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Preface

Preface

The development of intelligent machines capable of operating autonomously in complex, dynamic
environments has long been a central pursuit in the fields of artificial intelligence and robotics. While
significant progress has been made in mechanical control, sensory perception, and cognitive reasoning, the
integration of affective and ethologically grounded behaviour in artificial agents remains a relatively
underexplored and challenging frontier. This dissertation addresses this gap by investigating how
ethologically inspired emotional constructs specifically fear, escape, and attack, as conceptualized in
ethology can be computationally modeled, behaviourally expressed, and operationally deployed within

autonomous robotic systems.

Drawing on Archer’s ethological framework of aggression and fear in vertebrates, this research explores
how these adaptive emotional responses can be meaningfully translated into robotic behaviour that is both
functionally intelligent and socially interpretable. The central argument of this work is that embedding
emotional constructs into machine behaviour not only enhances the realism and expressiveness of
autonomous agents but also significantly improves their capacity to interact safely, intuitively, and
adaptively with humans and dynamic environments. The dissertation is structured around three core
contributions, each representing a progressive development in the conceptual, methodological, and

technical integration of Archer’s ethological model into artificial systems.

The research first introduces a novel framework that formalizes Archer’s model using Fuzzy Behaviour
Description Language (FBDL). This represents the first machine-executable and computationally
interpretable model of ethologically defined aggression and fear, utilizing fuzzy linguistic variables and
rule-based reasoning. The framework enables artificial agents to generate nuanced, context-sensitive
emotional responses and is characterized by its dual interpretability being both human-readable and
machine-operational. It supports real-time behavioural execution, visual tracking of emotion-driven
behavioural trajectories,and adaptability through learning algorithms. This contribution laysthe theoretical

foundation for embedding affective dynamics into intelligent control systems.

Building on this foundation, the research then extends into embodied robotics by implementing an
ethologically inspired fuzzy statemachine within the Robot Operating System (ROS). Leveragingreal -time
sensory data (e.g.,LIDAR), Simultaneous Localizationand Mapping (SLAM), and fuzzylogic controllers,

the system enables robots to exhibit behaviour patterns such as escape and attack in response to dynamically
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evolving environmental cues. Unlike conventional reactive systems based on deterministic rule sets, the
proposed model accommodates uncertainty, allowing fluid transitions between behavioural states based on
the situational appraisal of threat levels. The architecture supports both individual and multi-agent
coordination, offering a scalable approach suitable for complex scenarios such as collaborative rescue

missions, autonomous surveillance, and navigation in unstructured or hazardous terrains.

Further extending this work, the research introduces a hybrid framework that integrates Virtual Force Field
(VFF) navigation with fuzzy emotional behaviour coordination. This system enables robots to evaluate
spatial constraints alongside emotional variables such as perceived threat, environmental familiarity, and
escape feasibility. By embedding affective logic into behavioural decision-making, the robot modulates its
trajectory based on internal states like fear, rather than relying solely on geometric op timization.
Implemented within the Robot Operating System (ROS) and enhanced by Simultaneous Localization and
Mapping (SLAM), LIDAR, and sonar sensing, the framework allows real-time, adaptive navigation that
mirrors ethological escape patterns. This biologically inspired architecture not only improves
interpretability and responsiveness but also lays a foundation for emotionally intelligent agents in human-

centric or safety-critical environments.

Together, these contributions form a unified theoretical and technical foundation for affective robotics,
grounded in both ethological science and fuzzy logic control. This work advances current understanding of
artificial emotional intelligence, affective behaviour generation, and autonomous navigation. Moreover, it
provides practical tools and architectures for designing emotionally responsive and socially aware

machines.

This dissertation is the result of an interdisciplinary inquiry, drawing upon theories and methods from
behavioural ethology, cognitive science, robotics, control systems, and artificial intelligence. The joumey
was intellectually demanding and profoundly enriching. I extend my deepest appreciation to my
supervisors, collaborators, and academic mentors, whose guidance, rigor, and insight shaped this work. I
am equally grateful to my peers and loved ones, whose unwavering encouragement sustained me through

the many phases of research and writing.

It is my hope that this work not only contributes meaningfully to the academic community but also serves
as a practical blueprint for the development of the next generation of intelligent, adaptive, and emotionally
responsive machines that reflect, in their behaviour, the nuanced complexity of the ethological systems that

inspired them.



Chapter 1: Introduction

Chapter 1: Introduction
1.1 Overview

In recent years, there has been a growing connection between ethology the scientific study of animal
behaviour and the fields of robotics and artificial intelligence (AI). This connection is driven by a shared
goal: to build robotic machines that don't just work mechanically, but can adapt and behave intelligently,
much like animalsdo. Ethology looks at behaviours like communication, self-defense,and aggression, both
in nature and in controlled experiments. These studies offer important insights for building systems that can

handle real-world complexity and unpredictability [1].

At the center of ethological modeling is the careful observation of how animals behave. From this,
researchers build behaviour-based models structured systems that explain actions in terms of responses to
specific situations [2]. These models are now helping engineers design intelligent robots by breaking down
complex tasks into smaller, behaviour-focused modules. This cross-disciplinary field is known as
Ethorobotics [3], combining ethology, robotics, and fuzzy logic. It forms the scientific foundation of this
work by translating animal behaviour strategies into control systems for robots, helping bridge the gap

between natural and artificial intelligence.

This research presents a innovative methodology called the Fuzzy Behaviour Description Language
(FBDL) [4], which is used to describe and analyze models of aggression based on animal behaviour,
especially following Archer’s ethological framework [5]. FBDL uses fuzzy logic and fuzzy set theory to
handle the complexity of aggression how it emerges from intemal states, outside stimuli, and the situation

an agent is in.

Before going further, it's important to clarify that “behaviour” in this context means the full range of actions
and reactions that animals or robots show in response to their environment [6]. By using behaviour-based
architecture, robots can tackle complex problems by combining simple behaviour modules[7]. For
example, a robot navigating on its own may use separate modules for following a path, avoiding obstacles,
andreachinga goal. Each module works independently butis part of a well-coordinated system. This design
makes the robot more flexible and adaptable, allowing it to perform well in changing and uncertain

environments across different tasks.
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1.2 History

Ethology offers valuable perspectives for designing intelligent robotic systems by analyzing how animals
behave and adapt to their environments [8]. One of the most influential contributions to this field comes
from Nikolaas Tinbergen, who formulated four essential questions to understand behaviour: function,
mechanism, evolution, and ontogeny [9]. Though originally intended for studying animal behaviour, these

questions have been successfully adapted to guide robotics research and behaviour modeling.

Inrobotics, the question of function concernsthe role a behaviour playsin achieving operational goals, such
as efficient navigation, threat avoidance, or mission completion. For example, aggressive behaviour in a
security robot may serve to deter intruders or defend territory. The mechanism question examines the
internal and external triggers that initiate behaviour. In robotic systems, this often involves interpreting
sensory data such as proximity or motion detection using fuzzy logic to transition between behavioural
states like warning, retreat, or attack. These fuzzy variables help manage uncertainty and allow the robot to

respond flexibly.

The evolutionary dimension relates to how robotic behaviours are refined over time or generalized across
different platforms. A behaviour developed for land-based navigation, for instance, can beadapted for aerial
or underwater systems through abstraction and iterative testing. Lastly, ontogeny refers to the development
of behaviour through learning or environmental interaction. In robotic terms, this involves updating
behavioural rules based on experience, allowing the robot to refine its responses such as distinguishing

between familiar and unfamiliar entities through repeated encounters.

Applying these ethological dimensions enables the creation of adaptive, goal-driven control models in
robotics. Complex dynamicslike predator-prey interactions or dominancehierarchies canbe translated into
control rules for navigation, conflict resolution, or escape maneuvers. Specific behavioural domains such
as aggression, communication, and defense provide rich templates for designing realistic and responsive

robotic behaviour [10].

This research applies fuzzy logic and fuzzy behaviour modeling to simulate aggression patterns observed
in animals. Fuzzy logic handles uncertainty by assigning degrees of truth to inputs, enabling robots to
respond with greater flexibility than rigid, rule-based systems [11]. A key implementation of this approach
is the Fuzzy State Machine (FSM), which incorporates fuzzy rules into robotic decision-making to navigate

uncertainty in dynamic environments [12]. Unlike traditional finite state machines that use fixed state

4
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transitions, FSMs allow for smooth, gradual changes between behaviours, reducing abrupt shifts and

improving both resilience and adaptability [13].

Robotic behaviour is commonly structured through control architectures such as deliberative, reactive,
hybrid, and behaviour-based systems [14]. Fuzzylogic, known for its effectiveness in handlinguncertainty,
is often integrated into these frameworks to support flexible and adaptive decision-making. In deliberative
control, also knownas "Think Then Act," robots analyze current sensory inputs along with past experiences
to plan their actions. This approach requires building internal symbolic modelsofthe environment, enabling
high-level reasoningand long-termplanning[14]. Whileitsupports optimized decision-making, its reliance
on computation and planning time may reduce responsiveness in fast-changing environments. In contrast,
reactive control or "Don't Think, Just Act" maps sensory inputs directly to motor outputs without relying
on internal models. Robots using this method follow predefined rules to generate immediate responses,
making it well-suited for unpredictable or rapidly evolving situations [15]. Its simplicity allows for quick

reactions, though it often lacks strategic depth and adaptability over time.

Hybrid control combines the strengths of deliberative and reactive paradigms [16]. Known as
"Simultaneously Think and Act," it enables robots to respond immediately to environmental stimuli while
also planning complex behaviours when time allows. Typically, this is implemented through a layered
architecture, where a deliberative layer manages long-term planning, and a reactive layer handles real-time
interaction. Effective coordinationbetween theselayers ensures cohesive behaviour, even under unexpected
conditions. Another important control paradigm is the behaviour-based control approach[17]. This method
organizes robotic systems into multiple distributed modules, known as behaviours, that operate
concurrently and interact dynamically. Following the principle "Think the Way You Act," these modules
operate concurrently and interact dynamically based on sensory inputs. This architecture allows robots to
adapt through environmental interaction, supporting learning and robustness in complex, real-world
scenarios [18] [19].

Building on these frameworks, this study models robotic aggression based on Archer’s ethological
framework [5]. The aim is to replicate key patterns observed in animals, such as fear, flight, attack, or
freezing, and to encode responses to familiar versus unfamiliar stimuli. For instance, encountering an
unfamiliar agent may trigger a fear-based retreat, while recognition of a familiar one could lead to reduced
aggression. These behaviours can be translated into robotic rules that drive realistic threat responses. To

support this, recognition algorithms are integrated to distinguish between known and unknown entities, and
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combined with navigation and mapping systems, they allow the robot to adapt its behaviour based on
environmental familiarity. By fusing these perceptual and behavioural modules, the system can simulate
complex aggression dynamics in diverse scenarios, ensuring both functional performance and ethological

credibility.
1.3 Motivation

The motivation for Implementing Ethologically Inspired Fuzzy Behaviour-Based Systems stems from the
desire to make robotic systems behave more naturally, especially when responding to danger, navigating
unfamiliar environments, or engaging in social interactions. Traditional robotic systems often rely on binary
decision-making simple yes/no logic which lacks the flexibility required to operate effectively in dynamic,
real-world conditions. In contrast, animals exhibit a broad range of adaptive behaviours such as fleeing,
freezing, or displaying aggression that are context-sensitive and shaped by evolutionary pressures. These
behaviours reflect not only mechanical reactions but also emotional and situational assessments that
enhance survival. The goal is to design robots that act not only efficiently but also naturally, adjusting their

actions in real time based on what they perceive.

This study draws from ethological frameworks, particularly Archer’s theory of aggression and fear, to
enable robots to interpret and respond to their environment in ways that mimic animal decision-making
under stress. Building on this foundation, the research integrates principles fromethology, fuzzy behaviour-
based control, and Virtual Force Field navigation. This combination allows robots to make graded decisions
based on continuous variables such as perceived threat levels, proximity, and environmental familiarity

rather than relying on rigid rules.

Beyond technical innovation, this work aims to develop emotionally aware, context-sensitive robotic
systems. Such systems are especially valuable in applications like search and rescue, where quick, instinct-
like responses are crucial, or in human-robotinteraction, where socially intelligent behaviour enhances trust
and safety. Additionally, by simulating emotional behaviour computationally, the research supports ethical
advancements by potentially reducing reliance on animal-based behavioural studies. Ultimately, the goal is
to create robotic systems that fuse computational precision with the adaptive fluidity of biological

intelligence.
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1.4 Methodology

To develop an emotionally aware and behaviourally intelligent robotic system, this research integrates core
principles from animal behaviour science, fuzzy logic, and robotic control systems [Aaqibl- Aaqib7]. The
framework is primarily grounded in Archer’s ethological model of aggression and fear [5], which offers a
conceptual basis for modeling stress-responsive behaviours. Additional behavioural cues are drawn from
human-animal interaction studies [20], ensuring the system reflects real-world, socially relevant contexts.
At the center of the design is a fuzzy behaviour-based control architecture, inspired by Archer’s model.
This architecture processes environmental variables such as distance to other agents, familiarity with the
environment or individuals, and availability of escape routes to determine both the intensity and direction
of behavioural responses. Instead of rigid, binary decisions, the system uses fuzzy logic to assess how
strongly the robot shouldreactin differentscenarios, selecting behaviourslike escape, attack, or immobility

based on contextual input.

Behavioural decisions are encoded using the Fuzzy Behaviour Description Language (FBDL)[4], a
modular, human-readable framework for defining fuzzy rules that support adaptive, real-time decision-
making. FBDL replaces static, pre-programmed responses with context-sensitive evaluations. The
methodology follows a structured three-step process. First, Archer’s model is translated into a fuzzy
rulebase using FBDL, capturing key variables such as proximity, familiarity, and perceived threat level. Its
modular structure allows for the addition of further behaviour categories such as social bonding,

cooperation, or mating making FBDL a flexible tool for biologically inspired control.

In the second step, the fuzzy framework is implemented within a Fuzzy State Machine (FSM) to allow
smooth transitions between behavioural states. The system is developed and tested in the Robot Operating
System (ROS) environment, with simulations conducted in Gazebo and real-time visualization via RViz.
LIDAR sensors provide real-time obstacle detection and distance estimation, while Simultaneous
Localization and Mapping (SLAM) enables the robot to build and continuously update an internal map of
its surroundings. This multi-modal sensory input feeds directly into the fuzzy control system, ensuring

ongoing context-awareness.

The third step integrates the fuzzy behavioural architecture with a Virtual Force Field (VFF) navigation
mechanism. Behavioural outputs inform the computation of attractive and repulsive force vectors, where
attractive forces guide goal-seeking and repulsive forces promote threat avoidance. A key innovation is the

dynamic scaling of repulsive forces based on internal emotional states, such as fear or aggression. For

7



Chapter 1: Introduction

example, higher fear levels increase the magnitude of repulsion, prompting robots to retreat more quickly
and decisively. This emotion-weight navigation enhances the realism and safety of robotic behaviour in

complex and uncertain environments.

The methodology presents a biologically grounded yet computationally robust approach to robotic control.
By integrating fuzzy logic, ethological theory, and advanced simulation platforms, this study enables
artificial agents to exhibit emotionally nuanced and context-sensitive behaviours, establishing a new

benchmark in the design of intelligent, adaptive robotic systems.
1.5 Simulation Environment and Experimental Setup

The ethologically inspired fuzzy behaviour-based control system was developed and tested using the Robot
Operating System (ROS), which served as the middleware framework for integrating sensing, decision-
making, and navigation. ROS provides a modular, publish-subscribe architecture that enables real-time
communication between the fuzzy logic controller, sensors, and actuators making it particularly suitable
for behaviour-based robotic control. Its flexibility, scalability, and seamless integration with tools such as
Gazebo and RViz align well with the modular structure of the proposed system. Furthermore, ROS’s
support for real-time processing enhances the system’s capability for adaptive, emotionally informed
decision-making. Overall, ROS provides a robust and extensible platform for developing and validating

biologically inspired robotic architectures.

Simulations were conductedusing ROS-integrated tools. The primary simulation environment was Gazebo,
a physics-based robotics simulator capable of modeling dynamic interactions such as collisions, object
behaviour, and terrain response. Gazebo was selected for its ability to replicate realistic operational
conditions for mobile robots, especially in behaviour-intensive scenarios. To monitor and debug
behavioural states during runtime, RViz a 3D visualization tool within ROS was used to display real-time
sensor data, trajectory planning, and active behaviour modules. Sensor simulation wasachievedusing ROS-
compatiblepluginsfor LIDAR, whichprovided obstacledetectionand proximity measurements. These data
were processed through a Simultaneous Localization and Mapping (SLAM) module, enabling the robot to
build and update an internal map of its surroundings. This mapping capability was essential for assessing
environmental familiarity, a key contextual variable influencing behavioural arbitration within the fuzzy

logic system.
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The experiments were conducted in a structured yet dynamic environment containing both static and
variable obstacle placements. Two robot agents, R1 and R2, were used, with the primary focus on R1,
which was responsible for executing aggression-related behaviours. To evaluate the robustness and
generalizability of the system, approximately 50 simulation trials were performed under varying initial
conditions. These included different starting positions, dynamic obstacle layouts, proximity and recognition
of robot agents, and differing levels of environmental familiarity. Each trial was designed to activate
different combinations of behaviour modules such as escape, attack, or immobility ensuring that the fuzzy
logic controller encountered a wide range of interaction scenarios. These trials provided empirical
validation of the system’s ability to transition between behaviours in real time, influenced by factors such

as spatial proximity, inter-agent recognition, and familiarity with the environment.

For benchmarking, a baseline control system was implemented using traditional reactive logic, both with
and without fuzzy behaviour modulation. This comparison allowed the evaluation of the proposed fuzzy
control architecture againsta simplerrule-based approach. Key performance metrics recorded included task
completion time, number of collisions, behaviour switching latency, and adaptability in unfamiliar
environments. The results quantified using classification metrics such as precision, recall, F1 -score, and
accuracy demonstrated that the fuzzy-based system achieved greater behavioural flexibility, improved
contextual awareness, and smoother transitions between competing behaviours when compared to the

baseline system.

All experiments were conducted entirely in simulation. No physical robots were used during the
development or testing phases. However, the complete control architecture including fuzzy behaviour
modules, SLAM integration, and behaviour coordination is fully ROS-compatible, making it directly
deployable to physical robotic platforms with minimal modification. Based on the promising simulation
results, future work will aim to implement and validate the system on real-world robots such as TurtleBot3
or Clearpath Husky, particularly in applications involving human-robot interaction and mobile navigation

in unstructured or dynamic environments.
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2.1 Ethology

Ethology, the scientific study of animal behaviour, focuses on how animals interact with their environment
and with one another [1]. Ethological models are critical for understanding and predicting behaviour
patterns and have become foundational elements for developing behaviour-based robotic control systems.
These models operate on the principle that natural selection favors behaviours that are best adapted to
specific environmental challenges, thereby ensuring their transmission across generations. Additionally,
ecological models, such as predator-prey dynamics, provide essential insights into species interactions

within natural ecosystems.

In robotics, ethologically inspired models are increasingly employed to overcome the limitations of
traditional behaviour systems. Pioneering ethologists such as Baerends, Tinbergen, and Lorenz developed
foundational frameworks for describing animal behaviours, frameworks that have now found direct
application in robotic design and control. This interdisciplinary convergence enables roboticists to create
adaptive systems based on biologically grounded models, while offering ethologists a new experimental

platform to test and refine behavioural theories through synthetic implementations [Aaqibl].

Although ethology and robotics share common components such as the concepts of sensors, actuators, and
navigation their methodologies differ. Ethology relies on systematic observation and empirical analysis of
natural behaviours, whereas robotics seeks to recreate and operationalize these behaviours within artificial
agents using synthetic sensors, actuators, and control architectures. Despite these differences, the synergy
between the two disciplines significantly enriches both fields, enhancing the understanding, validation, and

application of behaviour models in both biological and synthetic systems [2].
2.2 Fuzzy Behaviour-Based Systems

One effective approach to implementing ethologically inspired behavioural models in robotics is through
Fuzzy Behaviour-Based Systems [21]. These advanced computational systems utilize fuzzy logic to govem
the operations of robots and autonomous agents within complex and dynamic environments. By managng
degrees of truth or membership values, fuzzy logic enables systems to make nuanced, co ntext-sensitive
decisionsrather than relying onrigid binary outcomes. This adaptability is critical for replicating behaviours
observed in animals such as avoidance, aggression, and exploration. Individual behaviour units control

these actions, and fuzzy rules integrate their outputs to ensure coherent system performance. A Fuzzy
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Behaviour-Based System is essentially constructed upon a framework of fuzzy rule-based systems, which
are particularly effective formodeling animal behaviour and designing autonomous systems that must adapt
to evolving environments [22], [23]. A fuzzy rule-based system is an expert system where knowledge is
represented as production rules, typically structured as If [condition] Then [action] statements. For
instance, a behavioural model’s “Fear” level can be defined using fuzzy logic, as demonstrated in the

following example:
If AFTP = Low And AFTA = Low And ADTA = Low Then FEAR = High

Here, AFTP represents Animal Familiarity Toward Place, AFTA denotes Animal Familiarity Toward
Another Animal, and ADTA indicates Animal Distance Toward Another Animal. Such structures allow

robots to simulate complex emotional states and behaviour transitions based on environmental conditions.

The architecture of a Fuzzy Behaviour-based System [24] comprises several key modules, including
Behaviour Coordination (or Arbitration), Behaviour Fusion, and individual Component Behaviours. Each
module andits respective behaviours are implemented as fuzzy rule-based systems, also called Fuzzy Logic

Controllers (FLCs), as depicted in Figure 1.
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Figure 1. The Applied Fuzzy Behaviour-Based System [24]
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Behaviour Coordination also known as arbitration, plays a pivotal role in fuzzy behaviour-based systems,
especially when multiple behaviours are activated simultaneously and may produce conflicting outputs. In
real-world scenarios, autonomous robots frequently operate in complex environments where behavioural
modules such as exploration, obstacle avoidance, aggression, and retreat can be triggered concurrently.
Arbitration mechanisms are responsible for resolving these conflicts, ensuring that the robot responds in a
coherent and contextually appropriate manner. As illustrated in Figure 2, sensory input received through
exteroception, and proprioception activates multiple behaviours. The arbitration strategy then evaluates the
situation and assigns control weights to each behaviour [25]. These weights are processed through a

Command Fusion unit, which blends or selects outputs to produce the final control signal.
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Figure 2. The Architecture of Behaviour Arbitration [25]

Traditional behaviour-based architectures often use a hierarchical arbitration strategy, where behaviours
are prioritized in a predefined order. For example, in a surveillance robot,obstacleavoidance may beranked
above exploration. If the robot encounters an obstacle while navigating a corridor, the arbitration system
suppresses the exploration behaviour and activates the avoidance routine. Once the obstacle is bypassed,

control reverts to the exploration module. This ensures that safety-critical behaviours take precedence,

maintaining operational reliability.
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In contrast, fuzzy arbitration supports more flexible and adaptive decision-making by evaluating the degree
of activation for each behaviour using fuzzy logic. Instead of relying on binary switching, fuzzy arbitration
blends behaviour outputs proportionally. For instance, duringa navigation task, if arobot is tracking a target
while simultaneously detecting an obstacle, the fuzzy coordination module may assign a high priority to
obstacle avoidance (e.g., 0.9) and a moderate priority to goal-seeking (e.g., 0.6). The resulting behaviour
blend enables the robot to cautiously advance toward the target while maintaining a safe distance from the
obstacle. This form of arbitration allows context-aware decision-making and mimics biological survival
responses, wheremultiple competing goals are pursued in balancerather than onebeing entirely suppressed.

Such mechanisms contribute to more adaptive, ethologically grounded robotic behaviour.

Behaviour Fusion involves merging the outputs from behaviour coordination processes. For instance, if a
robot navigating a path encounters an obstacle, the arbitration mechanism would prioritize obstacle
avoidance. However, there are situations where behaviour fusion alone cannot fully resolve conflicts
between behaviours. A fuzzy rule-based system can evaluate competing conditions and determine which
behaviour to prioritize [26]. Fuzzy behaviour fusion is a behaviour fusion built upon the elements of fuzzy
systems. It has wide applications in fields such as robotics, autonomous vehicles, and healthcare [2 7] [28].
More broadly, fuzzy behaviour fusion provides a versatile computational mechanism for synthesizing

complex behaviour components, facilitating precise and flexible decision-making.

A behaviour-based system consists of interconnected modules, referred to as behaviours, that collectively
define a robot’s functionality and decision-making architecture. Each behaviour models a specific action
or interaction scenario, enabling the robot to operate adaptively and intuitively within complex
environments [29]. In the context of social robots, which are designed to engage naturally with humans,
behaviours must be carefully designed to respond to nuanced social cues. These models often draw
inspiration from human-dog interactions, where a dog’s ability to interpret gestures, vocal tones, and
proximity servesas a natural template for social engagement. Just as dogs adjust their behaviour across
diverse contexts, social robots can be programmed to replicate similar interaction patterns. By
systematically observing and documenting a dog’s responses, researchers can infer the internal conditions
driving these behaviours and translate them into robotic behaviour models. This approach enables robots
to exhibit socially intelligent behaviour and engage with human users in a more natural and context-aware

manner [11].

Developingethologically inspired fuzzy behaviour-based systemsto replicate animal aggressive behaviours

in robotics requires an integrated and methodical approach. The process begins with an extensive literature
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review to establish a robust theoretical foundation, focusing on Archer’s ethological model of aggression
and fear in vertebrates, the fundamentals of fuzzy logic, and their application in behaviour-based robotics.
Archer’s model is then translated into a fuzzy logic framework, where key behavioural components are

linked to fuzzy rules capable of managing the variability and uncertainty inherent in aggressive behaviours.

A fuzzy inference system is constructed to process sensory inputs and generate appropriate behavioural
outputs [Aaqib2]. Integration of the Fuzzy Behaviour Description Language (FBDL) enables seamless
communication between the robot's sensory systems and control architecture, allowing adaptive behaviour
modulation. This research ultimately aims to develop a resilient and flexible robotic system capable of
accurately simulating aggressive behaviours under varying environmental conditions. The system’s
performance and adaptability are evaluated through real-world application testing, validating the practical

potential of ethologically inspired fuzzy behavioural models in robotics.
2.3 Comparative Analysis with Existing Fuzzy and Bio-Inspired Controllers

The proposed ethologically inspired fuzzy behaviour-based system builds upon established paradigms in
autonomous robotics, particularly those involving fuzzy control and biologically motivated architectures.
To contextualize its contributions, this section compares the system with three key approaches:
Subsumption Architecture, Belief-Desire-Intention (BDI) models, and Neuro-Fuzzy Systems. The
comparison focuseson four aspects: behaviour coordination,emotional modeling, environmental reactivity,

and real-time adaptability.

The Subsumption Architecture, developed by Brooks [30], organizes robot behaviours into hierarchical
layers in which higher-level behaviours can suppress or inhibit lower-level ones. Although effective for
reactive, real-time responses especially in navigation and obstacle avoidance it lacks the capacity to model
internal emotional states and cannot support graded behavioural transitions. By contrast, the proposed
system uses fuzzy logic to represent emotions such as fear and aggression along a continuum. This
facilitates nuanced behavioural blending, resulting in more ethologically realistic responses rather than

simple binary suppression.

BDI models, which are prominent in deliberative agent design, use symbolic reasoning to select actions
based on explicit representations of beliefs, desires, and intentions [3 1]. These models are powerful in
structured environments that benefit from formal planning. However, they are computationally intensive

and less adaptable to dynamic, unpredictable scenarios. In contrast, the proposed system avoids symbolic
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world modeling by grounding decision-making in fuzzy ethological rules. This results in faster, context-

sensitive responses crucial for emotionally responsive and socially interactive environments.

Neuro-fuzzy systems combine the learning capabilities of neural networks with fuzzy inference to adapt
rule structures over time [32]. While such systems can optimize behaviour through experience, they
typically require extensive training datasets and often operate as "black boxes," limiting interpretability
especially in safety-critical applications. The proposed system addresses this limitation by employing a
transparent and interpretable rule base derived from Archer’s aggression theory. This ensures that each
fuzzy rule is biologically grounded and traceable, enhancing both ethical accountability and system

adjustability.

While existing studies such as [22] which apply fuzzy logic to medical diagnosis in livestock, and [23],
which focus on fuzzy control for obstacle avoidance and mobile robot navigation demonstrate the utility of
fuzzy logic, they do not incorporate biologically grounded emotional behaviour. The current system
advances the field by embedding emotion-driven, ethologically inspired behaviours directly into the control
logic. As a result, the robot can exhibit survival responses such as freezing, fleeing, or aggression in ways

that are contextually appropriate and biologically plausible.

2.4 Implementing the “Aggression” Behaviour

This research aims to develop a fuzzy behaviour-based model for simulating aggression, drawing upon
Archer’s ethological framework presented in "The Organization of Aggression and Fear in Vertebrates:
Perspectives in Ethology" [5], asillustrated in Figure 3. Archer’s model offers a theoretical foundation for
analyzing the structure, function, and mechanisms of aggression and fear behaviours in vertebrates,
providing key insights into their underlying motivations and decision-making processes. By integrating
fuzzy logic, which is well-suited for managing imprecise and uncertain data [33], the model can better

represent the complexity and variability inherent in animal aggression.

The combination of Archer’s ethological principles with fuzzy behaviour-based system design enables the
development of a more adaptable, scalable, and context-sensitive representation of aggressive behaviour.
This integrative approach not only enhances the fidelity of robotic simulations but also deepens the
understanding of the dynamic and often ambiguous nature of aggression and fear responses in vertebrates.
It supports the modeling of fluid behavioural decisions that are influenced by environmental cues, internal

states, and prior experiences.
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Figure 3 illustrates the structure and decision-making flow of the implemented aggression model based on
Archer’s ethological framework. Each stage of the behavioural sequence represents a cognitive or reactive
component that contributes to the animal’s final response. A detailed explanation of each stage is provided
below:

Expectation Copy: The animal forms expectations about the behaviour of another animal. These
expectations are informed by prior experiences, general behavioural knowledge, and the animal’s current
internal state, such as its arousal level.

Sensory Input: The animal receives sensory information from other animals, including cues such as size,
posture, movement, and other observable behaviours.

Orientation Response: After processingthe sensory input, animal orients toward the other animal, assessing
the situation based on the new sensory input.

Discrepancy: The animal compares the incoming sensory information with its established expectations.
Any mismatch triggers increased arousal and may prompt a fight-or-flight response.

Decision Process 1 - Fear or Attack?: The animal evaluates whether to respond with Fear or initiate an
attack. This decision depends on factors such as the degree of mismatch, hormonal levels, past experiences
with conflict, and current emotional state.

Attack: If aggression is selected, the animal engages in an attack toward the opponent.
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Figure 3. Archer Organization Model [5]
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Environmental Consequences of Behaviour: The aggressive action may lead to various environmental
changes, such as the retreat or submission of the other animal.

Decision Process 2 - Escape or Immobility?: If the animal decides not to attack during Decision Process 1,
it proceeds to decide between escape or immobility. This choice considers variables like hormonal state,
the position of the other animal, and the animal’s perceived likelihood of successful Escape.
Escape: If the decision is to flee, the animal attempts to distance itself from the other animal.
Sensoryinput no longer impinges on the animal: If the animal chooses to escape, then the sensory input
from the other animal no longer affects the animal’s senses.

If Escape is blocked: If Escape is not feasible, the animal may switch to aggression and initiate an attack.
Immobility: If the animal neither attacks nor escapes, it enters a state of immobility. Which subsequently
leads to the Sensory Input Switched Off.

Sensory Input Switched Off: The animal disengages from reactingto the sensory input provided by the other

creature. In short, it means animals will not do anything at all.

The Archer Control Theory model provides a structured framework for understanding how biological
systems regulate behaviour to achieve specific objectives. Within this model, animals govern their actions
through the interplay of internal and external influences, particularly within motivational systems. A
simplified version of the theory, focused on aggression and fear in vertebrates, posits that these behaviours
are managed by two opposing systems: the aggression system and the fear/anxiety system. These s ystems
operate dynamically, and the equilibrium between them determines the animal’s behavioural outcome. The
balance is influenced by a range of internal variables such as physiological state and emotional arousal as

well as external environmental cues, which shift based on context and need.

The dynamics of aggression are typically expressed through three primary behavioural responses: Attack,
Escape, and Immobility. Modeling these responses using Fuzzy State Machines (FSMs) allows for more
biologically realistic representations, as FSMs accommodate the uncertainty, gradation, and imprecision
inherentin animal behaviour [34]. Theimplementation processinvolves several core steps. First, the system
states representing distinct behaviours like Attack, Escape, and Immobility are defined. Second, the
system’s inputs are identified, encompassing both internal factors (e.g., emotional state) and external stimuli
(e.g., proximity to another animal or object). These inputs are modeled using fuzzy logic. For example, the
input “presence of another animal” may be represented by a fuzzy set with levels such as Low, Medium, or

High, based on familiarity.
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Once the states and inputs are defined, fuzzy rules are established to govern state transitions. These rules
represent probabilistic decision-making, reflecting the animal's ambiguous and context-dependent
behaviour. A typical rule might be: “If familiarity with another animal is Low and familiarity with the
environment is Low, then the likelihood of “Escape” is High.” Terms such as High, Medium, and Low
allow for nuanced interpretation of behaviour. Finally, outputs are determined based on the selected state.
For instance, the output “Attack” might be triggered when the animal is unfamiliar with both its
environment and another animal. This methodology provides a robust framework for simulating

ethologically valid aggression responses in artificial systems.

To apply this ethologically inspired behaviour model, the process begins with categorizing scenarios that
provokeaggression. The model identifies how suchssituations elicit behavioural responseslike Fear, Attack,
Escape, and Immobility. It then generalizes these conditions to formulate a broader theory of aggression
and fear triggers. Internal variables such as physiological states, motivational drives, and memory of prior
experiences are combined with external environmental factors to calculate the likelihood of specific
responses. These elements are encoded using fuzzy logic to ensure the model accommodates the non-
binary, fluid nature of real animal behaviour. Before implementation, specific terms and rules are defined

and expressed using fuzzy logic to capture animal behaviour’s nuanced and complex nature.

State Variables: The fuzzy “Aggression” behaviour model incorporates four primary state variables, as
illustrated in Figure 4. Three of these “Attack,” “Escape,” and “Immobility” represent observable
behavioural responses, while the fourth, “Fear,” serves as a hidden state variable. Although “Fear” cannot
be directly observed, it plays a critical modulatory role by influencing transitions among the observable

states.

“Fear”: This variable reflects an animal’s internal physiological, emotional, and behavioural response to
threatening stimuli. While fear is not directly observable, it often manifests through secondary indicators
such as changes in posture or movement. Common signs include a lowered body and head, ears drawn
back, widened eyes, and a tucked tail. In this model, Fear functions as a latent state, lacking a distinct
behavioural output but exerting a significant influence on the decision-making dynamics between Attack,

Escape, and Immobility.

“Attack”: This state involves a rapid, targeted action directed at a specific stimulus, typically resulting in
physical contact or harm. Examples include biting, striking, or pecking, and these behaviours are associated

with aggression or defense, rather than predation or food acquisition.
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“Escape’: This variable encompasses behaviours intended to increase distance from a perceived threat.
Escape responses are typical in life-threatening situations, such as evading predators or avoiding aversive

stimuli, and may include running, flight, or evasive maneuvers.

“Immobility ”: Also known as “freezing”, this state reflects a complete cessation of movement. [t may occur
as a conditioned fear response to a known threat or as a spontaneous reaction to sudden or ambiguous
stimuli particularly those resembling predator presence. Immobility is often an adaptive strategy that

reduces detection by predators.

Observations: Drawing from the ethological model of Aggression as outlined in [5], this simplified fuzzy
behaviour model identifies a set of key observational variables that inform the system's state transitions
[Aaqib2]. These variables reflect the animal’s familiarity, proximity, past experience, and environmental
context, serving as inputs to determine the likelihood of entering states such as Fear, Attack, Escape, or

Immobility.

“Animal Familiarity Towards Place ” (AFTP): Represents the extent to which an animal is familiar with
its surroundings. It considers scenarios where an animal encounters familiar or unfamiliar environments.
Fear is more likely to be triggered in unfamiliar environments. However, if a suitable target is present,
aggressive behaviour may also occur even in unfamiliar settings.

“Animal Familiarity Towards another Animal” (AFTA): This captures the degree of familiarity an animal
has with another animal. This applies across both familiar and unfamiliar territories. For example,
encountering an unknown animal in a familiar space or entering another animal’s known territory may
result in fear or aggression.

“Animal Distance Towards another Animal” (ADTA): Refers to the physical proximity between two
animals. For instance, when an animal is unfamiliar with another animal and environment, and the distance
between them is in close range, and there is no available escape route, the likelihood of fear or aggressive
behaviour increases significantly.

“Animal Familiarity Towards Object” (AFTO): Measures how familiar the animal is with an object. This
situation occurs in an animal’sfamiliar andunfamiliar environment, like when a movingobject comes close
to an animal or when the distance between the animal and the object decreases in an unfamiliar place. Also,
when a novel object enters an animal’s familiar place, these include the conventional territorial issue and a
wide range of other scenarios such as Fear, Attack, and escape behaviours. This observation (and also
ADTO) serves as a robotic extension of the original model by Archer by considering that the appearance

of a non-living object causes territorial issues for robots.
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“Animal Distance Towards Object” (ADTO): Measures the distance between an animal and an object. It
considers situations where the animal may be unfamiliar with the place or object. For example, when an
unfamiliar objectcomes tooclose in an unfamiliar place, the animal may exhibit Fear, aggression, or escape
behaviours.

“Escape Path Exists " (EPE): Evaluates theavailability ofa clear and viable escaperoute. When approached
by another animal or object, the presence of an escape path generally results in flight. In contrast, if escape
is notpossible, fearmay escalate into aggression, particularly under conditions of stress or perceived threat.
“Positive Impact With Respect to Previous Experience” (PIWPE): Reflects how past experiences, whether
positive or negative, influence current behavioural responses. For instance, prior exposure to threatening
situations can predispose the animal toward defensive behaviours such as fear or aggression in similar future
contexts.

Figure 4 presents the fuzzy model for simulating animal aggressive behaviour, integrating all previously
defined inputs such as familiarity with place, other animals, objects, and spatial distance. The model uses
these observations to generate context-dependent behavioural responses, emphasizing the interaction
between environmental familiarity, social recognition, physical proximity, and experiential memory. By
encoding these variables within a fuzzy logic framework, the system effectively captures the unc ertainty
and variability inherent in real animal behaviour. This enables a nuanced representation of behavioural
dynamics influenced by both context and experience. Consequently, robotic systems built on this model
can exhibit lifelike, adaptive responses to complex, multi-dimensional scenarios bringing biologically
grounded realism to artificial behaviour modeling. defensive behaviours such as fear or aggression in

similar future contexts.
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Figure 4. Fuzzy Behaviour Model for Animal Aggressive Behaviour
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3.1 Model Overview and Implementation Guidelines

To implement the fuzzy behaviour model for “Aggression,” the Fuzzy Behaviour Description Language
(FBDL) [4] is utilized. FBDL is based on fuzzy rule-based systemsand Fuzzy Rule Interpolation (FRI) [35]
[36] which facilitates the construction of behaviour components and their behaviour coordination. Its rule-
based approach ensures that knowledge representation is self-explanatory for humans. Additionally,
fuzziness and linguistic terms defined as fuzzy sets enhance human understanding, mainly when variables
are expressed within continuous universes. Numerical evaluations can be performed directly with the fuzzy
behaviour model defined in FBDL. The FBDL code can either be executed on a system as is or, with

supplementary measurement data, applied as input for machine learning optimization algorithms.

The FBDL specifies input and state variable universes, their linguistic terms (fuzzy sets used in the rule-
bases), and the fuzzy rule-bases. For instance, if we consider an observation such as the level of “Animal
Familiarity to the Place,” which is an input universe with two linguistic terms, ‘Low’ and ‘High’, the

variable can be represented with the symbol ‘AFTP’ in FBDL as follows:

universe “AFTP”

description “Level of the Animal Familiarity to the Place.”
“low” 0 0
“high” 1 1

end

An example fuzzy rule from the behaviour coordination to determine the level of the “Fear” hidden state
variable based on factors such as animal familiarity with the place (AFTP), another animal (AFTA), and an
approaching object (AFTO) could be expressed as:

If AFTP=High And AFTA=High And AFTO=High Then FEAR=Low

whereas the AFTP, AFTA, and AFTO are antecedent universes. FEAR is the consequent universe, Low

and High are fuzzy linguistic terms in the corresponding universes.
In FBDL format, the same rule is written as:
Rule “Low” When “AFTP” is “High” And “AFTA” is “High” And “AFTO” is “High” end

The fuzzy model of the “Aggression” behaviour in FBDL format
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The FBDL definition of the input and state variable universes are:

universe “Universe label”
“low” 00
E‘high” 1 1
end
where “Universe label” is “AFTP”, “AFTA”, “AFTO”, “ADTA”, “ADTO”, “PIWPE”, “EPE”, “FEAR”,

“ATTACK”, “ESCAPE” and “IMMOBILITY".

The FBDL based definitions of state rule bases are designed to address a range of ethologically relevant
scenarios. These include the animal’s familiarity with its surroundings, objects, or other animals, as well as
encounters involving spatial intrusion such as when a moving object or another animal approaches too
closely. Another key scenario involves the entry of a novel object or unfamiliar animal into a known
territory, potentially triggering territorial or defensive behaviours. Fear responses are particularly prevalent
when animals enter unfamiliar environments, though even familiar objects in strange contexts can alter
behavioural outcomes. Additionally, the valence of prior experiences especially the degree of positivity or
negativity associated with past aggressive encounters plays a significant role in modulating current
behaviour. Collectively, these scenarios provide a robust foundation for constructing the fuzzy state rule
bases, enabling the model to dynamically represent behaviours such as Fear, Aggression, Escape, and

Immobility in a context sensitive and interpretable manner.

In fuzzy rule-base format, the FEAR Fuzzy Rule-base (Rpgar) is the following:

If AFTP=Low And AFTA=Low And AFTO=Low Then FEAR=High

If AFTA=Low And ADTA=Low And EPE=Low Then FEAR=High

If AFTO=Low And ADTO=Low And EPE=Low Then FEAR=High

If AFTP=Low And EPE=Low And PIWPE=Low Then FEAR=High

If AFTP=High And AFTA=High And AFTO=High Then FEAR=Low

If AFTA=High And ADTA=High And EPE=High Then FEAR=Low

If AFTP=High And AFTA=High And EPE=High And PIWPE=High Then FEAR=Low
The same FEAR rule-base in FBDL format appears as:

RuleBase “FEAR”
Rule High when “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end
Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end
Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end
Rule High when “AFTP” is Low and “EPE” is Low and “PIWPE” is Low end
Rule Low when “AFTP” is High and “AFTA” is High and “AFTO” is High end
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Rule Low when “AFTA” is High and “ADTA” is High and “EPE” is High end

Rule Low when “AFTP” is High and “AFTA” is High and “EPE” is High and “PIWPE” is High end
end
where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE are the antecedent universes. FEAR is the
consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes.
In fuzzy rule-base format the ATTACK Fuzzy Rule-base (Ratrack) is the following:

If AFTA=Low And ADTA=Low And EPE=Low Then ATTACK=High

If AFTO=Low And ADTO=Low And EPE=Low Then ATTACK=High

If AFTP=Low And ADTA=Low And ADTO=Low And EPE=Low Then ATTACK=High

If FEAR=High And EPE=Low Then ATTACK=High

If AFTP=High And AFTA=High And PIWPE=High Then ATTACK=High

If AFTP=High And AFTO=High And PIWPE=High Then ATTACK=High

If EPE=High And FEAR=High Then ATTACK=Low

If EPE=High And AFTP=Low And ADTA=High Then ATTACK=Low

If EPE=High And AFTA=Low And ADTA=High And PIWPE=Low And ADTO=High Then

ATTACK=Low

If EPE=High And AFTO=Low And ADTO=High And PIWPE=Low Then ATTACK=Low

If AFTA=Low And AFTP=Low And AFTO=Low And EPE=High Then ATTACK=Low
The same ATTACK rule-base in FBDL format
rulebase “ATTACK”

Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end

Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end

Rule High when “AFTP” is Low and “ADTA” is Low and “ADTO” is Low and “EPE” is Low end

Rule High when “FEAR” is High and “EPE” is Low end

Rule High when “AFTP” is High and “AFTA” is High and “PIWPE” is High end

Rule High when “AFTP” is High and “AFTO” is High and “PIWPE” is High end

Rule Low when “EPE” is High and “FEAR” is High end

Rule Low when “EPE” is High and “AFTP” is Low and “ADTA” is High end

Rule Low when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low and

“ADTQO” is High end

Rule Low when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end

Rule Low when “AFTA” is Low and “AFTP” is Low and “AFTO” is Low and “EPE” is High end
end

The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR. The consequent

universe is ATTACK, and Low and High are fuzzy linguistic terms in the corresponding universes.

23



Chapter 3: The Fuzzy Model for the “Aggression” Behaviour

In fuzzy rule-base format the ESCAPE Fuzzy Rule-base (Rgscapr) is the following:

If EPE=High And FEAR=High Then ESCAPE=High

If EPE=High And AFTP=Low And AFTA=Low And AFTO=Low Then ESCAPE=High

If EPE=High And AFTA=Low And ADTA=High And PIWPE=Low Then ESCAPE=High
If EPE=High And AFTO=Low And ADTO=High And PIWPE=Low Then ESCAPE=High
If EPE=High And AFTP=Low And ADTA=High And ADTO=High And PIWPE=Low Then
ESCAPE=High

If FEAR=Low And EPE=Low Then ESCAPE=Low

If FEAR=Low And PIWPE=High Then ESCAPE=Low

If AFTA=High And AFTO=High And AFTP=High And PIWPE=High Then ESCAPE=Low
If AFTA=High And ADTA=High And PIWPE=High And EPE=Low Then ESCAPE=Low
If AFTO=High And ADTO=High And PIWPE=High And EPE=Low Then ESCAPE=Low

The same ESCAPE rule-base in FBDL format
Rule base “ESCAPE”

end

Rule High when “EPE” is High and “FEAR” is High end

Rule High when “EPE” is High and “AFTP” is Low and “AFTA” is Low and “AFTO” is Low
end

Rule High when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low
end

Rule High when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low
end

Rule High when “EPE” is High and “AFTP” is Low and “ADTA” is High and “ADTO” is High
and “PIWPE” is Low end

Rule Low when “FEAR” is Low and “EPE” is Low end

Rule Low when “FEAR” is Low and “PIWPE” is High end

Rule Low when “AFTA” is High and “AFTO” is High and “AFTP” is High and “PIWPE” is High
end

Rule Low when “AFTA” is High and “ADTA” is High and “PIWPE” is High and “EPE” is Low
end

Rule Low when “AFTO” is High and “ADTO” is High and “PIWPE” is High and “EPE” is Low

end

whereas AFTP, AFTA, ADTA,AFTO, ADTO, EPE, PIWPE, FEAR are the antecedent universes, ESCAPE

is the consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes

24



Chapter 3: The Fuzzy Model for the “Aggression” Behaviour

In fuzzy rule-base format the IMMOBILITY Fuzzy Rule-base (Rwmvosmiry) 1S the following:

If FEAR=Low And EPE=Low Then IMMOBILITY=High

If AFTA=Low And ADTA=High And EPE=Low Then IMMOBILITY=High

If AFTO=Low And ADTO=High And EPE=Low Then IMMOBILITY=High

If AFTP=Low And ADTA=High And EPE=Low Then IMMOBILITY=High

If AFTP=Low And AFTA=Low And PIWPE=Low Then IMMOBILITY=High

If EPE=High And FEAR=High And PIWPE=Low Then IMMOBILITY=Low

If EPE=High And AFTA=Low And ADTA=Low And PIWPE=Low Then IMMOBILITY=Low
If EPE=High And AFTO=Low And ADTO=Low And PIWPE=Low Then IMMOBILITY=Low

The same IMMOBILITY rule-base in FBDL format
Rule base “IMMOBILITY”

end

Rule High when “FEAR” is Low and “EPE” is Low end

Rule High when “AFTA” is Low and “ADTA” is High and “EPE” is Low end

Rule High when “AFTO” is Low and “ADTO” is High and “EPE” is Low end

Rule High when “AFTP” is Low and “ADTA” is High and “EPE” is Low end

Rule High when “AFTP” is Low and “AFTA” is Low and “PIWPE” is Low end

Rule Low when “EPE” is High and “FEAR” is High and “PIWPE” is Low end

Rule Low when “EPE” is High and “AFTA” is Low and “ADTA” is Low and “PIWPE” is Low
end

Rule Low when “EPE” is High and “AFTO” is Low and “ADTO” is Low and “PIWPE” is Low

end

The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR, and the

consequent universe is IMMOBILITY, the fuzzy linguistic terms are Low and High in the corresponding

universes.

Table 1 presents a structured mapping between key ethological observations derived from Archer’s

aggression and fear model and their corresponding fuzzy logic rules within the proposed behavioural

framework. Each rule is linked to specific contextual variables (e.g., FEAR, AFTA, EPE) and justified

based on biologically observed survival responses such as Escape, Attack, or Immobility, thereby ensuring

the fuzzy system retains behavioural plausibility and interpretability grounded in ethological theory.
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Ethological Fuzzy Input | Derived Fuzzy Rule Justification
Observation Variables (Example)
(Archer's Model)

Discrepancy between | FEAR (High) | If FEAR is High AND | When the robot experiences high
expected and actual Escape Path EPE is Low THEN fear but no escape path is
behaviour leads to Exists (Low) ATTACK is High available, aggressive behaviour

increased arousal and becomes a likely outcome,

potential attack aligning with fight
Encounter with AFTA (Low) | If AFTA is Low AND | Unfamiliarity and close proximity
unfamiliar animal in | AFTP (Low) | AFTP is Low AND elevate threat perception; a clear
unfamiliar environment | ADTA (Low) | ADTA is Low AND escape route triggers flight
triggers fear and retreat | EPE (High) EPE is High THEN | behaviour, simulating natural fear-
ESCAPE is High driven avoidance.
Familiar animal in AFTA (High) | If AFTA is High AND | Indicates no immediate threat;
familiar environment | AFTP (High) | AFTP is High AND | immobility as passive behaviour
with low perceived FEAR (Low) | FEAR is Low THEN aligns with low arousal and
threat does not provoke IMMOBILITY is High situational comfort.
aggressive response
Prior positive PIWPE If PIWPE is High Negative memory combined with
experience with a (High) AND AFTA is Low current threat cues encourages
similar agent or AFTA (Low) | AND ADTA is Low preemptive aggression.
situation increases ADTA (Low) | THEN ATTACK is
likelihood of aggression High

Proximity to a novel | AFTO (Low) | If AFTO is Low AND | Freezing is a common response

object in an unfamiliar | AFTP (Low) | AFTPis Low AND | when an animal cannot determine
environment triggers | ADTO (Low) | ADTO is Low AND a safe action under ambiguous

uncertainty and freeze | EPE (Low) EPE is Low THEN stimuli.
response IMMOBILITY is High
Presence of escape FEAR (High) | If FEAR is High AND | High fear redirects behaviour
route reduces EPE (High) EPE is High THEN [ toward safe avoidance rather than
aggression even under ESCAPE is High confrontation, aligning with
high fear adaptive strategies.
No escape route in FEAR (High) | If FEAR is High AND | A blocked escape path combined
threatening condition EPE (Low) EPE is Low AND with low familiarity and high fear
raises aggression AFTA (Low) | AFTA is Low THEN | justifies offensive action as a last
probability ATTACK is High resort.

Table 1. Mapping of Ethological Observations to Fuzzy Rules

Animal behaviours such as Fear, Escape, Attack, and Immobility are influenced by a variety of factors that

determine how an animal responds to a given situation. These influences can be broadly categorized into

internal characteristics and behavioural outcome variables. Internal characteristics referto the mechanisms
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by which an animal interprets and reacts to external stimuli. A primary factor is the discrepancy between
expectations and observations. When there is a significant mismatch such as an unexpected movement or
the presence of an unfamiliar entity the animal often perceives it as a threat, triggering defensive responses
like fear or escape. Conversely, if the observed stimulus closely matches the animal’s expectations,
particularly in familiar environments, it may elicit assertive behaviours such as attack. Another critical
internal factor is positive motivation shaped by prior experience. Animals reinforced for aggressive
responses in the pastare moreinclined to attackratherthan avoid similar situations in the future, illustrating
how learned behaviour influences future responses. Additionally, experiential factors including early -life
experiences, socialization history, or long-term isolation can substantially impact an animal’s perception of
threat and its coping strategies. For instance, animals exposed to early social interactions may exhibit more
cautious or avoidant behaviour [Aaqib1], while those with limited social exposure may escalate more
quickly to aggression. Collectively, these internal variables underscore the role of memory, learning, and

emotional regulation in shaping behavioural outcomes.

In parallel, behavioural outcome variables also significantly influence the response selection process. One
such variable is the physical characteristics of the perceived target, including its size, mobility, and
proximity. Larger or more mobiletargets often provoke heightened vigilance or hesitation, whereas smaller
orimmobile targets may be approached with greater assertiveness. Another influential factor is the animal’s
predisposition toward passive or active coping strategies. Some animals are naturally inclined either
biologically or behaviourally to freeze or remain still in the face of danger, while othersinstinctively engage
in active escape. These tendencies are shaped by both genetic predispositions and environmental
conditioning and can also be affected by sensory discrepancies such as sudden movements or unusual
sounds, which heighten arousal and vigilance. Finally, the perceived feasibility of escape is a crucial
determinant of behaviour. When an escape route is available, animals typically choose flight over fight;
however, when escape is obstructed such as in confined spaces aggression may be triggered as a last-resort
defensive mechanism. These outcome-based factors interact fluidly with internal characteristics, forming a
flexible, context-sensitive decision-making system. Together, they highlight the multifactorial, situational
nature of animal aggression and defense, providing a robust framework for modeling such responses in

fuzzy rule-based robotic systems.

Figure 5(a)-5(d) illustrates how changes in behaviour components Fear, Attack, Escape, and Immobility
are modulated by varying observations within the fuzzy model of aggressive behaviour [Aaqib2]. The
analysis decomposes each behaviour into its dynamic components, demonstrating how environmental and

internal factors interact to shape an animal’s overall response. The graphs were generated using

27



Chapter 3: The Fuzzy Model for the “Aggression” Behaviour

computational evaluations from the Fuzzy Behaviour Description Language (FBDL) [4], implemented
through publicly available FBDL functions [37] [38]. In our example, two key input variables ADTA
(Animal Distance Towards Another Animal) and EPE (Escape Path Exists) are varied (vary from Low to
High). All other variables are held constant, with the animal assumed to be highly familiar with the
environment (AFTP = High) and the conspecific (AFTA =High), but less familiar with an object (AFTO
=Low) and its proximity (ADTO =Low), and with minimal positive influence from previous experiences

(PIWPE = Low). In all plot graphs, red denotes a High response, and blue denotes a Low response.

The Figure 5(a) graph shows changes in Fear based on ADTA and EPE [Aaqib2]. Fear levels are High
when no escape path exists (EPE=Low), and the approaching animal is unfamiliar (AFTA=Low).
Conversely, Fear levels are Low when the animal is familiar with its surroundings (AFTA=High,
AFTP=High, AFTO=High). Figure 5(b): Graphrepresents changes in Attack behaviour. Attack levels are
High when the animal is unfamiliar with the approaching animal (AFTA=Low), the distance to the other
animal is small (ADTA=Low), and no escape path exists (EPE=Low). Attack levels decrease to Low when

an escape path is available (EPE=High).
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Figure 5 (a). Level of Fear Behaviour
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10

Figure 5 (b). Level of Attack Behaviour

ESCAPE

Figure 5 (c). Level of Escape Behaviour
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IMMOBOLITY

Figure 5 (d). Level of Immobility Behaviour

Figure 5 (a), (b), (c), (d). Graphical Representation of Behaviours

Figure 5(c) illustrates changes in Escape behaviour. Escape levels are High when the animal is unfamiliar
with the approaching animal (AFTA=Low), unfamiliar with the place (AFTP=Low), and an escape path is
available (EPE=High). Escape levels are Low when no escape path exists (EPE=Low). Figure 5(d) shows
changes in Immobility behaviour. Immobility is High when the animal is unfamiliar with the approaching
animal (AFTA=Low), the distance to the other animal is small (ADTA=Low), and no escape path exists
(EPE=Low). Immobility decreases to Low when an escape path exists (EPE=High), and the distance to the
other animal is large (ADTA=High).

These examples demonstrate how variations in input observations directly affect behavioural responses,
highlighting the underlying complexity and sensitivity of the fuzzy aggression model. Table 1 presents of
summary of behaviours and figures 5(a) through 5(d) illustrate how contextual factors modulate the
likelihood of different behavioural outcomes Fear, Attack, Escape, and Immobility within an ethologically
inspired fuzzy framework. Fear levels increase when the animal is in close proximity to an unfamiliar threat
and lacks an escape route but diminish in familiar and controlled environments. Attack becomes more
probable when the animal and the perceived threat are nearby, especially when escape options are

unavailable. However, theavailability of an escapepath significantly reducesthe tendency to attack. Escape
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behaviour is most likely when the animal is unfamiliar with both the intruder and the environment and
perceives a viable escaperoute. In contrast, escaperesponses decline whenno such path exists. Immobility,
which often functions as a passive substitute for aggression, becomes prominent in scenarios involving
immediate threat and restricted movement options. When the threat is distant and escape is possible,
immobility is less likely to be exhibited. Overall, the model captures the nuanced interplay of e nvironmental
familiarity, proximity, and threat perception, offering a biologically grounded framework for modeling

complex behaviour in both animals and autonomous systems.

Behaviour High Behaviour Low Behaviour Conditions | Key Influencing Factors
Conditions
EPE = Low (No escape AFTA = High
Fear path) AFTP = High Escape path availability,
AFTA = Low (Unfamiliar AFTO = High Familiarity with animal,
with another animal) i.e. High Familiar with place and object
animal, place and object
AFTA =Low
Attack ADTA = Low (Close EPE = High (Escape path Proximity and escape
distance) exists) route
EPE = Low
AFTA =Low EPE = Low (No escape Familiarity with
Escape AFTP = Low path) environment and escape
EPE = High path
AFTA = Low EPE = High (Escape path
Immobility ADTA =Low (Close exists) Threat distance and
distance) ADTA = High (Greater mobility constraints
EPE = Low distance)

Table 2: Summary of Behavioural Responses Based on ADTA and EPE

3.2 Trajectories for simulating Aggressive Behaviour

This section investigates the implementation of ethologically inspired fuzzy control models through the
simulation ofrobotic trajectories, focusing specifically on two fundamental behavioural responsesobserved
in the animal kingdom: Escape and Attack. These responses are not only integral to the survival of
biological organisms but are also critically relevant in the design of intelligent, adaptive robotic agents
operating in unstructured and unpredictable environments. By modeling such interactions between two
autonomous robots hereafter referred to as Robot 1 and Robot 2 the system aims to emulate real-time

behavioural transitions governed by fuzzylogic, capturing the complexity of threat evaluationand decision-

making.
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The simulations integrate both internal motivational states (e.g., fear, familiarity) and extemal
environmental cues (e.g., proximity, escape path availability) into a unified fuzzy control framework.
Unlike traditional binary systems, fuzzy logic allows for gradated responses that reflect the ambiguity and
contextual sensitivity of real animal behaviour. This results in the emergence of dynamic, continuous
trajectories in which robots do not simply react, but rather adapt, negotiate, and learn from their
environments and interactions with other agents. The following subsections detail the implementation and
analysis of escape and attack behaviours, with associated visualizations (Figures 7 and 8) illustrating how

these strategies unfold in both spatial and behavioural dimensions.

3.2.1 Escape Behaviour

Escape behaviour in animals is a rapid, adaptive response to immediate threats, often triggered by the
perception of an approaching entity or an environmental anomaly. This simulation models such
ethologically inspired escape dynamics using a fuzzy behaviour control system, with Robot 1 (R1) as the
primary agent performing the escape response. Figure 6 depicts the interaction between Robot 1 (R1) and
Robot 2 (R2), each following a trajectory influenced by its sensory and cognitive inputs. R1 starts at
coordinates (0.5, 0.5), while R2 begins at (6, 6). Each robot is programmed to move towards near to the
other’s initial location, creating a deliberate encounter that escalates proximity and simulates a potential
confrontation. The blue trajectory represents R1, and the green trajectory represents R2, both exhibiting
complex patterns that resemble animal-like behaviour, with an emphasis on escape reactions to social

stimuli.

R1 is initialized with low familiarity with both the environment and R2, resulting in a baseline fear state.
In contrast, R2 is assumed to possess high familiarity, maintaining a neutral behavioural profile. As robots
approach one another,R1 continuously assesses three factors using fuzzy inference: distance to the Robot 2
(ADTA), fear level (FEAR), and escape path existence (EPE). When the inter-robot distance drops below
a predefined threshold, R1’s intemal fear metric increases. If an escape route is available (as determined by
EPE), R1 initiates an evasive maneuver. This behavioural transitionis visually encoded by a trajectory color
shift from blue to red, signaling elevated arousal and active avoidance. The transition is not binary but
reflects a gradual, context-sensitive modulation of behaviour. As R1 gains distance from R2 and re-
establishes safety, its fear level declines, and the trajectory color gradually shifts back to blue representing

a return to a calmer state.

This fear-response cycle anticipation, reaction, and recovery closely mirrors behavioural adaptations

observed in prey species. Notably, the trajectories of R1 and R2 are interdependent, exhibiting behavioural
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synchronization that reflects real-world social modulation. R1’s escape behaviour influences R2’s spatial
decisions, illustrating how one agent’s actions can dynamically shape another’s response. This emergent,
bidirectional interaction highlights the strength of fuzzy control systems in capturing complex behavioural
patterns. Such responsive coordination is particularly valuable in domains like robot swarms, multi-agent
navigation, and socially adaptive robotics, where real-time context sensitivity and fluid behaviour

modulation are essential for effective operation.

7
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Figure 6. Trajectories for Escape Behaviour, where colours of the paths are representing the level of the

“Fear” [Aaqib2]

Algorithm 1: Fuzzy Logic-Based Escape Behaviour for Robots
Input:

Robot 1 Start < (0.5, 0.5)

Robot 2 Start « (6, 6)

Parameters < {ADTA, FEAR, EPE}

Threshold Distance «— D (Critical distance for fear increase)
Initialize:

Set Robot 1 fear level < LOW

Set Robot 2 familiarity level «— HIGH

Move Robot 1 toward Robot 2 Start

Move Robot 2 toward Robot 1 Start
While Robot 1 and Robot 2 are moving:

CD « ComputeDistance(Robot_1.position, Robot 2.position)

FEAR « EvaluateFuzzyLogic(ADTA, FEAR, CD)
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If CD < Threshold_Distance:
Increase Robot 1 fear level
If EPE exists:
TriggerEscape(Robot 1)
Else:
ContinueMovement(Robot 1)
SynchronizeBehaviour(Robot 1, Robot 2)
If CD increases:
Decrease Robot 1 fear level
SetTrajectoryColor(Robot 1, BLUE)
EndCondition:
If Robot 2 reaches near Robot 1 Start location and Robot 1 escaped successfully:
StopSimulation()
LogBehaviourData()
Output:
- Robot 1 trajectory: BLUE — RED — BLUE
- Adaptive escape response recorded
- Simulated natural escape behaviour in robotics

3.2.2 Attack Behaviour

While escape behaviour centers on evasion and retreat, attack behaviour involves assertive confrontation,
often emerging from motives such as territorial defense, dominance assertion, or perceived superiority.
Figure 7 illustrates the attack trajectories of Robot 1(R1)and Robot 2 (R2), modeled through a fuzzy
behaviour control system that simulates aggression dynamics inspired by animal interactions. This fuzzy
rule-based framework captures the inherent uncertainty and complexity of aggressive behaviour in mult-
agent systems. Each robot’s movement is visualized through color-coded trajectories that trace their
spatiotemporal interactions. These visual patterns mirror behavioural phenomena commonly observed in

animal encounters within shared spaces.

R1 begins at coordinates (1, 1), initially exhibiting low aggression, as denoted by its blue trajectory. R1's
objective is to approach R2, assert dominance, and potentially escalate into an aggressive display. In
contrast, R2 begins at (5.5, 5.5) with a green trajectory, representing a calm, non-threatening posture. As
R1 advances, figure 7 captures its behavioural escalation from neutral to aggressive triggered by increasing
proximity to R2. The behaviour of R1 and R2 are govemed by fuzzy logic rules that evaluate multiple input
variables: distance to another animal (ADTA), fear level (FEAR), familiarity with place (AFTP), and
familiarity with another animal (AFTA). When R1 detects a specific pattern close proximity, low fear, and

low familiarity the system triggers a transition to an aggressive state, visually marked by a shift from blue
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to red. This color transition represents the onset of assertive behaviour, akin to territorial charging or

dominance displays in animals.

Simultaneously, R2 interprets R1’s behavioural shift as a threat. In response, its trajectory color changes
from green to orange, signaling rising fear and a defensive posture. The system dynamically prompts R2 to
retreat, reorient, or otherwise attempt de-escalation mimicking natural avoidance strategies observed in
animal populations. This bidirectional modulation creates a feedback loop where both agents continuously
adapttheiractions based on theother’s behaviour andinternal emotional states. As the proximity diminishes
whether through movement or mutual de-escalation R1’s aggression subsides, and its trajectory retums to
blue. Similarly, R2’s fear dissipates, reverting its trajectory to green. These changes reflect the system’s
ability to simulate temporary, context-dependent emotional states and fluid behavioural transitions,

grounded in environmental and social stimuli.
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Figure 7. Trajectories for Attack Behaviour, where colours of the paths are representing the level of the

“Attack” [Aaqib2]

The interaction pattemns between R1 and R2 underscore the expressive power of fuzzy systems in modeling
lifelike behaviours. By capturing aggression, fear, and adaptive responses in real-time, this framework
offers a robust approach for simulating animal-inspired behaviour in autonomous robots. It also provides a
foundation for applications in robot training environments, multi-agent conflict resolution, and even

behavioural modeling in social psychology. More broadly, the model contributes to cross-disciplinary

35



Chapter 3: The Fuzzy Model for the “Aggression” Behaviour

insights linking robotics, behavioural ecology, and cognitive systems. It supports the development of
intelligent agents capable of naturalistic interactions, adaptive decision-making, and emergent behaviour in

complex, uncertain environments.

Algorithm 2: Fuzzy Logic-Based Attack Behaviour for Robots
Input:
Robot 1 Start «— (1, 1)
Robot 2 Start « (5.5, 5.5)
Parameters < {ADTA, FEAR, AFTP, AFTA}
Threshold Distance «<— D (Critical distance for aggression increase)
Initialize:
Set Robot 1 aggression_level «— LOW (BLUE)
Set Robot 2 fear level <~ NONE (GREEN)
Move Robot 1 toward near Robot 2 Start
Keep Robot 2 stationary initially
While Robot 1 is moving:
CD « ComputeDistance(Robot_1.position, Robot 2.position)
FuzzyParams « EvaluateFuzzyLogic(ADTA, AFTP, AFTA, FEAR, CD)
If CD < Threshold_Distance:
Increase Robot 1 aggression level
SetTrajectoryColor(Robot 1, RED)
Increase Robot 2 fear level
SetTrajectoryColor(Robot 2, ORANGE)
Robot 2 evades position to avoid damage
If CD increases again:
Decrease Robot 1 aggression_level
SetTrajectoryColor(Robot 1, BLUE)
Decrease Robot 2 fear level
SetTrajectoryColor(Robot 2, GREEN)
EndCondition:
If Robot 1 presents Aggression successfully:
StopSimulation()
LogBehaviourData()
Output:
- Robot 1 trajectory: BLUE — RED
- Robot 2 trajectory: GREEN — ORANGE — GREEN
- Adaptive attack behaviour recorded
- Simulated animal-like attack behaviour in robotics

The simulated trajectories of both escape and attack behaviours provide robust validation for the capacity
of fuzzy logic to emulate ethologically grounded behavioural patterns in autonomous robotic systems.

Rather than functioning as rigid, pre-programmed reflexes, these behaviours emerge from a continuous and
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dynamic inference process, shaped by real-time sensory inputand internal motivational states. The resulting
behavioural expressions ranging from evasive maneuvers to assertive confrontations demonstrate a level of

flexibility and nuance that closely parallels the situational adaptiveness observed in animal behaviour.

Furthermore, these simulations highlight the effectiveness of fuzzy behaviour-based systems in enabling
robots to engage in complex social dynamics, including multi-agent coordination, emotional modulation,
and contextual learning. The seamless behavioural transitions between states such as fear, aggression,
avoidance, and calmness reveal an underlying architecture capable of mimicking emotional and cognitive
fluidity, a characteristic essential for real-world applications where responsiveness to both environmental
and social cues is paramount. These capabilities position fuzzy logic systems as notonly a tool for behaviour
modeling but also as a foundational approach for building emotionally intelligent, ethically aware, and
socially interactive robots. As such, this work represents a meaningful step toward bridging the disciplinary
gap between biological ethology and artificial intelligence, paving the way for next-generation robotic
agents capable of operating autonomously, adaptively, and intuitively in dynamic human and non-human

environments.
3.3 Conclusion

This research introduces a novel fuzzy behaviour model, developed in the FBDL language, to simulate
aggressive behaviours in animals based on Archer’s ethological framework of aggression and fear in
vertebrates. Through a fuzzy rule-based system, the study effectively models complex behavioural
responses ranging from evasion to confrontation in robotic agents, with visualized escape and attack
trajectories that parallel adaptive pattems observed in nature. These simulations demonstrate the system’s
ability to support nuanced transitions between behavioural states such as fear, aggression, avoidance, and
calmness, reflecting an underlying architecture capable of emotional modulation and context-sensitive
decision-making. By integrating ethological principles with fuzzy logic, the model extends beyond
technical functionality to support emotionally intelligent, socially interactive, and ethically aware robotic
systems. Such behaviour-rich agents are equipped to handle real-world uncertainty with animal-like
judgment and responsiveness, especially in dynamic multi-agent environments. The ultimate goal is to
implement these ethology-inspired behaviours in both virtual simulations, such as TurtleBot, and physical
mobile robots, marking a significant advancement in applying biological behaviour models to robotics. This
work offers a foundation for developing intelligent, adaptive systems with the capacity to engage naturally
within complex environments, paving the way for future innovations in robotics, autonomous systems, and

bio-inspired artificial intelligence
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3.4 Thesis 1.

This thesis proposes a novel framework that translates Archer’s ethological model of aggression and fear

in vertebrates into a computationally interpretable and machine-executable architecture using the “Fuzzy

Behaviour Description Language” [Aaqibl, Aaqib2].

3.4.1 Scientific Foundations

Unlike rigid binary control systems such as finite state machines (FSMs), FBDL supports continuous,
graded behavioural transitions in ambiguous or multi-modal sensory environments. This work builds upon:
Archer’s Model of Aggression: A theory grounded in vertebrate ethology, Archer’s model conceptualizes
behaviour as the outcome of internal motivational conflicts (e.g., fear vs. aggression), dynamically
modulated by external environmental cues such as familiarity, proximity, and threat level.

Zadeh’s Fuzzy Set Theory. Introduced by Lotfi Zadeh, fuzzy set theory allows input variables to belong
partially to multiple linguistic categories (e.g., "Low", "Medium", "High") with degrees of membership.
This enables graded reasoning and nuanced decision-making in ambiguous or noisy environments.
Fuzzy Rule Interpolation (FRI) with FIVE: The primary inference mechanism in this work, implemented in
FBDL, enabling reasoning with sparse or incomplete rule bases. For baseline comparisons in dense rule

sets, a Mamdani Type-1 FIS is used.

3.4.2 Mathematical Formalism

The proposed ethologically inspired fuzzy behaviour-based control architecture enables robots to make

emotion-aware decisions by interpreting both internal affective states and external environmental stimuli.

This process is governed by a multi-step fuzzy inference mechanism consisting of fuzzification, rule

evaluation via interpolation, defuzzification, and optionally probabilistic state transitions. This section

formalises each component of the inference chain using standard mathematical notation to enhance
transparency and reproducibility.

Behavioural Mapping Function: Therobot’s active behaviour B; (equation 1) is determined by a function f

that maps internal emotional variables F;and external context cues C; to a behavioural decision:
Bi = f (Fj, Cx) (D

Where: F; € (FEAR, ATTACK etc.), and Cy € (ADTA, AFTA, AFTP, EPE etc.).
This mapping is implemented through fuzzy logic, using a set of predefined linguistic rules derived from

Archer's Aggression Ethological Model.
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Membership Function Definitions: Each crisp input variable X, € Ris mapped into the fuzzy linguistic
terms Lx; € {Low, Medium, High} via membership functions:

HLxk (xk): R =2[0,1] (2)
Two commonly used membership functions in this framework are Triangular and Trapezoidal (equation 3
and 4), these functions are configured based on expert knowledge and empirical trials.

Triangular Membership Function (used for smooth variables like proximity):

0 ifx<aorx =c

x—a . < b
urri (x; a8, b,¢) =4 5_a ifa < x < 3)
c—x .
Py ifb<x<c

Trapezoidal Membership Function (used for thresholds like EPE or familiarity):

(O ifx<aorx=>d

Xx—a

— ifa<x<bh
ra ) ;b; Id =4b_a 4
hreap (%53, b, €,d) = 3 77 ifb<x<c )
ax ifc<x<d

Fuzzy Rule Evaluation (Inference Engine): Behavioural decisions are made using fuzzy IF-THEN rules and
are governed by ethologically grounded fuzzy rules derived from Archer’s aggression model, Example:
Fear Rule-Base: Rule Fear is High When AFTA is Low AND EPE is Low

Inference follows Fuzzy Rule Interpolation (FIVE), as implemented in FBDL:

Similarity & activation: For each rule Ry, compute the similarity between each input x; and its antecedent
fuzzy set Ay; combining them into an activation weight wy.

Interpolation ratio: Determine how the input vector x lies between the closest rules in the antecedent space.
Consequent interpolation: Interpolate the consequent fuzzy sets By according to activation weights w; and
the interpolation ratio to produce a single inferred consequent B*(x), even when no rule matches exactly.

Defuzzification: If a crisp output is required, apply a standard method such as the centroid to B*(x).

This process ensures robust reasoning in sparse rule bases while preserving interpretability. Mamdani max-
min composition is used only in baseline comparisons for dense rule bases. For example, for a behaviour

Bi, the fuzzy output is (equation 5):
pa(x) = max; (min; py(x)) — (5)
Whereas Ll xj(X;) is the membership degree of input X; to label L,j, min; represents the logical AND across

antecedents, and max; aggregates rules affecting the same behaviour.
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Behaviour Arbitration and Defuzzification: When multiple behaviours are activated simultaneously,
behaviour arbitration ensures that the robotic system selects the most contextually appropriate response.
Following fuzzy inference, the system generates output membership functions for each candidate behaviour
B;. These fuzzy outputs are then aggregated across all rules to represent the total contribution for each
behaviour.To convertthese aggregated fuzzy sets intoactionable decisions, the system applies the Centroid
(Center of Gravity, equation 6) method for defuzzification. This method computes the crisp output value

Buiisp, representing the weighted average location of the fuzzy output distribution:

ff uB(x) . x dx
f: uB (x) dx

Berisp = (6)

Where pB(x) is the aggregated membership function for behaviour B; x is the output domain variable
(e.g., behavioural intensity or activation level), [a,b] defines the support range of the fuzzy set. The
behaviour associated with the highest B, value is selected as the dominant behaviour for execution. The
centroid method is preferred for its smooth and continuous output transitions, which are essential for
emotionally nuanced systems. Unlike binary or max-based methods, it reflects the full distribution of belief
across fuzzy outputs, enabling realistic and adaptive modeling of graded emotional states like fear or
aggression. This enhances context-sensitive behaviour and control stability in dynamic environments.
State Transition Dynamics: In the proposed fuzzy behaviour based system, behaviours are managed using
a Fuzzy State Machine (FSM), allowing smooth transitions between states instead of abrupt switches.
Transitions from one behaviour B; to another B; are governed by fuzzy activation levels based on sensor

inputs Xy, such as distance to threat or escape possibility. The transition likelihood is defined as:

uBj (xk)

P(Bj | Bi, xk) = m
n

(7

Here, uBj(xx) is the fuzzy membership value representing how strongly behaviour B; is activated by input
xx. The denominator normalizes across all behaviours, yielding a probability-like score. This mechanism
enables behaviour blending for instance, allowing partial commitment to both escape and obstacle
avoidance rather than strict selection. It reflects natural behaviour where multiple instincts operate in
parallel. Additionally, temporal smoothing or hysteresis can be applied to avoid rapid state switching,

ensuring coherent and biologically realistic behaviour over time.
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Rule Derivation Based on Archer's Ethology: As an example, the following rule
Attack Rule-base: Rule ATTACK is High when FEAR is High AND EPE is Low
is derived directly from Archer’s observation that high fear, when escape routes are limited, leads to
defensive aggression rather than avoidance. This is mathematically translated as:
UATTACK = min (JFEAR:High, MEPE:Low) (8)
This highlights the interpretability of the system: each rule is not only mathematically grounded, but also
biologically justified.

3.4.3 Simulation-Based Evidence

The proposed fuzzy behaviour architecture has been validated through a series of controlled simulations

that demonstrate its capacity to generate context-sensitive, ethologically grounded responses. As depicted

in Figures 5(a-d) and Table 1, specific combinations of internal affective states and environmental inputs

produce consistent and biologically interpretable behaviours:

e Low familiarity (AFTA) and low escape possibility (EPE) result in elevated fear and immobility,
reflecting risk-averse defensive responses.

e Close proximity to other agents (low ADTA), when paired with low EPE, reliably triggers aggressive
behaviour, simulating defensive confrontation.

e When EPE is high, the agent engages in escape behaviour, particularly when internal fear levels are
concurrently elevated.

e Underfavourableconditions (e.g., high AFTA and high EPE), agents revertto goal-directed exploration
or navigation, indicating behavioural normalization.

Figure 6 illustrates real-time behavioural modulation using colour-coded motion trajectories that reflect

transitions between affective states such as fear, escape, and aggression. Figure 7 captures inter-agent

emotional influence, showing how Robot 1’s aggression induces fear, and triggers escape responses in

Robot 2. Collectively, these empirical results support the system's: Internal coherence (rule consistency

and integration), Biological plausibility (alignment with ethological theories), Reactive realism (adaptive

responses to dynamic multi-agent scenarios).

3.4.4 Falsifiability and Testability

The proposed architecture has been explicitly designed to support empirical verification, repeatability, and
comparative evaluation:

e The fuzzy rulebasecomprises a finite and enumerablesetof ~36 rules, each of whichcanbe unit-tested

in isolation to confirm correct input-output behaviour mappings.
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e Behavioural trajectories and decision outcomes can be systematically benchmarked against
conventional finite state machine (FSM) models under identical simulation conditions, enabling
quantitative comparison of flexibility, response time, and behavioural richness.

e Key behavioural metrics including trajectory dynamics, reaction latency, and state transition
frequencies are tracked across variable settings of critical input parameters (EPE, AFTA, ADTA etc.)

to ensure robustness and generalizability.

3.4.5 Novelty and Impact

This thesis offers multiple contributions to the fields of bio-inspired robotics, fuzzy logic control, and

computational ethology:

e First known implementation of Archer’s theory of aggression in a robot-executable fuzzy inference
framework, demonstrating the feasibility of translating ethological models into actionable control
systems.

e Introduction of Fuzzy Behaviour Description Language (FBDL) as a declarative emotional modelling
language, enabling transparent, modular, and expressive behaviour programming across platforms
including mobile robots, virtual agents, and animal simulators.

e Provides explainability and visual traceability for emotion-drivenbehaviours whichis essential features
for ethical and accountable Al in Human-Robot Interaction (HRI) contexts.

e Establishes a modular architecture that can be extended to more complex domains such as: Multi-agent
social interaction, Collective behaviour modelling, Learning-driven evolution of rule bases in adaptive

robotic systems.

3.4.6 Applications

The proposed fuzzy ethological control system enables robust, interpretable, and adaptive navigation across
diverse robotic applications. In search and rescue scenarios, fear-driven escape behaviours help robots
avoid hazardous areas, improving mission safety. In human-robot interaction, emotionally grounded
responses such as hesitation orretreat enhance user trust and social compatibility. For multi-agent systems,
biologically inspired coordination supports emergent group dynamics without centralized control. In public
or unstructured environments, the system dynamically modulates obstacle avoidance based on emotional
salience, improving maneuverability. Its modular, transparent architecture also suits behavioural

simulations and affective computing, making it a versatile tool for emotion-aware robotic intelligence.
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Chapter 4: Implementing Aggressive Behaviour in ROS robotic environment
4.1 Embedded Model Overview

The rapid advancement of robotics, driven by emerging technologies and a deepening integration with the
natural world, hasopened newavenues for behaviour-basedmodeling. This research focuseson embedding
ethologically inspired aggressive behaviours specifically escape andattack into robotic systems using fuzzy
behaviour-based systems (FBBS). By fusing the precision of robotics with the adaptability of fuzzy logic,
the work moves beyond traditional binary models to replicate the nuanced dynamics of animal-like
responses. The resulting systems exhibit lifelike, context-sensitive behaviour capable of real-time

adaptation to environmental stimuli.

Building on the behaviour models developed in Chapter 3, the study employs the Robot Operating System
(ROS) [39] [40] in combination with tools such as Gazebo and RViz to simulate biologically plausible
behaviour. The system orchestrates perception, decision-making, and motor execution within a virtual
environment. A core component of this framework is Light Detection and Ranging (LIDAR), which offers
real-time, high-resolutionenvironmental scanning essential for detectingmoving objects, evaluating spatial
configurations, and executing rapid escape maneuvers. LIDAR's ability to gather spatial data from multiple

angles ensures accurate recognition and response, particularly in fast-paced scenarios.

Integrating these ethologically inspired behaviours into ROS represents a key step in bridging biological
and synthetic systems. Animal behaviours such as escape and attack are adaptive survival mechanisms
shaped by a combination of sensory input, internal state, and contextual awareness. Escape behaviour
demands rapid situational assessment and decisive action, while attack involves complex evaluations of
proximity, familiarity, and threat level. FBBS effectively captures this decision-making under uncertainty,
enabling flexible responses to perceived threats. By translating these processes into computational models,

the system replicates animal-like adaptability in autonomous robots.

Attack behaviour, by contrast, combines aggression with situational judgment. Its replication in robotics
requires not only target identification but also appropriate action modulation. FBBS supports this by
interpreting dynamic inputs and determining graded responses based on context, much like animals adjust
aggression levels in real-time. The integration of such biologically grounded strategies contributes to the

development of robots that are intelligent, versatile, and responsive. Though challenging to implement,
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these capabilities unlock transformative applications across domains that require real-time environmental

interaction.

However, embedding aggressive behaviours also raises important ethical considerations. As robots gain
autonomy and emotional expressiveness, concerns emerge regarding control, responsibility, and societal
impact. This research emphasizes the importance of interdisciplinary collaboration across ethology,
neuroscience, and artificial intelligence to ensure that behaviour modeling is both scientifically robust and
ethically grounded. Applications include search and rescue, defense, and wildlife interaction, where
intelligent, context-aware robotics may operate with minimal human supervision. Ultimately, this work
pushes the boundaries of both robotics and our understanding of intelligent behaviour, synthetic or

biological.

4.2 Methodologies for Biologically Inspired Behaviour Modeling in Robotics

This section presents two complementary methodologies aimed at developing context-sensitive,
biologically inspired behaviours in autonomous robotic systems. Each method addresses unique aspects of
behavioural modeling, focusing on adaptability, interaction with dynamic environments, and inspiration
from ethological studies. The approaches described herein form the theoretical and experimental foundation

for simulating animal-like escape and adaptive behaviours in robots.
4.2.1 Knowledge-Based Ethologically Inspired Behaviour Design

The knowledge-based ethological design framework integrates behavioural insights from the field of
ethology specifically, the study of animal behaviour under natural conditions into robotic system
development [Aaqib1]. This interdisciplinary methodology supports the creation of biologically plausible
robot actions by translating observed animal responses into functional robotic behaviours. This approach
serves not only to improve robotic adaptability and performance but also to offer new perspectives for
ethological investigations. The procedure follows an iterative, data-driven model as illustrated in figure 8.
It begins with a comprehensive review of relevant ethological literature to extract structured behavioural
patterns, including action triggers, behavioural sequences, and decision-making heuristics observed in
biological organisms. These extracted models are subsequently mapped onto the robot’s sensorimotor
architecture, ensuring compatibility betweennaturalistic behaviours and the robotic platform’s physical and

computational constraints [Aaqib3].

Following model integration, robotic experiments are conducted under controlled and variable

environmental conditions [Aaqib2]. These experiments assess the robot’s ability to replicate the targeted
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behaviour accurately and adaptively. Quantitative and qualitative data obtained from these trials are
analyzed to evaluate behavioural fidelity and performance consistency. Discrepancies between observed
and expected behaviours inform iterative refinement of the implemented model. A distinguishing feature
of this methodology is its bidirectional feedback loop between robotic implementation and biological
inquiry. Insights from robotic experimentation often illuminate gaps or ambiguities in the original
biological data, prompting the formulation of new hypotheses or the design of supplementary ethological
studies. For instance, robotic failure to emulate a behaviour may indicate the presence of unmodeled
environmental variables or inter-agent dynamics in the biological reference system. This framework
supports a synergistic relationship between biology and robotics, wherein robotic models validate,
challenge, or extend ethological theories while gaining biologically grounded robustness. The approach has
demonstrated utility in various domains, including autonomous navigation, predator-prey modeling, and

bio-mimetic swarm coordination.

Consult Ethological Literature

v

Extract Model

v

Import Model To Robot

Run Robotic Experiments Enhance Model

1

Guide New Biological
Experiments

Evaluate Results

Figure 8. A Knowledge-Based Ethological Approach for Robot Behaviour Design.

4.2.2 Situated Action-Based Behaviour Design

Situated action-based behaviour design emphasizes the robot’s capacity to interpret and respond to real-

time environmental stimuli through context-dependent behaviours [Aaqib1] [Aaqib2] [Aaqib3]. In contrast
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to traditional rule-based systems that rely on pre-scripted decision trees, this methodology foregrounds
situational awareness, behavioural fluidity, and environmental interaction as primary drivers of robotic
action. This dynamic, stimulus-response framework is particularly suitable for deployment in unstructured
and evolving operational domains. As outlined in figure 9, the design process initiates with an assessment
of the robot’s dynamic environment. This phase involves identifying potential environmental variables,
challenges, and interaction zonesthat the robot may encounter. These environmental features are segmented
into discrete, manageable “situations,” each corresponding to a unique behavioural requirement. Contextual
behavioural responses are then formulated for each identified situation. These responses are derived from
empirical observations of animal behaviour or synthesized using domain-specific control strategies.
Behavioural primitives are programmed into the robot, enabling it to select and transition between actions

based on situational input received from onboard sensors (e.g., LIDAR) [Aaqib2].

Robotic trials are subsequently performed to evaluate behavioural effectiveness and adaptability. Feedback
from these experiments is used to refine behavioural mappings, enhance decision robustness, and improve
transition smoothness between contextual states. This iterative tuning process continues until the robot
demonstrates consistent and reliable performance across a broad spectrum of environmental conditions
[Aaqib3]. The situated action design model incorporates a hierarchical control structure that allows flexible
switching between behavioural modules. This hierarchy improves reaction time, ensures decision
prioritization, and enables concurrent management of multiple stimuli a critical requirement for robots

operating in real-world scenarios.

The applications of this design strategy extend across a diverse range of domains that demand high levels
of adaptability and real-time decision-making [Aaqib4]. In disaster response, autonomous robots are
required to navigate debris-laden and unstable terrains, where environmental conditions change
unpredictably, necessitating context-aware behavioural responses. In the field of social robotics, these
methodology supports interactive capabilities that enable robots to engage in real-time human-robot
interactions, particularly in caregiving settings or public service environments, where sensitivity to human
behaviour and environmental cues is essential [Aaqib5]. In agricultural robotics, this approach facilitates
operations in highly variable outdoor environments, such as uneven terrain, fluctuating weather conditions,
and unpredictable biological elements, ensuring sustained performance and minimal human interv ention.
Finally, in marine and environmental monitoring, the capacity for autonomous, context-sensitive behaviour
allows robots to operate effectively within complex and dynamic ecological systems, such as underwater
habitats or forested regions, where consistent data collection and adaptability to environmental changes are

critical for success.
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Figure 9. The Situated Action-Based Design.

In summary, situated action-based design facilitates the creation of robotic agents that exhibit high degrees
of environmental responsiveness, behavioural plasticity, and operational autonomy. When coupled with
bio-inspired strategies, this approach enhances the realism, efficacy, and robustness of robotic behaviour in

dynamic and uncertain environments.

4.3 System Architecture and Implementation

To embed ethologically inspired behaviours such as escape and attack into robotic systems, a modular
architecture was developed using the Robot Operating System (ROS) [40] as the foundational middleware.
ROS offers a flexible and robust framework capable of integrating both high-level cognitive processes and
low-level sensor-actuator loops. Its compatibility with advanced simulation and visualization tools such as
Gazebo and RViz makes it well-suited for modeling complex animal-like behaviour in controlled yet
realistic environments. Gazebo provides a physics-based 3D simulation platform, while RViz supports the

real-time rendering of sensor feedback, navigation trajectories, and robot states.
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The architecture is composed of several functional layers such as Perception, Behaviour Evaluation, Fuzzy
Inference Engine, and Motion Execution each implemented as independent ROS nodes communicating via
topics and services. This modular design promotes scalability, supports real-time operation, and facilitates
the integration of diverse sensors and decision-making components. Each layer is engineered to handle a
specific role, collectively enabling biologically inspired behaviour to emerge in dynamic and uncertain

scenarios.
4.3.1 Perception Layer

The Perception Layer is responsible for real-time environmental sensing and situational interpretation. The
coreof thislayerisa LIDAR-based mapping system, which generateshigh-resolution2D or 3D spatial data
of the surrounding environment. To enable situational awareness and spatial reasoning, the system employs
Simultaneous Localization and Mapping (SLAM). SLAM allows the robot to constructa map of an
unknown environment while simultaneously tracking its own position within that map. This capability is
essential for context-aware behaviour, as it supports continuous localization even in environments with

limited GPS or external positioning.

SLAM is implemented using ROS-compatible packages such as gmapping, hector slam, depending on
experimental requirements. The SLAM output is used to update the robot’s occupancy grid and cost maps
in real-time, which in turn inform behavioural decisions particularly in escape scenarios where spatial

layout and obstacle proximity dictate viable paths.

In addition to LIDAR, the perception system incorporates cameras and RGB-D sensors (e.g., Intel
RealSense or Kinect) to enhance object and agent recognition. These inputs are processed to extract
behaviourally relevant variables:

ADTA / ADTO: Distance to other agents or objects,

EPE: Escape path availability based on free-space mapping,

PIWPE: Positive Impact With Previous Experience, modeling learned safety from past encounters,

AFTA / AFTO / AFTP: Familiarity metrics based on recognition of agents, objects, and places.
The integration of SLAM and multi-modal sensing enables the robot to maintain a persistent, high-fidelity

understanding of its surroundings critical for nuanced and adaptive behavioural expression.

48



Chapter 4: Embedding Aggressive Behaviour in Robotics

4.3.2 Behaviour Evaluation Layer

This layer transforms raw sensor data into fuzzy linguistic variables that can be processed by the inference

engine. For example, a measured ADTA of 0.4 meters might be categorized as “Low,” while a PIWPE
score may reflect a “Positive” prior outcome. This semantic transformation ensures that the robot can

interpret complex, continuous data streams in terms of qualitative behavioural relevance.

The layer also computes historical metrics such as PIWPE, which serves to modulate threat perception

based on previous encounters in similar environmental contexts. These fuzzy descriptors become the

foundation for rule-based behavioural decisions in the subsequent cognitive layer.

4.3.3 Fuzzy Inference Engine

At the core of the decision architecture is a Fuzzy Inference Engine, implemented using the Fuzzy
Behaviour Description Language (FBDL). This module evaluates a set of ethologically grounded fuzzy
rules to infer the appropriate behavioural state. It supports:
Fuzzy Rule Interpolation (FRI) for reasoning with sparse or incomplete rulesets.
Multiple Rule Bases allowing parallel controllers for Escape, Attack, and Immobility.
Behavioural State Transition Management where supervisory logic governs switching between behaviours
based on rule confidence and sensor inputs. For example:

If "EPE" is High and "FEAR" is High, Then "Escape" is High.
Such logic allows for graded behavioural output instead of binary choices, improving the realism and

flexibility of the robot’s response to ambiguous stimuli.

4.3.4 Motion Execution Layer

Once a behavioural decision is made, the Motion Execution Layer translates it into a physical trajectory
using ROS’s navigation stack. For escape behaviour, the robot selects paths that maximize distance from
the identified threat, calculated using the SLAM-derived cost maps. Forattack behaviour, the robot instead

minimizes the distance to the target entity, adjusting its speed and trajectory based on proximity metrics.

Trajectory plans are visualized in RViz with color-coded indicators reflecting behaviour mode (e.g., red for
Attack, blue for Escape). The robot’s controller uses these directives to generate velocity commands

(/emd_vel) which are executed through motor drivers in either simulation or real-world deployment.
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4.3.5 System Synchronization and Communication

The architecture’s modular layers communicate via ROS topics and services, orchestrated by a central
controller node responsible for synchronization and behavioural arbitration. Key communication streams
include:
/scan or /lidar_scan: Raw LIDAR input for SLAM and obstacle mapping
/map and /odom: SLAM outputs including the robot’sestimated position and environment structure
/fuzzy inputs: Processed fuzzy variables like FEAR, ADTA, and AFTA
/behaviour_state: Currently active behaviour (e.g., Escape, Attack)
/emd_vel: Motor commands derived from the selected behaviour path
This decentralized communication model enables robust, scalable coordination, including multi-agent

interaction, where multiple robots can synchronize aggression or escape in complex scenarios.

4.4 Motivation for Integration

Integrating aggressive animal behaviours into robotics through the fuzzy behaviour-based systems (FBBS)
framework offers a novel pathway for enhancing robotic adaptability, decision-making, and situational
awareness. Traditional robotic systems often operate on rigid, binary rules that limit their ability to respond
effectively in unpredictable real-world environments. In contrast, animals have evolved complex survival
strategies such as escape and aggression that are triggered by contextual factors and processed through
flexible, experience-based reasoning. By emulating these behaviours, FBBS enables robots to interpret
sensory inputs with varying degrees ofuncertainty, leading to graded, context-sensitive reactionsthat mirror
natural cognitive processes. This shift from deterministic logic to fuzzy inference significantly improves

robotic flexibility and realism.

The practical applications of this integration are extensive. Robots with escape behaviours can improve
navigation in hazardous settings, making them valuable in search and rescue operations. Similarly,
environmental monitoring robots designed to behave unobtrusively can operate with minimal disturbance
to wildlife. In defense and security contexts, aggression-capable robots could autonomously assess threats
and respond in high-risk scenarios, reducing the need for human intervention. However, these
advancements also raise important ethical concerns. As robots adopt increasingly autonomous and
emotionally evocative behaviours, there is a growing need to assess their impact on human safety,
ecological balance, and societal norms. This interdisciplinary research bridging ethology, neuroscience,

artificial intelligence, and robotics not only drives technological innovation but also provides valuable
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insight into the cognitive mechanisms of animal behaviour, contributing to the development of intelligent,

ethically aligned robotic systems.

4.5 Behaviour implementation

Implementing ethologically inspired behaviours such as escape, attack, and immobility into robotic systems
is a critical step toward achieving autonomous agents that can exhibit biologically plausible and context-
sensitive decision-making. This process involves enabling robots to perceive potential threats, assess
situational cues, and select appropriate behavioural responses, such as retreating, confronting, or freezing
in response to dynamic stimuli. Unlike conventional rule-based systems, this approach leverages models of
natural behaviour observed in animals, particularly in predator-prey and threat-avoidance contexts, to

inform robotic decision-making.

The implementation of such adaptive behaviours relies on the seamless integration of real-time sensor
inputs, environmental mapping, and layered decision algorithms grounded in fuzzy logic systems. These
systems introduced in detail in Chapters 2 and 3 comprise fundamental components such as fuzzy rule
bases, behaviour arbitration mechanisms, and behaviour fusion modules. Together, these modules enable
robots to evaluate multiple concurrent inputs (e.g., threat proximity, familiarity with agent or terrain, escape

path availability) and execute actions that reflect biologically inspired priorities.

Figures 10 and 11 presenthigh-level conceptual visualizationsof escape and attack behaviours, highlighting
the transition from an agent’s initial path to a dynamically adjusted trajectory based on threat interaction.
These diagrams emphasize the robot’s capacity to change course in response to stimuli, mimicking
naturalistic responses observed in ethological studies. In contrast, Figures 12 and 13 demonstrate the
practical embedding ofthese behaviours within a ROS-based simulation environment, where real-time data
streams and fuzzy logic modulescollaboratively govem the robot’s behaviour under controlled but dynamic

conditions.

The successful embedding of such ethologically grounded behavioursholds significantimportance for real-
world applications, particularly in mission-critical domains such as search and rescue, exploration, and
security operations. In these contexts, robots are often required to operate in unpredictable, hazardous, or
unstructured environments, where the ability to adapt quickly and appropriately can directly affect mission
success and system survivability. As shown in the referenced studies [17] [18] [Aaqibl] [Aaqib2]
biologically inspired behaviour embedding improves both autonomy and resilience, positioning robotic

systems as capable agents in complex, high-risk settings.
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Figure 10. Basic Visualization of Escape Behaviour.
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Figure 11. Basic Visualization of Attack Behaviour.
4.5.1 Implementing Escape Behaviour

The escape behaviour was tested using a ROS simulation involving two autonomous robots Robot 1 and
Robot 2 within a bounded environment containing obstacles. This simulation, illustrated in Figure 12(a)-
12(e), demonstrates how fuzzy behaviour-based control enables robots to adaptively avoid perceived
threats. Robot 1, represented by blue trajectory points, starts neara central object, while Robot 2, depicted
by red points, begins closer to a boundary wall. In this scenario, Robot 1 functions as the primary agent,
with its behaviour serving as the focus for observation and analysis. Its decision-making is governed by

fuzzy logic, sensor integration, and predefined escape rules modeled after animal-like reactions.

The simulation begins with both robots at rest, as shown in figure 12(a). As they begin to move towards
one another, their trajectories evolve in accordance with their internal behavioural models, presented in
figure 12(b). During this movement phase, Robot 1 employs LIDAR to continuously assess its proximity

to Robot 2 and other environmental features. At this stage, behaviour fusion and coordination mechanisms
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come into play, integrating multiple behavioural signals such as trajectory analysis, object proximity, and

direction of movement to shape Robot 1’s adaptive responses.

Upon detecting Robot 2, Robot 1 evaluates the situation using its fuzzy rule-based system, shown in
Figure 12(c). This assessment includes factors like familiarity with the other robot (AFTA), environmental
knowledge (AFTP), relative distance (ADTA), and the availability of a viable escape path (EPE). When the
calculated fear level exceeds a predefined threshold and an escape route is available, Robot 1 initiates an
escape maneuver, demonstrated in figure 12(d). This transition is coordinated through the behaviour

arbitration module, ensuring seamless control flow between perception and motor execution.
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Figure 12(a). Initial Position of Robots: Both Robots Start at Designated Positions.

Finally, Figure 12(e) captures the outcome: Robot 1 successfully distances itself from Robot 2 and exits
the threat zone. This result reflects the effective interaction of fuzzy logic, behaviour coordination, and
fusion mechanisms. Robot_1's behaviour shows a realistic, adaptive escape response based on its intemal
states and sensory evaluations closely mirroring the situational adaptability found in biological organisms.
The success of this simulation confirms the viability of using fuzzy behavioural models for embedding

context-sensitive escape behaviours in autonomous robotics.
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Figure 12(b). Movement Stage: Robots Start Moving.
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Figure 12(c). Detection and Fear Assessment: Robot 1 Detects Robot 2 and Assesses Fear Based on
Proximity and Environment Unfamiliarity.
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Figure 12(e). Robot 1 Successfully Presented Escape Behaviour
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4.5.2 Implementing Attack Behaviour

The embedding of attack behaviour was simulated using two autonomous agents, Robot 1 and Robot 2,
within a constrained indoor environment enclosed by obstacles and walls. As shown in Figures 13(a)-13(¢)
[Aaqib2], Robot 1, marked by blue trajectory dots, is initially placed at the center of the space, while
Robot 2, represented by red dots, starts from a nearby peripheral location. The objective of this scenario is
to simulate aggression by directing Robot 1to approach Robot 2’sinitial position and initiate an attack
response. As Robot 1 advances, Robot 2 evaluates the threat using its sensors and fuzzy logic-based fear
assessment. A progressive increase in red dots around Robot 2 represents escalating fear intensity in

response to Robot 1’s approach.
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Figure 13(a). Initial Position of Robots

The simulation employs fuzzy component behaviour, behaviour fusion, and behaviour coordination to
analyze the system's interactive performance. Robot 1’s movement is driven by an aggression -triggering
fuzzy rule set, while Robot_2 continuously evaluates its proximity to Robot 1, familiarity levels (AFTA),
environmental awareness (AFTP), and the presence of viable escape paths (EPE). In figure 13(a), both

robots are at their starting positions. As the simulation progresses, figure 13(b) shows Robot 1 initiating a
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goal-oriented trajectory toward Robot 2. In figure 13(c), Robot 2 detects the proximity of Robot 1

interpreted as a potential threat triggering a rise in its internal fear level based on fuzzy input evaluations.

Upon crossing a critical distance threshold and confirming the availability of an escape route, Robot 2
executes an evasive maneuver, depicted in figure 13(d). Concurrently, Robot 1 continues to pursue
Robot 2's original position, enacting the attack behaviour encoded in its fuzzy logic rule base. Behaviour
coordination synchronizes both agents’ reactions: Robot_1's aggressive pursuit is dynamically linked to
Robot 2°’s avoidance behaviour, reflecting ethologically inspired predator-prey dynamics. These
synchronized responses result from behaviour fusion mechanisms, which resolve potential conflicts
between overlapping behavioural priorities and ensure coherent interaction between multiple fuzzy

controllers.
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Figure 13(b). Robot 1 Starts Moving Towards its Goal Task

In the final stage, shown in figure 13(e), Robot 1 successfully reaches Robot 2’s original location,
signaling the completion of its attack task. This interaction validates the robustness of the fuzzy rule -based
decision framework, highlighting the system’s capacity to simulate lifelike aggressive interactions. By
modeling combat-like behaviour through real-time sensory data, fuzzy inference, and spatial awareness,

the system demonstrates high adaptability in unpredictable environments.
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Beyond simulation fidelity, this scenario illustrates the broader potential of integrating fuzzy aggression
modeling within robotic platforms. Technologies such as ROS, Gazebo, RViz, and LIDAR play a pivotal
role in enablingthis advanced behaviour embedding. The ability to simulate nuanced behaviours like attack
and escape contributes to the development of emotionally responsive robotic agents. Moreover, this work
has implications for human-robot interaction, where safety and ethical behaviour must be maintained. In
multi-agent systems, such models can facilitate complex group dynamics in domains such as joint
manufacturing, defense, autonomous surveillance, and coordinated search-and-rescue. By enabling robots
to process ambiguous stimuli, adapt to context, and coordinate with peers, fuzzy behaviour embedding
enhances decision-making under uncertainty advancing both autonomy and safety in intelligent robotic

ecosystems.
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Figure 13(c). Robots are Getting Close to Each Other (Robot 2 Identifies an Unknown Animal Robot is
Approaching).
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Figure 13(d). Robot 1 shows Aggression (Robot 2 Fear Level is Increasing and Starts to Leave) .

Gazebo
Eile Panels Help
FiMoveCamera  (Myinteract  [ISelet . 20PoseEstimate .~ 20PoseEstimate 20NavGoal 2D NavGoal

*$OUS -~ - B0 ZInaleOlr aR~w

Il Real Time Factor: Sim Time: Real Time: Iterations:

Reset  Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click: Zoom. Shift: More options.

Figure 13(e). Robot 1 Successfully Presented Attack Behaviour (Robot 2 is far from Robot 1)
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4.5.3 Classification Metrics and Empirical Benchmarking

Figures 14(a) and 14(b) present the classification performance of a fuzzy logic-based behavioural
framework embedded in autonomous robotic agents. This evaluationassesses the model’sability to classify
context-sensitive behaviours Escape and Attack under dynamic environmental conditions. Behaviour
selection is governed by biologically inspired fuzzy rules. For example:

Escape behaviour is activated when: Rule High when “EPE” is High and “FEAR” is High end
Attack behaviour is triggered by: Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low
end
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Figure 14 (a). Escape Behaviour Classification Metrics
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Figure 14 (b). Attack Behaviour Classification Metrics
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To evaluate system performance, classification metrics including accuracy, precision, recall, and F1 -score

were computed from approximately 50 simulation trials conducted within the ROS environment. These

trials covered arange ofrealistic scenarios using dynamic sensory inputs such as proximity, obstacle layout,

robot speed, and environmental familiarity. To assess practical effectiveness, the fuzzy controller was

benchmarked against a traditional reactive controller [22] [23] [30][31] ]32]. Key performance indicators

included task completion time, number of collisions, behaviour-switching latency, and classification

accuracy, summarized in Table 3 (more details in section 2.3). Additionally, Table 4 presents a conceptual

comparison between the proposed fuzzy ethological architecture and traditional behaviour-based systems

such as Subsumption Architecture, BDI Models, and Neuro-Fuzzy Systems (more details in section 2.3)

[30] [31] [32] highlighting the unique integration of biological plausibility, emotional modeling, and

interpretable decision-making in the proposed approach.

Metric Fuzzy Behaviour Based System | Baseline System (Reactive)
Task Completion Time (sec) 49.6 £3.5 58.3+5.7
Number of Collisions 25=+1.5 39+1.1
Behaviour Switching Latency (ms) 390 £50 420 £52
Behaviour Classification Accuracy
Escape 0.85 0.75
Attack 0.82 0.75
F1-Score
Escape 0.77 0.70
Attack 0.72 0.70
Table 3. Fuzzy Behaviour Based Vs Baseline Controller
. Proposed Fuzzy
Aspect Subsumption BDI Models Neuro-Fuzzy Ethological
Architecture Systems
System
: Layere.d Symbolic Adaptable rules | Fuzzy rules enable
Behaviour suppression; o £ o trainine: often | blended. eraded
adaptability paq P
Direct
Emotional Indirect and Implicit if trained; | representation of
: Not supported . .
Modeling abstract not interpretable | emotions (fear,
aggression)
Low i i High; real-ti
. High but rigid ow i dynamic Reactive but can igh; rea-ime
Environmental . environments; fuzzy inference
.. (binary . lack
Reactivity . high in planned ot tabili based on sensor
suppression) domains interpretability ot
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Poor due to high Moderate; High; rule-based,
Real-Time Good, but fixed . depends on interpretable,
o ) computational .. . .
Adaptability hierarchy - training biologically
generalization grounded
High; rules are
. High (symbolic), " «~ | biologically and
Interpretability Moderate but often abstract Low ("black box") il
grounded
Training Data None Not data-driven Require large Rl.llc‘a-based;‘no
Needs datasets training required

Table 4. Comparison of Traditional and Fuzzy Ethological Control Systems.

4.6 Conclusion

This work demonstrates the successful integration of ethologically inspired escape and attack behaviours
into autonomous robotic systems through a fuzzy behaviour-based framework. Leveraging ROS, Gazebo,
LIDAR, fuzzy inference, and SLAM, the system enables robots to perceive environmental stimuli, assess
internal affective states, construct and maintain environmental maps, and execute adaptive, context-aware
responses. Unlike rigid binary models, fuzzy logic supports graded, biologically realistic decision-making,
yielding lifelike and interpretable behaviours. SLAM ensures continuous localization and spatial
awareness, enhancing alignment between behaviour and environmental structure for real-time adaptation
in dynamic scenarios. System performance was benchmarked against a traditional reactive controller and
compared conceptually with Subsumption Architecture, BDI models, and Neuro-Fuzzy Systems, with
results showing superior integration of biological plausibility, emotional modeling, and decision
transparency. By grounding artificial behaviour in ethological principles, this approach advances robotic
autonomy, resilience, and interpretability, with implications for multi-agent coordination, human-robot

interaction, and real-world applications such as search and rescue, surveillance, and collaborative robotics.
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4.7 Thesis I1.

This thesis presents a novel implementation of Archer’s ethological model of aggression and fear into
autonomous robotic systems through a fuzzy state machine architecture. The work bridges animal
behaviour science and robotics by enabling emotion-driven real-time behaviour switching based on both

internal affective states and external stimuli [Aaqib1-Aaqib35].

4.7.1 Scientific Contribution

Robotic Instantiation of Ethological Behaviour: This research marks the firstrobotic realization of Archer’s
biological aggression model, enabling real-time behaviour transitions Escape, Attack, and Immobility
governed by internal emotional states such as fear and prior experiential factors.

Fuzzy State Machine Design: A multi-state fuzzy behaviour system is developed using the Fuzzy Behaviour
Description Language (FBDL), allowing interpretable, modular transitions between states. Each transition
is dynamically modulated by real-time sensory context and affective history, reflecting biologically
plausible decision-making.

Architectural Innovation: A multi-layered control system integrates ROS, Gazebo, RViz, and SLAM
technologies, organized into distinct, testable modules: Perception >Fuzzy Behaviour Evaluation=>

Inference Engine=>Motion Execution, supporting both simulation and hardware deployment.

4.7.2 Mathematical and System Formalism
The robot’s behavioural state SE{Escape, Attack, Immobility}, is determined through a fuzzy inference
process applied over perceptual and affective variables:
X = {ADTA, AFTA, AFTP, EPE, PIWPE}.

Inputs are fuzzified using trapezoidal membership functions into linguistic terms (e.g., Low, Medium,
High). Fuzzy rules, defined in FBDL, are grounded in ethological behaviour models. For example:

Rule-base: Escape is High When FEAR is High AND EPE is High
Inference uses FRI (FIVE), consistent with the FBDL models. For submodules with a complete rule base,
a Mamdani variant used as a baseline, but the deployed controller employs FRI (FIVE) to ensure reliable

reasoning even with sparse rules. Behaviour fusion is then applied to combine module outputs.

S =arg max; (uB;)) (9)
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To avoid abrupt state changes, transitions between behaviours are governed by a Fuzzy State Machine

(FSM), allowing partial activation through probabilistic blending:

HBj (xk)

PB) I Bi, Xl = 50 S

(7)
Detailed membership equations, defuzzification, and full inference logic are presented in Chapter 2

mathematical formalism.

4.7.3 Empirical Validation & Simulation Based Evidence

To assess the effectiveness of the proposed fuzzy ethological behaviour architecture, approximately 50
simulation trials were conducted within the ROS environment. These trials spanned a range of realistic and
dynamic conditions, including variations in obstacle layouts, proximity to agents, robot velocity, and
environmental familiarity. The primary goal was to evaluate the controller’s capacity for adaptive, context-
sensitive behaviour selection in diverse operational scenarios.

Classification performance was evaluated using standard metrics such as accuracy, precision, recall, and
F1-score. Figures 14(a) and 14(b) show the classification outcomes for "Escape" and "Attack" behaviours,
respectively, confirming the architecture’s robustness in interpreting perceptual and experiential variables.
These results demonstrate the model’s ability to capture nuanced, biologically inspired decision-making
processes beyond conventional reactive logic.

A benchmarking study compared the fuzzy controller with a traditional reactive controller based on
classical models. Performance indicators included task completion time, collision count, behaviour-
switching latency, and behaviour classification accuracy, summarized in Table 3. Furthermore, Table 4
presents a conceptual comparison with control paradigms such as Subsumption Architecture, BDI Models,
and Neuro-Fuzzy Systems, emphasizing the value of integrating emotional modeling, biological

plausibility, and transparent decision-making.

4.7.4 Experimental Highlights

Several key experiments were designed to evaluate real-time behavioural responsiveness. In the Escape
Behaviour scenario (Figures 10 and 12(a)-(e)), Robot 1assessesinputs like AFTA, ADTA, and EPE. Upon
detectingRobot 2underthreatening conditions, a high fear level is activated, prompting the robot to initiate
escape. Therobot's movement shows smooth and ethologically plausible trajectories, simulating fear-driven
withdrawal. In the Coordinated Attack Simulation (Figures 11 and 13(a)-(e)), Robot 1 initiates an
aggressive approach using fuzzy logic rules, while Robot 2 reacts by activating its escape behaviour. This

dynamic interaction demonstrates emergent, lifelike decision-making and verifies the arbitration module’s
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effectiveness in transitioning between attack and avoidance based on environmental context. Additionally,
integration with SLAM (via the gmapping package) enables spatial awareness in GPS-denied environments.
By continuously updating occupancy grids, the system ensures context-sensitive planning and behavioural

transitions even in unknown or dynamic indoor spaces.

4.7.5 System-Level Testability and Reproducibility

The system’s modular architecture enhances reproducibility and testability across both simulated and
physical platforms. Each behaviour Escape and Attack is encapsulated within its own ROS node and linked
via standard ROS messaging. The fuzzy rule base is implemented using FBDL, and each rule is traceable
to specific ethological observations, ensuring interpretability and auditability. Simulation experiments in
Gazebo were conducted using systematically varied environmental parameters (e.g., EPE, ADTA etc) to
activate specific behaviour transitions. Behaviour states and fuzzy variable activations are visualized in
real-time via RViz, providing a clear interface foranalysis, debugging, and verification. Importantly, the
system is hardware-compatible and can be deployable on physical robots such as TurtleBot platforms. ROS

drivers and modular nodes allow seamless transition from simulation to real-world implementation.

4.7.6 Applications and Ethical Implications

The proposed fuzzy ethological behaviour model offers versatile applicability across several real-
world domains. In search and rescue operations, robots equipped with fear-based reasoning can
autonomously flee from hazardous environments or avoid structural collapses, improving safety
and autonomy during mission-critical deployments. In autonomous surveillance, the system
enables robots to assess potential threats and respond with appropriate aggression or withdrawal,
offering adaptive situational awareness. For human-robot interaction, architecture supports
emotionally expressive behaviour that goes beyond static scripting, enabling robots to react in
socially intelligible ways without reliance on predefined dialogue trees. This emotional modeling
fosters more intuitive and meaningful engagement between robots and humans.

However, embedding emotion-like behaviour in robots introduces important ethical
considerations. Itraises questions about intent interpretation, the transparency of decision-making,
and accountability in autonomous systems. The proposed framework addresses these issues
through biologically grounded and interpretable rule sets, implemented using fuzzy logic that
makes internal states and decisions traceable. The system also supports behaviour-state reporting

in real time, ensuring that robotic actions remain auditable and ethically defensible.
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4.7.7 Novelty and Impact.

This work introduces a novel implementation of a fuzzy state machine grounded in ethological theory and
deployed within a high-resolution, SLAM-integrated ROS environment. Unlike traditional controllers, the
system models affective states such as fear and aggression using biologically inspired rules, enabling
nuanced, context-sensitive behaviour.

By demonstrating that affective robotics can be driven by biological theory rather than heuristic or
reinforcement-based logic, the system establishes a new paradigm for behaviour design in autonomous
agents. Furthermore, the architecture is modular, reusable, and open-source, allowing easy adaptation to
multi-agent setups and future emotion-aware robotic applications. It contributes a biologically principled,

interpretable, and ethically aware foundation to the field of affective robotics.
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Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF

5.1 Introduction

The increasing integration of robots into human environments demands advanced navigation and obstacle
avoidance systems that ensure both safety and efficiency in dynamic settings. This chapter presents a
modular fuzzy behaviour-based control architecture tailored for adaptive robotic navigation in complex,

cluttered, and dynamic environments. The system is composed of three modules:

Behaviour Coordination whichuses fuzzy logic to evaluate environmental inputs and assign weights (or

membership values) to available behaviours.

Component Behaviours which generate candidate navigational actions such as Goal Pursuit, Obstacle

Avoidance, or Escape each suggesting a direction or response.

Behaviour Fusion (as a VFF here) where the outputs of the component behaviours are merged according
to their assigned weights. The Virtual Force Field (VFF) method is used here as a fusion technique,
calculating a net motion vector by combining attractive and repulsive forces in proportion to each

behaviour’s relevance.

The novel aspect of this architecture is the integration of Virtual Force Field (VFF) as a technique within
the Behaviour Fusion module rather than as a standalone system. The integrated system draws from
ethological models, particularly animal escape responses, to simulate internal affective states such as fear
and adapt behaviour accordingly. Fuzzy logic maps sensor-derived observations (e.g., proximity to threats,
familiarity with place or objects) to internal emotional activations, which then modulate the influence of

each component behaviour during fusion.

This hybrid approach empowers robots with context-sensitive, lifelike decision-making, allowing them to
continuously adapt their motion in response to environmental changes. The system simulation has been
implemented usingthe Robot Operating System (ROS), validated in realistic environments through LIDAR
sensing, SLAM-based localization, and dynamic simulation in Gazebo. By combining fuzzy reasoning with
biologically inspired fusion, this architecture advances robotic autonomy and real-time decision-making in

fields such as manufacturing, logistics, service robotics, and human-robot interaction.
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5.2 Background

Robotics has evolved significantly from its early role in automated industrial systems to become a
ubiquitous presence across sectors such as education, hospitality, and service industries. Once confined to
high-tech laboratories and elite manufacturing, advancements in hardware and open-source platforms have
democratized robotic technologies, enabling broader deployment in everyday contexts. This shift is further
reflected in the growing emphasis on intelligent automation systems, including autonomous vehicles and

service robots [41] [42].

Ethology, the scientific study of animal behaviour, offers valuable insights into adaptive motion, decision-
making, and interaction strategies in natural environments. Ethologists employ methods such as direct
observation, remote sensing, and motion tracking to analyze behaviours like pursuit, evasion, and foraging
These biologically inspired behaviours provide a rich foundation for designing adaptive control strategies
in robotics [3][8]. By embedding such strategiesinto robotic platforms, engineers can develop systems that

exhibit flexible, ecologically valid responses suited to real-world environments.

Despite these advances, real-time robotic navigation remains a significant challenge particularly in
unpredictable and densely populated environments. Robots must not only detect and recognize obstacles,
including humans, other robots, and moving vehicles, but also respond with timely and context-appropriate
actions to avoid collisions [43]. Mobile robots with cognitive capabilities are increasingly essential in
critical domains such as warehouse automation, disaster response, patrolling, and search -and-rescue

missions [44], where both spatial awareness and dynamic planning are required.

In response to these challenges, this study proposes a novel fuzzy behaviour-based control framework in
which the Virtual Force Field (VFF) method is embedded as a behaviour fusion technique, rather than a
standalone system. The architecture separates decision-making into distinct modules: Behaviour
Coordination, which determines the relevance of each component behaviour using fuzzy inference;
Component Behaviours, which generate direction vectors; and Behaviour Fusion, which merges these
vectors based on coordination-assigned weights. Within this fusion process, the VFF method combines
attractive and repulsive forces in proportion to each behaviour’s weight. By emulating adaptive animal
strategies such as escape and threat avoidance, the system enables robots to navigate with increased
intelligence, safety, and contextual awareness. The result is a biologically grounded, modular navigation

architecture that unites engineering precision with naturalistic behaviour modelling.
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5.3 Fuzzy Behaviour Fusion

In behaviour-based robotic control, behaviour fusion refers to the integration of outputs from multiple
component behaviours into a single, coherent response that is sensitive to both context and environmental
dynamics. This process is especially critical in systems where multiple objectives must be balanced such
as navigation, obstacle avoidance, and threat escape and is widely applied in fields including robotics,
artificial intelligence, and multi-agent systems [45]. At the core of this process lies the Behaviour
Coordination module, which uses fuzzy inference to evaluate the robot's current situation and assign
weights (or membership values) to each behaviour. These weights represent the degree to which a given
behaviour is appropriate in the current context. Once weighted, the outputs of the component behaviours

are passed to the Behaviour Fusion module, where they are combined into a unified action.

Fusion strategies can vary from rule-based mechanisms to more complex machine learning models. In this
architecture, however, we apply a fuzzy behaviour fusion approach, which leverages fuzzy logic to handle
conflicting or ambiguous behavioural recommendations. This is particularly advantageous in real-world
robotic scenarios, where uncertainty and environmental variability are common. This design is inspired by
mechanisms observed in animal behaviour. In nature, animals assess sensory inputs, internal states, and
external threats to make fast survival decisions such as fleeing or freezing. These biological processes

involve real-time coordination and fusion of multiple action tendencies a principle mirrored in this system.

In the proposed model, each component behaviour (e.g., Obstacle Avoidance, Target Following, Escape)
generates a directional suggestion or response value. These outputs are not treated equally; instead, they
are weighted based on coordination-derived fuzzy values that reflect behavioural suitability. The fusion
process, guided by a Fuzzy Rule Base, then integrates these weighted contributions into a final action
decision. This structure ensures that behaviours are not selected in isolation or based on binary logic but
are blended proportionally using fuzzy inference rules. The result is a robot capable of nuanced, lifelike
responses, capable of adjustingto rapidly changing environments while maintaining coherent goal-oriented
navigation [46] [47] [48].

Figure 15 illustrates this process: the component modules (Escape Response, Target Following, Obstacle

Avoidance) provide outputs that are routed into a Fuzzy Rule Base (Fusion). This base processes the
weighted inputs, resolves conflicts, and produces the Final Action Decision a command that is both

situationally aware and context adaptive.
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Obstacle Avoidance
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Fuzzy Rule Base (Fusion) Final Action Decision

Figure 15. Fuzzy Behaviour Fusion Process
5.4 Virtual Force Field Navigation

Virtual Force Field (VFF) navigation is a widely utilized technique in mobile robotics and autonomous
systems, particularly in tasks involving real-time obstacle avoidance and local path planning [49]. The core
idea is to model the robot’s operating environment as a field of virtual forces: attractive forces guide the
robot toward its goal, while repulsive forces push it away from nearby obstacles. By continuously
calculating the resultant force vector from these interactions, the robot can determine its movement
direction and dynamically adjust its trajectory as the environment evolves. While VFF offers several
benefitsincludingalgorithmicsimplicity, intuitive control logic, and fast responsivenessitalso suffers from
well-known limitations such as susceptibility to local minima, oscillations in cluttered spaces, and difficulty
in handling conflicting behavioural goals. Nonetheless, it remains an essential component of reactive

navigation strategies in systems requiring rapid adaptation [50].

To overcome these limitations, this study introduced a novel approach that combines Fuzzy Behaviour-
Based Control Framework with VFF Fusion. In this study VFF is not treated as a standalone navigation
system butis instead embedded as the core mechanism within the Behaviour Fusion module of a fuzzy
behaviour-based control architecture. The system's modular structure consists of three layers as described
in the introduction sectionofthis chapter. In this context, VFF operates as a fusion engine,usingthe weights
produced by the coordination layer to scale the attractive and repulsive influences of each behaviour. For
instance, in a threatening situation, escape behaviour might receive higher weight, resulting in stronger
repulsive effects in the final motion vector. This hybrid approach overcomes VFF’s limitations by

introducing context-aware weighting and decision flexibility through fuzzy logic.

Figure 16 illustrates the fundamental concept of Virtual Force Field (VFF) navigation, where a robot is

guided by virtual forces within its environment. An attractive force pulls the robot toward the target, while
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a repulsive force pushes itaway from nearby obstacles. These opposing vectors combine to forma resultant
force vector, which determines the robot’s movement direction. This continuous vector calculation enables
the robot to navigate toward its goal while dynamically avoiding obstacles, supporting real-time, adaptive

path planning.
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Figure 16. Virtual Force Field (VFF) Navigation

VFF is essential for a range of practical applications, including autonomous ground vehicles, unmanned
aerial delivery systems, and mobile service robots. To quantify the influence of repulsive forces on the

robot’s motion, the system applies the mathematical model defined in Equation (10):

FcrC(@i,j) [x;—xy A~ i— ~
FGD) =gy Laan £+ 5 ] (10)
where Fer denotes the repelling force constant, d(i, j) represents the distance between the robot’s current
position and a given cell (i, j), and C(i, j) signifies the certainty level of that cell. The certainty level reflects
the system’s confidence in whether a particular cell contains an obstacle, influencing the robot’s assessment
of'the repulsive force exerted by thatcell. A high certainty level indicatesa greater likelihood ofan obstacle,
leading to a stronger repulsive force, whereas a low certainty level suggests a lower probability of an

obstacle, resulting in a weaker repulsive effect.

To determine the repulsive force F(i, j) from a given cell (i, j), equation (1) incorporates the repelling force
constant Fer, the distance d(i, j) between the cell's coordinates (x;, y;) and the robot's position (X, o), as

well as the certainty level C(i, j). By summing the repulsive forces from all relevant cells, the system
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computes the total repulsive force Fr, shown in equation (11)which the robot utilizes to safely maneuver

around obstacles.
Fr=Y1iF()) (11)

This summation accounts forrepulsive contributions from all relevant grid cells in the robot's sensory field.
Combined with attractive forces toward the goal, the final resultant vector determines the robot's movement.
By integrating this method within the fuzzy coordination and fusion framework, the VFF approach is
enhanced with adaptive behaviour weighting, greater robustness, and biologically inspired flexibility. The
result is a navigation system capable of intelligently responding to dynamic, cluttered, or ambiguous

environments [51].
5.5 Implementation of Fuzzy Behaviour-Based Control Framework with VFF

The integration of a fuzzy behaviour-based control framework with the Virtual Force Field (VFF) method
offers a biologically inspired and adaptive approach for real-time robotic decision-making in dynamic
environments [ Aaqib6, Aaqib7]. This hybrid model enhances flexibility in human-robot collaboration and
enables context-aware navigation in uncertain, rapidly changing conditions. The system combines the
strengths of its two key components: The fuzzy control system, which assigns relevance weights to multiple
behaviours based on environmental inputs. The VFF technique, which serves as a behaviour fusion

mechanism by combining these weighted behaviour outputs into a unified motion directive [ 52].

Specifically, VFF computes attractive and repulsive force vectors from sensor data, which are scaled
proportionally to the behaviour weights derived through fuzzy inference. This produces a resultant force
vector guiding the robot toward its goal while avoiding obstacles and responding to potential threats [ 53].
Importantly, VFF doesnotoperateas a standalone system but functions as a fusion layer governed by fuzzy-

assigned priorities.

The fuzzy behaviour coordination layer enhances adaptability by allowing dynamic reconfiguration of
navigational responses based on real-time sensory input. This design improves operational safety, decision
accuracy, and computational efficiency while supporting modular expansion. It is applicable to both
physical and simulated environments, including autonomous vehicles, service robots, and assistive systems

that require fast, biologically inspired, and context-sensitive navigation [54].

At its core, the system consists of three distinct modules:
Behaviour Coordination: This fuzzy inference module evaluates environmental context and assigns

weights (membership values) to multiplecomponentbehaviours suchas Obstacle Avoidance, Goal Pursuit,
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and Escape. The weights represent the relevance or urgency of each behaviour under the current situation,
based on sensor data and contextual observations.

Component Behaviours: Each behaviour independently suggests a motion vector aligned with its objective.
These vectors are not executed directly but are passed to the fusion layer for integration based on their
assigned weights.

Behaviour Fusion (as a VFF here): The VFF method fuses the proposed motion vectors. It computes
attractive forces (e.g., toward goals) and repulsive forces (e.g., from obstacles). Each force is scaled by its
fuzzy-assigned weight. The resulting force vector determines the robot’s final direction, allowing

proportional contributions from each behaviour and ensuring safe, efficient navigation.

The fuzzy behaviour coordination serves as the central mechanism governing how various behaviours are
combined and executed in response to environmental stimuli. The fuzzy rules of behaviour coordination
consist of If [conditions] and Then [actions] statements that define relationships between input variables
(e.g., environmental conditions) and output behaviours (e.g., movement adjustments, force modulation).
These rules allow the system to make context-sensitive, adaptive decisions, mirroring the nuanced

responses observed in biological organisms.

If AFTP=Low And AFTA=Low And ADTA=Low And EPE=High Then ESCAPE=High
Rule-base ESCAPE in FBDL:
Rule ESCAPE is High When AFTP is Low And AFTA is Low And ADTA is Low And EPE is High

Where the input (antecedent) variables include AFTP (Animal Familiarity Towards Place), AFTA (Animal
Familiarity Towards Another), and ADTA (Animal Distance Towards Another Animal), EPE (Escape Path
Exists). The output (consequent) variable is defined as ESCAPE. Further details on these notations and the
corresponding aggression behaviour model can be found in [Aaqib2]. The rule (weight) does not cause an

immediate escape but adjusts the influence of the Escape behaviour within the final vector generated by
VFEF.

After behaviour coordination assigns weights, each component behaviour (e.g., Escape, Goal Pursuit,
Obstacle Avoidance) proposes a motion vector. These vectors are fused using the VFF method: Attractive
forces are directed toward the goal; Repulsive forces are generated based on detected obstacles; The total
force vector is the sum of all component vectors, each scaled by its fuzzy-derived weight. This process
allows robots to: Escape from danger more strongly when fear is high; Pursue goals more assertively in
safe conditions; Resolve conflicts dynamically between opposing behaviours. Thus, VFF serves as the

computational substrate for behaviour fusion, driven by the weights from fuzzy coordination [Aaqib7].
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To demonstrate this integration, the proposed study analyzes the "Escape" behaviour as modeled in the
ethologically inspired aggression framework [Aaqib2], where the corresponding fuzzy rule bases are
implemented using the Fuzzy Behaviour Description Language (FBDL) [4]. The system emphasizes the
importance of identifying key internal state variables (e.g., "fear", "escape motivation") and extemal
observations (e.g., familiarity with the environment, obstacle proximity, escape route availability). This
hybrid approach enables the accurate modelling of ethologically inspired escape behaviour, with logic

centered on critical state variables and contextual awareness, as discussed in Chapters 2 and 3.

State Variables: These define the current condition of the system. The fuzzy escape behaviour model

incorporates two state variables:

Escape: Represents actions aimed at distancing the animal from a perceived threat. Animals instinctively

flee from danger by rapidly moving away.

Fear: Ahidden state variable,meaningitdoes not directly correspondto a specific behaviourbutinfluences
other state variables. Fear is a complex reaction involving physiological, behavioural, and emotional
responses to stimuli. When animals experience intense fear, they exhibit physical changes such as
crouching, pulling back ears, widening eyes, and tucking their tails. Although fear cannot be observed

directly, its effects on behaviour are evident.

Observations: These definethe situationsinfluencingstate variables and contributeto an animal’s decision-

making process:

Animal Familiarity Towards Place (AFTP): Represents how familiaran animal is with its surroundings.
Unfamiliar environments often trigger fear responses.

Animal Familiarity Towards Another Animal (AFTA). Indicates the level of familiarity an animal has with
another. Fear may increase if an unfamiliar animal enters its territory.

Animal Distance Towards Another Animal (ADTA): Refers to the proximity between two animals, affecting
the likelihood of fear or aggression.

Animal Familiarity Towards Object (AFTO): Describes the degreeto which ananimal recognizes a specific
object. Unfamiliar objects within a known space may provoke fear, aggression, or escape behaviours.
Animal Distance Towards Object (ADTO): The distance between an animal and an object, with unfamiliar
objects potentially eliciting fear or defensive behaviour.

Escape Path Exists (EPE): Determines whether an escape route is available. If the escape path is blocked,

the animal may react aggressively, even if it is fearful.
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Understanding how animals respond to their environments and social interactions is essential for designing
adaptive, intelligent robotic systems [Aaqib1] [Aaqib2] [Aaqib3]. In this context, the integration of Virtual
Force Field (VFF) navigation with fuzzy logic offers a biologically grounded framework for replicating
animal-like escape responses. While VFF governs motion through the computation of attractive and
repulsive forces, fuzzy logic introduces real-time adaptability by evaluating contextual sensory inputs and

modulating behavioural priorities accordingly.

This combined approach allows robots to define and pursue specific behavioural goals such as avoiding
threats, seeking targets, or escaping confined areas based on environmental cues. Fuzzy rules are used to
model these behaviours in a modular and interpretable manner [Aaqib6]. For instance, when an unfamiliar
entity approaches, the fuzzy coordination module may increase the weight of the "Escape" behaviour,
leading to stronger repulsive vector influence in the VFF fusion process. This rule-based modulation
enables robots to respond dynamically to their surroundings in a way that mirrors natural animal strategies,

such as evasion and threat avoidance.

Fuzzy Behaviour Descriptive Language (FBDL) [5] provides a structured framework to define input and
state variables, including the terms used (e.g., "Low" or "High") and the rules that dictate behavioural
responses. Forexample, whenevaluating "Animal Familiarity with Another Animal" (AFTA) with possible

values of "Low" or "High," FBDL might look like this:

universe: AFTA
description: How well the animal knows another animal
Low 00
High 11
end
A fuzzy rule might say:

Rule FEAR=Low when AFTP=High and AFTA=High and AFTO=High

The fuzzy rule base and corresponding Fuzzy Behaviour Descriptive Language (FBDL) definitions are

designed to address a wide range of behaviourally relevant scenarios [Aaqib4] [Aaqib5]. These include:

(i) The degree of familiarity an animal has with a particular location, object, or other animal.
(i1) Proximity of an approaching object or agent.

(iii) Appearance of a new object or animal within a familiar territory.

(iv) Animal entering an unfamiliar environment, often triggering a fear response.

(v) Presence of a familiar object in an unfamiliar setting,
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These scenarios inform the construction of fuzzy rules that govern key behaviours such as "Fear" and
"Escape", enablingthe roboticsystemto respond in a manner consistent with ethologically inspired models.

The fuzzy logic rules supporting these behaviours are outlined in the following sections.

In fuzzy rule-base format the fuzzy rules of FEAR are the following:
If AFTP=Low And AFTA=Low And AFTO=Low Then Fear=High.
If AFTA=Low And ADTA=Low And EPE=Low Then Fear=High.
If AFTO=Low And ADTO=Low And EPE=Low Then FEAR=High
If AFTP=High And AFTA=High And ADTA=High Then Fear=Low.
If AFTP=High And AFTA=High And EPE=High Then Fear=Low.
where antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE , and FEAR is the consequent
universe, Low and High are fuzzy linguistic terms of the corresponding universes.
In fuzzy rule-base format the fuzzy rules of Escape are the following:
If EPE=High And FEAR=High Then ESCAPE=High
If EPE=High And AFTP=Low And AFTA=Low And AFTO=Low Then ESCAPE=High
If FEAR=Low And EPE=Low Then ESCAPE=Low
If AFTA=High And AFTP=High And ADTA=High And AFTO=High And ADTO=High Then
ESCAPE=Low.
Where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, FEAR are the antecedent universes, ESCAPE is the
consequent universe, Low and High are fuzzy linguistic terms of the corresponding universes.
The same ESCAPE rule-base in FBDL format presents as:
RuleBase "ESCAPE"
Rule High when EPE=High and FEAR=High end
Rule High when AFTA=Low and AFTP=Low and EPE=High and AFTO=Low end
Rule Low when FEAR=Low and EPE=Low end
Rule Low when AFTA=High and AFTP=High and ADTA=High and AFTO=High and
ADTO=High end

end

5.6 Conceptual Framework of VFF with Fuzzy Behaviour Control

The conceptual framework of the proposed system which combines VFF navigation with fuzzy behaviour
fusion to enable adaptive, context-aware robotic motion is illustrated in figure 17. This layered architecture
processes real-time environmental data through fuzzy inference and transforms it into motion directives via

force field computation. The process begins with:
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Input Layer: which gathers real-time environmental data critical for navigation and decision-making, Key
variables include Animal Distance Toward Another Animal (ADTA), Animal Distance Toward Object
(ADTO), Animal Familiarity Toward Place (AFTP), Animal Familiarity Toward Object (AFTO), Escape
Path Exists (EPE) These variables represent perceptual observations that inform the robot’s understanding

of its surroundings and potential threats or escape opportunities.

Input Layer Input Fuzzy Force
Fuzzy Logic Module i i i
Environmental Observations Data y Log : Evalution |Force Field Calgulatlon Vector Resultant Force Vector
—— Fuzzy Rules Determine Fear ———————» Compute Attractive & EEmmm— N
(ADTA, ADTO, AFTP, AFTO, ) Guiding Robot_1 Movement
EPE) & Escape Levels Repulsive Forces

Figure 17. Conceptual Diagram of the Fuzzy Behaviour Control with VFF Navigation

Fuzzy Logic Module (Behaviour Coordination): Environmental inputs are processed by the Fuzzy
Behaviour Coordination Module, which applies a set of fuzzy inference rules to derive internal states,
particularly Fear and Escape. Fear an inferred emotional state representing threat intensity. Escape a
behavioural tendency activated by high fear or unfamiliar stimuli. The fuzzy module functions as a state
evaluator, transforming ambiguous or continuous environmental stimuli into discrete behavioural priorities
using a rule-based system. This enables the robot to handle uncertainty and make graded decisions even in

rapidly changing contexts.

Force Field Calculation Module (Behaviour Fusion): The output fuzzy states (e.g., high Escape, low Fear)
are used to weight component behaviours such as obstacle avoidance and goal pursuit. These are then fused
using the VFF method, where: Attractive Forces guide the robot toward its goal; Repulsive Forces steer the
robot away from threats or obstacles. Each force vector is scaled according to its behaviour weight derived
from fuzzy coordination. The system thus prioritizes behaviours in proportion to perceived environmental

urgency and context.

Output Layer (Motion Execution): The final stage consolidates the weighted attractive and repulsive forces
into aresultant motion vector that governs the robot’strajectory in real time. As environmental dataupdates
continuously, the system recalculates and adjusts this vector dynamically, enabling fluid, adaptive

navigation.

This integrated framework demonstrates how biologically inspired behavioural modeling (e.g., threat

recognition, escape motivation) can be embedded within engineering systems to produce autonomous,
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intelligent, and ecologically valid robotic behaviour. The synergy between fuzzy logic and VFF navigation
enhances decision granularity, environmental awareness, and response flexibility critical for high -stakes

applications in dynamic and human-populated environments.
5.7 Trajectories of Fuzzy Behaviour Control with VFF

The Figure 18 illustrates a step-by-step simulation of ethologically inspired escape behaviour, implemented
through the integration of Virtual Force Field (VFF) navigation and fuzzy behaviour control. This hybrid
control architecture enables the robot to adapt its trajectory in real-time by combining fuzzy logic-based
decision-making with force-based motion planning [Aaqib7]. The simulation involves two autonomous
agents Robot landRobot 2alongsideone static and onedynamic object. Robot 1isthe main actor tasked
with reaching the target coordinates (5.5, 5.5). Its path is influenced by the dynamic behaviour of Robot 2,
a potential threat, and a static obstacle, both of which test the robot's capacity for avoidance and path

adaptation.
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Figure 18. Trajectories of Escape Behaviour Through Fuzzy Behaviour-Based Control Framework with
VFF [Aaqib7].

AsRobot 1 progresses toward its target, it encounters two primary challenges: (i) the approach of Robot 2,
which interferes with its direct path, and (ii) a physical object that obstructs its trajectory. Robot 1 navigates
the environment; it continuously receives sensory input about its surroundings. The fuzzy behaviour
coordination module interprets environmental observations such as AFTP, AFTA, ADTA, AFTO, ADTO,

EPE. These variables are processed using a fuzzy inference engine to evaluate internal behavioural states
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Fear and Escape. Based on a rule base derived from ethological observations [Aaqib2] (as described in
Section 5.5 and section 3.1), the coordination module assigns weights to behavioural components like Goal
Pursuit, Obstacle Avoidance, and Escape. For instance:
If ADTA = Low AND EPE = High AND AFTA = Low, Then ESCAPE = High.

The output of fuzzy coordination is a set of weighted behaviour suggestions. These weights are passed to
the behaviour fusion module, whichis realized through the VFF algorithm.In this stage: An attractive force
pulls Robot 1 toward the goal and the Repulsive forces push it away from Robot 2 and the static obstacle.
Each force is scaled by the corresponding fuzzy-derived behaviour weight. The resultant vector determines
the robot’s next movement step. This approach allows Robot 1 to: Prioritize Escape more strongly when
threats are nearby, Shift toward Goal Pursuit when safe, Balance between multiple competing demands via
weighted vector combination. The robot’s trajectory dynamically evolves based on both contextual
awareness and fuzzy behavioural reasoning. Figure 19 presents the flowchart of the hybrid control model.
This structure supports intelligent and adaptive navigation, replicating biological decision-making in

artificial agents and ensuring operational robustness in uncertain environments.

4{ Sensor Inputs ]
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Figure 19. Flowchart of Fuzzy Behaviour-Based Control Framework with VFF.
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The virtual force field utilizes equations (12) and (13) to measure the overall effect of repulsive forces,

while equations (14) and (15) measure the attractive forces on the robot's motion.

_ Xi—X
X = - Fer (\/(Xi—Xo)Z'l'(Yi_YO)Z) (12)

Yer = - For(——me—;) (13)

VX —X0)2 +(Y;—Y,)?

where X¢; is the x component repulsive force, Y is the y component repulsive force, Feris the repelling

force constant, (X,y,) is the current coordinates of the robot 1, and (x;, y;) is the coordinates of the robot 2
or obstacle position.

Similarly, attractive forces are calculated using the same VFF to have an x and y component.

Hx_XO

Xeca = Fa 2
JCb=x072 4y -1,)

(14)

Hy_YO

Yaa = Fa 2
\/(Hx—XO)Z +(Hy—Y,)

(15)

Xeca 18 x and Y¢a is the y component attractive force from goal location towards robot 1 (fromrobot 2
position and obstacle location). Hx is and H, is the goal position at X and Y, and (Xo,y,) is the current

position of the robot 1, Fq is the Gain of attractive force.

Robot 1 initiates its journey from the origin point (0, 0) with low fear levels, represented by a blue
trajectory. As itadvances toward its goal (5.5, 5.5), it encounters Robot 2, which progressively obstructs
its path. when Robot 2 approaches Robot 1, the proximity decreases (ADTA = Low), which combined
with a valid escapepath (EPE = High) and environmental unfamiliarity (AFTA =Low), leads to an increase
in fear (color shift from blue to red in the trajectory) as evaluated by the fuzzy rule base. These conditions
satisfy fuzzy logic rules such as: If AFTA =Low AND ADTA =Low AND EPE = High, Then ESCAPE =
High. This results in a high Escape state, prompting the fuzzy Behaviour Coordination module to assign
stronger weight to Escape behaviour. In the VFF-based behaviour fusion layer, this increases the repulsive

force vector, leading Robot 1 to retreat and initiate an evasive trajectory. This avoidance maneuver is

81



Chapter 5: Fuzzy Behaviour-Based Control Framework with VFF

reflected visually by a shiftin the trajectory color from blue to red, denoting heightened fear and escape

activation.

AsRobot 1 distancesitself fromRobot 2, the proximity increases, andthe system reevaluatesthe situation.
The fear level decreases, and the weight of the Escape behaviour diminishes, causing the attractive force
toward the goal to regain dominance. The trajectory color transitions back to blue, indicating low fear and
the resumptionof'the original navigational objective. The behaviour coordination module thus dynamically

adjusts the fusion strategy based on real-time contextual updates.

Further along its path, Robot 1 detects an unfamiliar object blocking its route. This triggers another rise in
fear (the trajectory color changesfrom blue to red), as the fuzzy systemevaluates: AFTO =Low (unfamiliar
object), ADTO =Low (close distance), EPE =High (escape path exists). These inputs yield another High
Escape condition, reinforcing the repulsive vector in the VFF module. Robot 1 performs another context-

sensitive avoidance maneuver, reflected by a return to a red trajectory, and navigates around the object.

Once safely past the obstacle, the fuzzy coordination module reduces the Escape weight, and the robot’s
internal state returns to calm. The blue trajectory resumes, marking the final phase of its path toward the
goal. The color-coded path captures Robot 1’sinternal behavioural modulation based on fuzzy inference
and VFF vector dynamics: Blue: Calm, goal-seeking behaviour (low fear). Red: Escape-driven avoidance
(high fear, high escape). Transitions: Real-time modulation of control priorities based on environmental

interpretation.

This simulation clearly demonstrates the strength of the proposed fuzzy behaviour-based control
framework, where: Fuzzy logic interprets context and assigns behaviour weights, VFF serves as the fusion
method to compute the resultant force vector, The system mimics ethologically inspired escape strategies.
By adhering to biologically grounded principles and incorporating graded behavioural priorities, the robot
adapts continuously and intelligently to evolving threats. This affirms the viability of the proposed model
in real-world, multi-agent navigation tasks, where environmental complexity and uncertainty are key

challenges.
5.8 Simulation Environment and Evaluation in ROS

To evaluate the effectiveness of the proposed hybrid control framework, which integrates fuzzy behaviour
coordination with VFF based behaviour fusion, a structured simulation experiment was developed in the
Robot Operating System (ROS) environment [39] [40]. This framework allows mobile robots to perform

context-sensitive, adaptive navigation by combining the real-time reactivity of force-based motion with the
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reasoning flexibility of fuzzy logic. The architecture and control flow are visualized in Figure 20, while

ROS simulation outcomes showcasing the escape behaviour in action are depicted in figure 21.
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Figure 20. Visualization of Hybrid (Fuzzy Behaviour-Based Control Framework with VFF) Architecture

The simulation utilizes a range of ROS tools to ensure real-time behavioural visualization, environmental
mapping, and performance monitoring: Gazebo provides a high-fidelity, physics-based 3D environment
that models real-world constraints, including static obstacles, moving agents, and realistic robot dynamics.
RViz serves as a visualization platform, enabling monitoring of trajectories, sensory input, and behaviour
transitions in real-time. LIDAR sensing is integrated to offer detailed environmental scanning, forming the
primary perception modality for obstacle detection and motion planning. SLAM enables the robot to
construct and update an internal map of the environment while simultaneously localizing itself within that
map. These maps provide the spatial foundation for both VFF force vector computation and fuzzy
behavioural rule evaluation. In escape scenarios, SLAM data feeds both subsystems: The fuzzy behaviour
coordination module evaluates real-time variables such as fear, threat proximity, and escape path

availability. Simultaneously, the VFF module computes attractive and repulsive vectors based on mapped
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object locations and prioritizations set by fuzzy logic. This architecture enables Robot 1 to: Interpret the
environment contextually (e.g., detect unfamiliar agents or objects), Update internal state variables (e.g,
fear and escape levels), Compute motion trajectories that dynamically adjust to spatial changes, And
respond with biologically inspired evasive behaviours in real-time. This tight coupling of SLAM with both
behaviour coordination and vector-based navigation allows the robot to achieve fluid, autonomous

adaptation, demonstrating the strength of this hybrid model in realistic, high-complexity tasks.

Figures 21(a)-(e) present a step-by-step visual sequence illustrating the robot’s adaptive behaviour during
a navigation task under dynamic environmental conditions. Each subfigure provides a synchronized view
of both Gazebo (right pane) and RViz (left pane), offering simultaneous perspectives on the physical
execution of behaviours and the sensor-based reasoning process that underpins them. This visualization
approach highlights the transition of the robot from goal-directed behaviour to escape responses, govemed

by real-time fuzzy inference and force-based control.

The test scenario includes two mobile robotic agents Robot 1 and Robot 2 navigating within a bounded
environment containing walls and static and dynamic objects. Robot 1 is assigned a navigation task from
its starting position to a defined goal, while dynamically exhibiting escape behaviour in response to

obstacles including Robot 2 and unexpected objects using fuzzy behaviour control with VFF.

Figure 21(a). Initial Stage of Robots
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Figure 21(a-b): Task Initialization and Early Navigation. Figure 21 (a) both robots are initialized at defined
starting positions. The goal location for Robot 1 is set at coordinate (5.5, 5.5). Figure 21(b) as Robot 1
begins its movement toward the target, Robot_2 starts to explorethe environment, increasing the likelihood

of an encounter and potential behavioural conflict.

Figure 21(b). Robot 1 Starts to Move Towards its Goal.

Role of VFF and Fuzzy Coordination in Behaviour Generation: The VFF system forms the reactive motion
backbone, It: Calculates attractive vectors toward the goal and computes repulsive vectors from obstacles
(both static and dynamic). Continuously updates the net motion vector using real-time LIDAR data.
Simultaneously, the fuzzy behaviour coordination module evaluates high-level contextual inputs such as:
Fearlevel (derived fromproximity, familiarity, etc.), Obstacle distances (e.g., ADTA, ADTO), Escape path
availability (EPE). These variables trigger fuzzy rules that assign behaviour weights (e.g., increasing
ESCAPE weight when danger is perceived), which are then passed to the behaviour fusion layer (VFF) to

scale the attractive and repulsive vectors accordingly [Aaqib7].

As Robot 1 progresses, Robot 1 detects the approach of Robot 2 through LIDAR show in In figure 21(c).
This detection, combined with unfamiliarity and decreasing distance, increases Robot 1’s fear level. The
fuzzy behaviour coordination system processes this input and classifies the escape level as high, meeting
the triggering conditions for an escape maneuver: (i) high fear (ii) close proximity (ADTA = low) (iii) a
clear escape path (EPE =high). Here, VFF supports the escape by intensifying the repulsive force vector,

pushing Robot 1 away from Robot 2, while reducing the influence of the attractive force temporarily.
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Figure 21(c). Robot 1 Detects Robot 2

The hybrid model operates in three coordinated stages: Behaviour Components, Behaviour Coordination,
and Behaviour Fusion (as VFF) as described in the introduction and implementation section of this chapter.
Behaviour Components are discrete actions Robot 1 can execute, such as escapingor goal pursuit, triggered
based on real-time evaluations. Example When Robot 2 or an object is detected within close proximity,
and an escape path exists, the ESCAPE behaviour is triggered.

Behaviour Coordination A fuzzy inference system assigns weights to each behaviour based on situational
context. Inputs include fearlevel, environmental familiarity, and obstacle proximity. Example When fear
level is high and escape path available is high, then the coordination system prioritizes ESCAPE behaviour
with increased weight.

Behaviour Fusion (as VFF) the system merges the weighted behaviours into a single unified force vector.
This involves integrating VFF outputs attractive forces toward the goal and repulsive forces from obstacles
along with the fuzzy decision outcomes. This fusion ensures smooth transitions between behaviours and

continuous adaptation to environmental stimuli.

As depicted in figure 21(d), after successfully evading Robot 2, Robot 1 encounters with a new unknow
object. As it approaches, fearlevels rise again due to reduced distance (ADTO =low), prompting another
fuzzy-triggered escape. VFF adapts in real time by recalculating repulsive forces from the object and
weakening the goal-attractive vector until the danger subsides. Once robot 1 escapes from object and
distance between them increases the fuzzy controller redirects Robot 1 toward its goal by strengthening

the attractive force vector.
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Figure 21(d). Robot_1 Object identification (the unfamiliar object that comes in its way).

Figure 21(e). Robot 1 Successfully Achieved its Goal.

Figure 21(e) concludes the simulation by illustrating Robot 1’s successful arrival at its target after
dynamically avoiding both Robot 2 and an object. This outcome highlights the system’s robustness in
managing dynamic and unpredictable environments through a hybrid navigation model. The VFF provides
continuous low-level control, generating real-time motion vectors from environmental inputs, while the

fuzzy behaviour fusion system modulates these outputs based on internal states such as fear derived from
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sensor data. By embedding biological inspiration (fear, escape logic) into robotic control, the model

demonstrates how naturalistic intelligence can be mimicked through algorithmic behaviour design.

5.9 Classification Metrics and Empirical Benchmarking

Figure 22 presents the classification performance of the proposed Fuzzy Behaviour-Based Control
Framework integrated with Virtual Force Field (VFF)navigation. This hybrid architecture enhances robotic
decision-making by fusing a biologically inspired fuzzy coordination layer responsible for dynamically
weighting behaviours using real-time sensory inputs with the classic VFF algorithm that calculates motion
vectors based on attractive (goal-directed) and repulsive (obstacle-avoidance) forces. The fuzzy-modulated

behaviour scales these vectors, resulting in context-sensitive and emotionally grounded motion trajectories.

1.0

0.86

0.81
0.8 4

0.6 4

Score

0.4 1

0.2

0.0- T
Accuracy Precision Recall F1-Score

Figure 22. Classification Metrics of Hybrid Model

To rigorously assess behavioural classification performance, four key metrics accuracy, precision, recall,
and F1-score were computed from 25 independent simulation trials conducted within the ROS. These trials
simulated dynamic and unpredictable environments by varying obstacle layouts, robot speed, spatial
proximity, and sensor inputs (e.g., AFTA, ADTA, AFTO). Behaviour selection was governed by fuzzy
rules encoded in the FBDL. For example, Escape is triggered:

Rule High when “EPE” is High and “FEAR” is High end
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Thisrule ensures thatescape behaviour is triggered when high perceived threatand fear values are detected.
The weighted outputs from such rules are fused with VFF vector fields to produce a single actionable
motion directive. To quantify the practical benefits of the proposed system, a benchmarking study was
conducted comparing the fuzzy-based framework against a traditional VFF controller, as described in
canonical models [55][56]. While classical VFF methods use fixed attractiveand repulsive force equations,
they oftenencounter issues suchas local minima, trajectory oscillations,and limited adaptability in dynamic
environments. Although enhancements such as behaviourally modulated VFF [49] improve responsiveness,
they still lack emotional modeling, adaptive reasoning, and explainability. The comparative evaluationused
key performance indicators, including task completion time, number of collisions, behaviour-switching
latency, and classification accuracy for escape behaviours. As summarized in Table 5, the fuzzy-based
system significantly outperformed the baseline across all metrics. To further position its contributions,
Table 6 presents a conceptual comparison with three major paradigms: Subsumption Architecture, BDI
Models, and Neuro-Fuzzy Systems [57] [58]. The proposed Fuzzy Ethological VFF architecture uniquely
integrates biological plausibility, emotional dynamics, and real-time reactivity, bridging the gap between

reactive and deliberative control strategies.

Metric Fuzzy Behaviour-Based VFF | Baseline Reactive Controller
Task Completion Time (sec) 43.6 £3.5 50.3£5.7
Number of Collisions 23+1.5 32+1.1
Behiﬁ;‘;ﬁsg&ghmg 370 =35 400 + 45
Escape Classification Accuracy 0.86 0.75

Table 5. Comparison of Fuzzy Behaviour-Based VFF with Traditional Reactive Controller

Subsumption Neuro-Fuzzy Proposed Fuzzy
Aspect Architecture BDI Models Systems Ethological VFF
F le-based
Behaviour Hierarchical Symbolic Learned rules, uzz;llru © .ase ’
Coordination suppression reasonin opaque emotion-weighted
PP & paq fusion
Directl deled
Emotional Not . Indirect and Implicit, hard to 1r(zc v nflo oe
Modeling ot supporte abstract trace ©E- e.zar,
aggression)
Hi t 1
Environmental Binary, high Low in dynamic Medium (data- igh (contextua
. . . and sensor-
Adaptability reactivity domains dependent) )
integrated)
Real-Ti Moderate (fixed P hi High
car e Ofetatb e oor ( ! gh Moderate (interpretable and
Adaptation hierarchy) computational)
grounded)
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High (transparent

Interpretability Moderate High but abstract | Low ("black box") R —
Training Dat: . Require 1 .

rammg atd None Not required equire farge Not required
Requirements datasets

Obstacle . Emotionally
. Prone to local . Sensitive to .
Navigation . Planning-based . . weighted obstacle
minima training bias .
Robustness avoidance

Table 6. Comparison of Traditional vs Proposed Fuzzy Behaviour-Based VFF Navigation.

5.10 Conclusion

This study presents a hybrid navigation framework that integrates fuzzy behaviour coordination with the
Virtual Force Field (VFF) method to enable adaptive and biologically inspired robotic navigation. The
architecture consists of three stages: behaviour modules (e.g., Escape, Goal Pursuit), a fuzzy coordination
layer that assigns contextual weights based on factors such as fear level, proximity, and environmental
familiarity, and a VFF-based fusion layer that computes attractive forces toward goals and repulsive forces
from obstacles. These forces, scaled by the fuzzy-assigned weights, generate a unified motion vector
reflecting both environmental stimuli and internal state evaluations. Implemented in ROS with LIDAR and
SLAM, the framework supports real-time, context-aware path planning in dynamic environments.
Benchmarking against a traditional VFF controller showed that, unlike fixed-force methods prone to local
minima, oscillations, and limited adaptability, the proposed system incorporates emotional mode ling,
adaptive reasoning, and explainability. A conceptual comparison with Subsumption Architecture, BDI
models, and Neuro-Fuzzy Systems further confirmed its superior performance, demonstrating ethologically
plausible escape behaviours, smooth action transitions, and robust decision-making under uncertainty. By
combining biological plausibility with real-time reactivity, the framework bridges reactive and deliberative

control, enabling scalable deployment in logistics, service robotics, and human-robot interaction.
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5.11 Thesis III.

Thesis I11.: This thesis proposes a novel hybrid control frameworkthatintegrates Virtual Force Field (VFF)
navigation with fizzy behaviour coordination to embed Archer’s ethological model of aggression and fear
into real-time robotic navigation. The approach enables mobile agents to exhibit biologically inspired,
context-sensitive behaviours by modulating navigation in response to threat proximity, environmental

familiarity, and escape path availability, [Aaqib1-Aaqib7].

5.11.1 Scientific Contribution

This research provides the first known integration of emotional modeling and geometric motion planning
within a unified robotic control loop. Unlike traditional VFF systems with fixed force magnitudes, this
framework dynamically scales repulsive vectors based on fuzzy-evaluated emotional states particularly
fear. Environmental variables such as threat proximity, familiarity, and escape feasibility are processed by
a fuzzy inference engine to produce affective activations. These modulate force intensities, c onverting
binary obstacle avoidance into nuanced threat-response behaviours. The approach bridges the symbolic
reasoningof fuzzy logic with the precision of vector-based motion planning, creating a biologically inspired

control loop.

5.11.2 System Architecture and Mathematical Formalism

The hybrid control model comprises a dual-layered architecture integrating fuzzy emotional inference with
VFF. The overall system determines the robot’s behavioural response based on perceptual and affective
cues and then translates that response into action using emotionally weighted motion vectors.

Fuzzy Emotional Coordination Module : This module interprets sensory and contextual inputs X={AFTA,
AFTP, AFTO, EPE, ADTA} to generate behaviour activations such as Escape. These inputs are fuzzified
using membership functions defined as:

Trapezoidal Membership Function (used for thresholds like EPE or familiarity):

(0 ifx<aorx=>d
X

!—a ifa<x<bh

ra ;)b) ’dzb—a B 4

Hreap (% @, b, ¢, d) =9 7y ifb<x<c )
l;i%’c‘ ifc<x<d
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Triangular Membership Function (used for smooth variables like proximity):

0 ifx <aorx =>c

x=a . o
urei (x;a, b, ©) ={p_qa ifa < x < 3)
g ifb<x<c

Rule Evaluation and Inference: Fuzzy rules are applied in the form

IF FEAR is High AND EPE is High THEN Escape is High.
The inference mechanism follows Fuzzy Rule Interpolation (FRI) using the FIVE method, suitable for
sparse or incomplete rule bases. For baseline comparison in fully specified rule bases, the Mamdani max-

min composition is applied. Detailed information is provided in Chapter 2-Mathematical Formalism.
ugi(X) = maxi (min;j pixj(x))  (5)
Whereas [iLxj is the membership degree of input xj to label L, Bj is the target behaviour (Escape)

Defuzzification Step (Centroid Method): After aggregation of multiple rule outputs, a crisp behaviour

intensity Berisp is obtained using the centroid method:

ff uB(x) . x dx

Berisp =
crisp ff uB (x) dx

(6)

This value (e.g., Escape intensity) scales the reactive force in the VFF layer.

State Transition Dynamics: To allow graded transitions between behavioural states in a Fuzzy State
Machine (FSM), state transitions are modeled probabilistically:

HBj (xk)

PGB Bux) = 5 uBnGao

@)

This equation allows multiple behaviours to be partially activated (e.g., both escape and obstacle
avoidance), enabling blended actions that reflect complex affective dynamics.

VEFF Motion Control Layer: Once a behavioural decision is made, it informs the VFF motion planner. This
triggers dynamic force computation:

The repulsive force from a perceived threat at (X;, Y;) is:

_ Xi =Xy
Xe = - For (Tmmme—rs) (12)

Yer = - For () (13)

V&Xi=X0)? +(¥; —Y,)?
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The attractive force toward a goal at (Hy, Hy) is:

Hy—Xo

a
\/(HX—XO)Z +(Hy—Y0)2

Xea = F (14)

Hy—Y,

a
)2 4 (b=,

Yca = F (15)

The final motion vector becomes a weighted sum:

Fresult = Fattractive + Frepulsive * pFEAR (16)

This formulation ensures that the robot's path changes not only due to geometric constraints but also due to
fuzzy-evaluated emotional influence, resulting in trajectories that vary with context and intensity of

perceived threat.

5.11.3 Empirical Validation and Simulation

The proposed framework was fully implemented in the ROS and evaluated using Gazebo for simulation
and RViz for real-time visualization. The robot leveraged LIDAR and SLAM to autonomously map its
environment and respond to dynamic threats.

Figure 22 illustrates the classification performance of the Fuzzy Behaviour-Based Control Framework
integrated with VFF navigation. This hybrid model combines a biologically inspired fuzzy coordination
layer responsible for dynamically assigning behaviour weights from real-time sensory inputs with the
classical VFF algorithm, which computes motion vectors from attractive (goal-oriented) and repulsive
(obstacle-avoidance) forces. The fuzzy-modulated weights scale these vectors, producing emotionally
grounded and context-sensitive trajectories. To assess classification performance, 25 independent
simulation trials in ROS. The trials covered diverse and dynamic scenarios, including variations in obstacle
layout, robot velocity, spatial proximity, and sensory input (e.g., AFTA, ADTA, AFTO).

A benchmarking study compared the fuzzy-based framework to a traditional VFF reactive controller, using
performance metrics such as task completion time, collision rate, behaviour-switching latency, and escape
classificationaccuracy, see Table 5. Additionally, Table 6 presents a conceptual comparison ofthe proposed
system with established paradigms such as Subsumption Architecture, BDI Models, and Neuro -Fuzzy
Systems, highlighting the novel system’s superior biological plausibility, emotional reas oning, and real-

time adaptability. The Simulation (Figures 20 and 21(a)-(e)) show real-time behaviour modulation; Fear-
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induced repulsion steers the robot away from Robot 2 and unknown obstacles. Color-coded trajectories
(blue =low fear, red =high fear) visualize internal emotional states derived from fuzzy inference. When
the rule: “IF AFTA=Low AND ADTA=Low AND EPE=High THEN Escape=High” is triggered, the robot
executes evasive maneuvers with increased repulsive force. All modules sensing, fuzzy logic evaluation,

and motion computation areindependently testable in ROS, facilitatingunit-level validationand debugging

5.11.4 Novelty and Impact

This thesis introduces a novel fuzzy-modulated force mechanism, enabling robots to adjust avoidance
behaviour dynamically in response to computed fear intensity. Unlike conventional VFF systems with fixed
repulsion, the proposed method scales repulsive forces through fuzzy logic inference, producing nonlinear,
context-sensitive trajectories. This dynamic modulation is visually validated in Figure 20, where trajectory
color shifts (blue to red) correlate with increasing fear levels and sharper evasive maneuvers.

A second key innovation lies in the direct integration of Archer’s aggression-fear ethological model into
the robotic control loop. By encoding emotional responses such as escape into fuzzy rule sets, the system
simulates biologically grounded behaviours. These responses emerge naturally from situational inputs (e.g,
threat proximity, environmental familiarity), eliminating reliance on rigid scripting.

Finally, the entire framework is fully implemented in the ROS incorporating: Fuzzy logic for emotional
evaluation, VFF navigation for continuous motion control, and LIDAR sensing for obstacle detection, and
SLAM for real-time localization and mapping. Simulations in Gazebo-RViz demonstrate robust,
interpretable, and adaptive performance, confirming both the scientific merit and practical applicability of

the approach for emotion-aware robotics.

5.11.5 Applications

The proposed hybrid control framework enables adaptive, emotionally responsive navigation in dynamic
environments, with implications across various several domains:

Service Robotics: Robots dynamically adjust paths in response to perceived threats or discomfort, allowing
safe and intuitive operation in crowded or unpredictable spaces.

Search and Rescue: Emotion-triggered behaviours (e.g., fear-based retreat) help agents avoid unstable or
unfamiliar zones, enhancing resilience and mission success.

Human-Robot Interaction (HRI): Robots exhibit interpretable behaviours grounded in emotional models
(e.g., hesitation, escape), improving social compatibility and user trust.

Swarm and Multi-Agent Systems: The system supports biologically inspired coordination among agents,

applicable in cooperative drones, wildlife robotics, and group behaviour modeling.
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Chapter 6: Conclusion and Future Work

6.1 Conclusion

This research has presented a comprehensive investigation into the embedding of ethologically inspired
emotional behaviours specifically aggression, fear, escape, and immobility into autonomous robotic
systems. Drawing from both biological models and computational intelligence, the work contributes a
multi-layered framework for emotional robotics grounded in fuzzy logic, virtual force field navigation, and

modular architecture. The findings are organized across three central thesis contributions:

6.1.1 Thesis I: Ethologically inspired Fuzzy Behaviour model of the Archer’s “Aggression and fear
in vertebrates” ethological model

This thesis proposes a novel framework that translates Archer’s ethological model of aggression and fear
in vertebrates into a computationally interpretable and machine-executable architecture using the “Fuzzy

Behaviour Description Language”.

The first contribution of this thesis establishes a novel computational framework that formalizes Archer’s
ethological model of aggression and fear in vertebrates using the Fuzzy Behaviour Description Language
(FBDL). By translatingcomplex behavioural triggers and responses into fuzzy linguistic variablesand rule-
based inference, this framework enables robotic agents to exhibit affect-like reactions that are both
interpretable and dynamically modulated. The system operates in real-time, supports behavioural
visualization, and is implementable on standard robotic platforms. It bridges a key gap between affective
neuroscience and fuzzy control engineering, thereby contributing to the development of emotionally
responsive and socially intelligent machines. The implications extend to domains such as affective
computing, therapeutic robotics, and socially assistive systems, where biologically grounded emotional

modeling is crucial.

6.1.2 Thesis II: Implementing Fuzzy State Machine for Behaviour control in robotic environment
This thesis presents a novel implementation of Archer’s ethological model of aggression and fear into

autonomous robotic systems through a fuzzy state machine architecture.

The second core contribution introduces a fuzzy state machine architecture that enables lifelike transitions
between emotional states such as fear, escape, aggression, and immobility based on environmental stimuli
and internal appraisal. Grounded in ethological principles and implemented in the ROS, this architecture
allows robots to interpret real-time sensory inputs and dynamically select behaviour patterns appropriate to

the situational context. A key component of this system is SLAM, which allows the robot to build a map of
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its environment while simultaneously tracking its position within it ensuring continuous localization
essential for behaviour selection in dynamic settings. By leveraging modular behaviour coordination, the
system supportsscalable multi-agent interactionsandrobust behaviour arbitration. Moreover, it emphasizes
transparency and ethical operability, essential for deployment in sensitive domains such as search and
rescue, security surveillance, and human-robot interaction (HRI). The fuzzy state machine not only provides
a technical mechanism for emotional behaviour modeling but also offers a foundation for ethical and

socially aware robotic design.

6.1.3 Thesis I11: Fuzzy Behaviour Based Control Framewok with Virtual Force Field Navigation
This thesis proposes a novel hybrid control frameworkthat integrates Virtual Force Field (VFF) navigation
with fuzzy behaviour coordination to embed Archer’s ethological model of aggression and fear into real-
time robotic navigation. The approach enables mobile agents to exhibit biologically inspired, context-
sensitive behaviours by modulating navigation in response to threat proximity, environmental familiarity,

and escape path availability.

The core innovation lies in how fuzzy coordination governs behaviour selection based on situational
appraisals, while VFF serves as the fusion mechanism that translates weighted behaviours into motion
directives. The fuzzy layerinterprets emotional states particularly fear from sensor-derived inputs such as
LIDAR, dynamically adjusting the influence of repulsive or attractive forces. As fearrises, repulsive forces
are scaled, prompting avoidance maneuvers; as fear subsides, goal-directed motion resumes. Implemented
in ROS, the system integrates SLAM for simultaneous localization and mapping, ensuring persistent
environmental awareness even in dynamic, multi-agent settings. This architecture blends low-level
geometric control with high-level behavioural reasoning, enabling robots to transition smoothly between
goal pursuit and reactive escape. By embedding emotional logic into path planning, the model elevates
robotic navigation from deterministic obstacle avoidance to intelligent, adaptive decision-making marking

a significant advancement in affective robotics and human-robot interaction.

6.2 Future Work
The outcomes of this research open several promising avenues for further exploration, spanning both

technical enhancements and theoretical advancements.

6.2.1 Investigating Human-Robot-Animal Behavioural Parallels
While the current work focused primarily on modeling fear and aggression based on animal ethology, future
research could extend this paradigm to include other complex behaviours suchas nurturing, social bonding,

group coordination, dominance, and territoriality. These behaviours are central to both human and animal
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interactions, and their robotic analogs could significantly enrich empathetic and socially adaptive HRI
systems. Studying behavioural parallels across species may also uncover deeper insights into shared
cognitive-emotional frameworks, potentially leading to cross-disciplinary models of emotion that benefit

both robotics and behavioural science.

6.2.2 Advancing Machine Learning Integration

Although fuzzylogic provides interpretable and controllable behaviour modeling, future work could benefit
from the integration of machine learning approaches, including deep neural networks, reinforcement
learning, and ensemble methods. These techniques would enable robotic agents to learn from historical
experiences, improve behavioural generalization, and adapt to non-deterministic environments. Combining
fuzzy systems with data-driven models could resultin hybridintelligence systems capable of both sy mbolic
reasoning and experiential learning, thus broadening the applicability of emotional robotics in complex,

real-world contexts.

6.2.3 Exploring Ethical and Societal Implications

As robotic agents begin to exhibit behaviours that simulate emotional states or responses, it becomes
imperative to address the ethical, societal, and psychological dimensions of emotionally aware robotics.
Future studies should examine issues such as emotional deception, user over-reliance, attribution of intent
ormorality, and boundaries of autonomy. Research in this direction could inform guidelines for emotionally
ethical design, particularly in contexts where human safety, dignity, and agency are involved. The
increasing realism of affective robots raises profound questions about trust, empathy, and responsibility,

which must be carefully evaluated and regulated.

6.2.4 Expanding Sentiment and Behaviour Analysis Models

Further research is warranted in developing advanced models for sentiment detection, contextual emotion
prediction, and multimodal behaviour interpretation. Incorporating data from audio, vision, tactile sensors,
and environmental cues can improve the robot’s ability to infer nuanced emotional states and respond
appropriately. New computational frameworks that fuse these sensory channels with real-time behavioural
assessment could support rich, adaptive interactions in domains ranging from caregiving and th erapy to
collaborative robotics and ambient intelligence. Enhanced behavioural inference would not only improve

robot autonomy but also contribute to more natural and emotionally congruent human-robot relationships.
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