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Preface

The development of intelligent machines capable of autonomous operation in complex, dynamic
environments has long been a central goal in artificial intelligence and robotics. While substantial progress
has been made in areas such as mechanical control, sensory perception, and cognitive reasoning, the
integration of affective, ethologically grounded behaviours remains relatively underexplored. This
dissertation addresses that gap by investigating how emotional constructs specifically fear, escape, and
attack, as conceptualized in ethology can be modelled computationally, expressed behaviourally, and

deployed operationally within autonomous robots.

Grounded in Archer’s ethological framework of aggression and fear in vertebrates, this research examines
how such adaptive responses can be translated into robotic behaviour that is both functionally intelligent
and socially interpretable. The central premise is that embedding emotional constructs into machine
behaviour enhances not only the realism and expressiveness of autonomous agents but also their ability to
interact safely, intuitively, and adaptively with humans and dynamic environments. The dissertation is
structured around three core contributions, each representing a step toward integrating Archer’s model into

artificial systems.

The first contribution introduces the Fuzzy Behaviour Description Language (FBDL) a novel, machine-
executable interpretation of Archer’s theory. It enables robots to generate interpretable, context-sensitive
emotional responses using fuzzy logic. The second contribution implements this framework in the Robot
Operating System (ROS), enabling real-time behavioural transitions through integration with LIDAR and
SLAM for perception and localization. This allows robots to fluidly modulate behaviours such as escape
and attack in dynamic scenarios. The third contribution presents a hybrid system that combines Virtual
Force Field (VFF) navigation with fuzzy emotion-based control, allowing robots to make graded decisions
based on continuous variables such as threat proximity, environmental familiarity, and internal emotional

states. This enhances their responsiveness and safety in human-centric and unpredictable settings.

Collectively, these contributions establish a novel framework for affective robotics, bridging behavioural
ethology, fuzzy logic, and autonomous navigation. The work advances the fields of artificial emotional
intelligence, socially aware robotics, and interpretable machine behaviour. I am deeply grateful to my
supervisor, collaborators, and all those who supported this interdisciplinary journey. [ hope this research
offers both theoretical insight and practical inspiration for the development of emotionally responsive

machines.



Part 1. Summary of the Research Task

1.1 Introduction

Autonomous robotsare increasingly deployedin dynamic and unpredictable environments where they must
engage in navigation, collaboration, and interaction with other agents including humans. While traditional
robotic control systems perform reliably in structured settings and deterministic tasks such as mapping and
trajectory planning, they often falter when operating in conditions marked by uncertainty, social
complexity, or ambiguous sensory inputs. One of the key limitations is their inability to exhibit adaptive,
context-aware behaviours similar to those found in biological organisms particularly those behaviours
modulated by emotions.

In biological system, emotional responses such as fear, aggression, or escape are not merely affective states
but evolved mechanisms that guide survival and adaptive decision-making. Ethology, the scientific study
of' animal behaviour, has shown that suchemotions arise through dynamicevaluations of threat, familiarity,
and past experience [1]. Embedding this kind of biologically meaningful behaviour in robots opens the
possibility for machines that are more responsive, interpretable, and socially attuned [2, 3].

Despite advancements in fieldslike cognitiverobotics and affective computing, the implementation of real-
time emotional responses grounded in biological theory remains a significant gap. Many robotic systems
model emotions as symbolic tags or rely on opaque statistical methods that lack transparency. What is
needed is a principled framework that integrates emotional processing into behavioural control, enabling
robots to respond to uncertainty with nuanced, naturalistic behaviours.

This research addresses thatneed by proposinga fuzzy logic-based control architecture inspired by Archer’s
ethological model of fear and aggression. It hypothesizes that using fuzzy inference to formalize emotional
constructs enables robots to reason with ambiguity, produce graded behavioural responses, and navigate
more intelligently in multi-agent settings. The work introduces a Fuzzy Behaviour Description Language
(FBDL) [4], implements fuzzy state transitions in the Robot Operating System (ROS), and integrates
emotional appraisal with Virtual Force Field (VFF) navigation. Collectively, these contributions create a
foundation for emotionally responsive robots that operate ethically and intuitively in real-world

environments.

1.2 Context and Motivation

The core motivation for this research stems from the ambition to build robots that behave not only through
mechanistic control but also through emotional intelligence that mirrors biological reasoning. Drawing
upon ethology, this study models fundamental emotional behaviours namely fear, escape, and aggression
as seen in animal responses to environmental threats [5]. These behaviours, when embedded in robots,

allow machines to act in ways that feel more natural and intuitive to human users. Fuzzy logic serves as the
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computational bridge for this modelling task. Unlike binary systems that enforce strict true/false
evaluations, fuzzy logic accommodates partial truths and ambiguity essential properties when dealing with
emotions and adaptive behaviour. Archer’s ethological theory of aggression and fear provides the
conceptual backbone, guiding the formulation of behavioural rules that respond to variables such as threat
distance, environmental familiarity, and escape feasibility.

The principal challenge lies in translating this biologically rich model into a machine -executable language
that enables real-time behavioural modulation. Through the creation of FBDL, fuzzy inference models, and
their integration into ROS, this work aims to bridge the gap between natural behaviour theory and practical

robotic implementation.

1.3 Objectives

The first objective of this research is to design and develop the Fuzzy Behaviour Description Language
(FBDL), a modular and human-readable language that enables researchers to encode behaviours such as
fear, escape, and aggression using fuzzy logic. By allowing the formalization of complex behavioural rules
in a declarative syntax, FBDL facilitates collaboration between robotics engineers and ethologists, thus
creating a shared framework for interdisciplinary development.

The second objective is to construct a fuzzy inference model grounded in Archer’s theory. This involves
defining fuzzy membership functions for key environmental variables such as the proximity to a threat,
familiarity with surroundings, and escape potential and designing a rule base to govern emotional state
transitions. The model must support smooth and graded behavioural shifts, such as transitioning from
escape to attack, and it is validated through systematic simulations and controlled experiments.

A third objective is to embed the fuzzy behavioural model into a robot control architecture built on the
Robot Operating System (ROS). Within this framework, a Fuzzy State Machine (FSM) processes real -time
sensory input from devices like LIDAR and SLAM and evaluates emotional states based on predefined
fuzzy rules. The FSM outputs behaviours such as escape or attack in real-time, ensuring the robot can
operate autonomously in unpredictable scenarios.

Finally, the work seeks to integrate the fuzzy behaviour controller with a Virtual Force Field (VFF)-based
navigation system. This hybrid architecture enables robots to adjust their motion plans not just based on
geometric constraints butalso oninternal affectivestates. For example, higher fearlevels increase repulsion
forces and lead to wider path deviations. This fusion of emotional state and path planning equips robots

with the capacity to act more fluidly and appropriately in complex environments.

1.4 Significance and Scope
This research contributes to the fields of affective robotics, fuzzy systems, and bio -inspired control by

introducing a computational framework that mirrors the emotional modulation found in animal behaviour

3



[5, 6,7, 8]. Situated at the intersection of ethology, fuzzy logic, autonomous systems, and VFF-based
motion planning, it presents a novel approach to developing context-sensitive, emotion-driven robotic
behaviour.

Its primary significance lies in enabling robots to exhibit graded and interpretable responses that reflect
biologically inspired emotional states. Such capabilities are increasingly crucial in domains requiring
human-robot interaction, adaptive navigation, or social collaboration. By grounding robotic behaviour in
validated biological models and pairing it with fuzzy logic reasoning, the system ensures both functional
adaptability and transparency.

The scope of the thesis is intentionally focused and practical: it models animal aggression behaviours using
fuzzy logic, implements them in a real-time robotic control framework, and validates the outcomes through
simulations and empirical tests. While it does not aim to model the full emotional spectrum or support all
application domains, it demonstrates the feasibility and value of integrating emotional intelligence into
autonomous robots. This lays the groundwork for future research into socially compatible and emotionally

aware machines.

Part 2: Methodology: Investigations and Experiments

This research presents an interdisciplinary methodology that integrates ethology, fuzzy logic, and robotics
to design emotionally responsive autonomous systems [Aaqib1-Aaqib7]. Atits core is Archer’s ethological
model of aggression and fear, which provides a biologically grounded template for modeling adaptive
behaviour in animals [5]. This model is computationally translated into a robotic control architecture using
fuzzy logic, enabling robots to simulate behaviours such as escape, attack, and immobility in response to
varying environmental stimuli. The Fuzzy Behaviour Description Language (FBDL) [4] was developed to
formalize these behaviour rules, making them interpretable, modular, and executable within robotic
platforms. The methodology encompasses theoretical modeling, software implementation, simulation-

based testing, and analysis of emergent multi-agent dynamics.

2.1 Ethological Foundations

Ethology, the study of animal behaviour, provides evolutionary models of adaptive responses such as fear,
escape, and aggression. Classical works by Tinbergen, Lorenz, and Archer have guided the abstraction of
behavioural hierarchies and motivational systems [5, 9, 10, 11]. These models were foundational for
constructing robotic behaviours that are reactive, context-aware, and biologically plausible.

This research adopts Archer’s model to simulate aggression and fear, focusing on how animals modulate

behaviour based on environmental familiarity, proximity to threats, and prior experience [5]. By abstracting



these principles, ethologically inspired control strategies were adapted for autonomous robots to support

socially intelligible interactions.

2.2 Fuzzy Behaviour-Based Systems

This system offers a powerful and flexible framework for implementing ethologically inspired behaviours
in autonomous robots [12, 13]. Fuzzy systems allow robots to interpret input data with flexibility and to
respond in a more adaptive, human-like manner. In the context of ethological robotics, fuzzy logic serves
as the computational layer that mediates between sensory inputs and emotional or instinctive responses. At
the core of these systems are fuzzy rule-based structures that encode expert knowledge through
IF[Condition] THEN|[Statements] rules. For example:

If AFTP = Low AND AFTA = Low AND ADTA = Low, THEN FEAR = High

Here, AFTP (Animal Familiarity Toward Place), AFTA (Animal Familiarity Toward Another), and ADTA
(Animal Distance Toward Another), together all these define a robot’s perceived emotional context. Fuzzy
Logic Controllers (FLCs) that encapsulate individual behaviours like attack, escape, or immobility;
Behaviour Arbitration, which manages conflicts between competing actions based on emotional appraisal
and sensory stimuli; and Behaviour Fusion, which integrates outputs to form a coherent control signal [14].
This architecture enables robots to make fluid, graded behavioural transitions that reflect the ambiguity and

dynamism of real-world scenarios. Figure 1 illustrates the logic of fuzzy behaviour system.
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Figure 1. The applied Fuzzy Behaviour-based System [15]

2.3 Modelling and Implementation of Aggression Behaviour
This study models aggressive behaviour in autonomous robots by translating Archer’s ethological theory
of fear and aggression into a fuzzy control architecture [5]. Archer’s model describes how animals evaluate

threats through a dynamic loop of internal states, environmental perception, and behavioural adaptation
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(figure 2). The process begins with the formation of expectations based on past experiences and current
internal conditions. When extemal stimuli such as another agent's movement or posture are detected, the
animal compares them against these expectations. A significant mismatch raises arousal levels and prompts
a behavioural choice: escape, attack, or immobility. Fear-dominant situations typically lead to escape if a
viable path is available. If escape is not feasible, the organism may resort to immobility or aggression,

depending on situational constraints.
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Figure 2. Archer organization model [5]
To translate this model into a robotic control system, a Fuzzy State Machine (FSM) is employed. The
system defines four key state variables: Attack, Escape, and Immobility as observable actions, and Fear as
ahidden state influencing transitions. Fearreflectsinternal physiological and emotional responses to threats
and often manifests through posture or movement. Attack denotes defensive or offensive action; Escape
refers to evasion; and Immobility is a passive survival response. Transitions amongthese states are govemed
by observational variables, including: Animal Familiarity towards Place (AFTP), Animal Familiarity
towards Another Animal (AFTA), Animal Distance towards another animal (ADTA), Animal Familiarity
towards Object (AFTO), and Animal Distance towards Objects (ADTO) (AFTO and ADTO are the
extensions of Archer’s model for robotic context), Escape Path Exists (EPE), Positive Impact With
Previous Experiences (PIWPE). All these input variablesare mappedinto fuzzy sets such as Low, Medium,
or High, allowing flexible and context-sensitive reasoning. For example:
If AFTP = Low AND AFTA = Low AND ADTA = Low, THEN FEAR = High.

This rule reflects how low familiarity with surroundings and close proximity to others can elevate fear,
triggering avoidance or defensive behaviours. The FSM continuously evaluates such rules in real time based

on sensory data primarily from LIDAR and SLAM and adjusts behaviour accordingly. The resulting



architecture produces adaptive, biologically plausible behaviours that are computationally tractable and
interpretable. It allows robots to exhibit complex emotional responses such as aggression or evasion not as
static reactions, but as fluid, state-dependent strategies shaped by environmental context and internal

appraisal.

2.4 Experimental Setup and Behavioural Testing

The proposed fuzzy behaviour-based control system was validated through simulation within the Robot
Operating System (ROS) environment [ 16, 17]. The simulation utilized Gazebo for dynamic environment
modelling and RViz for real-time visualization. Robotic agents were equipped with LIDAR sensors and
integrated Simultaneous Localization and Mapping (SLAM) to facilitate environmental perception and
accurate self-localization. Test scenarios involved navigation through varied environments, characterized
by differing levels of threat, object familiarity, and obstacle density. Behavioural responses were govermned
by fuzzy-logic rules derived from ethological principles. For example:

Escape Rule: If EPE is High and Fear is High, then Escape is High.
Attack Rule: If AFTA is Low, and ADTA is Low, and EPE is Low, then Attack is High.
Multi-agent scenarios were designed to test the system’s ability to manage complex social interactions. In

one case, Robot 1detected Robot 2 as a threat and initiated an escape response based on elevated fear
levels. In another, Robot_2 interpreted Robot 1’s retreat as a threat, triggering an aggressive response. A
third scenario introduced simultaneous exposure to a moving robot and an unfamiliar object, prompting
Robot 1 to execute an emotionally modulated escape using fuzzy rule evaluation and Virtual Force Field
(VFF) fusion. These experiments demonstrated the system’s capacity to generate adaptive, context-
sensitive behaviours in real time, in response to both animate and inanimate stimuli. System performance
was assessed using precision, recall, F1-score, and accuracy, confirming consistent and appropriate
behavioural transitions. The smooth shifts between escape and attack behaviours highlighted the

effectiveness of the fuzzy state machine in capturing naturalistic emotional dynamics.

2.5 Data Collection Methods and Discoveries

This research employed a hybrid data collection methodology combining simulation and real-world robotic
testing to validate the proposed fuzzy behaviour-based control model. In simulation, the Fuzzy Behaviour
Description Language (FBDL) [4] was used to define and implement fuzzy rules via publicly available
libraries [18, 19]. Environmental inputs such as threat proximity, familiarity, and past experience were
systematically varied. Robots equipped with LIDAR and SLAM generated real-time spatial data, which the
fuzzy state machine processed to infer emotional states like fear, aggression, and escape. Behavioural
outputs were visualized through state transition diagrams and trajectory plots, aiding iterative refinement

of rules and membership functions.



The experimental design followed two complementary methodologies. The knowledge-based approach
translated Archer’s ethological model into structured fuzzy rules, while the situated action approach
emphasized adaptive behaviour in response to unanticipated environmental changes. This combination
ensured both theoretical grounding and practical robustness. System performance was evaluated using
standard classification metrics precision, recall, F1 -score, confusion matrices, and accuracy demonstrating
reliable, context-sensitive responses. The fuzzy rule base included approximately 36 interpretable, testable
rules, each contributing to biologically plausible decision-making.

A key finding is the natural compatibility between fuzzy logic and ethological models. Both accommodate
uncertainty, gradation, and non-binary reasoning are essential for modelling emotional behaviour. Fuzzy
logic effectively captured nuanced shifts in emotional states as functions of multiple situational variables.
This interdisciplinary integration of ethology, robotics, and computational logic resulted in a behaviour
control system that is adaptive, explainable, and scalable. The architecture supports extensions to more
complex emotions and multi-agent interactions, offering a viable path toward socially intelligent,

emotionally responsive robots for dynamic real-world environments.

Part 3: Scientific Results
3.1 Fuzzy Rule-Base, Graphical Representation, and Trajectory Implementation for the

Aggression Model

3.1.1 Fuzzy Behaviour-Based Modeling for Aggression Behaviour Using FBDL

To implement fuzzy behavioural modelling for aggression, Fuzzy Behaviour Description Language
(FBDL) [4] is employed. FBDL is a rule-based modelling language that incorporates fuzzy rule systems
and Fuzzy Rule Interpolation (FRI) [15] [20], enabling the construction and coordination of behavioural
components in a transparent, human-readable format. This approach ensures interpretability of rule-based
knowledge representation. The fuzzification process uses linguistic variables defined as fuzzy sets over
continuous universes, enhancing computational flexibility and semantic clarity. The model supports both
numerical simulations and integration with machine learning algorithms for optimization using real-world
data [Aaqib2]. The FBDL definition of the input and state variable universes are:

universe “Universe label”
“low” 0 0
“high” 11
end
For example, the input universe AFTP in FBDL can be defined as:
universe “AFTP”
description “Level of the Animal Familiarity towards Place.”
“low” 00



“high” 11
end
Here, AFTP represents the input variable describing animal familiarity with the place. Fuzzy rules can then
be defined using linguistic terms like Low and High.
In FBDL format a fuzzy rule expressing Low Fear (when the animal is highly familiar with the place,
animal, and object) is presented as:
Rule “Low” When “AFTP” is “High” And “AFTA” is “High” And “AFTO” is “High” end
whereas the AFTP, AFTA, and AFTO are antecedent universes. FEAR is the consequent universe, Low
and High are fuzzy linguistic terms in the corresponding universes.

3.1.2 Construction of Fuzzy Rule for Ethological Aggression Behaviour

The fuzzy rule bases model key affective states are FEAR, ESCAPE, ATTACK, and IMMOBILITY under
conditions such as: AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, these scenarios correspond to real
ethological triggers, like territorial invasion, predator-prey dynamics, and approach-avoidance conflicts
[Aaqibl, Aaqib2].

The FEAR rule-base in FBDL format appears as:
RuleBase “FEAR”
Rule High when “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end
Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end
Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end
Rule High when “AFTP” is Low and “EPE” is Low and “PIWPE” is Low end
Rule Low when “AFTP” is High and “AFTA” is High and “AFTO” is High end
Rule Low when “AFTA” is High and “ADTA” is High and “EPE” is High end
Rule Low when “AFTP” is High and “AFTA” is High and “EPE” is High and “PIWPE” is High end
end
where AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE are the antecedent universes. FEAR is the
consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes.
The ESCAPE rule-base in FBDL format
Rule base “ESCAPE”
Rule High when “EPE” is High and “FEAR” is High end
Rule High when “EPE” is High and “AFTP” is Low and “AFTA” is Low and “AFTO” is Low end
Rule High when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low end
Rule High when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end
Rule High when “EPE” is High and “AFTP” is Low and “ADTA” is High and “ADTO” is High and
“PIWPE” is Low end
Rule Low when “FEAR” is Low and “EPE” is Low end
Rule Low when “FEAR” is Low and “PIWPE” is High end
Rule Low when “AFTA” is High and “AFTO” is High and “AFTP” is High and “PIWPE” is High end
Rule Low when “AFTA” is High and “ADTA” is High and “PIWPE” is High and “EPE” is Low end
Rule Low when “AFTO” is High and “ADTO” is High and “PIWPE” is High and “EPE” is Low end
end
whereas AFTP, AFTA, ADTA,AFTO, ADTO, EPE, PIWPE, FEAR are the antecedent universes, ESCAPE
is the consequent universe, Low and High are fuzzy linguistic terms in the corresponding universes

The ATTACK rule-base in FBDL format

rulebase “ATTACK”
Rule High when “AFTA” is Low and “ADTA” is Low and “EPE” is Low end
Rule High when “AFTO” is Low and “ADTO” is Low and “EPE” is Low end



Rule High when “AFTP” is Low and “ADTA” is Low and “ADTO” is Low and “EPE” is Low end

Rule High when “FEAR” is High and “EPE” is Low end

Rule High when “AFTP” is High and “AFTA” is High and “PIWPE” is High end

Rule High when “AFTP” is High and “AFTO” is High and “PIWPE” is High end

Rule Low when “EPE” is High and “FEAR” is High end

Rule Low when “EPE” is High and “AFTP” is Low and “ADTA” is High end

Rule Low when “EPE” is High and “AFTA” is Low and “ADTA” is High and “PIWPE” is Low and
“ADTO” is High end

Rule Low when “EPE” is High and “AFTO” is Low and “ADTO” is High and “PIWPE” is Low end

Rule Low when “AFTA” is Low and “AFTP” is Low and “AFTO” is Low and “EPE” is High end
end
The antecedent universes are AFTP, AFTA, ADTA, AFTO, ADTO, EPE, PIWPE, FEAR. The consequent
universe is ATTACK, and Low and High are fuzzy linguistic terms in the corresponding universes.

Similarly in the same way Immobility rulebase in FBDL is described.

3.1.3 Graphical Representation of Behavioural Dynamics

The figures 3(a)-(d) presents the Graphicalrepresentation of Aggression behaviours [ Aaqib2]. Simulations
were run by varying key inputs such as ADTA (Animal Distance Towards Another) and EPE (Escape Path
Exists), with all other parameters held constant. The output behaviours were visualized graphically: Figure
3(a): Fear increases with decreasing distance and no escape. Figure 3(b): Attack peaks under threat
proximity with no EPE. Figure 3(c): Escape is high when unfamiliarity and EPE coexist. Figure 3(d):

Immobility dominates when both escape and attack are infeasible.

Level of Fear
Level of Attack

11
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Figure 3 (a). Level of Fear Behaviour Figure 3 (b). Level of Attack Behaviour

10



Level of Immobility

Level of Escape
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Figure 3 (c). Level of Escape Behaviour Figure 3 (d). Level of Immobility Behaviour
Figure 3 (a), (b), (c), (d). Graphical Representation of Behaviours

3.1.4 Escape Behaviour Trajectory Simulation
Algorithm 1: Fuzzy Logic-Based Escape Behaviour for Robots

Input:
Robot 1 Start < (0.5, 0.5)
Robot 2 Start « (6, 6)
Parameters « {ADTA, FEAR, EPE}
Threshold Distance «— D (Critical distance for fear increase)

Initialize:
Set Robot 1 fear level < LOW
Set Robot 2 familiarity level «— HIGH
Move Robot 1 toward Robot 2 Start
Move Robot 2 toward Robot 1 Start
While Robot 1 and Robot 2 are moving:
CD « ComputeDistance(Robot_1.position, Robot_2.position)
FEAR « EvaluateFuzzylLogic(ADTA, FEAR, CD)

If CD < Threshold Distance:
Increase Robot 1 fear level
If EPE exists:
TriggerEscape(Robot 1)
Else:

ContinueMovement(Robot 1)
SynchronizeBehaviour(Robot 1, Robot 2)
If CD increases:

Decrease Robot 1 fear level
SetTrajectoryColor(Robot 1, BLUE)

EndCondition:
If Robot 2 reaches near Robot 1 Start location and Robot 1 escaped successfully:

StopSimulation()
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LogBehaviourData()
Output:
- Robot 1 trajectory: BLUE — RED — BLUE
- Adaptive escape response recorded
- Simulated natural escape behaviour in robotics

7
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Figure 4. Trajectories for Escape Behaviour, where colours of the paths are representing the level of the “Fear”

[Aaqib2]

3.1.5 Attack Behaviour Trajectory Simulation

Algorithm 2: Fuzzy Logic-Based Attack Behaviour for Robots
Input:
Robot 1 Start « (1, 1)
Robot 2 Start « (5.5, 5.5)
Parameters < {ADTA, FEAR, AFTP, AFTA}
Threshold Distance «<— D (Critical distance for aggression increase)
Initialize:
Set Robot 1 aggression level < LOW (BLUE)
Set Robot 2 fear level < NONE (GREEN)
Move Robot 1 toward near Robot 2 Start
Keep Robot 2 stationary initially
While Robot 1 is moving:
CD « ComputeDistance(Robot 1.position, Robot 2.position)
FuzzyParams «— EvaluateFuzzyLogic(ADTA, AFTP, AFTA, FEAR, CD)
If CD < Threshold Distance:
Increase Robot 1 aggression level
SetTrajectoryColor(Robot 1, RED)
Increase Robot 2 fear level
SetTrajectoryColor(Robot 2, ORANGE)
Robot 2 evades position to avoid damage
If CD increases again:
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Decrease Robot 1 aggression level
SetTrajectoryColor(Robot 1, BLUE)
Decrease Robot 2 fear level
SetTrajectoryColor(Robot 2, GREEN)
EndCondition:
If Robot 1 presents Aggression successfully:
StopSimulation()
LogBehaviourData()
Output:
- Robot 1 trajectory: BLUE — RED
- Robot 2 trajectory: GREEN — ORANGE — GREEN
- Adaptive attack behaviour recorded
- Simulated animal-like attack behaviour in robotics

7
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Figure 5. Trajectories for Attack Behaviour, where colours of the paths represent the level of the
“Attack” [Aaqib2]

3.2 Implementing Aggressive Behaviour in ROS robotic environment

Biologically inspired robotic behaviours can be effectively developed using two complementary
methodologies: Knowledge-Based Ethological Design and Situated Action-Based Behaviour Design
[Aaqibl, Aaqib2, Aaqib3]. Both aim to emulate animal-like responses by integrating principles from
ethology with real-time environmental interactions. The ethological approach draws on observed animal
behaviours, mapping them onto robotic sensorimotor systems through an iterative process of simulation
and refinement. This allows robots to replicate complex behaviours such as territorial defence or predator-
prey interactions [21, 22,23, 24, 25]. In contrast, the situated action-based method emphasizes real-time
responsiveness by decomposing dynamic environments into discrete “situations,” each associated with

specific behavioural responses. Robots interpret live sensory input and select appropriate actions using
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hierarchical control. Together, these methods enable context-sensitive, adaptive behaviours that are both

biologically grounded and operationally robust.

3.2.1 System Architecture and ROS Implementation

A modular control architecture was developed in ROS [16, 17] to implement biologically inspired
behaviourssuchas escape andattack. The system comprises four layers: Perception, Behaviour Evaluation,
Fuzzy Inference, and Motion Execution. The Perception Layer uses LIDAR, SLAM, and vision sensors to
collect real-time data and extract environmental variables such as AFTA, AFTP, ADTA, EPE, and PIWPE,
which form the basis for behavioural decision-making. These inputs are processed in the Behaviour
Evaluation Layer, where raw sensor datais converted into fuzzy linguistic terms for semantic interpretation.
This layer also incorporates behavioural memory by computing historical metrics that influence current
threat perception. At the core, the Fuzzy Inference Engine applies ethologically inspired rules using the
Fuzzy Behaviour Description Language. It supports fuzzy rule interpolation, coordination of multiple rule
bases (e.g., Escape, Attack, Immobility), and supervisory logic to manage behaviour transitions based on
confidence levels. For example, a combination of high fear and high EPE triggers an escape response. The
Motion Execution Layer translates behaviour outputs into physical actions using ROS navigation tools:
escape behaviour increases distance from threats, while attack behaviour decreases it. Paths are visualized
in RViz with colour-coded states and executed via motor control through topics such as /scan, /map,
/fuzzy inputs, and /cmd_vel. A central controller node synchronizes all layers, ensuring coordinated and
adaptive multi-agent behaviour [Aaqib4, Aaqib5].

Escape behaviour was validated in a ROS-based simulation (Figures 6(a)-6(¢e)) featuring two autonomous
robots navigating an obstacle-filled environment. Robot 1, governed by fuzzy logic, continuously assessed
threats using LIDAR and proximity sensors [Aaqib2]. When Robot 2 was detected and fear exceeded a
threshold while an escape path was available, Robot 1 performed an adaptive maneuver demonstrating
biologically inspired, fear-driven behaviour. The simulation begins with both robots at rest (Figure 6(a));
asthey move towardeachother (Figure 6(b)), their trajectories adaptaccording to their internal behavioural
models. LIDAR continuously updates proximity and environmental features, while behaviour fusion
integrates trajectory analysis, object proximity, and movement direction to shape Robot 1°s responses.
Upon detecting Robot 2 (Figure 6(c)), Robot 1 evaluates the situation using its fuzzy rule-based system,
factoring in familiarity (AFTA), environmental knowledge (AFTP), relative distance (ADTA), and escape
path availability (EPE). If the fear level is #igh and EPE is high, the arbitration module triggers an escape

maneuver (Figure 6(d)), coordinating perception and motor control for a seamless transition.
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Figure 6(d). Robot 1's Escaping

Finally, Figure 6(¢) shows Robot_1 successfully distancing itself from Robot 2 and exiting the threat zone.

This demonstrates the effective integration of fuzzy logic, behaviour coordination, and fusion mechanisms,

resulting in realistic, context-sensitive escape behaviour that closely mirrors biological adaptability. The
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simulation confirms the viability of fuzzy behavioural models for embedding adaptive, ethologically

inspired behaviours in autonomous robotics.
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Figure 6(e). Robot 1 successfully escapes, illustrating the effective use of fuzzy logic, behaviour coordination, and
fusion.

Similarly, attack behaviour simulation was tested in a same way and in attack scenario Robot 1 was tasked
with approaching Robot 2 in a confined space [Aaqib2]. Triggered by low fear and close proximity,
Robot 1 initiated aggression based on fuzzy rules. In response, Robot 2 retreated, evaluating the threat
level in real time. This interaction successfully replicated predator-prey dynamics, validating the fuzzy

system’s ability to produce synchronised and lifelike aggression in autonomous agents.

3.2.2 Escape and Attack Behaviour Classification Metrics

Figures 7(a)-(b) present the classification performance of the proposed fuzzy logic-based behaviour
modelling framework in autonomous robots. The evaluation measures the system’s ability to classify
context-sensitive behaviours specifically Escape and Attack under dynamic and uncertain conditions.
Metrics such as accuracy, precision, recall, and F1-score were calculated from approximately 50 ROS-
based simulation trials, which varied in threat proximity, obstacle layout, robot speed, and environmental
familiarity.

To assess practical effectiveness, the fuzzy controller was benchmarked against a traditional reactive
controller [13, 14,26,27,28]. Key performance indicators included task completion time, collision count,
behaviour-switching latency, and classification accuracy, as shown in Table 1. Additionally, Table 2 offers

a conceptual comparison between the fuzzy ethological model and established architectures like
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Subsumption, BDI, and Neuro-Fuzzy Systems, highlighting the proposed framework’s strengths in

emotional modelling, biological plausibility, and interpretability.
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Figure 7(b). Attack Behaviour

Metric

Fuzzy Behaviour Based System

Baseline System (Reactive)

Task Completion Time (sec) 49.6 £3.5 583+5.7
Number of Collisions 25+1.5 39+ 1.1
Behaviour Switching Latency (ms) 390 £50 420 +52
Behaviour Classification Accuracy
Escape 0.85 0.75
Attack 0.82 0.75
F1-Score
Escape 0.77 0.70
Attack 0.72 0.70
Table 1. Fuzzy Behaviour Based Vs Baseline Controller
q Proposed Fuzzy
Aspect Subsumption BDI Models Neuro-Fuzzy Ethological
Architecture Systems S
ystem
. Layere%d Symbolic Adaptable rules Fuzzy rules enable
Behaviour suppression; " : v
.. C reasoning for via training; often blended, graded
Coordination limited " lecti
o by action selection opaque responses
Direct
Emotional Not supported Indirect and Implicit if trained; | representation of
Modeling PP abstract not interpretable emotions (fear,
aggression)
. High but rigid Low.m dynamic Reactive but can High; .real-tlme
Environmental . environments; fuzzy inference
.. (binary L lack
Reactivity ; high in planned int tabilit based on sensor
suppression) domains interpretability s
) High; rule-based,
Real-Time Good, but fixed Poor due to high Moderate,. d.epends interpretable,
o . . on training . .
Adaptability hierarchy computational cost . biologically
generalization
grounded
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High (symbolic),

High; rules are
biologically and

Needs

datasets

Interpretability Moderate but often abstract Low ("black box") ethologically
grounded
Training Data None Not data -driven Require large Rule-based; no

training required

Table 2. Comparison of Traditional and Fuzzy Ethological Control Systems.

3.3 Fuzzy Behaviour-Based Control Framework with Virtual Force Field

This work presents a hybrid robotic control framework that enables lifelike, adaptive, and context-aware
navigation in real time, particularly within unstructured and dynamic environments. Inspired by animal
behaviours such as fearand escape, the system integrates a fuzzy behaviour model with the VFF method to
simulate emotion-modulated decision-making. Unlike conventional VFF implementations, which operate
independently, this approachuses VFF as a behaviour fusionmechanism guided by internal emotional s tates
derived from environmental cues like obstacle proximity and agent familiarity. Fuzzy inference assigns
context-sensitive weights to competing behaviours such as obstacle avoidance, goal pursuit, and escape

which are blended to produce smooth and reactive motion.

3.3.1 Fuzzy Behaviour Fusion

Fuzzy behaviour fusion involves integrating multiple behavioural outputs into a coherent response based
on real-time context [29, 30, 31]. In this model, the Behaviour Coordination module uses fuzzy inference
to assign relevance weights to each behaviour, allowing them to contribute proportionally to the final
decision. Each behaviour generates a directional motion vector, and the Fusion Module integrates them by
computing a net force vector. This biologically inspired method mimics how animals adaptively weigh
multiple action tendencies depending on internal states and situational cues. For example, when threats are
detected, escape behaviour receives higher weight, intensifying repulsive forces to guide the robot away
from danger [32, 33]

3.3.2 Virtual Force Field Navigation

Virtual Force Field (VFF) navigation is a reactive control strategy where virtual attractive forces pull the
robot toward its goal, and repulsive forces push it away from obstacles. By continuously calculating a net
force vector, the robot dynamically adjusts its path in real-time [34,35,36]. Although VFF is efficient and
simple, it suffers from issues like local minima and decision conflicts in complex environments. To address
these limitations, this work embeds VFF as the fusion engine within a fuzzy behaviour-based framework
[Aaqib5, Aaqib6]. Here, the repulsive and attractive forces are not treated equally but are scaled by fuzzy-
assigned weights. For example, if the robot detects a threat, the Escape behaviour’s weight increases,

intensifying the repulsive force and adjusting the motion vector accordingly. This hybrid approach
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improves adaptability and decision accuracy [37, 38, 39, 40]. To quantify the influence of repulsive forces

on the robot’s motion, the system applies the mathematical model defined in Equation (1):

.o FerC(j) [xi—xo o Yi—Yo o«
FOGD=Z6 aay * T aw ] (1

The mathematical model calculates repulsive forces based on obstacle proximity and certainty (Equation

1), summing them to produce a total repulsive force Fr shown in equation (2).

Fr=31;F (i,)) 2)

3.3.3 Construction of Fuzzy Rule and Trajectory Implementation for Fuzzy Behaviour Based Control
Framewok with Virtual Force Field Navigation

The hybrid control framework replicates biologically grounded behaviours, such as fear-driven escape, by
combining fuzzy inference with VFF navigation in a modular architecture. It comprises three components:
Behaviour Coordination, which uses fuzzy rules to evaluate environmental inputs and assign weights to
behaviours like Goal Pursuit, Obstacle Avoidance, and Escape; Component Behaviours, which
independently propose motion vectors; and Behaviour Fusion, where VFF combines these vectors using
attractive and repulsive forces scaled by fuzzy-assigned weights. Unlike traditional VFF, this system adapts
to internal emotional states such as Fear, which increases the influence of Escape behaviour in threatening
contexts. The fuzzy systemoperates on observations (e.g., AFTP, AFTA, ADTA, AFTO, ADTO, EPE) and
state variables (Fear, Escape), with inputs classified as High or Low and interpreted through FBDL rules
as detailed in Section 3.1.1 [Aaqibl, Aaqib2].

Figure 8 illustrates a trajectory representation where Robot 1, assigned a goal at coordinates (5.5, 5.5),
adapts its path in real time to avoid a moving threat such as a Robot 2 and a dynamic obstacle. As it
progresses, Robot 1 continuously monitors environmental inputs such as proximity (ADTA), familiarity
(AFTA, AFTO), and escape path availability (EPE). These inputs are processed by the fuzzy inference
system to evaluate internal emotional states specifically Fear and Escape which dynamically influence
behavioural priorities. The VFF-based fusion module then computes a motion vector by blending attractive
forces toward the goal with repulsive forces from threats, each scaled according to its fuzzy -assigned
weight. This results in a smooth, context-sensitive trajectory that enables the robot to navigate safely while
exhibiting lifelike, emotionally modulated behaviour based on ethological principles [Aaqib7].

The Trajectory adaptation process works as:

Input evaluation: The system continuously monitors sensor inputs like ADTA, AFTA, AFTO, EPE.
Behaviour weighting: The fuzzy coordination module assigns weights based onrules (e.g., [f ADTA=Low
AND AFTA=Low AND EPE=High, then ESCAPE=High).
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Force computation: Repulsive forces (from threats/obstacles, equation 3). Attractive forces (towards goal,

equation 4).

B Xi—Xo _ Yi Yo
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Figure 8. Represents the Trajectories for Animal Escape behaviour

3.3.4 ROS Simulation Environment and Classification Metrics Evaluation

The proposed hybrid control framework was evaluated in a ROS-based simulation environment. This
architecture integrates real-time fuzzy logic reasoning with reactive force-based motion planning, enabling
adaptive, context-aware navigation. Key ROS tools include RViz for visualizing sensor data and
trajectories, Gazebo for realistic 3D simulation, and LIDAR for accurate obstacle detection. SLAM
(gmapping) supports map building and localization, critical in GPS-denied environments. SLAM data
informs both the Fuzzy Coordination Moduleassessing proximity, familiarity, and escape path availability
to determine emotional states such as fear and the VFF Module, which computes attractive and repulsive
forces. These forces are weighted by fuzzy logic to generate a motion vector for real-time, biologically
inspired trajectory adaptation [Aaqib7].

The test scenario involves two robots navigating a bounded environment with static and dynamic obstacles
(Figures 9(a)-9(e)). Robot 1 has assigned a goal, while navigating it may get interrupted by Robot 2 (a

moving threat) as well as unexpected objects. In the initial stage (Figure 9(a)), both robots are positioned
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in the environment. As Robot 1 moves toward its target (Figure 9(b)), Robot 2 explores the space,
increasing the chance of encounter. LIDAR detection of Robot 2 (Figure 9(c)), combined with
unfamiliarity and decreasing distance, raises Robot 1’s fear level. The fuzzy coordination system classifies
the escape levelas high, meetingthe triggering conditions: (i) high fear, (ii) close proximity (ADTA=low),
and (iii) a clear escape path (EPE = high). VFF supports this response by amplifying the repulsive force

vector and temporarily reducing goal attraction.

Robot1

Figure 9(a) Initial stage of robots Figure 9(b) Robot 1 starts to move towards its goal.

Figure 9(c) Robot 1 detects Robot 2. Figure 9(d) Object Detection by Robot_1.

The hybrid model operates in three coordinated stages: Behaviour Components (discrete actions such as

ESCAPE or GOAL PURSUIT), Behaviour Coordination (fuzzy inference assigning behaviour weights
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based on fear level, familiarity, and obstacle proximity), and Behaviour Fusion (VFF merging weighted
behaviours into a single unified force vector). This structure ensures smooth transitions and continuous
adaptation to environmental stimulus. For example, in Figure 9(d), after evading Robot 2, Robot 1
encounters a new unknown object. Reduced distance (ADTO = low) again triggers ESCAPE, with VFF
recalculating repulsive forces and suppressing goal attraction until the danger subsides. Once clear, the
fuzzy controllerrestores goal attraction, guiding Robot 1 to its destination. Figure 9(e) showsthe successful
completion of the mission despite dynamic and unpredictable challenges. These results demonstrate the
system’s robustness, with VFF providing continuous low-level control and the fuzzy fusion system
modulating actions based on internal states such as fear. By embedding biologically inspired mechanisms
like fear-driven escape into the control logic, the framework mimics naturalistic intelligence and achieves

adaptive, interpretable navigation in complex environments.

Robotl

Figure 9(e) Robot 1 successfully achieved its goal.

Classification Metrics: Figure 10 illustrates the classification performance of the proposed Fuzzy
Behaviour-Based Control Framework integrated with VFF navigation. This hybrid architecture enhances
decision-making by combining a biologically inspired fuzzy coordination layer which dynamically assigns
behaviour weights based on real-time sensor inputs with the traditional VFF algorithm that computes
attractive and repulsive forces. These vectors are scaled using fuzzy-modulated weights, producing
emotion-aware, context-sensitive motion trajectories. Behaviour classification performance was evaluated
across 25 ROS-based simulationtrials using metrics such as accuracy, precision, recall, and F1 -score. Trials
featured dynamic conditions, including varied obstacle layouts, proximity, speed, and sensory variables
(e.g., AFTA, ADTA, AFTO). Escape behaviour was governed by fuzzy rules in FBDL, which activated
high-weight escape responses under high perceived threat and fear, producing reactive motion through

fusion with VFF vector fields.
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To assess practical effectiveness, the framework was benchmarked against a traditional VFF controller [41,
42, 43], which, while effective in simple scenarios, suffers from limitations like local minima, oscillations,
and lack of adaptability. Even enhanced variants such as behaviour-modulated VFF [34] fall short in terms
of emotional modelling and decision transparency. The comparison, summarized in Table 3, used key
performance indicators including task completion time, collision count, behaviour-switching latency, and
escape classification accuracy. Results showed the fuzzy-VFF system outperformed the baseline across all
metrics. Furthermore, Table 4 comparesthe proposed systemwith Subsumption Architecture, BDI Models,
and Neuro-Fuzzy Systems [44, 45] emphasizing its unique integration of biological plausibility, emotional

dynamics, and real-time adaptive control, effectively bridging reactive and deliberative strategies [46].
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Figure 10. Hybrid Model Classification Metrics

Metric Fuzzy Behaviour-Based VFF Baseline Reactive Controller
Task Completion Time (sec) 43.6+3.5 50.3+5.7
Number of Collisions 23+15 32+1.1
Behaviour Switching Latency(ms) 370 £35 400 £ 45
Escape Classification Accuracy 0.86 0.75

Table 5. Comparison of Fuzzy Behaviour-Based VFF with Traditional Reactive Controller

Subsumption Neuro-Fuzzy Proposed Fuzzy
Aspect Architecture BDI Models Systems Ethological VFF
Behaviour Hierarchical . . Learned rules, Fuzzy rule-‘pased,
L . Symbolic reasoning emotion-weighted
Coordination suppression opaque .
fusion
Emotional Not supported Indirect and Implicit, hard to Dlre(cf::tly r};(;cieled
Modeling pp abstract trace & fear,
aggression)
Environmental Binary, high Low in dynamic Medium (data- High (contextual
Adaptability reactivity domains dependent) o0 G
integrated)
Real-Time Moderate (fixed Poor (high Moderat High (interpretable
Adaptation hierarchy) computational) oderate and grounded)
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- . " " High (transparent
Interpretability Moderate High but abstract Low ("black box") o
Training Data . Require large .
Requirements None Not required datasets Not required

Obstac}e Prone to local . Sensitive to Emotlonally
Navigation . Planning-based . . weighted obstacle
minima training bias )
Robustness avoidance

Table 6. Comparison of Traditional vs Proposed Fuzzy Behaviour-Based VFF Navigation.

Part 4: Conclusion, Future Work, and Publications
4.1.Conclusion

4.1.1 Thesis I: Ethologically inspired Fuzzy Behaviour model of the Archer’s “Aggression and fear
in vertebrates” ethological model

Statement: This thesis proposes a novel framework that translates Archer’s ethological model of
aggression and fear in vertebrates into a computationally interpretable and machine-executable
architecture using the “Fuzzy Behaviour Description Language”, [Aaqibl, Aaqib2].

Concept: The model utilizes Fuzzy Behaviour Description Language to convert qualitative ethological
insights into structured, interpretable fuzzy rules, enabling the modelling of emotional states such as fear,
aggression, and escape.

Explanation and Proof: Animal behaviours are encoded through rule-based inference systems that
respond to factors such as environmental familiarity, threat proximity, and prior experience. Simulated
behavioural trajectories show that fuzzy controllers enable context-sensitive transitions, replicating
biologically plausible emotional dynamics. This framework bridges ethology and robotics, offering real-
time, adaptive, and interpretable emotional control suitable for therapeutic robotics and human-robot

interaction.

4.1.2 Thesis I1: Implementing Fuzzy State Machine for Behaviour control in robotic environment
Statement: This thesis presents a novel implementation of Archer’s ethological model of aggression and
fear into autonomous robotic systems through a fuzzy state machine architecture, [Aaqibl- Aaqib5].
Concept: The fuzzy state machine incorporates both latentand observable states(e.g., Fear, Attack, Escape,
Immobility), with transitions governed by fuzzy logic rules informed by continuous sensor inputs and
internal emotional appraisals.

Explanationand Proof: Developedinthe RobotOperating System(ROS) and integrated with SLAM and
LIDAR, the system dynamically evaluates threat and familiarity to trigger appropriate behaviour.

Controlled experiments show accurate and lifelike transitions between states, verified using classification
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metrics such as precision, recall, and F1-score. The FSM ensures robustness, transparency, and scalability

for emotionally informed control in applications like search-and-rescue and social robotics.

4.1.3 Thesis I11: Fuzzy Behaviour Based Control Framewok with Virtual Force Field Navigation
Statement: 7This thesis proposes a novel hybrid control framework that integrates Virtual Force Field
(VFF) navigation with fuzzy behaviour coordination to embed Archer’s ethological model of aggression
and fear into real-time robotic navigation, [Aaqibl-Aaqib7]

Concept: The framework combines VFF's with fuzzy emotion-based modulation, enabling robots to adapt
movement strategies in response to internal emotional states like fear intensity. This integration allows
biologically inspired, context-sensitive behaviour modulation based on factors such as threat distance,
environmental familiarity, and escape path feasibility.

Explanation and Proof: Implemented in ROS with SLAM, LIDAR, and obstacle perception, the system
adjusts navigational forces in real time e.g., high fear levels increase repulsive forces from nearby threats.
Simulated scenarios demonstrate adaptive responses, such as escaping from multi-agent threats or
exhibiting hesitant motion in unfamiliar terrain. The results validate the integration of affective reasoning
with physical navigation, contributing to the development of emotionally and socially intelligent

autonomous systems.

4.2 Future Work

This research opens several promising directions for advancing emotionally responsive robotics. First,
extending the ethological model beyond fear and aggression to include behaviours such as nurturing, social
bonding, and territoriality could enrich human-robot interaction (HRI) by enabling more complex social
dynamics. Exploring behavioural parallels between humans, animals, and robots may also contribute to
unified emotional frameworks that advance both robotics and behavioural science. Second, integrating
machine learning techniquessuchas deep learning andreinforcement learning with fuzzy logic can enhance
adaptability, allowing robots to learn from past experiences and perform effectively in uncertain
environments. Hybrid architecture that combines symbolic reasoning with experiential learning could
further broaden the capabilities of emotional robotics. Third, as robots increasingly display emotion-like
behaviours, ethical and societal considerations must be addressed. Key concerns include emotional
deception, user dependency, and moral agency; future work should focus on developing clear ethical
guidelines to ensure emotionally intelligent robots act responsibly, particularly in sensitive applications.
Finally, sentiment and behaviour analysis can be expanded through multimodal sensory integration (e.g,
audio, vision, text), with advanced models that fuse these inputs alongside contextual reasoning. Such
developments could improve emotional inference and enable richer, more natural interactions in domains

such as caregiving, therapy, and collaborative robotics.
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