neuro-Fuzzy Systems (more details in section 2.3) 

[30] [31] [32] highlighting the unique integration of biological plausibility, emotional modeling, and 

interpretable decision-making in the proposed approach. 

Metric Fuzzy Behaviour Based System  Baseline System (Reactive) 

Task Completion Time (sec) 49.6 ± 3.5 58.3 ± 5.7 

Number of Collisions 2.5 ± 1.5 3.9 ± 1.1 

Behaviour Switching Latency (ms) 390 ± 50 420 ± 52 

Behaviour Classification Accuracy 

Escape 

Attack 

 

0.85 

0.82 

 

0.75 

0.75 

F1-Score  

Escape 

Attack 

 

0.77 

0.72 

 

0.70 

0.70 

Table 3. Fuzzy Behaviour Based Vs Baseline Controller 

Aspect 
Subsumption 

Architecture 
BDI Models 

Neuro-Fuzzy 

Systems 

Proposed Fuzzy 

Ethological 

System 

Behaviour 

Coordination 

Layered 

suppression; 

limited 

adaptability 

Symbolic 

reasoning for 

action selection 

Adaptable rules 

via training; often 

opaque 

Fuzzy rules enable 

blended, graded 

responses 

Emotional 

Modeling 
Not supported 

Indirect and 

abstract 

Implicit if trained; 

not interpretable 

Direct 

representation of 

emotions (fear, 

aggression) 

Environmental 

Reactivity 

High but rigid 

(binary 

suppression) 

Low in dynamic 

environments; 

high in planned 

domains 

Reactive but can 

lack 

interpretability 

High; real-time 

fuzzy inference 

based on sensor 

inputs 
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Real-Time 

Adaptability 

Good, but fixed 

hierarchy 

Poor due to high 

computational 

cost 

Moderate; 

depends on 

training 

generalization 

High; rule-based, 

interpretable, 

biologically 

grounded 

Interpretability Moderate 
High (symbolic), 

but often abstract 
Low ("black box") 

High; rules are 

biologically and 

ethologically 

grounded 

Training Data 

Needs 
None Not data-driven 

Require large 

datasets 

Rule-based; no 

training required 

Table 4. Comparison of Traditional and Fuzzy Ethological Control Systems. 

 

 

4.6 Conclusion  

This work demonstrates the successful integration of ethologically inspired escape and attack behaviours 

into autonomous robotic systems through a fuzzy behaviour-based framework. Leveraging ROS, Gazebo, 

LIDAR, fuzzy inference, and SLAM, the system enables robots to perceive environmental stimuli, assess 

internal affective states, construct and maintain environmental maps, and execute adaptive, context-aware 

responses. Unlike rigid binary models, fuzzy logic supports graded, biologically realistic decision-making, 

yielding lifelike and interpretable behaviours. SLAM ensures continuous localization and spatial 

awareness, enhancing alignment between behaviour and environmental structure for real-time adaptation 

in dynamic scenarios. System performance was benchmarked against a traditional reactive controller and 

compared conceptually with Subsumption Architecture, BDI models, and Neuro-Fuzzy Systems, with 

results showing superior integration of biological plausibility, emotional modeling, and decision 

transparency. By grounding artificial behaviour in ethological principles, this approach advances robotic 

autonomy, resilience, and interpretability, with implications for multi-agent coordination, human-robot 

interaction, and real-world applications such as search and rescue, surveillance, and collaborative robotics.
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4.7 Thesis II. 

This thesis presents a novel implementation of Archer’s ethological model of aggression and fear into 

autonomous robotic systems through a fuzzy state machine architecture.  The work bridges animal 

behaviour science and robotics by enabling emotion-driven real-time behaviour switching based on both 

internal affective states and external stimuli [Aaqib1-Aaqib5]. 

 

4.7.1 Scientific Contribution 

Robotic Instantiation of Ethological Behaviour: This research marks the first robotic realization of Archer’s 

biological aggression model, enabling real-time behaviour transitions Escape, Attack, and Immobility 

governed by internal emotional states such as fear and prior experiential factors.  

Fuzzy State Machine Design: A multi-state fuzzy behaviour system is developed using the Fuzzy Behaviour 

Description Language (FBDL), allowing interpretable, modular transitions between states. Each transition 

is dynamically modulated by real-time sensory context and affective history, reflecting biologically 

plausible decision-making. 

Architectural Innovation: A multi-layered control system integrates ROS, Gazebo, RViz, and SLAM 

technologies, organized into distinct, testable modules: Perception→Fuzzy Behaviour Evaluation→  

Inference Engine→Motion Execution, supporting both simulation and hardware deployment.  

4.7.2 Mathematical and System Formalism 

The robot’s behavioural state S∈{Escape, Attack, Immobility}, is determined through a fuzzy inference 

process applied over perceptual and affective variables: 

X = {ADTA, AFTA, AFTP, EPE, PIWPE}. 

Inputs are fuzzified using trapezoidal membership functions into linguistic terms (e.g., Low, Medium, 

High). Fuzzy rules, defined in FBDL, are grounded in ethological behaviour models.For example: 

Rule-base: Escape is High When FEAR is High AND EPE is High 

Inference uses FRI (FIVE), consistent with the FBDL models. For submodules with a complete rule base, 

a Mamdani variant used as a baseline, but the deployed controller employs FRI (FIVE) to ensure reliable 

reasoning even with sparse rules. Behaviour fusion is then applied to combine module outputs.  

𝑆 = arg max𝑖 (𝜇𝐵𝑖)      (9) 
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To avoid abrupt state changes, transitions between behaviours are governed by a Fuzzy State Machine 

(FSM), allowing partial activation through probabilistic blending: 

P(Bj ∣ Bi, xk) = 
μBj(xk)

∑ μBn(xk)𝑛
          (7) 

Detailed membership equations, defuzzification, and full inference logic are presented in Chapter 2  

mathematical formalism. 

4.7.3 Empirical Validation & Simulation Based Evidence 

To assess the effectiveness of the proposed fuzzy ethological behaviour architecture, approximately 50 

simulation trials were conducted within the ROS environment. These trials spanned a range of realistic and 

dynamic conditions, including variations in obstacle layouts, proximity to agents, robot velocity, and 

environmental familiarity. The primary goal was to evaluate the controller’s capacity for adaptive, context-

sensitive behaviour selection in diverse operational scenarios. 

Classification performance was evaluated using standard metrics such as accuracy, precision, recall, and 

F1-score. Figures 14(a) and 14(b) show the classification outcomes for "Escape" and "Attack" behaviours, 

respectively, confirming the architecture’s robustness in interpreting perceptual and experiential variables. 

These results demonstrate the model’s ability to capture nuanced, biologically inspired decision-making 

processes beyond conventional reactive logic. 

A benchmarking study compared the fuzzy controller with a traditional reactive controller based on 

classical models. Performance indicators included task completion time, collision count, behaviour-

switching latency, and behaviour classification accuracy, summarized in Table 3. Furthermore, Table 4 

presents a conceptual comparison with control paradigms such as Subsumption Architecture, BDI Models, 

and Neuro-Fuzzy Systems, emphasizing the value of integrating emotional modeling, biological 

plausibility, and transparent decision-making. 

4.7.4 Experimental Highlights 

Several key experiments were designed to evaluate real-time behavioural responsiveness. In the Escape 

Behaviour scenario (Figures 10 and 12(a)-(e)), Robot_1 assesses inputs like AFTA, ADTA, and EPE. Upon 

detecting Robot_2 under threatening conditions, a high fear level is activated, prompting the robot to initiate 

escape. The robot's movement shows smooth and ethologically plausible trajectories, simulating fear-driven 

withdrawal. In the Coordinated Attack Simulation (Figures 11 and 13(a)-(e)), Robot_1 initiates an 

aggressive approach using fuzzy logic rules, while Robot_2 reacts by activating its escape behaviour. This 

dynamic interaction demonstrates emergent, lifelike decision-making and verifies the arbitration module’s 
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effectiveness in transitioning between attack and avoidance based on environmental context.  Additionally, 

integration with SLAM (via the gmapping package) enables spatial awareness in GPS-denied environments. 

By continuously updating occupancy grids, the system ensures context-sensitive planning and behavioural 

transitions even in unknown or dynamic indoor spaces.  

4.7.5 System-Level Testability and Reproducibility 

The system’s modular architecture enhances reproducibility and testability across both simulated and 

physical platforms. Each behaviour Escape and Attack is encapsulated within its own ROS node and linked 

via standard ROS messaging. The fuzzy rule base is implemented using FBDL, and each rule is traceable 

to specific ethological observations, ensuring interpretability and auditability. Simulation experiments in 

Gazebo were conducted using systematically varied environmental parameters (e.g., EPE, ADTA etc) to 

activate specific behaviour transitions. Behaviour states and fuzzy variable activations are visualized in 

real-time via RViz, providing a clear interface for analysis, debugging, and verification. Importantly, the 

system is hardware-compatible and can be deployable on physical robots such as TurtleBot platforms. ROS 

drivers and modular nodes allow seamless transition from simulation to real-world implementation.  

4.7.6 Applications and Ethical Implications 

The proposed fuzzy ethological behaviour model offers versatile applicability across several real-

world domains. In search and rescue operations, robots equipped with fear-based reasoning can 

autonomously flee from hazardous environments or avoid structural collapses, improving safety 

and autonomy during mission-critical deployments. In autonomous surveillance, the system 

enables robots to assess potential threats and respond with appropriate aggression or withdrawal, 

offering adaptive situational awareness. For human-robot interaction, architecture supports 

emotionally expressive behaviour that goes beyond static scripting, enabling robots to react in 

socially intelligible ways without reliance on predefined dialogue trees. This emotional modeling 

fosters more intuitive and meaningful engagement between robots and humans. 

However, embedding emotion-like behaviour in robots introduces important ethical 

considerations. It raises questions about intent interpretation, the transparency of decision-making, 

and accountability in autonomous systems. The proposed framework addresses these issues 

through biologically grounded and interpretable rule sets, implemented using fuzzy logic that 

makes internal states and decisions traceable. The system also supports behaviour-state reporting 

in real time, ensuring that robotic actions remain auditable and ethically defensible. 
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4.7.7 Novelty and Impact. 

This work introduces a novel implementation of a fuzzy state machine grounded in ethological theory and 

deployed within a high-resolution, SLAM-integrated ROS environment. Unlike traditional controllers, the 

system models affective states such as fear and aggression using biologically inspired rules, enabling 

nuanced, context-sensitive behaviour. 

By demonstrating that affective robotics can be driven by biological theory rather than heuristic or 

reinforcement-based logic, the system establishes a new paradigm for behaviour design in autonomous 

agents. Furthermore, the architecture is modular, reusable, and open-source, allowing easy adaptation to 

multi-agent setups and future emotion-aware robotic applications. It contributes a biologically principled, 

interpretable, and ethically aware foundation to the field of affective robotics.  
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Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF  

5.1 Introduction 

The increasing integration of robots into human environments demands advanced navigation and obstacle 

avoidance systems that ensure both safety and efficiency in dynamic settings. This chapter presents a 

modular fuzzy behaviour-based control architecture tailored for adaptive robotic navigation in complex, 

cluttered, and dynamic environments. The system is composed of three modules:  

Behaviour Coordination which uses fuzzy logic to evaluate environmental inputs and assign weights (or 

membership values) to available behaviours. 

Component Behaviours which generate candidate navigational actions such as Goal Pursuit, Obstacle 

Avoidance, or Escape each suggesting a direction or response. 

Behaviour Fusion (as a VFF here) where the outputs of the component behaviours are merged according 

to their assigned weights. The Virtual Force Field (VFF) method is used here as a fusion technique, 

calculating a net motion vector by combining attractive and repulsive forces in proportion to each 

behaviour’s relevance. 

The novel aspect of this architecture is the integration of Virtual Force Field (VFF) as a technique within 

the Behaviour Fusion module rather than as a standalone system. The integrated system draws from 

ethological models, particularly animal escape responses, to simulate internal affective states such as fear 

and adapt behaviour accordingly. Fuzzy logic maps sensor-derived observations (e.g., proximity to threats, 

familiarity with place or objects) to internal emotional activations, which then modulate the influence of 

each component behaviour during fusion. 

This hybrid approach empowers robots with context-sensitive, lifelike decision-making, allowing them to 

continuously adapt their motion in response to environmental changes. The system simulation has been 

implemented using the Robot Operating System (ROS), validated in realistic environments through LIDAR 

sensing, SLAM-based localization, and dynamic simulation in Gazebo. By combining fuzzy reasoning with 

biologically inspired fusion, this architecture advances robotic autonomy and real-time decision-making in 

fields such as manufacturing, logistics, service robotics, and human-robot interaction. 
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5.2 Background 

Robotics has evolved significantly from its early role in automated industrial systems to become a 

ubiquitous presence across sectors such as education, hospitality, and service industries. Once confined to 

high-tech laboratories and elite manufacturing, advancements in hardware and open-source platforms have 

democratized robotic technologies, enabling broader deployment in everyday contexts. This shift is further 

reflected in the growing emphasis on intelligent automation systems, including autonomous vehicles and 

service robots [41] [42]. 

Ethology, the scientific study of animal behaviour, offers valuable insights into adaptive motion, decision-

making, and interaction strategies in natural environments. Ethologists employ methods such as direct 

observation, remote sensing, and motion tracking to analyze behaviours like pursuit, evasion, and foraging. 

These biologically inspired behaviours provide a rich foundation for designing adaptive control strategies 

in robotics [3] [8]. By embedding such strategies into robotic platforms, engineers can develop systems that 

exhibit flexible, ecologically valid responses suited to real-world environments. 

Despite these advances, real-time robotic navigation remains a significant challenge particularly in 

unpredictable and densely populated environments. Robots must not only detect and recognize obstacles, 

including humans, other robots, and moving vehicles, but also respond with timely and context-appropriate 

actions to avoid collisions [43]. Mobile robots with cognitive capabilities are increasingly essential in 

critical domains such as warehouse automation, disaster response, patrolling, and search -and-rescue 

missions [44], where both spatial awareness and dynamic planning are required.  

In response to these challenges, this study proposes a novel fuzzy behaviour-based control framework in 

which the Virtual Force Field (VFF) method is embedded as a behaviour fusion technique, rather than a 

standalone system. The architecture separates decision-making into distinct modules: Behaviour 

Coordination, which determines the relevance of each component behaviour using fuzzy inference; 

Component Behaviours, which generate direction vectors; and Behaviour Fusion, which merges these 

vectors based on coordination-assigned weights. Within this fusion process, the VFF method combines 

attractive and repulsive forces in proportion to each behaviour’s weight.  By emulating adaptive animal 

strategies such as escape and threat avoidance, the system enables robots to navigate with increased 

intelligence, safety, and contextual awareness. The result is a biologically grounded, modular navigation 

architecture that unites engineering precision with naturalistic behaviour modelling. 
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5.3 Fuzzy Behaviour Fusion 

In behaviour-based robotic control, behaviour fusion refers to the integration of outputs from multiple 

component behaviours into a single, coherent response that is sensitive to both context and environmental 

dynamics. This process is especially critical in systems where multiple objectives must be balanced such 

as navigation, obstacle avoidance, and threat escape and is widely applied in fields including robotics, 

artificial intelligence, and multi-agent systems [45]. At the core of this process lies the Behaviour 

Coordination module, which uses fuzzy inference to evaluate the robot's current situation and assign 

weights (or membership values) to each behaviour. These weights represent the degree to which a given 

behaviour is appropriate in the current context. Once weighted, the outputs of the component behaviours 

are passed to the Behaviour Fusion module, where they are combined into a unified action.  

Fusion strategies can vary from rule-based mechanisms to more complex machine learning models. In this 

architecture, however, we apply a fuzzy behaviour fusion approach, which leverages fuzzy logic to handle 

conflicting or ambiguous behavioural recommendations. This is particularly advantageous in real-world 

robotic scenarios, where uncertainty and environmental variability are common. This design is inspired by 

mechanisms observed in animal behaviour. In nature, animals assess sensory inputs, internal states, and 

external threats to make fast survival decisions such as fleeing or freezing. These biological processes 

involve real-time coordination and fusion of multiple action tendencies a principle mirrored in this system. 

In the proposed model, each component behaviour (e.g., Obstacle Avoidance, Target Following, Escape) 

generates a directional suggestion or response value. These outputs are not treated equally; instead, they 

are weighted based on coordination-derived fuzzy values that reflect behavioural suitability. The fusion 

process, guided by a Fuzzy Rule Base, then integrates these weighted contributions into a final action 

decision. This structure ensures that behaviours are not selected in isolation or based on binary logic but 

are blended proportionally using fuzzy inference rules. The result is a robot capable of nuanced, lifelike 

responses, capable of adjusting to rapidly changing environments while maintaining coherent goal-oriented 

navigation [46] [47] [48]. 

Figure 15 illustrates this process: the component modules (Escape Response, Target Following, Obstacle 

Avoidance) provide outputs that are routed into a Fuzzy Rule Base (Fusion). This base processes the 

weighted inputs, resolves conflicts, and produces the Final Action Decision a command that is both 

situationally aware and context adaptive. 



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF 

 

71 

 

 

 

Figure 15. Fuzzy Behaviour Fusion Process 

5.4 Virtual Force Field Navigation 

Virtual Force Field (VFF) navigation is a widely utilized technique in mobile robotics and autonomous 

systems, particularly in tasks involving real-time obstacle avoidance and local path planning [49]. The core 

idea is to model the robot’s operating environment as a field of virtual forces: attractive forces guide the 

robot toward its goal, while repulsive forces push it away from nearby obstacles. By continuously 

calculating the resultant force vector from these interactions, the robot can determine its movement 

direction and dynamically adjust its trajectory as the environment evolves.  While VFF offers several 

benefits including algorithmic simplicity, intuitive control logic, and fast responsiveness it also suffers from 

well-known limitations such as susceptibility to local minima, oscillations in cluttered spaces, and difficulty 

in handling conflicting behavioural goals. Nonetheless, it remains an essential component of reactive 

navigation strategies in systems requiring rapid adaptation [50]. 

To overcome these limitations, this study introduced a novel approach that combines Fuzzy Behaviour-

Based Control Framework with VFF Fusion. In this study VFF is not treated as a standalone navigation 

system but is instead embedded as the core mechanism within the Behaviour Fusion module of a fuzzy 

behaviour-based control architecture. The system's modular structure consists of three layers as described 

in the introduction section of this chapter. In this context, VFF operates as a fusion engine, using the weights 

produced by the coordination layer to scale the attractive and repulsive influences of each behaviour. For 

instance, in a threatening situation, escape behaviour might receive higher weight, resulting in stronger 

repulsive effects in the final motion vector. This hybrid approach overcomes VFF’s limitations by 

introducing context-aware weighting and decision flexibility through fuzzy logic. 

Figure 16 illustrates the fundamental concept of Virtual Force Field (VFF) navigation, where a robot is 

guided by virtual forces within its environment. An attractive force pulls the robot toward the target, while 
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a repulsive force pushes it away from nearby obstacles. These opposing vectors combine to form a resultant 

force vector, which determines the robot’s movement direction. This continuous vector calculation enables 

the robot to navigate toward its goal while dynamically avoiding obstacles, supporting real-time, adaptive 

path planning. 

 

Figure 16. Virtual Force Field (VFF) Navigation 

VFF is essential for a range of practical applications, including autonomous ground vehicles, unmanned 

aerial delivery systems, and mobile service robots. To quantify the influence of repulsive forces on the 

robot’s motion, the system applies the mathematical model defined in Equation (10): 

F (𝑖, 𝑗) = 
FcrC(i,j)

d2(i,j)
 [
𝑥𝑖−𝑥0

d(i,j)
 𝑥  +  

𝑦𝑖−𝑦0

d(i,j)
 𝑦]                  (10) 

where Fcr denotes the repelling force constant, d(i, j) represents the distance between the robot’s current 

position and a given cell (i, j), and C(i, j) signifies the certainty level of that cell. The certainty level reflects 

the system’s confidence in whether a particular cell contains an obstacle, influencing the robot’s assessment 

of the repulsive force exerted by that cell. A high certainty level indicates a greater likelihood of an obstacle, 

leading to a stronger repulsive force, whereas a low certainty level suggests a lower probability of an 

obstacle, resulting in a weaker repulsive effect. 

To determine the repulsive force F(i, j) from a given cell (i, j), equation (1) incorporates the repelling force 

constant Fcr, the distance d(i, j) between the cell's coordinates (x i, yi) and the robot's position (x0, y0), as 

well as the certainty level C(i, j). By summing the repulsive forces from all relevant cells, the system 



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF 

 

73 

 

computes the total repulsive force Fr, shown in equation (11) which the robot utilizes to safely maneuver 

around obstacles. 

𝐹𝑟 = ∑I, j 𝐹 (𝑖, 𝑗)                  (11) 

This summation accounts for repulsive contributions from all relevant grid cells in the robot's sensory field. 

Combined with attractive forces toward the goal, the final resultant vector determines the robot's movement. 

By integrating this method within the fuzzy coordination and fusion framework, the VFF approach is 

enhanced with adaptive behaviour weighting, greater robustness, and biologically inspired flexibility. The 

result is a navigation system capable of intelligently responding to dynamic, cluttered, or ambiguous 

environments [51]. 

5.5 Implementation of Fuzzy Behaviour-Based Control Framework with VFF  

The integration of a fuzzy behaviour-based control framework with the Virtual Force Field (VFF) method 

offers a biologically inspired and adaptive approach for real-time robotic decision-making in dynamic 

environments [Aaqib6, Aaqib7]. This hybrid model enhances flexibility in human-robot collaboration and 

enables context-aware navigation in uncertain, rapidly changing conditions. The system combines the 

strengths of its two key components: The fuzzy control system, which assigns relevance weights to multiple 

behaviours based on environmental inputs. The VFF technique, which serves as a behaviour fusion 

mechanism by combining these weighted behaviour outputs into a unified motion directive [52]. 

Specifically, VFF computes attractive and repulsive force vectors from sensor data, which are scaled 

proportionally to the behaviour weights derived through fuzzy inference. This produces a resultant force 

vector guiding the robot toward its goal while avoiding obstacles and responding to potential threats [53]. 

Importantly, VFF does not operate as a standalone system but functions as a fusion layer governed by fuzzy-

assigned priorities. 

The fuzzy behaviour coordination layer enhances adaptability by allowing dynamic reconfiguration of 

navigational responses based on real-time sensory input. This design improves operational safety, decision 

accuracy, and computational efficiency while supporting modular expansion. It is applicable to both 

physical and simulated environments, including autonomous vehicles, service robots, and assistive systems 

that require fast, biologically inspired, and context-sensitive navigation [54]. 

At its core, the system consists of three distinct modules: 

Behaviour Coordination: This fuzzy inference module evaluates environmental context and assigns 

weights (membership values) to multiple component behaviours such as Obstacle Avoidance, Goal Pursuit, 
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and Escape. The weights represent the relevance or urgency of each behaviour under the current situation, 

based on sensor data and contextual observations. 

Component Behaviours: Each behaviour independently suggests a motion vector aligned with its objective. 

These vectors are not executed directly but are passed to the fusion layer for integration based on their 

assigned weights. 

Behaviour Fusion (as a VFF here): The VFF method fuses the proposed motion vectors. It computes 

attractive forces (e.g., toward goals) and repulsive forces (e.g., from obstacles). Each force is scaled by its 

fuzzy-assigned weight. The resulting force vector determines the robot’s final direction, allowing 

proportional contributions from each behaviour and ensuring safe, efficient navigation.  

The fuzzy behaviour coordination serves as the central mechanism governing how various behaviours are 

combined and executed in response to environmental stimuli. The fuzzy rules of behaviour coordination 

consist of If [conditions] and Then [actions] statements that define relationships between input variables 

(e.g., environmental conditions) and output behaviours (e.g., movement adjustments, force modulation). 

These rules allow the system to make context-sensitive, adaptive decisions, mirroring the nuanced 

responses observed in biological organisms. 

If AFTP=Low And AFTA=Low And ADTA=Low And EPE=High Then ESCAPE=High 

Rule-base ESCAPE in FBDL:  

Rule ESCAPE is High When AFTP is Low And AFTA is Low And ADTA is Low And EPE is High 

Where the input (antecedent) variables include AFTP (Animal Familiarity Towards Place), AFTA (Animal 

Familiarity Towards Another), and ADTA (Animal Distance Towards Another Animal), EPE (Escape Path 

Exists). The output (consequent) variable is defined as ESCAPE. Further details on these notations and the 

corresponding aggression behaviour model can be found in [Aaqib2]. The rule (weight) does not cause an 

immediate escape but adjusts the influence of the Escape behaviour within the final vector generated by 

VFF. 

After behaviour coordination assigns weights, each component behaviour (e.g., Escape, Goal Pursuit, 

Obstacle Avoidance) proposes a motion vector. These vectors are fused using the VFF method: Attractive 

forces are directed toward the goal; Repulsive forces are generated based on detected obstacles; The total 

force vector is the sum of all component vectors, each scaled by its fuzzy-derived weight. This process 

allows robots to: Escape from danger more strongly when fear is high; Pursue goals more assertively in 

safe conditions; Resolve conflicts dynamically between opposing behaviours. Thus, VFF serves as the 

computational substrate for behaviour fusion, driven by the weights from fuzzy coordination  [Aaqib7]. 
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To demonstrate this integration, the proposed study analyzes the "Escape" behaviour as modeled in the 

ethologically inspired aggression framework [Aaqib2], where the corresponding fuzzy rule bases are 

implemented using the Fuzzy Behaviour Description Language (FBDL) [4]. The system emphasizes the 

importance of identifying key internal state variables (e.g., "fear", "escape motivation") and external 

observations (e.g., familiarity with the environment, obstacle proximity, escape route availability).  This 

hybrid approach enables the accurate modelling of ethologically inspired escape behaviour, with logic 

centered on critical state variables and contextual awareness, as discussed in Chapters 2 and 3.  

State Variables: These define the current condition of the system. The fuzzy escape behaviour model 

incorporates two state variables: 

Escape: Represents actions aimed at distancing the animal from a perceived threat. Animals instinctively 

flee from danger by rapidly moving away. 

Fear: A hidden state variable, meaning it does not directly correspond to a specific behaviour but influences 

other state variables. Fear is a complex reaction involving physiological, behavioural, and emotional 

responses to stimuli. When animals experience intense fear, they exhibit physical changes such as 

crouching, pulling back ears, widening eyes, and tucking their tails. Although fear cannot be observed 

directly, its effects on behaviour are evident. 

Observations: These define the situations influencing state variables and contribute to an animal’s decision-

making process: 

Animal Familiarity Towards Place (AFTP): Represents how familiar an animal is with its surroundings. 

Unfamiliar environments often trigger fear responses. 

Animal Familiarity Towards Another Animal (AFTA): Indicates the level of familiarity an animal has with 

another. Fear may increase if an unfamiliar animal enters its territory.  

Animal Distance Towards Another Animal (ADTA): Refers to the proximity between two animals, affecting 

the likelihood of fear or aggression. 

Animal Familiarity Towards Object (AFTO): Describes the degree to which an animal recognizes a specific 

object. Unfamiliar objects within a known space may provoke fear, aggression, or escape behaviours. 

Animal Distance Towards Object (ADTO): The distance between an animal and an object, with unfamiliar 

objects potentially eliciting fear or defensive behaviour. 

Escape Path Exists (EPE): Determines whether an escape route is available. If the escape path is blocked, 

the animal may react aggressively, even if it is fearful. 
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Understanding how animals respond to their environments and social interactions is essential for designing 

adaptive, intelligent robotic systems [Aaqib1] [Aaqib2] [Aaqib3]. In this context, the integration of Virtual 

Force Field (VFF) navigation with fuzzy logic offers a biologically grounded framework for replicating 

animal-like escape responses. While VFF governs motion through the computation of attractive and 

repulsive forces, fuzzy logic introduces real-time adaptability by evaluating contextual sensory inputs and 

modulating behavioural priorities accordingly. 

This combined approach allows robots to define and pursue specific behavioural goals such as avoiding 

threats, seeking targets, or escaping confined areas based on environmental cues. Fuzzy rules are used to 

model these behaviours in a modular and interpretable manner [Aaqib6]. For instance, when an unfamiliar 

entity approaches, the fuzzy coordination module may increase the weight of the "Escape" behaviour, 

leading to stronger repulsive vector influence in the VFF fusion process. This rule -based modulation 

enables robots to respond dynamically to their surroundings in a way that mirrors natural animal strategies, 

such as evasion and threat avoidance. 

Fuzzy Behaviour Descriptive Language (FBDL) [5] provides a structured framework to define input and 

state variables, including the terms used (e.g., "Low" or "High") and the rules that dictate behavioural 

responses. For example, when evaluating "Animal Familiarity with Another Animal" (AFTA) with possible 

values of "Low" or "High," FBDL might look like this:  

universe: AFTA 

description: How well the animal knows another animal 

        Low   0 0 

        High  1 1 

end 

A fuzzy rule might say: 

Rule FEAR=Low when AFTP=High and AFTA=High and AFTO=High 

The fuzzy rule base and corresponding Fuzzy Behaviour Descriptive Language (FBDL) definitions are 

designed to address a wide range of behaviourally relevant scenarios [Aaqib4] [Aaqib5]. These include: 

(i) The degree of familiarity an animal has with a particular location, object, or other animal.  

(ii) Proximity of an approaching object or agent. 

(iii) Appearance of a new object or animal within a familiar territory.  

(iv) Animal entering an unfamiliar environment, often triggering a fear response.  

(v) Presence of a familiar object in an unfamiliar setting. 
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These scenarios inform the construction of fuzzy rules that govern key behaviours such as "Fear" and 

"Escape", enabling the robotic system to respond in a manner consistent with ethologically inspired models. 

The fuzzy logic rules supporting these behaviours are outlined in the following sections. 

In fuzzy rule-base format the fuzzy rules of FEAR are the following:  

If AFTP=Low And AFTA=Low And AFTO=Low Then Fear=High. 

If AFTA=Low And ADTA=Low And EPE=Low Then Fear=High. 

If AFTO=Low And ADTO=Low And EPE=Low Then FEAR=High   

If AFTP=High And AFTA=High And ADTA=High Then Fear=Low. 

If AFTP=High And AFTA=High And EPE=High Then Fear=Low. 

where antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE , and FEAR is the consequent 

universe, Low and High are fuzzy linguistic terms of the corresponding universes.  

In fuzzy rule-base format the fuzzy rules of Escape are the following:  

If EPE=High And FEAR=High Then ESCAPE=High  

If EPE=High And AFTP=Low And AFTA=Low And AFTO=Low Then ESCAPE=High   

If FEAR=Low And EPE=Low Then ESCAPE=Low  

If AFTA=High And AFTP=High And ADTA=High And AFTO=High And ADTO=High Then 

ESCAPE=Low. 

Where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, FEAR are the antecedent universes, ESCAPE is the 

consequent universe, Low and High are fuzzy linguistic terms of the corresponding universes.  

The same ESCAPE rule-base in FBDL format presents as:  

RuleBase "ESCAPE"  

Rule High when EPE=High and FEAR=High  end 

Rule High when AFTA=Low and AFTP=Low and EPE=High and AFTO=Low  end 

Rule Low when FEAR=Low and EPE=Low end 

Rule Low when AFTA=High and AFTP=High and ADTA=High and AFTO=High and 

ADTO=High end 

end 

5.6 Conceptual Framework of VFF with Fuzzy Behaviour Control 

The conceptual framework of  the proposed system which combines VFF navigation with fuzzy behaviour 

fusion to enable adaptive, context-aware robotic motion is illustrated in figure 17. This layered architecture 

processes real-time environmental data through fuzzy inference and transforms it into motion directives via 

force field computation. The process begins with: 
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Input Layer: which gathers real-time environmental data critical for navigation and decision-making. Key 

variables include Animal Distance Toward Another Animal (ADTA),  Animal Distance Toward Object 

(ADTO), Animal Familiarity Toward Place (AFTP), Animal Familiarity Toward Object (AFTO), Escape 

Path Exists (EPE) These variables represent perceptual observations that inform the robot’s understanding 

of its surroundings and potential threats or escape opportunities.  

 

Figure 17. Conceptual Diagram of the Fuzzy Behaviour Control with VFF Navigation  

Fuzzy Logic Module (Behaviour Coordination): Environmental inputs are processed by the Fuzzy 

Behaviour Coordination Module, which applies a set of fuzzy inference rules to derive internal states, 

particularly Fear and Escape. Fear an inferred emotional state representing threat intensity. Escape a 

behavioural tendency activated by high fear or unfamiliar stimuli. The fuzzy module functions as a state 

evaluator, transforming ambiguous or continuous environmental stimuli into discrete behavioural priorities 

using a rule-based system. This enables the robot to handle uncertainty and make graded decisions even in 

rapidly changing contexts. 

Force Field Calculation Module (Behaviour Fusion): The output fuzzy states (e.g., high Escape, low Fear) 

are used to weight component behaviours such as obstacle avoidance and goal pursuit. These are then fused 

using the VFF method, where: Attractive Forces guide the robot toward its goal; Repulsive Forces steer the 

robot away from threats or obstacles. Each force vector is scaled according to its behaviour weight derived 

from fuzzy coordination. The system thus prioritizes behaviours in proportion to perceived environmental 

urgency and context. 

Output Layer (Motion Execution): The final stage consolidates the weighted attractive and repulsive forces 

into a resultant motion vector that governs the robot’s trajectory in real time. As environmental data updates 

continuously, the system recalculates and adjusts this vector dynamically, enabling fluid, adaptive 

navigation. 

This integrated framework demonstrates how biologically inspired behavioural modeling (e.g., threat 

recognition, escape motivation) can be embedded within engineering systems to produce autonomous, 
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intelligent, and ecologically valid robotic behaviour. The synergy between fuzzy logic and VFF navigation 

enhances decision granularity, environmental awareness, and response flexibility critical for high -stakes 

applications in dynamic and human-populated environments. 

5.7 Trajectories of Fuzzy Behaviour Control with VFF 

The Figure 18 illustrates a step-by-step simulation of ethologically inspired escape behaviour, implemented 

through the integration of Virtual Force Field (VFF) navigation and fuzzy behaviour control. This hybrid 

control architecture enables the robot to adapt its trajectory in real-time by combining fuzzy logic-based 

decision-making with force-based motion planning [Aaqib7]. The simulation involves two autonomous 

agents Robot_1 and Robot_2 alongside one static and one dynamic object. Robot_1 is the main actor tasked 

with reaching the target coordinates (5.5, 5.5). Its path is influenced by the dynamic behaviour of Robot_2, 

a potential threat, and a static obstacle, both of which test the robot's capacity for avoidance and path 

adaptation. 

Figure 18. Trajectories of Escape Behaviour Through Fuzzy Behaviour-Based Control Framework with 

VFF [Aaqib7]. 

As Robot_1 progresses toward its target, it encounters two primary challenges: (i) the approach of Robot_2, 

which interferes with its direct path, and (ii) a physical object that obstructs its trajectory. Robot_1 navigates 

the environment; it continuously receives sensory input about its surroundings. The fuzzy behaviour 

coordination module interprets environmental observations such as AFTP, AFTA, ADTA, AFTO, ADTO, 

EPE. These variables are processed using a fuzzy inference engine to evaluate internal behavioural states 



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF 

 

80 

 

Fear and Escape. Based on a rule base derived from ethological observations [Aaqib2] (as described in 

Section 5.5 and section 3.1), the coordination module assigns weights to behavioural components like Goal 

Pursuit, Obstacle Avoidance, and Escape. For instance:  

If ADTA = Low AND EPE = High AND AFTA = Low, Then ESCAPE = High. 

The output of fuzzy coordination is a set of weighted behaviour suggestions. These weights are passed to 

the behaviour fusion module, which is realized through the VFF algorithm. In this stage: An attractive force 

pulls Robot_1 toward the goal and the Repulsive forces push it away from Robot_2 and the static obstacle. 

Each force is scaled by the corresponding fuzzy-derived behaviour weight. The resultant vector determines 

the robot’s next movement step. This approach allows Robot_1 to: Prioritize Escape more strongly when 

threats are nearby, Shift toward Goal Pursuit when safe, Balance between multiple competing demands via 

weighted vector combination. The robot’s trajectory dynamically evolves based on both contextual 

awareness and fuzzy behavioural reasoning. Figure 19 presents the flowchart of the hybrid control model. 

This structure supports intelligent and adaptive navigation, replicating biological decision -making in 

artificial agents and ensuring operational robustness in uncertain environments.  

 

Figure 19. Flowchart of Fuzzy Behaviour-Based Control Framework with VFF. 
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The virtual force field utilizes equations (12) and (13) to measure the overall effect of repulsive forces, 

while equations (14) and (15) measure the attractive forces on the robot's motion. 

Xcr  =  - Fcr (
𝑋𝑖−𝑋0

√(𝑋𝑖−𝑋0)
2 +(𝑌𝑖−𝑌𝑜)

2
)                            (12) 

Ycr  =  - Fcr(
𝑌𝑖−𝑌0

√(𝑋𝑖−𝑋0)
2 +(𝑌𝑖−𝑌𝑜)

2
)                            (13) 

where Xcr is the 𝑥 component repulsive force, Ycr is the y component repulsive force, Fcr is the repelling 

force constant, (x0,y0) is the current coordinates of the robot_1, and (x i, yi) is the coordinates of the robot_2 

or obstacle position. 

Similarly, attractive forces are calculated using the same VFF to have an x and y component.  

Xca  =  Fa  (
𝐻𝑥−𝑋0

√(𝐻𝑥−𝑋0)
2 +(𝐻𝑦−𝑌0)

2 
)                            (14) 

Yca  =  Fa  (
𝐻𝑦−𝑌0

√(𝐻𝑥−𝑋0)
2 +(𝐻𝑦−𝑌0)

2 
)                             (15) 

Xca is 𝑥  and Yca is the y component attractive force from goal location  towards  robot_1 (from robot_2 

position and obstacle location). 𝐻𝑥 is and 𝐻𝑦 is the goal position at X and Y, and (x0,y0) is the current 

position of the robot_1, 𝐹𝑎 is the Gain of attractive force. 

Robot_1 initiates its journey from the origin point (0, 0) with low fear levels, represented by a blue 

trajectory. As it advances toward its goal (5.5, 5.5), it encounters Robot_2, which progressively obstructs 

its path. when Robot_2 approaches Robot_1, the proximity decreases (ADTA = Low), which combined 

with a valid escape path (EPE = High) and environmental unfamiliarity (AFTA = Low), leads to an increase 

in fear (color shift from blue to red in the trajectory) as evaluated by the fuzzy rule base. These conditions 

satisfy fuzzy logic rules such as: If AFTA = Low AND ADTA = Low AND EPE = High, Then ESCAPE = 

High. This results in a high Escape state, prompting the fuzzy Behaviour Coordination module to assign 

stronger weight to Escape behaviour. In the VFF-based behaviour fusion layer, this increases the repulsive 

force vector, leading Robot_1 to retreat and initiate an evasive trajectory. This avoidance maneuver is 
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reflected visually by a shift in the trajectory color from blue to red, denoting heightened fear and escape 

activation. 

As Robot_1 distances itself from Robot_2, the proximity increases, and the system reevaluates the situation. 

The fear level decreases, and the weight of the Escape behaviour diminishes, causing the attractive force 

toward the goal to regain dominance. The trajectory color transitions back to blue, indicating low fear and 

the resumption of the original navigational objective. The behaviour coordination module thus dynamically 

adjusts the fusion strategy based on real-time contextual updates. 

Further along its path, Robot_1 detects an unfamiliar object blocking its route. This triggers another rise in 

fear (the trajectory color changes from blue to red), as the fuzzy system evaluates: AFTO = Low (unfamiliar 

object), ADTO = Low (close distance), EPE = High (escape path exists). These inputs yield another High 

Escape condition, reinforcing the repulsive vector in the VFF module. Robot_1 performs another context-

sensitive avoidance maneuver, reflected by a return to a red trajectory, and navigates around the object.  

Once safely past the obstacle, the fuzzy coordination module reduces the Escape weight, and the robot’s 

internal state returns to calm. The blue trajectory resumes, marking the final phase of its path toward the 

goal. The color-coded path captures Robot_1’s internal behavioural modulation based on fuzzy inference 

and VFF vector dynamics: Blue: Calm, goal-seeking behaviour (low fear). Red: Escape-driven avoidance 

(high fear, high escape). Transitions: Real-time modulation of control priorities based on environmental 

interpretation. 

This simulation clearly demonstrates the strength of the proposed fuzzy behaviour-based control 

framework, where: Fuzzy logic interprets context and assigns behaviour weights, VFF serves as the fusion 

method to compute the resultant force vector, The system mimics ethologically inspired escape strategies. 

By adhering to biologically grounded principles and incorporating graded behavioural priorities, the robot 

adapts continuously and intelligently to evolving threats. This affirms the viability of the proposed model 

in real-world, multi-agent navigation tasks, where environmental complexity and uncertainty are key 

challenges. 

5.8 Simulation Environment and Evaluation in ROS 

To evaluate the effectiveness of the proposed hybrid control framework, which integrates fuzzy behaviour 

coordination with VFF based behaviour fusion, a structured simulation experiment was developed in the 

Robot Operating System (ROS) environment [39] [40]. This framework allows mobile robots to perform 

context-sensitive, adaptive navigation by combining the real-time reactivity of force-based motion with the 
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reasoning flexibility of fuzzy logic. The architecture and control flow are visualized in Figure 20, while 

ROS simulation outcomes showcasing the escape behaviour in action are depicted in figure 21. 

 

Figure 20. Visualization of Hybrid (Fuzzy Behaviour-Based Control Framework with VFF) Architecture 

The simulation utilizes a range of ROS tools to ensure real-time behavioural visualization, environmental 

mapping, and performance monitoring: Gazebo provides a high-fidelity, physics-based 3D environment 

that models real-world constraints, including static obstacles, moving agents, and realistic robot dynamics. 

RViz serves as a visualization platform, enabling monitoring of trajectories, sensory input, and behaviour 

transitions in real-time. LIDAR sensing is integrated to offer detailed environmental scanning, forming the 

primary perception modality for obstacle detection and motion planning.  SLAM enables the robot to 

construct and update an internal map of the environment while simultaneously localizing itself within that 

map. These maps provide the spatial foundation for both VFF force vector computation and fuzzy 

behavioural rule evaluation. In escape scenarios, SLAM data feeds both subsystems: The fuzzy behaviour 

coordination module evaluates real-time variables such as fear, threat proximity, and escape path 

availability. Simultaneously, the VFF module computes attractive and repulsive vectors based on mapped 



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF 

 

84 

 

object locations and prioritizations set by fuzzy logic. This architecture enables Robot_1 to: Interpret the 

environment contextually (e.g., detect unfamiliar agents or objects), Update internal state variables (e.g., 

fear and escape levels), Compute motion trajectories that dynamically adjust to spatial changes, And 

respond with biologically inspired evasive behaviours in real-time. This tight coupling of SLAM with both 

behaviour coordination and vector-based navigation allows the robot to achieve fluid, autonomous 

adaptation, demonstrating the strength of this hybrid model in realistic, high-complexity tasks. 

Figures 21(a)-(e) present a step-by-step visual sequence illustrating the robot’s adaptive behaviour during 

a navigation task under dynamic environmental conditions. Each subfigure provides a synchronized view 

of both Gazebo (right pane) and RViz (left pane), offering simultaneous perspectives on the physical 

execution of behaviours and the sensor-based reasoning process that underpins them. This visualization 

approach highlights the transition of the robot from goal-directed behaviour to escape responses, governed 

by real-time fuzzy inference and force-based control. 

The test scenario includes two mobile robotic agents Robot_1 and Robot_2 navigating within a bounded 

environment containing walls and static and dynamic objects. Robot_1 is assigned a navigation task from 

its starting position to a defined goal, while dynamically exhibiting escape behaviour in response to 

obstacles including Robot_2 and unexpected objects using fuzzy behaviour control with VFF. 

Figure 21(a). Initial Stage of Robots 
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Figure 21(a-b): Task Initialization and Early Navigation. Figure 21(a) both robots are initialized at defined 

starting positions. The goal location for Robot_1 is set at coordinate (5.5, 5.5). Figure 21(b) as Robot_1 

begins its movement toward the target, Robot_2 starts to explore the environment, increasing the likelihood 

of an encounter and potential behavioural conflict. 

Figure 21(b). Robot_1 Starts to Move Towards its Goal. 

Role of VFF and Fuzzy Coordination in Behaviour Generation: The VFF system forms the reactive motion 

backbone, It: Calculates attractive vectors toward the goal and computes repulsive vectors from obstacles 

(both static and dynamic). Continuously updates the net motion vector using real-time LIDAR data. 

Simultaneously, the fuzzy behaviour coordination module evaluates high-level contextual inputs such as: 

Fear level (derived from proximity, familiarity, etc.), Obstacle distances (e.g., ADTA, ADTO), Escape path 

availability (EPE). These variables trigger fuzzy rules that assign behaviour weights (e.g., increasing 

ESCAPE weight when danger is perceived), which are then passed to the behaviour fusion layer (VFF) to 

scale the attractive and repulsive vectors accordingly [Aaqib7]. 

As Robot_1 progresses, Robot_1 detects the approach of Robot_2 through LIDAR show in In figure 21(c). 

This detection, combined with unfamiliarity and decreasing distance, increases Robot_1’s fear level. The 

fuzzy behaviour coordination system processes this input and classifies the escape level as high, meeting 

the triggering conditions for an escape maneuver: (i) high fear (ii) close proximity (ADTA = low) (iii) a 

clear escape path (EPE = high). Here, VFF supports the escape by intensifying the repulsive force vector, 

pushing Robot_1 away from Robot_2, while reducing the influence of the attractive force temporarily.  



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF 

 

86 

 

Figure 21(c). Robot_1 Detects Robot_2 

The hybrid model operates in three coordinated stages: Behaviour Components, Behaviour Coordination, 

and Behaviour Fusion (as VFF) as described in the introduction and implementation section of this chapter. 

Behaviour Components are discrete actions Robot_1 can execute, such as escaping or goal pursuit, triggered 

based on real-time evaluations. Example When Robot_2 or an object is detected within close proximity, 

and an escape path exists, the ESCAPE behaviour is triggered. 

Behaviour Coordination A fuzzy inference system assigns weights to each behaviour based on situational 

context. Inputs include fear level, environmental familiarity, and obstacle proximity. Example When fear 

level is high and escape path available is high, then the coordination system prioritizes ESCAPE behaviour 

with increased weight. 

Behaviour Fusion (as VFF)  the system merges the weighted behaviours into a single unified force vector. 

This involves integrating VFF outputs attractive forces toward the goal and repulsive forces from obstacles 

along with the fuzzy decision outcomes. This fusion ensures smooth transitions between behaviours and 

continuous adaptation to environmental stimuli. 

As depicted in figure 21(d), after successfully evading Robot_2, Robot_1 encounters with a new unknow 

object. As it approaches, fear levels rise again due to reduced distance (ADTO = low), prompting another 

fuzzy-triggered escape. VFF adapts in real time by recalculating repulsive forces from the object and 

weakening the goal-attractive vector until the danger subsides. Once robot_1 escapes from object and 

distance between them increases the fuzzy controller redirects Robot_1 toward its goal by strengthening 

the attractive force vector. 
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Figure 21(d). Robot_1 Object identification (the unfamiliar object that comes in its way). 

Figure 21(e). Robot_1 Successfully Achieved its Goal.  

Figure 21(e) concludes the simulation by illustrating Robot_1’s successful arrival at its target after 

dynamically avoiding both Robot_2 and an object. This outcome highlights the system’s robustness in 

managing dynamic and unpredictable environments through a hybrid navigation model. The VFF provides 

continuous low-level control, generating real-time motion vectors from environmental inputs, while the 

fuzzy behaviour fusion system modulates these outputs based on internal states such as fear derived from 
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sensor data. By embedding biological inspiration (fear, escape logic) into robotic control, the model 

demonstrates how naturalistic intelligence can be mimicked through algorithmic behaviour design.  

5.9 Classification Metrics and Empirical Benchmarking 

Figure 22 presents the classification performance of the proposed Fuzzy Behaviour-Based Control 

Framework integrated with Virtual Force Field (VFF) navigation. This hybrid architecture enhances robotic 

decision-making by fusing a biologically inspired fuzzy coordination layer responsible for dynamically 

weighting behaviours using real-time sensory inputs with the classic VFF algorithm that calculates motion 

vectors based on attractive (goal-directed) and repulsive (obstacle-avoidance) forces. The fuzzy-modulated 

behaviour scales these vectors, resulting in context-sensitive and emotionally grounded motion trajectories. 

 

Figure 22. Classification Metrics of Hybrid Model 

To rigorously assess behavioural classification performance, four key metrics accuracy, precision, recall, 

and F1-score were computed from 25 independent simulation trials conducted within the ROS. These trials 

simulated dynamic and unpredictable environments by varying obstacle layouts, robot speed, spatial 

proximity, and sensor inputs (e.g., AFTA, ADTA, AFTO). Behaviour selection was governed by fuzzy 

rules encoded in the FBDL. For example, Escape is triggered:  

Rule High when “EPE” is High and “FEAR” is High end 
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This rule ensures that escape behaviour is triggered when high perceived threat and fear values are detected. 

The weighted outputs from such rules are fused with VFF vector fields to produce a single actionable 

motion directive. To quantify the practical benefits of the proposed system, a benchmarking study was 

conducted comparing the fuzzy-based framework against a traditional VFF controller, as described in 

canonical models [55] [56]. While classical VFF methods use fixed attractive and repulsive force equations, 

they often encounter issues such as local minima, trajectory oscillations, and limited adaptability in dynamic 

environments. Although enhancements such as behaviourally modulated VFF [49] improve responsiveness, 

they still lack emotional modeling, adaptive reasoning, and explainability. The comparative evaluation used 

key performance indicators, including task completion time, number of collisions, behaviour-switching 

latency, and classification accuracy for escape behaviours. As summarized in Table 5, the fuzzy-based 

system significantly outperformed the baseline across all metrics. To further position its contributions, 

Table 6 presents a conceptual comparison with three major paradigms: Subsumption Architecture, BDI 

Models, and Neuro-Fuzzy Systems [57] [58]. The proposed Fuzzy Ethological VFF architecture uniquely 

integrates biological plausibility, emotional dynamics, and real-time reactivity, bridging the gap between 

reactive and deliberative control strategies. 

Metric Fuzzy Behaviour-Based VFF Baseline Reactive Controller 

Task Completion Time (sec) 43.6 ± 3.5 50.3 ± 5.7 

Number of Collisions 2.3 ± 1.5 3.2 ± 1.1 

Behaviour Switching 

Latency(ms) 
370 ± 35 400 ± 45  

Escape Classification Accuracy 0.86 0.75 

Table 5. Comparison of Fuzzy Behaviour-Based VFF with Traditional Reactive Controller 

Aspect 
Subsumption 

Architecture 
BDI Models 

Neuro-Fuzzy 

Systems 

Proposed Fuzzy 

Ethological VFF 

Behaviour 

Coordination 

Hierarchical 

suppression 

Symbolic 

reasoning 

Learned rules, 

opaque 

Fuzzy rule-based, 

emotion-weighted 

fusion 

Emotional 

Modeling 
Not supported 

Indirect and 

abstract 

Implicit, hard to 

trace 

Directly modeled 

(e.g., fear, 

aggression) 

Environmental 

Adaptability 

Binary, high 

reactivity 

Low in dynamic 

domains 

Medium (data-

dependent) 

High (contextual 

and sensor-

integrated) 

Real-Time 

Adaptation 

Moderate (fixed 

hierarchy) 

Poor (high 

computational) 
Moderate 

High 

(interpretable and 

grounded) 
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Interpretability Moderate High but abstract Low ("black box") 
High (transparent 

fuzzy rules) 

Training Data 

Requirements 
None Not required 

Require large 

datasets 
Not required 

Obstacle 

Navigation 

Robustness 

Prone to local 

minima 
Planning-based 

Sensitive to 

training bias 

Emotionally 

weighted obstacle 

avoidance 

Table 6. Comparison of Traditional vs Proposed Fuzzy Behaviour-Based VFF Navigation. 

 

5.10 Conclusion 

This study presents a hybrid navigation framework that integrates fuzzy behaviour coordination with the 

Virtual Force Field (VFF) method to enable adaptive and biologically inspired robotic navigation. The 

architecture consists of three stages: behaviour modules (e.g., Escape, Goal Pursuit), a fuzzy coordination 

layer that assigns contextual weights based on factors such as fear level, proximity, and environmental 

familiarity, and a VFF-based fusion layer that computes attractive forces toward goals and repulsive forces 

from obstacles. These forces, scaled by the fuzzy-assigned weights, generate a unified motion vector 

reflecting both environmental stimuli and internal state evaluations. Implemented in ROS with LIDAR and 

SLAM, the framework supports real-time, context-aware path planning in dynamic environments. 

Benchmarking against a traditional VFF controller showed that, unlike fixed-force methods prone to local 

minima, oscillations, and limited adaptability, the proposed system incorporates emotional mode ling, 

adaptive reasoning, and explainability. A conceptual comparison with Subsumption Architecture, BDI 

models, and Neuro-Fuzzy Systems further confirmed its superior performance, demonstrating ethologically 

plausible escape behaviours, smooth action transitions, and robust decision-making under uncertainty. By 

combining biological plausibility with real-time reactivity, the framework bridges reactive and deliberative 

control, enabling scalable deployment in logistics, service robotics, and human-robot interaction. 
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5.11 Thesis III. 

Thesis III.: This thesis proposes a novel hybrid control framework that integrates Virtual Force Field (VFF) 

navigation with fuzzy behaviour coordination to embed Archer’s ethological model of aggression and fear 

into real-time robotic navigation. The approach enables mobile agents to exhibit biologically inspired, 

context-sensitive behaviours by modulating navigation in response to threat proximity, environmental 

familiarity, and escape path availability, [Aaqib1-Aaqib7]. 

5.11.1 Scientific Contribution 

This research provides the first known integration of emotional modeling and geometric motion planning 

within a unified robotic control loop. Unlike traditional VFF systems with fixed force magnitudes, this 

framework dynamically scales repulsive vectors based on fuzzy-evaluated emotional states particularly 

fear. Environmental variables such as threat proximity, familiarity, and escape feasibility are processed by 

a fuzzy inference engine to produce affective activations. These modulate force intensities, converting 

binary obstacle avoidance into nuanced threat-response behaviours. The approach bridges the symbolic 

reasoning of fuzzy logic with the precision of vector-based motion planning, creating a biologically inspired 

control loop. 

5.11.2 System Architecture and Mathematical Formalism 

The hybrid control model comprises a dual-layered architecture integrating fuzzy emotional inference with 

VFF. The overall system determines the robot’s behavioural response based on perceptual and affective 

cues and then translates that response into action using emotionally weighted motion vectors.  

Fuzzy Emotional Coordination Module: This module interprets sensory and contextual inputs X={AFTA, 

AFTP, AFTO, EPE, ADTA} to generate behaviour activations such as Escape. These inputs are fuzzified 

using membership functions defined as: 

Trapezoidal Membership Function (used for thresholds like EPE or familiarity): 

μTrap (x; a, b, c, d) =

{
 
 

 
 
0      𝑖𝑓 𝑥 ≤ 𝑎 𝑜𝑟 𝑥 ≥ 𝑑
𝑥−𝑎

𝑏−𝑎
            𝑖𝑓 𝑎 < 𝑥 ≤ 𝑏

1              𝑖𝑓 𝑏 < 𝑥 ≤ 𝑐

 𝑑−𝑥
𝑑−𝑐
             𝑖𝑓 𝑐 < 𝑥 < 𝑑

               (4) 
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Triangular Membership Function (used for smooth variables like proximity): 

μTri (x; a, b, c) ={

0      𝑖𝑓 𝑥 ≤  𝑎 𝑜𝑟 𝑥 ≥  𝑐
𝑥−𝑎

𝑏−𝑎
            𝑖𝑓 𝑎 <  𝑥 ≤  𝑏

𝑐−𝑥

𝑐−𝑏
           𝑖𝑓 𝑏 <  𝑥 <  𝑐

            (3) 

Rule Evaluation and Inference: Fuzzy rules are applied in the form 

IF FEAR is High AND EPE is High THEN Escape is High. 

The inference mechanism follows Fuzzy Rule Interpolation (FRI) using the FIVE method, suitable for 

sparse or incomplete rule bases. For baseline comparison in fully specified rule bases, the Mamdani max-

min composition is applied. Detailed information is provided in Chapter 2-Mathematical Formalism. 

μBi(x) = maxi (minj μLxj(xj))      (5) 

Whereas μLxj is the membership degree of input xj to label L, Bi is the target behaviour (Escape) 

Defuzzification Step (Centroid Method): After aggregation of multiple rule outputs, a crisp behaviour 

intensity 𝐵crisp is obtained using the centroid method: 

Bcrisp  =  
∫ μB(x) .  x dx 
𝑏
𝑎

∫ μB(x) dx 
𝑏
𝑎

              (6) 

This value (e.g., Escape intensity) scales the reactive force in the VFF layer.  

State Transition Dynamics: To allow graded transitions between behavioural states in a Fuzzy State 

Machine (FSM), state transitions are modeled probabilistically:  

P(Bj ∣ Bi, xk) = 
μBj(xk)

∑ μBn(xk)𝑛
         (7) 

This equation allows multiple behaviours to be partially activated (e.g., both escape and obstacle 

avoidance), enabling blended actions that reflect complex affective dynamics.  

VFF Motion Control Layer: Once a behavioural decision is made, it informs the VFF motion planner. This 

triggers dynamic force computation: 

The repulsive force from a perceived threat at (𝑋𝑖 ,  𝑌𝑖) is: 

 Xcr  =  - Fcr (
𝑋𝑖−𝑋0

√(𝑋𝑖−𝑋0)
2 +(𝑌𝑖−𝑌𝑜)

2
)                (12) 

 Ycr  =  - Fcr (
𝑌𝑖−𝑌0

√(𝑋𝑖−𝑋0)
2 +(𝑌𝑖−𝑌𝑜)

2
)                (13)  
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The attractive force toward a goal at  (𝐻𝑋 ,  𝐻𝑌) is: 

Xca  =  Fa  (
𝐻𝑥−𝑋0

√(𝐻𝑥−𝑋0)
2 +(𝐻𝑦−𝑌0)

2 
)             (14) 

Yca  =  Fa  (
𝐻𝑦−𝑌0

√(𝐻𝑥−𝑋0)
2 +(𝐻𝑦−𝑌0)

2 
)             (15) 

The final motion vector becomes a weighted sum: 

𝐹⃗result =  𝐹⃗attractive +  𝐹⃗repulsive ∗ μFEAR                 (16) 

This formulation ensures that the robot's path changes not only due to geometric constraints but also due to 

fuzzy-evaluated emotional influence, resulting in trajectories that vary with context and intensity of 

perceived threat. 

5.11.3 Empirical Validation and Simulation 

The proposed framework was fully implemented in the ROS and evaluated using Gazebo for simulation 

and RViz for real-time visualization. The robot leveraged LIDAR and SLAM to autonomously map its 

environment and respond to dynamic threats. 

Figure 22 illustrates the classification performance of the Fuzzy Behaviour-Based Control Framework 

integrated with VFF navigation. This hybrid model combines a biologically inspired fuzzy coordination 

layer responsible for dynamically assigning behaviour weights from real-time sensory inputs with the 

classical VFF algorithm, which computes motion vectors from attractive (goal-oriented) and repulsive 

(obstacle-avoidance) forces. The fuzzy-modulated weights scale these vectors, producing emotionally 

grounded and context-sensitive trajectories. To assess classification performance, 25 independent 

simulation trials in ROS. The trials covered diverse and dynamic scenarios, including variations in obstacle 

layout, robot velocity, spatial proximity, and sensory input (e.g., AFTA, ADTA, AFTO). 

A benchmarking study compared the fuzzy-based framework to a traditional VFF reactive controller, using 

performance metrics such as task completion time, collision rate, behaviour-switching latency, and escape 

classification accuracy, see Table 5. Additionally, Table 6 presents a conceptual comparison of the proposed 

system with established paradigms such as Subsumption Architecture, BDI Models, and Neuro -Fuzzy 

Systems, highlighting the novel system’s superior biological plausibility, emotional reasoning, and real-

time adaptability. The  Simulation (Figures 20 and 21(a)-(e)) show real-time behaviour modulation; Fear-
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induced repulsion steers the robot away from Robot_2 and unknown obstacles.  Color-coded trajectories 

(blue = low fear, red = high fear) visualize internal emotional states derived from fuzzy inference.  When 

the rule: “IF AFTA=Low AND ADTA=Low AND EPE=High THEN Escape=High” is triggered, the robot 

executes evasive maneuvers with increased repulsive force. All modules sensing, fuzzy logic evaluation, 

and motion computation are independently testable in ROS, facilitating unit-level validation and debugging. 

5.11.4 Novelty and Impact 

This thesis introduces a novel fuzzy-modulated force mechanism, enabling robots to adjust avoidance 

behaviour dynamically in response to computed fear intensity. Unlike conventional VFF systems with fixed 

repulsion, the proposed method scales repulsive forces through fuzzy logic inference, producing nonlinear, 

context-sensitive trajectories. This dynamic modulation is visually validated in Figure 20, where trajectory 

color shifts (blue to red) correlate with increasing fear levels and sharper evasive maneuvers.  

A second key innovation lies in the direct integration of Archer’s aggression-fear ethological model into 

the robotic control loop. By encoding emotional responses such as escape into fuzzy rule sets, the system 

simulates biologically grounded behaviours. These responses emerge naturally from situational inputs (e.g., 

threat proximity, environmental familiarity), eliminating reliance on rigid scripting.  

Finally, the entire framework is fully implemented in the ROS incorporating: Fuzzy logic for emotional 

evaluation, VFF navigation for continuous motion control, and LIDAR sensing for obstacle detection, and 

SLAM for real-time localization and mapping. Simulations in Gazebo-RViz demonstrate robust, 

interpretable, and adaptive performance, confirming both the scientific merit and practical applicability of 

the approach for emotion-aware robotics. 

5.11.5 Applications 

The proposed hybrid control framework enables adaptive, emotionally responsive navigation in dynamic 

environments, with implications across various several domains: 

Service Robotics: Robots dynamically adjust paths in response to perceived threats or discomfort, allowing 

safe and intuitive operation in crowded or unpredictable spaces.  

Search and Rescue: Emotion-triggered behaviours (e.g., fear-based retreat) help agents avoid unstable or 

unfamiliar zones, enhancing resilience and mission success.  

Human-Robot Interaction (HRI): Robots exhibit interpretable behaviours grounded in emotional models 

(e.g., hesitation, escape), improving social compatibility and user trust.  

Swarm and Multi-Agent Systems: The system supports biologically inspired coordination among agents, 

applicable in cooperative drones, wildlife robotics, and group behaviour modeling. 
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Chapter 6: Conclusion and Future Work 

6.1 Conclusion 

This research has presented a comprehensive investigation into the embedding of ethologically inspired 

emotional behaviours specifically aggression, fear, escape, and immobility into autonomous robotic 

systems. Drawing from both biological models and computational intelligence, the work contributes a 

multi-layered framework for emotional robotics grounded in fuzzy logic, virtual force field navigation, and 

modular architecture. The findings are organized across three central thesis contributions:  

6.1.1 Thesis I: Ethologically inspired Fuzzy Behaviour model of the Archer’s “Aggression and fear 

in vertebrates” ethological model 

This thesis proposes a novel framework that translates Archer’s ethological model of aggression and fear 

in vertebrates into a computationally interpretable and machine-executable architecture using the “Fuzzy 

Behaviour Description Language”. 

The first contribution of this thesis establishes a novel computational framework that formalizes Archer’s 

ethological model of aggression and fear in vertebrates using the Fuzzy Behaviour Description Language 

(FBDL). By translating complex behavioural triggers and responses into fuzzy linguistic variables and rule-

based inference, this framework enables robotic agents to exhibit affect-like reactions that are both 

interpretable and dynamically modulated. The system operates in real-time, supports behavioural 

visualization, and is implementable on standard robotic platforms. It bridges a key gap between affective 

neuroscience and fuzzy control engineering, thereby contributing to the development of emotionally 

responsive and socially intelligent machines. The implications extend to domains such as affective 

computing, therapeutic robotics, and socially assistive systems, where biologically grounded emotional 

modeling is crucial. 

6.1.2 Thesis II: Implementing Fuzzy State Machine for Behaviour control in robotic environment 

This thesis presents a novel implementation of Archer’s ethological model of aggression and fear into 

autonomous robotic systems through a fuzzy state machine architecture.  

The second core contribution introduces a fuzzy state machine architecture that enables lifelike transitions 

between emotional states such as fear, escape, aggression, and immobility based on environmental stimuli 

and internal appraisal. Grounded in ethological principles and implemented in the ROS, this architecture 

allows robots to interpret real-time sensory inputs and dynamically select behaviour patterns appropriate to 

the situational context. A key component of this system is SLAM, which allows the robot to build a map of 
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its environment while simultaneously tracking its position within it ensuring continuous localization 

essential for behaviour selection in dynamic settings. By leveraging modular behaviour coordination, the 

system supports scalable multi-agent interactions and robust behaviour arbitration. Moreover, it emphasizes 

transparency and ethical operability, essential for deployment in sensitive domains such as search and 

rescue, security surveillance, and human-robot interaction (HRI). The fuzzy state machine not only provides 

a technical mechanism for emotional behaviour modeling but also offers a foundation for ethical and 

socially aware robotic design. 

6.1.3 Thesis III: Fuzzy Behaviour Based Control Framewok with Virtual Force Field Navigation 

This thesis proposes a novel hybrid control framework that integrates Virtual Force Field (VFF) navigation 

with fuzzy behaviour coordination to embed Archer’s ethological model of aggression and fear into real-

time robotic navigation. The approach enables mobile agents to exhibit biologically inspired, context-

sensitive behaviours by modulating navigation in response to threat proximity, environmental familiarity, 

and escape path availability. 

The core innovation lies in how fuzzy coordination governs behaviour selection based on situational 

appraisals, while VFF serves as the fusion mechanism that translates weighted behaviours into motion 

directives. The fuzzy layer interprets emotional states particularly fear from sensor-derived inputs such as 

LIDAR, dynamically adjusting the influence of repulsive or attractive forces. As fear rises, repulsive forces 

are scaled, prompting avoidance maneuvers; as fear subsides, goal-directed motion resumes. Implemented 

in ROS, the system integrates SLAM for simultaneous localization and mapping, ensuring persistent 

environmental awareness even in dynamic, multi-agent settings. This architecture blends low-level 

geometric control with high-level behavioural reasoning, enabling robots to transition smoothly between 

goal pursuit and reactive escape. By embedding emotional logic into path planning, the model elevates 

robotic navigation from deterministic obstacle avoidance to intelligent, adaptive decision-making marking 

a significant advancement in affective robotics and human-robot interaction. 

6.2 Future Work 

The outcomes of this research open several promising avenues for further exploration, spanning both 

technical enhancements and theoretical advancements. 

6.2.1 Investigating Human-Robot-Animal Behavioural Parallels 

While the current work focused primarily on modeling fear and aggression based on animal ethology, future 

research could extend this paradigm to include other complex behaviours such as nurturing, social bonding, 

group coordination, dominance, and territoriality. These behaviours are central to both human and animal 
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interactions, and their robotic analogs could significantly enrich empathetic and socially adaptive HRI 

systems. Studying behavioural parallels across species may also uncover deeper insights into shared 

cognitive-emotional frameworks, potentially leading to cross-disciplinary models of emotion that benefit 

both robotics and behavioural science. 

6.2.2 Advancing Machine Learning Integration  

Although fuzzy logic provides interpretable and controllable behaviour modeling, future work could benefit 

from the integration of machine learning approaches, including deep neural networks, reinforcement 

learning, and ensemble methods. These techniques would enable robotic agents to learn from historical 

experiences, improve behavioural generalization, and adapt to non-deterministic environments. Combining 

fuzzy systems with data-driven models could result in hybrid intelligence systems capable of both symbolic 

reasoning and experiential learning, thus broadening the applicability of emotional robotics in complex, 

real-world contexts. 

6.2.3 Exploring Ethical and Societal Implications  

As robotic agents begin to exhibit behaviours that simulate emotional states or responses, it becomes 

imperative to address the ethical, societal, and psychological dimensions of emotionally aware robotics. 

Future studies should examine issues such as emotional deception, user over-reliance, attribution of intent 

or morality, and boundaries of autonomy. Research in this direction could inform guidelines for emotionally 

ethical design, particularly in contexts where human safety, dignity, and agency are invo lved. The 

increasing realism of affective robots raises profound questions about trust, empathy, and responsibility, 

which must be carefully evaluated and regulated. 

6.2.4 Expanding Sentiment and Behaviour Analysis Models  

Further research is warranted in developing advanced models for sentiment detection, contextual emotion 

prediction, and multimodal behaviour interpretation. Incorporating data from audio, vision, tactile sensors, 

and environmental cues can improve the robot’s ability to infer nuanced emotional states and respond 

appropriately. New computational frameworks that fuse these sensory channels with real-time behavioural 

assessment could support rich, adaptive interactions in domains ranging from caregiving and therapy to 

collaborative robotics and ambient intelligence. Enhanced behavioural inference would not only improve 

robot autonomy but also contribute to more natural and emotionally congruent human-robot relationships.
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