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Preface 

The development of intelligent machines capable of autonomous operation in complex, dynamic 

environments has long been a central goal in artificial intelligence and robotics. While substantial progress 

has been made in areas such as mechanical control, sensory perception, and cognitive reasoning, the 

integration of affective, ethologically grounded behaviours remains relatively underexplored. This 

dissertation addresses that gap by investigating how emotional constructs specifically fear, escape, and 

attack, as conceptualized in ethology can be modelled computationally, expressed behaviourally, and 

deployed operationally within autonomous robots. 

Grounded in Archer’s ethological framework of aggression and fear in vertebrates, this research examines 

how such adaptive responses can be translated into robotic behaviour that is both functionally intelligent 

and socially interpretable. The central premise is that embedding emotional constructs into machine 

behaviour enhances not only the realism and expressiveness of autonomous agents but also their ability to 

interact safely, intuitively, and adaptively with humans and dynamic environments. The dissertation is 

structured around three core contributions, each representing a step toward integrating Archer’s model into 

artificial systems. 

The first contribution introduces the Fuzzy Behaviour Description Language (FBDL) a novel, machine-

executable interpretation of Archer’s theory. It enables robots to generate interpretable, context-sensitive 

emotional responses using fuzzy logic. The second contribution implements this framework in the Robot 

Operating System (ROS), enabling real-time behavioural transitions through integration with LIDAR and 

SLAM for perception and localization. This allows robots to fluidly modulate behaviours such as escape 

and attack in dynamic scenarios. The third contribution presents a hybrid system that combines Virtual 

Force Field (VFF) navigation with fuzzy emotion-based control, allowing robots to make graded decisions 

based on continuous variables such as threat proximity, environmental familiarity, and internal emotional 

states. This enhances their responsiveness and safety in human-centric and unpredictable settings. 

Collectively, these contributions establish a novel framework for affective robotics, bridging behavioural 

ethology, fuzzy logic, and autonomous navigation. The work advances the fields of artificial emotional 

intelligence, socially aware robotics, and interpretable machine behaviour. I am deeply grateful to my 

supervisor, collaborators, and all those who supported this interdisciplinary journey. I hope this research 

offers both theoretical insight and practical inspiration for the development of emotionally responsive 

machines. 
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Part 1. Summary of the Research Task 

1.1 Introduction 

Autonomous robots are increasingly deployed in dynamic and unpredictable environments where they must 

engage in navigation, collaboration, and interaction with other agents including humans. While traditional 

robotic control systems perform reliably in structured settings and deterministic tasks such as mapping and 

trajectory planning, they often falter when operating in conditions marked by uncertainty, social 

complexity, or ambiguous sensory inputs. One of the key limitations is their inability to exhibit adaptive, 

context-aware behaviours similar to those found in biological organisms particularly those behaviours 

modulated by emotions. 

In biological system, emotional responses such as fear, aggression, or escape are not merely affective states 

but evolved mechanisms that guide survival and adaptive decision-making. Ethology, the scientific study 

of animal behaviour, has shown that such emotions arise through dynamic evaluations of threat, familiarity, 

and past experience [1]. Embedding this kind of biologically meaningful behaviour in robots opens the 

possibility for machines that are more responsive, interpretable, and socially attuned  [2, 3]. 

Despite advancements in fields like cognitive robotics and affective computing, the implementation of real-

time emotional responses grounded in biological theory remains a significant gap. Many robotic systems 

model emotions as symbolic tags or rely on opaque statistical methods that lack transparency. What is 

needed is a principled framework that integrates emotional processing into behavioural control, enabling 

robots to respond to uncertainty with nuanced, naturalistic behaviours.  

This research addresses that need by proposing a fuzzy logic-based control architecture inspired by Archer’s 

ethological model of fear and aggression. It hypothesizes that using fuzzy inference to formalize emotional 

constructs enables robots to reason with ambiguity, produce graded behavioural responses, and navigate 

more intelligently in multi-agent settings. The work introduces a Fuzzy Behaviour Description Language 

(FBDL) [4], implements fuzzy state transitions in the Robot Operating System (ROS), and integrates 

emotional appraisal with Virtual Force Field (VFF) navigation. Collectively, these contributions create a 

foundation for emotionally responsive robots that operate ethically and intuitively in real-world 

environments. 

 

1.2 Context and Motivation 

The core motivation for this research stems from the ambition to build robots that behave not only through 

mechanistic control but also through emotional intelligence that mirrors biological reasoning. Drawing 

upon ethology, this study models fundamental emotional behaviours namely fear, escape, and aggression 

as seen in animal responses to environmental threats [5]. These behaviours, when embedded in robots, 

allow machines to act in ways that feel more natural and intuitive to human users. Fuzzy logic serves as the 
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computational bridge for this modelling task. Unlike binary systems that enforce strict true/false 

evaluations, fuzzy logic accommodates partial truths and ambiguity essential properties when dealing with 

emotions and adaptive behaviour. Archer’s ethological theory of aggression and fear provides the 

conceptual backbone, guiding the formulation of behavioural rules that respond to variables such as threat 

distance, environmental familiarity, and escape feasibility. 

The principal challenge lies in translating this biologically rich model into a machine-executable language 

that enables real-time behavioural modulation. Through the creation of FBDL, fuzzy inference models, and 

their integration into ROS, this work aims to bridge the gap between natural behaviour theory and practical 

robotic implementation. 

1.3 Objectives 

The first objective of this research is to design and develop the Fuzzy Behaviour Description Language 

(FBDL), a modular and human-readable language that enables researchers to encode behaviours such as 

fear, escape, and aggression using fuzzy logic. By allowing the formalization of complex behavioural rules 

in a declarative syntax, FBDL facilitates collaboration between robotics engineers and ethologists, thus 

creating a shared framework for interdisciplinary development.  

The second objective is to construct a fuzzy inference model grounded in Archer’s theory. This involves 

defining fuzzy membership functions for key environmental variables such as the proximity to a threat, 

familiarity with surroundings, and escape potential and designing a rule base to govern emotional state 

transitions. The model must support smooth and graded behavioural shifts, such as transitioning from 

escape to attack, and it is validated through systematic simulations and controlled experiments.  

A third objective is to embed the fuzzy behavioural model into a robot control architecture built on the 

Robot Operating System (ROS). Within this framework, a Fuzzy State Machine (FSM) processes real-time 

sensory input from devices like LIDAR and SLAM and evaluates emotional states based on predefined 

fuzzy rules. The FSM outputs behaviours such as escape or attack in real-time, ensuring the robot can 

operate autonomously in unpredictable scenarios. 

Finally, the work seeks to integrate the fuzzy behaviour controller with a Virtual Force Field (VFF)-based 

navigation system. This hybrid architecture enables robots to adjust their motion plans not just based on 

geometric constraints but also on internal affective states. For example, higher fear levels increase repulsion 

forces and lead to wider path deviations. This fusion of emotional state and path planning equips robots 

with the capacity to act more fluidly and appropriately in complex environments.  

1.4 Significance and Scope  

This research contributes to the fields of affective robotics, fuzzy systems, and bio -inspired control by 

introducing a computational framework that mirrors the emotional modulation found in animal behaviour 
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[5, 6, 7, 8]. Situated at the intersection of ethology, fuzzy logic, autonomous systems, and VFF-based 

motion planning, it presents a novel approach to developing context-sensitive, emotion-driven robotic 

behaviour. 

Its primary significance lies in enabling robots to exhibit graded and interpretable responses that reflect 

biologically inspired emotional states. Such capabilities are increasingly crucial in domains requiring 

human-robot interaction, adaptive navigation, or social collaboration. By grounding robotic behaviour in 

validated biological models and pairing it with fuzzy logic reasoning, the system ensures both functional 

adaptability and transparency. 

The scope of the thesis is intentionally focused and practical: it models animal aggression behaviours using 

fuzzy logic, implements them in a real-time robotic control framework, and validates the outcomes through 

simulations and empirical tests. While it does not aim to model the full emotional spectrum or support all 

application domains, it demonstrates the feasibility and value of integrating emotional intelligence into 

autonomous robots. This lays the groundwork for future research into socially compatible and emotionally 

aware machines. 

 

Part 2: Methodology: Investigations and Experiments 

This research presents an interdisciplinary methodology that integrates ethology, fuzzy logic, and robotics 

to design emotionally responsive autonomous systems [Aaqib1-Aaqib7]. At its core is Archer’s ethological 

model of aggression and fear, which provides a biologically grounded template for modeling adaptive 

behaviour in animals [5]. This model is computationally translated into a robotic control architecture using 

fuzzy logic, enabling robots to simulate behaviours such as escape, attack, and immobility in response to 

varying environmental stimuli. The Fuzzy Behaviour Description Language (FBDL) [4] was developed to 

formalize these behaviour rules, making them interpretable, modular, and executable within robotic 

platforms. The methodology encompasses theoretical modeling, software implementation, simulation-

based testing, and analysis of emergent multi-agent dynamics. 

2.1 Ethological Foundations 

Ethology, the study of animal behaviour, provides evolutionary models of adaptive responses such as fear, 

escape, and aggression. Classical works by Tinbergen, Lorenz, and Archer have guided the abstraction of 

behavioural hierarchies and motivational systems [5, 9, 10, 11]. These models were foundational for 

constructing robotic behaviours that are reactive, context-aware, and biologically plausible. 

This research adopts Archer’s model to simulate aggression and fear, focusing on how animals modulate 

behaviour based on environmental familiarity, proximity to threats, and prior experience [5]. By abstracting 
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these principles, ethologically inspired control strategies were adapted for autonomous robots to support 

socially intelligible interactions. 

2.2 Fuzzy Behaviour-Based Systems  

This system offers a powerful and flexible framework for implementing ethologically inspired behaviours 

in autonomous robots [12, 13]. Fuzzy systems allow robots to interpret input data with flexibility and to 

respond in a more adaptive, human-like manner. In the context of ethological robotics, fuzzy logic serves 

as the computational layer that mediates between sensory inputs and emotional or instinctive responses. At 

the core of these systems are fuzzy rule-based structures that encode expert knowledge through 

IF[Condition] THEN[Statements] rules. For example: 

If AFTP = Low AND AFTA = Low AND ADTA = Low, THEN FEAR = High 

Here, AFTP (Animal Familiarity Toward Place), AFTA (Animal Familiarity Toward Another), and ADTA 

(Animal Distance Toward Another), together all these define a robot’s perceived emotional context. Fuzzy 

Logic Controllers (FLCs) that encapsulate individual behaviours like attack, escape, or immobility; 

Behaviour Arbitration, which manages conflicts between competing actions based on emotional appraisal 

and sensory stimuli; and Behaviour Fusion, which integrates outputs to form a coherent control signal [14]. 

This architecture enables robots to make fluid, graded behavioural transitions that reflect the ambiguity and 

dynamism of real-world scenarios. Figure 1 illustrates the logic of  fuzzy behaviour system. 

 

Figure 1. The applied Fuzzy Behaviour-based System [15] 

2.3 Modelling and Implementation of Aggression Behaviour  

This study models aggressive behaviour in autonomous robots by translating Archer’s ethological theory 

of fear and aggression into a fuzzy control architecture [5]. Archer’s model describes how animals evaluate 

threats through a dynamic loop of internal states, environmental perception, and behavioural adaptation 
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(figure 2). The process begins with the formation of expectations based on past experiences and current 

internal conditions. When external stimuli such as another agent's movement or posture are detected, the 

animal compares them against these expectations. A significant mismatch raises arousal levels and prompts 

a behavioural choice: escape, attack, or immobility. Fear-dominant situations typically lead to escape if a 

viable path is available. If escape is not feasible, the organism may resort to immobility or aggression, 

depending on situational constraints. 

 

Figure 2. Archer organization model [5] 

To translate this model into a robotic control system, a Fuzzy State Machine (FSM) is employed. The 

system defines four key state variables: Attack, Escape, and Immobility as observable actions, and Fear as 

a hidden state influencing transitions. Fear reflects internal physiological and emotional responses to threats 

and often manifests through posture or movement. Attack denotes defensive or offensive action; Escape 

refers to evasion; and Immobility is a passive survival response. Transitions among these states are governed 

by observational variables, including: Animal Familiarity towards Place (AFTP), Animal Familiarity 

towards Another Animal (AFTA),  Animal Distance towards another animal (ADTA), Animal Familiarity 

towards Object (AFTO),  and Animal Distance towards Objects (ADTO) (AFTO  and ADTO are the 

extensions of Archer’s model for robotic context), Escape Path Exists (EPE),  Positive Impact With 

Previous Experiences (PIWPE). All these input variables are mapped into fuzzy sets such as Low, Medium, 

or High, allowing flexible and context-sensitive reasoning. For example: 

If AFTP = Low AND AFTA = Low AND ADTA = Low, THEN FEAR = High. 

This rule reflects how low familiarity with surroundings and close proximity to others can elevate fear, 

triggering avoidance or defensive behaviours. The FSM continuously evaluates such rules in real time based 

on sensory data primarily from LIDAR and SLAM and adjusts behaviour accordingly. The resulting 
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architecture produces adaptive, biologically plausible behaviours that are computationally tractable and 

interpretable. It allows robots to exhibit complex emotional responses such as aggression or evasion not as 

static reactions, but as fluid, state-dependent strategies shaped by environmental context and internal 

appraisal. 

2.4  Experimental Setup and Behavioural Testing 

The proposed fuzzy behaviour-based control system was validated through simulation within the Robot 

Operating System (ROS) environment [16, 17]. The simulation utilized Gazebo for dynamic environment 

modelling and RViz for real-time visualization. Robotic agents were equipped with LIDAR sensors and 

integrated Simultaneous Localization and Mapping (SLAM) to facilitate environmental perception and  

accurate self-localization. Test scenarios involved navigation through varied environments, characterized 

by differing levels of threat, object familiarity, and obstacle density. Behavioural responses were governed 

by fuzzy-logic rules derived from ethological principles. For example: 

Escape Rule: If EPE is High and Fear is High, then Escape is High. 

Attack Rule: If AFTA is Low, and ADTA is Low, and EPE is Low, then Attack is High. 

Multi-agent scenarios were designed to test the system’s ability to manage complex social interactions. In 

one case, Robot_1 detected Robot_2 as a threat and initiated an escape response based on elevated fear 

levels. In another, Robot_2 interpreted Robot_1’s retreat as a threat, triggering an aggressive response. A 

third scenario introduced simultaneous exposure to a moving robot and an unfamiliar object, prompting 

Robot_1 to execute an emotionally modulated escape using fuzzy rule evaluation and Virtual Force Field 

(VFF) fusion. These experiments demonstrated the system’s capacity to generate adaptive, context-

sensitive behaviours in real time, in response to both animate and inanimate stimuli.  System performance 

was assessed using precision, recall, F1-score, and accuracy, confirming consistent and appropriate 

behavioural transitions. The smooth shifts between escape and attack behaviours highlighted the 

effectiveness of the fuzzy state machine in capturing naturalistic emotional dynamics.  

2.5  Data Collection Methods and Discoveries 

This research employed a hybrid data collection methodology combining simulation and real-world robotic 

testing to validate the proposed fuzzy behaviour-based control model. In simulation, the Fuzzy Behaviour 

Description Language (FBDL) [4] was used to def ine and implement fuzzy rules via publicly available 

libraries [18, 19]. Environmental inputs such as threat proximity, familiarity, and past experience were 

systematically varied. Robots equipped with LIDAR and SLAM generated real-time spatial data, which the 

fuzzy state machine processed to infer emotional states like fear, aggression, and escape. Behavioural 

outputs were visualized through state transition diagrams and trajectory plots, aiding iterative refinement 

of rules and membership functions.  
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The experimental design followed two complementary methodologies. The knowledge-based approach 

translated Archer’s ethological model into structured fuzzy rules, while the situated action approach 

emphasized adaptive behaviour in response to unanticipated environmental changes. This combination 

ensured both theoretical grounding and practical robustness. System performance was evaluated using 

standard classification metrics precision, recall, F1-score, confusion matrices, and accuracy demonstrating 

reliable, context-sensitive responses. The fuzzy rule base included approximately 36 interpretable, testable 

rules, each contributing to biologically plausible decision-making. 

A key finding is the natural compatibility between fuzzy logic and ethological models. Both accommodate 

uncertainty, gradation, and non-binary reasoning are essential for modelling emotional behaviour. Fuzzy 

logic effectively captured nuanced shifts in emotional states as functions of multiple situational variables. 

This interdisciplinary integration of ethology, robotics, and computational logic resulted in a behaviour 

control system that is adaptive, explainable, and scalable. The architecture supports extensions to more 

complex emotions and multi-agent interactions, offering a viable path toward socially intelligent, 

emotionally responsive robots for dynamic real-world environments. 

 

Part 3: Scientific Results 

3.1 Fuzzy Rule-Base, Graphical Representation, and Trajectory Implementation for the 

Aggression Model 

3.1.1 Fuzzy Behaviour-Based Modeling for Aggression Behaviour Using FBDL 

To implement fuzzy behavioural modelling for aggression, Fuzzy Behaviour Description Language 

(FBDL) [4] is employed. FBDL is a rule-based modelling language that incorporates fuzzy rule systems 

and Fuzzy Rule Interpolation (FRI) [15] [20], enabling the construction and coordination of behavioural 

components in a transparent, human-readable format. This approach ensures interpretability of rule-based 

knowledge representation. The fuzzification process uses linguistic variables defined as fuzzy sets over 

continuous universes, enhancing computational flexibility and semantic clarity. The model supports both 

numerical simulations and integration with machine learning algorithms for optimization using real-world 

data [Aaqib2]. The FBDL definition of the input and state variable universes are: 

universe “Universe label” 
  “low” 0 0 
  “high” 1 1 
end 

For example, the input universe AFTP in FBDL can be defined as:  
universe “AFTP” 
description “Level of the Animal Familiarity towards Place.” 
     “low” 0 0 
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     “high” 1 1 
end 

Here, AFTP represents the input variable describing animal familiarity with the place. Fuzzy rules can then 

be defined using linguistic terms like Low and High. 

In FBDL format a fuzzy rule expressing Low Fear (when the animal is highly familiar with the place, 

animal, and object) is presented as: 

Rule “Low” When “AFTP” is “High” And “AFTA” is “High” And “AFTO” is “High” end 

whereas the AFTP, AFTA, and AFTO are antecedent universes. FEAR is the consequent universe, Low 

and High are fuzzy linguistic terms in the corresponding universes. 

3.1.2 Construction of Fuzzy Rule for Ethological Aggression Behaviour 

The fuzzy rule bases model key affective states are FEAR, ESCAPE, ATTACK, and IMMOBILITY under 

conditions such as: AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, these scenarios correspond to real 

ethological triggers, like territorial invasion, predator-prey dynamics, and approach-avoidance conflicts 

[Aaqib1, Aaqib2]. 

The FEAR rule-base in FBDL format appears as: 
RuleBase “FEAR” 
   Rule High when “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end 
   Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end 
   Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end 
   Rule High when “AFTP” is Low and “EPE” is Low and “PIWPE” is Low end 
   Rule Low when “AFTP” is High and “AFTA” is High and “AFTO” is High end 
   Rule Low when “AFTA” is High and “ADTA” is High and “EPE” is High end 
   Rule Low when “AFTP” is High and “AFTA” is High and “EPE” is High and “PIWPE” is High end 

end 
where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE are the antecedent universes. FEAR is the 

consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes. 

The ESCAPE rule-base in FBDL format  
Rule base “ESCAPE” 
   Rule High when “EPE” is High and “FEAR” is High end 
   Rule High when “EPE” is High and “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end 
   Rule High when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low end 
   Rule High when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end 
   Rule High when “EPE” is High and “AFTP” is Low and “ADTA” is High and “ADTO” is High and 
“PIWPE” is Low end 
   Rule Low when “FEAR” is Low and “EPE” is Low end 
   Rule Low when “FEAR” is Low and “PIWPE” is High end 
   Rule Low when “AFTA” is High and “AFTO” is High and “AFTP” is High and “PIWPE” is High end 
   Rule Low when “AFTA” is High and “ADTA” is High and “PIWPE” is High and “EPE” is Low end 
   Rule Low when “AFTO” is High and “ADTO” is High and “PIWPE” is High and “EPE” is Low end 
end 
whereas AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR are the antecedent universes, ESCAPE 

is the consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes 

The ATTACK rule-base in FBDL format  
rulebase “ATTACK” 
   Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end 
   Rule  High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end 
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   Rule High when “AFTP” is Low and “ADTA” is Low and “ADTO” is Low and “EPE” is Low end 
   Rule  High when “FEAR” is High and “EPE” is Low end 
   Rule  High when “AFTP” is High and “AFTA” is High and “PIWPE” is High end 
   Rule  High when “AFTP” is High and “AFTO” is High and “PIWPE” is High end 
   Rule  Low when “EPE” is High and “FEAR” is High end 
   Rule  Low when “EPE” is High and “AFTP” is Low and “ADTA” is High end 
   Rule  Low when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low and 
“ADTO” is High end 
   Rule  Low when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end 
   Rule  Low when “AFTA” is Low and “AFTP” is Low and “AFTO” is Low and “EPE” is High end 
end 
The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR. The consequent 

universe is ATTACK, and Low and High are fuzzy linguistic terms in the corresponding universes. 

Similarly in the same way Immobility  rulebase in FBDL is described. 

3.1.3 Graphical Representation of Behavioural Dynamics 

The figures 3(a)-(d) presents the Graphical representation of Aggression behaviours [Aaqib2]. Simulations 

were run by varying key inputs such as ADTA (Animal Distance Towards Another) and EPE (Escape Path 

Exists), with all other parameters held constant. The output behaviours were visualized graphically: Figure 

3(a): Fear increases with decreasing distance and no escape. Figure 3(b): Attack peaks under threat 

proximity with no EPE. Figure 3(c): Escape is high when unfamiliarity and EPE coexist. Figure 3(d): 

Immobility dominates when both escape and attack are infeasible.  

 

Figure 3 (a). Level of Fear Behaviour                               Figure 3 (b). Level of Attack Behaviour 
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        Figure 3 (c). Level of Escape Behaviour                                    Figure 3 (d). Level of Immobility Behaviour  

Figure 3 (a), (b), (c), (d). Graphical Representation of Behaviours 

3.1.4 Escape Behaviour Trajectory Simulation 

Algorithm 1: Fuzzy Logic-Based Escape Behaviour for Robots 
Input: 
    Robot_1_Start ← (0.5, 0.5) 
    Robot_2_Start ← (6, 6) 
    Parameters ← {ADTA, FEAR, EPE} 
    Threshold_Distance ← D  (Critical distance for fear increase) 
Initialize: 
    Set Robot_1 fear_level ← LOW 
    Set Robot_2 familiarity_level ← HIGH 
    Move Robot_1 toward Robot_2_Start 
    Move Robot_2 toward Robot_1_Start 
While Robot_1 and Robot_2 are moving: 
    CD ← ComputeDistance(Robot_1.position, Robot_2.position) 
    FEAR ← EvaluateFuzzyLogic(ADTA, FEAR, CD) 
    If CD ≤ Threshold_Distance: 
        Increase Robot_1 fear_level 
        If EPE exists: 
            TriggerEscape(Robot_1)    
        Else: 
            ContinueMovement(Robot_1) 
    SynchronizeBehaviour(Robot_1, Robot_2) 
    If CD increases: 
        Decrease Robot_1 fear_level 
        SetTrajectoryColor(Robot_1, BLUE)  
EndCondition: 
    If Robot_2 reaches near Robot_1_Start location and Robot_1 escaped successfully:  
        StopSimulation() 
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        LogBehaviourData() 
Output: 
    - Robot_1 trajectory: BLUE → RED → BLUE 
    - Adaptive escape response recorded 
    - Simulated natural escape behaviour in robotics 

 
Figure 4. Trajectories for Escape Behaviour, where colours of the paths are representing the level of the “Fear”  

[Aaqib2] 

3.1.5 Attack Behaviour Trajectory Simulation  

Algorithm 2: Fuzzy Logic-Based Attack Behaviour for Robots  
Input: 
    Robot_1_Start ← (1, 1) 
    Robot_2_Start ← (5.5, 5.5) 
    Parameters ← {ADTA, FEAR, AFTP, AFTA} 
    Threshold_Distance ← D (Critical distance for aggression increase) 
Initialize: 
    Set Robot_1 aggression_level ← LOW (BLUE) 
    Set Robot_2 fear_level ← NONE (GREEN) 
    Move Robot_1 toward near Robot_2_Start 
    Keep Robot_2 stationary initially 
While Robot_1 is moving: 
    CD ← ComputeDistance(Robot_1.position, Robot_2.position) 
    FuzzyParams ← EvaluateFuzzyLogic(ADTA, AFTP, AFTA, FEAR, CD) 
    If CD ≤ Threshold_Distance: 
        Increase Robot_1 aggression_level 
        SetTrajectoryColor(Robot_1, RED) 
        Increase Robot_2 fear_level 
        SetTrajectoryColor(Robot_2, ORANGE) 
        Robot_2 evades position to avoid damage 
    If CD increases again: 
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        Decrease Robot_1 aggression_level 
        SetTrajectoryColor(Robot_1, BLUE) 
        Decrease Robot_2 fear_level 
        SetTrajectoryColor(Robot_2, GREEN) 
EndCondition: 
    If Robot_1 presents Aggression successfully: 
        StopSimulation() 
        LogBehaviourData() 
Output: 
    - Robot_1 trajectory: BLUE → RED 
    - Robot_2 trajectory: GREEN → ORANGE → GREEN 
    - Adaptive attack behaviour recorded 
    - Simulated animal-like attack behaviour in robotics  

 
Figure 5. Trajectories for Attack Behaviour, where colours of the paths represent the level of the 

“Attack” [Aaqib2] 

3.2 Implementing Aggressive Behaviour in ROS robotic environment 

Biologically inspired robotic behaviours can be effectively developed using two complementary 

methodologies: Knowledge-Based Ethological Design and Situated Action-Based Behaviour Design 

[Aaqib1, Aaqib2, Aaqib3]. Both aim to emulate animal-like responses by integrating principles from 

ethology with real-time environmental interactions. The ethological approach draws on observed animal 

behaviours, mapping them onto robotic sensorimotor systems through an iterative  process of simulation 

and refinement. This allows robots to replicate complex behaviours such as territorial defence or predator-

prey interactions [21, 22, 23, 24, 25]. In contrast, the situated action-based method emphasizes real-time 

responsiveness by decomposing dynamic environments into discrete “situations,” each associated with 

specific behavioural responses. Robots interpret live sensory input and select appropriate actions using 
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hierarchical control. Together, these methods enable context-sensitive, adaptive behaviours that are both 

biologically grounded and operationally robust. 

3.2.1 System Architecture and ROS Implementation 

A modular control architecture was developed in ROS [16, 17] to implement biologically inspired 

behaviours such as escape and attack. The system comprises four layers: Perception, Behaviour Evaluation, 

Fuzzy Inference, and Motion Execution. The Perception Layer uses LIDAR, SLAM, and vision sensors to 

collect real-time data and extract environmental variables such as AFTA, AFTP, ADTA, EPE, and PIWPE, 

which form the basis for behavioural decision-making. These inputs are processed in the Behaviour 

Evaluation Layer, where raw sensor data is converted into fuzzy linguistic terms for semantic interpretation. 

This layer also incorporates behavioural memory by computing historical metrics that influence current 

threat perception. At the core, the Fuzzy Inference Engine applies ethologically inspired rules using the 

Fuzzy Behaviour Description Language. It supports fuzzy rule interpolation, coordination of multiple rule 

bases (e.g., Escape, Attack, Immobility), and supervisory logic to manage behaviour transitions based on 

confidence levels. For example, a combination of high fear and high EPE triggers an escape response. The 

Motion Execution Layer translates behaviour outputs into physical actions using ROS navigation tools: 

escape behaviour increases distance from threats, while attack behaviour decreases it. Paths are visualized 

in RViz with colour-coded states and executed via motor control through topics such as /scan, /map, 

/fuzzy_inputs, and /cmd_vel. A central controller node synchronizes all layers, ensuring coordinated and 

adaptive multi-agent behaviour [Aaqib4, Aaqib5]. 

Escape behaviour was validated in a ROS-based simulation (Figures 6(a)-6(e)) featuring two autonomous 

robots navigating an obstacle-filled environment. Robot_1, governed by fuzzy logic, continuously assessed 

threats using LIDAR and proximity sensors [Aaqib2]. When Robot_2 was detected and fear exceeded a 

threshold while an escape path was available, Robot_1 performed an adaptive maneuver demonstrating 

biologically inspired, fear-driven behaviour. The simulation begins with both robots at rest (Figure 6(a)); 

as they move toward each other (Figure 6(b)), their trajectories adapt according to their internal behavioural 

models. LIDAR continuously updates proximity and environmental features, while behaviour fusion 

integrates trajectory analysis, object proximity, and movement direction to shape Robot_1’s responses.  

Upon detecting Robot_2 (Figure 6(c)), Robot_1 evaluates the situation using its fuzzy rule-based system, 

factoring in familiarity (AFTA), environmental knowledge (AFTP), relative distance (ADTA), and escape 

path availability (EPE). If the fear level is high and EPE is high, the arbitration module triggers an escape 

maneuver (Figure 6(d)), coordinating perception and motor control for a seamless transition.  
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Figure 6 (a). Initial Position of Robots.                                  Figure 6(b). Movement Stage. 

        
       Figure 6(c). Robot Detection and Fear Assessment.              Figure 6(d). Robot_1's Escaping 

Finally, Figure 6(e) shows Robot_1 successfully distancing itself from Robot_2 and exiting the threat zone. 

This demonstrates the effective integration of fuzzy logic, behaviour coordination, and fusion mechanisms, 

resulting in realistic, context-sensitive escape behaviour that closely mirrors biological adaptability. The 
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simulation confirms the viability of fuzzy behavioural models for embedding adaptive, ethologically 

inspired behaviours in autonomous robotics. 

 
Figure 6(e). Robot_1 successfully escapes, illustrating the effective use of fuzzy logic, behaviour coordination, and 

fusion. 

Similarly, attack behaviour simulation was tested in a same way and in attack scenario Robot_1 was tasked 

with approaching Robot_2 in a confined space [Aaqib2]. Triggered by low fear and close proximity, 

Robot_1 initiated aggression based on fuzzy rules. In response, Robot_2 retreated, evaluating the threat 

level in real time. This interaction successfully replicated predator-prey dynamics, validating the fuzzy 

system’s ability to produce synchronised and lifelike aggression in autonomous agents.  

3.2.2 Escape and Attack Behaviour Classification Metrics 

Figures 7(a)-(b) present the classification performance of the proposed fuzzy logic-based behaviour 

modelling framework in autonomous robots. The evaluation measures the system’s ability to classify 

context-sensitive behaviours specifically Escape and Attack under dynamic and uncertain conditions. 

Metrics such as accuracy, precision, recall, and F1-score were calculated from approximately 50 ROS-

based simulation trials, which varied in threat proximity, obstacle layout, robot speed, and environmental 

familiarity. 

To assess practical effectiveness, the fuzzy controller was benchmarked against a traditional reactive 

controller [13, 14, 26, 27, 28]. Key performance indicators included task completion time, collision count, 

behaviour-switching latency, and classification accuracy, as shown in Table 1. Additionally, Table 2 offers 

a conceptual comparison between the fuzzy ethological model and established architectures like 
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Subsumption, BDI, and Neuro-Fuzzy Systems, highlighting the proposed framework’s strengths in 

emotional modelling, biological plausibility, and interpretability. 

Figure 7(a). Escape Behaviour                                       Figure 7(b). Attack Behaviour 

Metric Fuzzy Behaviour Based System  Baseline System (Reactive) 

Task Completion Time (sec) 49.6 ± 3.5 58.3 ± 5.7 

Number of Collisions 2.5 ± 1.5 3.9 ± 1.1 

Behaviour Switching Latency (ms) 390 ± 50 420 ± 52 

Behaviour Classification Accuracy 

Escape 

Attack 

 

0.85 

0.82 

 

0.75 

0.75 

F1-Score  

Escape 

Attack 

 

0.77 

0.72 

 

0.70 

0.70 

Table 1. Fuzzy Behaviour Based Vs Baseline Controller 

Aspect 
Subsumption 

Architecture 
BDI Models 

Neuro-Fuzzy 

Systems 

Proposed Fuzzy 

Ethological 

System 

Behaviour 

Coordination 

Layered 

suppression; 

limited 

adaptability 

Symbolic 

reasoning for 

action selection 

Adaptable rules 

via training; often 

opaque 

Fuzzy rules enable 

blended, graded 

responses 

Emotional 

Modeling 
Not supported 

Indirect and 

abstract 

Implicit if trained; 

not interpretable 

Direct 

representation of 

emotions (fear, 

aggression) 

Environmental 

Reactivity 

High but rigid 

(binary 

suppression) 

Low in dynamic 

environments; 

high in planned 

domains 

Reactive but can 

lack 

interpretability 

High; real-time 

fuzzy inference 

based on sensor 

inputs 

Real-Time 

Adaptability 

Good, but fixed 

hierarchy 

Poor due to high 

computational cost 

Moderate; depends 

on training 

generalization 

High; rule-based, 

interpretable, 

biologically 

grounded 
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Interpretability Moderate 
High (symbolic), 

but often abstract 
Low ("black box") 

High; rules are 

biologically and 

ethologically 

grounded 

Training Data 

Needs 
None Not data-driven 

Require large 

datasets 

Rule-based; no 

training required 

Table 2. Comparison of Traditional and Fuzzy Ethological Control Systems. 

3.3 Fuzzy Behaviour-Based Control Framework with Virtual Force Field 

This work presents a hybrid robotic control framework that enables lifelike, adaptive, and context-aware 

navigation in real time, particularly within unstructured and dynamic environments. Inspired by animal 

behaviours such as fear and escape, the system integrates a fuzzy behaviour model with the VFF method to 

simulate emotion-modulated decision-making. Unlike conventional VFF implementations, which operate 

independently, this approach uses VFF as a behaviour fusion mechanism guided by internal emotional s tates 

derived from environmental cues like obstacle proximity and agent familiarity. Fuzzy inference assigns 

context-sensitive weights to competing behaviours such as obstacle avoidance, goal pursuit, and escape 

which are blended to produce smooth and reactive motion.  

3.3.1 Fuzzy Behaviour Fusion 

Fuzzy behaviour fusion involves integrating multiple behavioural outputs into a coherent response based 

on real-time context [29, 30, 31]. In this model, the Behaviour Coordination module uses fuzzy inference 

to assign relevance weights to each behaviour, allowing them to contribute proportionally to the final 

decision. Each behaviour generates a directional motion vector, and the Fusion Module integrates them by 

computing a net force vector. This biologically inspired method mimics how animals adaptively weigh 

multiple action tendencies depending on internal states and situational cues. For example, when threats are 

detected, escape behaviour receives higher weight, intensifying repulsive forces to guide the robot away 

from danger [32, 33] 

3.3.2 Virtual Force Field Navigation 

Virtual Force Field (VFF) navigation is a reactive control strategy where virtual attractive forces pull the 

robot toward its goal, and repulsive forces push it away from obstacles. By continuously calculating a net 

force vector, the robot dynamically adjusts its path in real-time [34, 35, 36]. Although VFF is efficient and 

simple, it suffers from issues like local minima and decision conflicts in complex environments. To address 

these limitations, this work embeds VFF as the fusion engine within a fuzzy behaviour-based framework 

[Aaqib5, Aaqib6]. Here, the repulsive and attractive forces are not treated equally but are scaled by fuzzy-

assigned weights. For example, if the robot detects a threat, the Escape behaviour’s weight increases, 

intensifying the repulsive force and adjusting the motion vector accordingly. This hybrid approach 
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improves adaptability and decision accuracy [37, 38, 39, 40]. To quantify the influence of repulsive forces 

on the robot’s motion, the system applies the mathematical model defined in Equation (1):  

F (𝑖, 𝑗) = 
FcrC(i,j)

d2 (i,j)
 [

𝑥𝑖 −𝑥0

d(i,j)
 𝑥̂  +  

𝑦𝑖 −𝑦0

d(i,j)
 𝑦̂]                  (1) 

The mathematical model calculates repulsive forces based on obstacle proximity and certainty (Equation 

1), summing them to produce a total repulsive force Fr shown in equation (2). 

𝐹𝑟 = ∑I, j 𝐹 (𝑖, 𝑗)                                 (2) 

3.3.3 Construction of Fuzzy Rule and Trajectory Implementation for Fuzzy Behaviour Based Control 

Framewok with Virtual Force Field Navigation  

The hybrid control framework replicates biologically grounded behaviours, such as fear-driven escape, by 

combining fuzzy inference with VFF navigation in a modular architecture. It comprises three components: 

Behaviour Coordination, which uses fuzzy rules to evaluate environmental inputs and assign weights to 

behaviours like Goal Pursuit, Obstacle Avoidance, and Escape; Component Behaviours, which 

independently propose motion vectors; and Behaviour Fusion, where VFF combines these vectors using 

attractive and repulsive forces scaled by fuzzy-assigned weights. Unlike traditional VFF, this system adapts 

to internal emotional states such as Fear, which increases the influence of Escape behaviour in threatening 

contexts. The fuzzy system operates on observations (e.g., AFTP, AFTA, ADTA, AFTO, ADTO, EPE) and 

state variables (Fear, Escape), with inputs classified as High or Low and interpreted through FBDL rules 

as detailed in Section 3.1.1 [Aaqib1, Aaqib2].  

Figure 8 illustrates a trajectory representation where Robot_1, assigned a goal at coordinates (5.5, 5.5), 

adapts its path in real time to avoid a moving threat such as a Robot_2 and a dynamic obstacle. As it 

progresses, Robot_1 continuously monitors environmental inputs such as proximity (ADTA), familiarity 

(AFTA, AFTO), and escape path availability (EPE). These inputs are processed by the fuzzy inference 

system to evaluate internal emotional states specifically Fear and Escape which dynamically influence 

behavioural priorities. The VFF-based fusion module then computes a motion vector by blending attractive 

forces toward the goal with repulsive forces from threats, each scaled according to its fuzzy -assigned 

weight. This results in a smooth, context-sensitive trajectory that enables the robot to navigate safely while 

exhibiting lifelike, emotionally modulated behaviour based on ethological principles  [Aaqib7]. 

The Trajectory adaptation process works as:  

Input evaluation: The system continuously monitors sensor inputs like ADTA, AFTA, AFTO, EPE.  

Behaviour weighting: The fuzzy coordination module assigns weights based on rules (e.g., If ADTA=Low 

AND AFTA=Low AND EPE=High, then ESCAPE=High). 
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Force computation: Repulsive forces (from threats/obstacles, equation 3). Attractive forces (towards goal, 

equation 4). 

Xcr  =  - Fcr (
𝑋𝑖−𝑋0

√(𝑋𝑖−𝑋0)2 +(𝑌𝑖 −𝑌𝑜)2
) ,      Ycr  =  - Fcr(

𝑌𝑖 −𝑌0

√(𝑋𝑖−𝑋0)2 +(𝑌𝑖 −𝑌𝑜)2
)          (3) 

Xca  =  Fa (
𝐻𝑥−𝑋0

√(𝐻𝑥−𝑋0)2 +(𝐻𝑦−𝑌0)2 
) ,     Yca  =  Fa (

𝐻𝑦−𝑌0

√(𝐻𝑥−𝑋0)2 +(𝐻𝑦−𝑌0)2 
)         (4) 

The final motion vector becomes a weighted sum: 

𝐹result =  𝐹attractive +  𝐹repulsive ∗ μFEAR           (5)       

 

Figure 8. Represents the Trajectories for Animal Escape behaviour 

3.3.4 ROS Simulation Environment and Classification Metrics Evaluation 

The proposed hybrid control framework was evaluated in a ROS-based simulation environment. This 

architecture integrates real-time fuzzy logic reasoning with reactive force-based motion planning, enabling 

adaptive, context-aware navigation. Key ROS tools include RViz for visualizing sensor data and 

trajectories, Gazebo for realistic 3D simulation, and LIDAR for accurate obstacle detection. SLAM 

(gmapping) supports map building and localization, critical in GPS-denied environments. SLAM data 

informs both the Fuzzy Coordination Moduleassessing proximity, familiarity, and escape path availability 

to determine emotional states such as fear and the VFF Module, which computes attractive and repulsive 

forces. These forces are weighted by fuzzy logic to generate a motion vector for real-time, biologically 

inspired trajectory adaptation [Aaqib7]. 

The test scenario involves two robots navigating a bounded environment with static and dynamic obstacles 

(Figures 9(a)-9(e)). Robot_1 has assigned a goal, while navigating it may get interrupted by Robot_2 (a 

moving threat) as well as unexpected objects. In the initial stage (Figure 9(a)), both robots are positioned 



 

21 

 

in the environment. As Robot_1 moves toward its target (Figure 9(b)), Robot_2 explores the space, 

increasing the chance of encounter. LIDAR detection of Robot_2 (Figure 9(c)), combined with 

unfamiliarity and decreasing distance, raises Robot_1’s fear level. The fuzzy coordination system classifies 

the escape level as high, meeting the triggering conditions: (i) high fear, (ii) close proximity (ADTA = low), 

and (iii) a clear escape path (EPE = high). VFF supports this response by amplifying the repulsive force 

vector and temporarily reducing goal attraction. 

     

                Figure 9(a) Initial stage of robots                Figure 9(b) Robot_1 starts to move towards its goal. 

     

    Figure 9(c) Robot_1 detects Robot_2.                       Figure 9(d) Object Detection by Robot_1. 

The hybrid model operates in three coordinated stages: Behaviour Components (discrete actions such as 

ESCAPE or GOAL PURSUIT), Behaviour Coordination (fuzzy inference assigning behaviour weights 
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based on fear level, familiarity, and obstacle proximity), and Behaviour Fusion (VFF merging weighted 

behaviours into a single unified force vector). This structure ensures smooth transitions and continuous 

adaptation to environmental stimulus. For example, in Figure 9(d), after evading Robot_2, Robot_1 

encounters a new unknown object. Reduced distance (ADTO = low) again triggers ESCAPE, with VFF 

recalculating repulsive forces and suppressing goal attraction until the danger subsides. Once clear, the 

fuzzy controller restores goal attraction, guiding Robot_1 to its destination. Figure 9(e) shows the successful 

completion of the mission despite dynamic and unpredictable challenges. These results demonstrate the 

system’s robustness, with VFF providing continuous low-level control and the fuzzy fusion system 

modulating actions based on internal states such as fear. By embedding biologically inspired mechanisms 

like fear-driven escape into the control logic, the framework mimics naturalistic intelligence and achieves 

adaptive, interpretable navigation in complex environments. 

 

Figure 9(e) Robot_1 successfully achieved its goal.  

Classification Metrics: Figure 10 illustrates the classification performance of the proposed Fuzzy 

Behaviour-Based Control Framework integrated with VFF navigation. This hybrid architecture enhances 

decision-making by combining a biologically inspired fuzzy coordination layer which dynamically assigns 

behaviour weights based on real-time sensor inputs with the traditional VFF algorithm that computes 

attractive and repulsive forces. These vectors are scaled using fuzzy-modulated weights, producing 

emotion-aware, context-sensitive motion trajectories. Behaviour classification performance was evaluated 

across 25 ROS-based simulation trials using metrics such as accuracy, precision, recall, and F1-score. Trials 

featured dynamic conditions, including varied obstacle layouts, proximity, speed, and sensory variables 

(e.g., AFTA, ADTA, AFTO). Escape behaviour was governed by fuzzy rules in FBDL, which activated 

high-weight escape responses under high perceived threat and fear, producing reactive motion through 

fusion with VFF vector fields. 
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To assess practical effectiveness, the framework was benchmarked against a traditional VFF controller [41, 

42, 43], which, while effective in simple scenarios, suffers from limitations like local minima, oscillations, 

and lack of adaptability. Even enhanced variants such as behaviour-modulated VFF [34] fall short in terms 

of emotional modelling and decision transparency. The comparison, summarized in Table 3, used key 

performance indicators including task completion time, collision count, behaviour-switching latency, and 

escape classification accuracy. Results showed the fuzzy-VFF system outperformed the baseline across all 

metrics. Furthermore, Table 4 compares the proposed system with Subsumption Architecture, BDI Models, 

and Neuro-Fuzzy Systems [44, 45] emphasizing its unique integration of biological plausibility, emotional 

dynamics, and real-time adaptive control, effectively bridging reactive and deliberative strategies [46]. 

 

Figure 10. Hybrid Model Classification Metrics 

Metric Fuzzy Behaviour-Based VFF Baseline Reactive Controller 

Task Completion Time (sec) 43.6 ± 3.5 50.3 ± 5.7 

Number of Collisions 2.3 ± 1.5 3.2 ± 1.1 

Behaviour Switching Latency(ms) 370 ± 35 400 ± 45  

Escape Classification Accuracy 0.86 0.75 

Table 5. Comparison of Fuzzy Behaviour-Based VFF with Traditional Reactive Controller 

Aspect 
Subsumption 

Architecture 
BDI Models 

Neuro-Fuzzy 

Systems 

Proposed Fuzzy 

Ethological VFF 

Behaviour 

Coordination 

Hierarchical 

suppression 
Symbolic reasoning 

Learned rules, 

opaque 

Fuzzy rule-based, 

emotion-weighted 

fusion 

Emotional 

Modeling 
Not supported 

Indirect and 

abstract 

Implicit, hard to 

trace 

Directly modeled 

(e.g., fear, 

aggression) 

Environmental 

Adaptability 

Binary, high 

reactivity 

Low in dynamic 

domains 

Medium (data-

dependent) 

High (contextual 

and sensor-

integrated) 

Real-Time 

Adaptation 

Moderate (fixed 

hierarchy) 

Poor (high 

computational) 
Moderate 

High (interpretable 

and grounded) 
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Interpretability Moderate High but abstract Low ("black box") 
High (transparent 

fuzzy rules) 

Training Data 

Requirements 
None Not required 

Require large 

datasets 
Not required 

Obstacle 

Navigation 

Robustness 

Prone to local 

minima 
Planning-based 

Sensitive to 

training bias 

Emotionally 

weighted obstacle 

avoidance 

Table 6. Comparison of Traditional vs Proposed Fuzzy Behaviour-Based VFF Navigation. 

 

Part 4: Conclusion, Future Work, and Publications 

4.1. Conclusion  

4.1.1 Thesis I: Ethologically inspired Fuzzy Behaviour model of the Archer’s “Aggression and fear 

in vertebrates” ethological model 

Statement: This thesis proposes a novel framework that translates Archer’s ethological model of 

aggression and fear in vertebrates into a computationally interpretable and machine -executable 

architecture using the “Fuzzy Behaviour Description Language”, [Aaqib1, Aaqib2]. 

Concept: The model utilizes Fuzzy Behaviour Description Language to convert qualitative ethological 

insights into structured, interpretable fuzzy rules, enabling the modelling of emotional states such as fear, 

aggression, and escape. 

Explanation and Proof: Animal behaviours are encoded through rule-based inference systems that 

respond to factors such as environmental familiarity, threat proximity, and prior experience. Simulated 

behavioural trajectories show that fuzzy controllers enable context-sensitive transitions, replicating 

biologically plausible emotional dynamics. This framework bridges ethology and robotics, offering real-

time, adaptive, and interpretable emotional control suitable for therapeutic robotics and human-robot 

interaction. 

4.1.2 Thesis II: Implementing Fuzzy State Machine for Behaviour control in robotic environment 

Statement: This thesis presents a novel implementation of Archer’s ethological model of aggression and 

fear into autonomous robotic systems through a fuzzy state machine architecture , [Aaqib1- Aaqib5]. 

Concept: The fuzzy state machine incorporates both latent and observable states (e.g., Fear, Attack, Escape, 

Immobility), with transitions governed by fuzzy logic rules informed by continuous sensor inputs and 

internal emotional appraisals. 

Explanation and Proof: Developed in the  Robot Operating System (ROS) and integrated with SLAM and 

LIDAR, the system dynamically evaluates threat and familiarity to trigger appropriate behaviour. 

Controlled experiments show accurate and lifelike transitions between states, verified using classification 
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metrics such as precision, recall, and F1-score. The FSM ensures robustness, transparency, and scalability 

for emotionally informed control in applications like search-and-rescue and social robotics. 

4.1.3 Thesis III: Fuzzy Behaviour Based Control Framewok with Virtual Force Field Navigation 

Statement: This thesis proposes a novel hybrid control framework that integrates Virtual Force Field 

(VFF) navigation with fuzzy behaviour coordination to embed Archer’s ethological model of aggression 

and fear into real-time robotic navigation, [Aaqib1-Aaqib7]  

Concept: The framework combines VFF's with fuzzy emotion-based modulation, enabling robots to adapt 

movement strategies in response to internal emotional states like fear intensity. This integration allows 

biologically inspired, context-sensitive behaviour modulation based on factors such as threat distance, 

environmental familiarity, and escape path feasibility. 

Explanation and Proof: Implemented in ROS with SLAM, LIDAR, and obstacle perception, the system 

adjusts navigational forces in real time e.g., high fear levels increase repulsive forces from nearby threats. 

Simulated scenarios demonstrate adaptive responses, such as escaping f rom multi-agent threats or 

exhibiting hesitant motion in unfamiliar terrain. The results validate the integration of affective reasoning 

with physical navigation, contributing to the development of emotionally and socially intelligent 

autonomous systems. 

4.2 Future Work 

This research opens several promising directions for advancing emotionally responsive robotics. First, 

extending the ethological model beyond fear and aggression to include behaviours such as nurturing, social 

bonding, and territoriality could enrich human-robot interaction (HRI) by enabling more complex social 

dynamics. Exploring behavioural parallels between humans, animals, and robots may also contribute to 

unified emotional frameworks that advance both robotics and behavioural science. Second, integrating 

machine learning techniques such as deep learning and reinforcement learning with fuzzy logic can enhance 

adaptability, allowing robots to learn from past experiences and perform effectively in uncertain 

environments. Hybrid architecture that combines symbolic reasoning with experiential learning could 

further broaden the capabilities of emotional robotics. Third, as robots increasingly display emotion-like 

behaviours, ethical and societal considerations must be addressed. Key concerns include emotional 

deception, user dependency, and moral agency; future work should focus on developing clear ethical 

guidelines to ensure emotionally intelligent robots act responsibly, particularly in sensitive applications. 

Finally, sentiment and behaviour analysis can be expanded through multimodal sensory integration (e.g., 

audio, vision, text), with advanced models that fuse these inputs alongside contextual reasoning. Such 

developments could improve emotional inference and enable richer, more natural interactions in domains 

such as caregiving, therapy, and collaborative robotics.  
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